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Hidden self-energies as origin of cuprate superconductivity revealed by machine learning
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Experimental data are the source of understanding matter. However, measurable quantities are limited and
theoretically important quantities are sometimes hidden. Nonetheless, recent progress of machine-learning
techniques opens possibilities of exposing them only from available experimental data. In this paper, after
establishing the reliability of the method in various careful benchmark tests, the Boltzmann machine method is
applied to the angle-resolved photoemission spectroscopy spectra of cuprate high-temperature superconductors,
Bi,Sr,CuOgs (Bi2201) and Bi,Sr,CaCuOgys (Bi2212). We find prominent peak structures in both normal
and anomalous self-energies, but they cancel in the total self-energy making the structure apparently invisible,
while the peaks make universally dominant contributions to superconducting gap, hence evidencing the signal
that generates the high-7. superconductivity. The relation between superfluid density and critical temperature
supports involvement of universal carrier relaxation associated with dissipative strange metals, where enhanced
superconductivity is promoted by entangled quantum-soup nature of the cuprates. The present achievement opens
avenues for innovative machine-learning spectroscopy method to reveal fundamental properties hidden in direct

experimental accesses.
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I. INTRODUCTION

Momentum k and energy o dependent electron single-
particle spectral function A(k, w) can be measured with
recent revolutionarily refined resolution of angle-resolved
photoemission spectroscopy (ARPES) [1]. From A(k, w), the
interaction effects crucial for unconventional superconductors
can be identified in the self-energy [2,3]. A scanning tunneling
microscope (STM) and its spectra (STS) including the quasi-
particle interference method [4] also give us insights into the
self-energy [5,6].

In superconductors, the self-energy consists of the nor-
mal and anomalous (superconducting) contributions, X"°" and
3 respectively. ARPES and STS provide us with only
the total self-energy X' in a specific combination of these
two [2] (see below for details). However, to understand the
superconducting mechanism, it is crucially important to ex-
tract these two separately, because they represent different
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part of interaction effects: X*" is proportional to the su-
perconducting gap function, at the heart of superconducting
properties, while normal-electron correlation effects, such as
renormalized mass and lifetime, are encoded in X", De-
spite its importance, £*" can be straightforwardly extracted
separately only when X" is nonsingular as in the BCS super-
conductivity of weakly correlated systems [5,6]. Indeed, the
decomposition of the self-energies of the BCS superconduc-
tors has played the role of establishing the phonon mechanism
since the anomalous part contains the information of the
phonon density of states, which is crucial for the identification
of the glue for the superconductivity. In case of the cuprate
high-T.. superconductors, because of the strong electron cor-
relation, the subject of extracting normal and anomalous
self-energy separately belongs to an open enigmatic inverse
problem, which has hampered the full understanding of the
superconducting mechanism for decades.

Recently machine learning and data science are developing
rapidly as tools to analyze accumulated data across various
research domains. The expectation is to solve complex, im-
portant problems for human beings, which are hardly solved
by conventional tools, as in the attempt to forecast future and
designing new functional materials by utilizing existing big
data. More specifically, machine learning has potential for
innovating routes of exposing quantities, which is invisible in
direct measurements. Solving inverse problems to construct
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theories with predictive power by using existing experimental
data is a typical target of machine-learning innovation.

In this paper, we develop a scheme of machine-learning
technique to extract physical quantities hidden in experimen-
tal data. To demonstrate the power of our method, we apply
it to the electronic structure of the cuprate high-temperature
superconductors under strong correlation effects manifested
by the formation of the pseudogap in the normal state. Specifi-
cally, the Boltzmann machine [7,8] is examined to extract X"
and X%"° separately from available ARPES spectra even when
the normal self-energy is subject to prominent or singular
correlation effects. The discovered prominent peak structure
in the energy dependence of X" hidden in the ARPES is
shown to generate most of the superconducting gap, namely,
more than 90% of the gap, and hence to be the driving force
of the superconductivity in the cuprates. From the extracted
self-energies, we elucidate the factors that determine the su-
perconducting transition temperatures.

The organization of the present paper is as follows: In
Sec. II we summarize the essence of the regression scheme
to extract the self-energies from the spectral functions. The
details of the method is given in Sec. III. The readers who
are not interested in the technical details of the method but
are interested only in the results may skip Sec. III and directly
jump to Sec. I'V. Various benchmark tests of the regression by
using the present method are presented in Sec. IV for simple
metals and conventional Bardeen-Cooper-Schrieffer-type su-
perconductors to show the reliability of the method. The main
results of the present paper studying the regression for the
cuprate superconductors are given in Sec. V. The self-energies
of cuprate superconductors extracted separately for the nor-
mal and anomalous contributions are shown, which have
prominent peak structures in both the normal and anomalous
part, but cancels in the spectral function. We also show that
the prominent peak in the anomalous self-energy gives rise
to the major part of the high-temperature superconductivity.
Section VI is devoted to the discussion on the implications of
the present results. Then we summarize this paper and give
our outlook in Sec. VIL

II. METHODS

In this section, we introduce the fundamentals and ba-
sic concept of the present method. The detailed regression
scheme is given in Sec. III for readers who are interested in
technical details.

A. Regression

The present machine-learning scheme is classified into
the category of a general regression task, which optimizes
a function A to find B and/or F, when A is a nonlinear and
complex functional of another function B as A = F (B), where
the goal of solving the inverse problem B = F~!(A) by the
optimization of A is set from a physical purpose [9]. Another
example belonging to the regression task as an application
of the machine learning is found in the use for quantum
many-body problems or statistical physics problems (see, for
instance, Ref. [10]).

Regression Procedure by ANN

initial guess of ANN parameters
physical constraint

>
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FIG. 1. Flow chart of machine-learning procedure. Regression
procedure of the normal self-energy X" (k, @) and anomalous self-
energy X*"(k, w) using the experimental spectral function. The
procedure starts from the central top (initial guess) to the training
process (the inner loop) consisting of the red and black arrows to
optimize all parameters in the artificial neural network (ANN). When
the error converges, the outer loop decreases the test error, which
delivers the initial values for the next inner loop until the test error is
minimized.

In the present case, A is the ARPES spectral function
A(k, w), B is the self-energies X"°" and X", and F is given
by Eqgs. (2) to (4) below. The training data are given by exper-
imental A(k, w) at a discrete and limited number of w. Then
the present machine learning is a typical regression task to
infer both X£%"°(k, w) and X" (k, w) separately as continuous
functions of w.

Here we note that the present scheme is not a simple
interpolation for functions of w. The regression with artifi-
cial neural network provides the self-energies X*"°(k, @) and
3" (k, w) that simultaneously satisfy the constraints from
the several rigorous and physically sound prior knowledge
together with the experimental data.

In the machine learning, flexible regression models that
can minimize the training error without any limitation are
employed. In contrast, when we employ phenomenological
regression models, the constraints arising from phenomeno-
logical functions substantially increase the cost function far
beyond the noise in the experimental data as demonstrated in
the following discussion (see Appendix A). If the phenomeno-
logical form of the regression model is not a priori justified,
the machine-learning scheme should have an advantage over
standard phenomenological regression schemes.

The basic procedure is illustrated in Fig. 1. More technical
details are found in the following Sec. III, and the robust-
ness, accuracy, and reliability of the present machine learning
are shown in detail in Appendixes F and D. An important
advantage of the machine learning is that the approximation
converges to the correct results without overfitting and bias
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if one increases the data point. We do not call any other
approach that does not reach this systematic improvement
machine learning.

B. Green function

We propose a theoretical method to extract X" and X*"°
from experimentally observed spectral functions A(k, ) of
superconductors. In the superconducting phases, the single-
particle retarded Green function at a given momentum k as a
function of frequency w is given by a diagonal component of
2 x 2 matrix in Nambu representation,

— € — Znor(k’ ;)
_E'clno(k7 C)

_ZBHO(k, é-) 1
C +€k + EHOF(k’ _C)* ’

ey

with { = w + i8 (§ is a small positive real number). The bare
dispersion is given by €. A(k, w) measurable by ARPES is
related to G as

Gk, ¢) = [5

Atk ) = = Im{(Glk, Ol so. @
with the normal component of the Green function
G (k, w) = Gk, )11 = [0 — & — XKk, ). (3)
Here the total self-energy X' is given by [11]
Ok, @) = [2"(k, &) + Wk, )50, “
with W given as a specific combination,
Wk, w) = 2"k, 0)* /[0 + e + " (k, —0)*].  (5)
The gap function
Ak, w) = Ok, )2 (k, w), (6)

which is a measure of superconducting order, is propor-
tional to X*"°(k, w) with the coefficient Q(k, w) called the
frequency-dependent renormalization factor defined as

1
[Zror(k, ¢) — T (k, —¢)*1/(2¢) |50
7

The w — 0 limit of Q is theoretically equivalent to the quasi-
particle weight (renormalization factor) defined in Eq. (9)
below as we calculate in Appendix B with the help of the pro-
cedure in Appendix C. The real part of A(k, w), ReA(k, w =
0) is nothing but the superconducting gap [see the definition
of A in Eq. (6)]. In the present report, § is chosen to be equal
to the experimental resolution as § = 10 meV [12], instead of
taking § — 07,

To estimate the density of the Cooper pairs, mass renor-
malization, and gap amplitude from the spectral function, we
define F'(k), zqp(k), and Aq(k), respectively, as

Ok, ©) = —

0
1. .
F(k):f do—ImG(k, ©)i, ®)
25 (k) = 1 = IReZ" (k, 0)/90], 0, ©)

Ao(k) = Alk, @ = Ao(k)), (10)

where zq, is called the renormalization factor (see
Appendix B). As is well known, the gap function is interpreted
by the product of the Cooper pair density and the effective
attractive interaction to form the Cooper pair as the mean
field acting on the Cooper pair formation.

C. Prior knowledge

When we can measure entire  dependence of G(k, w+i8)
at a fixed k, we can reconstruct X" (k, w) and X*°(k, w)
solely without any information at momenta other than k, be-
cause Egs. (3) and (4) are all diagonal in the k space. However,
we cannot measure the entire w dependence of the complete
Green function matrix G(k, w + i8), which makes the infor-
mation through the Kramers-Kronig relation incomplete. In
the literature [13], it has been assumed that the momentum de-
pendence of the normal-state spectrum at a fixed w is a single
Lorentzian curve so that X" (k, w) and X" (k, w) can be ex-
tracted separately without knowing the @ dependence at large
|w|. In the present article, to overcome the lack of information
at large |w|, we utilize physically sound constraints and ex-
tract X" (k, w) and X" (k, w) from experimentally observed
A(k, w) at a single fixed momentum k, instead of assum-
ing specific momentum dependences of the spectra. Indeed,
the present Boltzmann machine learning as detailed below
successfully reproduces X" (k, w) and X" (k, w) separately
from benchmark spectral functions without the momentum
dependence of the spectra as shown in Appendix D.

The physical constraints employed in the present article
are classified into two categories. The constraints in the first
category are the structure of the Green function given in
Eq. (1), the Kramers-Kronig relationship between the real
and imaginary part of the self-energies, negative definiteness
of Im¥™, and odd nature of ImX¥?° as ImX*™°(—w) =
—Im¥*°(w). The constraint in the second category is the
sparse and localized nature of the Im¥?" along the w axis. In
the present context, the sparseness is defined as the property
of Im¥*"°concentrated and localized in the small frequency
range around the Fermi level. It should be mentioned that
the optimization procedure of the present machine learning
does not explicitly impose this latter constraint because of
the flexible representability of the present (restricted) Boltz-
mann machine [14]. The sparse nature of Im %" is, however,
justified a posteriori in the optimized solution, which turns
out to satisfy physically reasonable sparseness although the
machine-learning procedure does not explicitly impose this
constraint.

From physical grounds, the sparse and localized nature
of ImX" is a natural consequence as clarified in Ref. [15],
where irrespective of the mechanism and symmetry of the
realistic pairing, strong and long-range nature of Coulomb re-
pulsion in general causes severe pair breaking at large energies
and suppresses X" at energies far away from the Fermi level.

D. Overview of optimization

We represent the self-energies by using artificial neural net-
works in the present scheme, and optimize the neural network
to reproduce the experimentally observed spectral functions.
The optimization of the neural network consists of inner and
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outer optimization loops (see Fig. 1). In the inner optimiza-
tion loop, starting with given initial parameters for the neural
network, all the parameters are optimized to minimize the
training error [see the definition given in Eq. (26) below] by
following the natural gradient method (see Appendix E for
details). On the other hand, in the outer optimization loop,
test errors [see Eq. (28)] are minimized by the Bayesian op-
timization. The updated distribution delivers the initial values
for the next inner loop. The next inner loop starts again with
the updated neural network parameters, while, if the number
of repetitions of the outer loop already reaches an upper limit
(typically less than 100 in the present paper), the optimization
is completed and the current best neural network gives the
optimized self-energies. Here we combine these inner loop
and outer loop optimization to avoid the overfitting, which
would be inevitable if we would use only the inner loop
optimization with the training data.

III. TECHNICAL DETAILS

In this section, we show the details of the present regression
scheme to extract the self-energy from ARPES data. The
neural network representation of the self-energy is detailed
in Sec. Il A, which is supplemented by the Kramers-Kronig
relation in Sec. III B. The procedures to optimize the self-
energy are given in Secs. III C, III D, and IIT E. You may skip
this section if you are not interested in the technical details of
the present method.

A. Wavelet analysis and Boltzmann machine representation
of imaginary part of self-energy

Although high-resolution ARPES data for A(k, w) are
available in experiments, £"°" and X" are not directly given
separately from A(k, w), while if X" and X" and ¢, are
given, A(k, w) can be determined easily by using Egs. (1) and
(2). Therefore we need to solve an underdetermined nonlinear
inverse problem. To overcome the underdetermined nature of
the problem, we employ physically sound constraints justi-
fiable even in strongly correlated electron systems as prior
knowledge as introduced above. By incorporating these phys-
ical constraints, we try to optimize X" and X" so as to
reproduce experimental A(k, w). For this purpose we employ
a machine-learning method by applying a Boltzmann machine
algorithm [7]. The reliability, accuracy and robustness of the
present machine-learning procedure are shown in several ro-
bustness test against noise in Appendix F and benchmark tests
in Appendix D.

In the retarded Green function representation, ImX™" is
negative definite and Im X" is an odd function of w. The neg-
ative definiteness and odd nature are guaranteed by expanding
ImX"™" and ImX*"® with positive definite bases {6;} as

ImE™ == "¢60;(w). an
J

ImE™° =) " d;[0;(w) — 0;(—w)], (12)
J

where ¢; and d; are real coefficients. Due to the positive
definiteness of the normal part, c¢; is positive.

(a) (b)
—A/2 +A/2
w

Im¥2"°(k, w)

0p 01 *** OL-1

FIG. 2. Boltzmann machine representation of imaginary parts of
self-energies. (a) The piecewise rectangular function representation
of ImX"" is illustrated as a combination of red rectangles. (b) The
piecewise rectangular function representation of ImX** is shown.
While total ImX" is represented by open red rectangles, Boltzmann
machine representation generates their components as illustrated
as filled red, cyan, and blue rectangles. To satisfy antisymmetry
of ImX*"°, the copies of the Boltzmann machines shown in gray
rectangles are also supplemented. (c) The wavelet-like structure of
the rectangular basis set is illustrated. From the longest wave length
structure governed by oy to the shortest wave length structure con-
trolled by o, _;, each rectangular basis (open red rectangle) is labeled
by the set of the bits o = (0y, 01, ..., 0.-1) (6, = £1). The structure
of the restricted Boltzmann machine for ImX"°" and mixed distribu-
tion consisting of Boltzmann machines for ImX" are depicted in
(d) and (e), respectively.

One of the simplest basis set {6;} is a set of rectangu-
lar functions, which gives a stepwise representation of the
self-energies. To obtain a flexible and compact representa-
tion for the coefficients ¢; and d;, here we will combine
a well-established wavelet-type representation [16-18] and
Boltzmann machines as follows. The high representability of
the wavelet formalism with the rectangular basis is discussed
in Appendix G. The piecewise rectangular representations
of ImX™" and ImX*° are shown in Figs. 2(a) and 2(b),
respectively.

In this fitting, the frequency range of our interest w €
[—A/2, +A/2] is first divided into 2 grids using an integer
L and assign an L-digit binary representation as

O’E(()’(),O'l,...,O'L_l), (13)

where o; = mod(//2, 2) for the decimal representation /(o)
in the range 0 < I(0) < 2F — 1 of the grid number coordinate,

L—1
1(o) = Zag 2¢. (14)
£=0

Then the unit rectangular function @f, (x) is defined as

1 forx e [I(o)/25, {1 +1(0)}/25)

L —
O (@) = {0 otherwise 3
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The correspondence between the position of the rectangular
functions and the decimal representation /(o) is shown in
Fig. 2(c).

Then the basis set expansions of ImX™" and ImX"™" are
obtained as

IME" () = — ZC(G)@ﬁ(%Z\/Z), (16)

ano w+A/2 A2 —w
ImY (w)ng(a)[(af,( - )—@f,( 0 )]

a7

with two sets of 2 fitting parameters, C(¢) and D(a).

In the actual calculation, we take A ~ 0.8 eV to effi-
ciently fit the experimentally observed A(k, w) confined to
the range w > —0.4 eV. Note that we assume ImX""(w) is
thus restricted and nonzero in the comparable range (v >
—A/2eV, A ~ 0.8 eV) to the experimentally measurable one
of A(k, w) to fit them, while we do not impose any constraint
on ImX¥*"°(w), because X" is restricted within this energy
range as we noted above. We have confirmed in Appendix F
that the result is basically unchanged even when the energy
cutoff A imposed on ImX""(w) is removed by adding pos-
sible high-energy tail or peak in the range w < —A/2. This
means that our main finding is not altered by the experimen-
tally unknown shape of the spectral function at w < —0.4 eV.

Irrespective of the cutoff A, the Kramers-Kronig relations
given below [Egs. (24) and (24)] are applied for all the self-
energies to the whole energy range (—0o0 < w < 00) in the
machine-learning procedure so that the optimized solution
satisfies the strict causality. In fact, for the converged A(w),
the sumrule [ dwA(w) = 1 is satisfied.

As a compressed representation for C(o) and D(a), in this
paper, we employ two different types of Boltzmann machines
to enhance their representational power and determine each
3" and X" separately. ImX"" is negative definite and a
widely distributed function within energy scale set by the
Coulomb repulsion. Thus, we use the flexible and nonnega-
tive restricted Boltzmann machine, which will be introduced
below. However, ImX*" has different properties: It is sparse,
which is justified a posteriori as we addressed already. There-
fore, we employ a mixture distribution of the Boltzmann
machine without the hidden variables to accelerate the opti-
mization. There may still remain ambiguities in determining
3" and ¥ from an observed A(k, w). As proposed below,
the ambiguities are removed by imposing physical constraints
of ImX¥#"°.

Now we introduce the Boltzmann machine to represent
C(0) and D(o) in Egs. (16) and (17), respectively. We first
change the binary variable o introduced in Eq. (13) to the
Ising variable S = (S, Si, ..., S.—1) using the relation Sy =
20, — 1 for later convenience and rewrite as C(S)[= C(0)]
and D(S)[= D(a)]. Then by adding hidden Ising variables
h = (hy, hy, . ..), the Boltzmann machine is generally defined
as a Boltzmann weight for Ising variables v, = %1 consisting
of S and £ in the notation v = (S, h) as

B¥|W,B) = exp [Z Wom VeV + ZBW{|, (18)

l,m 14

where (W)g,, = Wy, represents interaction among v, and
(B); = By represents bias fields applied to v. W, and By
are variational parameters to minimize the difference between
the resultant A(k, @) and the measured spectral functions. The
role of the hidden variables A is to enhance the representability
of B to approximate C(S) and D(S).

Thanks to the non-negativity of C(S), it is efficiently repre-
sented by the restricted Boltzmann machine (RBM) [8,19,20],
one of the most widely used one, as represented by

C(S) =) _Bc(S.h|W.B), (19)
h

where B restricts the interactions in B only between visible
and hidden variables in the form W,,,S¢h,,.

The advantage of the RBM is that one can analytically trace
out the hidden variables #,,, leading to

thl
C(S)=¢" [ ] 2cosh [S:Wel, (20)

m=0

where Ly is the number of the hidden variables. Any w-
dependent line shape in the energy range [—A/2, A/2] can
be flexibly represented by optimized Boltzmann-machine pa-
rameters, if they are non-negative. Ly, is typically set L, = 2L
to achieve a convergence with reasonable computational costs.
The restricted Boltzmann machine representation is schemat-
ically illustrated in Fig. 2(d).

For %", to remove the ambiguities, we impose the physi-
cally required symmetries,

ReZ¥(w) = ReZ™(—w),
IMZ™ () = —IME™(—w), 1)

which can be constrained by employing the odd function (17).
If ImX?"° is sparse, namely, confined in a certain range of w,
ImX?"° can be better represented by a mixture distribution,
namely, by a linear combination of the full Boltzmann ma-
chine in the form
M
D(S) = Z w, Bp(S|W*, B"), (22)
A=l

where M is the number of the Boltzmann machines in the
linear combination. Here Bp allows only the physical variable
S without the hidden one A, but allows the interaction between
S as

Bp(S|W*, B*) = eXenSWinSu+ L Sibt. (23)

The Boltzmann machine representation is schematically illus-
trated in Fig. 2(e).

Note that the linear combination of the Gaussian distri-
butions is one of the standard procedure to approximate a
smooth function [21] and can be used as an initial guess of
D (for the detailed procedure, see Appendix E4). Of course,
the Boltzmann machine has representability far beyond the
Gaussian distribution after the optimization.

Since it is sufficient to take the number of variables S, at
most L = 9 to fit the experiment data containing the resolution
limitation, we can explicitly take the trace summation over
S for all £ (with 2° terms) at each iteration step. Therefore
the drawback of the mixture distribution of BM beyond the
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RBM (namely, the complexity arising from containing the
interaction term between two physical variables proportional
to sznS ¢S 1s not a serious problem. We set the number of the
Boltzmann machines in Eq. (22) up to 3 (M < 3) to promote
the faster optimization of the imaginary part of the anomalous
self-energy.

When the experimental spectral data contain small noise,
the stepwise representation for the imaginary part of the
self-energies may introduce a systematic increase in the test
errors. To reduce the possible increased error, we introduce a
piecewise-linear representation instead of the stepwise repre-
sentation ImX /4 (see Appendix G). Since the estimated
noise is very small for the experimental ARPES spectra of the
optimally doped Bi2212 (7, = 90 K) at 12 K, the piecewise
linear representation is helpful to achieve the comparable
size of test errors with the noise in the experimental data
(see Appendix F for a quantitative discussion).

B. Real part of self-energy

The real part of the retarded self-energy is obtained through
the Kramers-Kronig relation as

. 1 Im=" (K, o’
ReS"™ (%, ) = —P/dw’m—(’w), (24)
T w

w —

. 1 ImE*°(k, o'
ReZ™ (R, w) = —P / doyIWET R @) s
T -

C!)/

where a broadening factor § = 10 meV is introduced to rep-
resent a principal value,

P/da/ f(@) ’

o —w

by

Re\/dw/La)/)
W +il—w

See Appendix H for details.

C. Numerical procedure for optimization

We optimize the Boltzmann machines to reproduce experi-
mentally observed spectral functions. The optimization of the
Boltzmann machines consists of inner and outer optimization
loops (see Fig. 3). In the inner optimization loop, starting
with given initial parameters for the Boltzmann machines, all
the parameters of the Boltzmann machine are optimized to
minimize the training error defined in Eq. (26) by following
the natural gradient method detailed in Appendix E. On the
other hand, in the outer optimization loop, a test error defined
below [Eq. (28)] is minimized by the Bayesian optimization
that updates only the centers of mass of the distributions in
D(S) by fixing other BM parameters to the values obtained
in the inner loop. The updated distribution delivers the initial
values for the next inner loop.

To find the optimized self-energy, these inner and outer
loop optimization processes are combined as follows. First,
Boltzmann machines are initialized to follow the prior knowl-
edge explained above. Then these Boltzmann machines are
optimized to minimize the training error in the inner loop.
Once the inner-loop optimization converges, the test error is

evaluated by the optimized Boltzmann machines, and the self-
energies given by the present Boltzmann machines are stored
as the current best ones. When the outer loop is repeated, only
if the test error becomes minimum in the whole optimization
history, the present self-energies are stored as the current best.
Then the centers of mass of the M Boltzmann machine dis-
tributions are updated in the outer loop by using the Bayesian
optimization scheme. The next inner loop starts again with the
updated Boltzmann machine parameters, while, if the number
of repetitions of the outer loop already reaches an upper limit
(typically less than a hundred in the present paper), the opti-
mization is finalized and the current best Boltzmann machines
give the optimized self-energies. For an efficient optimization,
the initial condition at the largest L (L = 9) is prepared from
the optimization at L = 8 (see Appendix E).

D. Minimization of training error
For given initial parameters of the Boltzmann machines,
the least square error of the training defined by
2 1

2Ny 7

X [AP(w;) — f(w)A@)T (26)

is minimized, where N is the number of the experimental data
points, A*P(w) is an experimentally observed A(k, w), {w;}
(G=1,2,...,Nyg) is the set of frequency where A(k, w) is
observed in the experiment, and f(w,) is a convolution of the
Fermi-Dirac distribution and a Gaussian distribution. The ex-
perimental data A**P(w;) involve the Fermi-Dirac distribution
broadened by the resolution of the experiments. Therefore,
we introduce the convolution f(w) of the Fermi-Dirac dis-
tribution at 12 K for Bi2212 and 11 K for Bi2201 and the
Gaussian distribution with standard deviation /o2 = 5 meV.
Here we normalize the experimental data AP (w) by assuming
(I/Nd)ZjAeXP(a)j) = ngy, where 0 < ng < 1. In this paper,
we infer ng = 0.3 per spin, which means that 60% of an
electron is assumed to be distributed in the experimentally
observed range (w 2 —0.4 eV). We show that ng = 0.3 is in-
deed the optimized value of the least square fit in Appendix I,
while the result of the self-energies does not sensitively de-
pend on the choice of ny around 0.3.

E. Minimization of test error

To further explore the multidimensional parameter space
of the Boltzmann machine and find an optimized solution, we
employ the Bayesian optimization scheme in the outer loop.
Before performing the Bayesian optimization, as explained
above, we perform a sufficiently large number of optimization
steps, which is typically 4 x 10°, in the inner optimization loop
to minimize the training error.

Then we update the center of mass of each component
of mixture distribution represented by Boltzmann machine in
Im X" defined in Eq. (17), in the following procedure. First,
we extract the weight, center of mass, and variance of each
Boltzmann-machine distribution by zeroth, first, and second
moments as the function of w. To update the center of mass,
we use the Bayesian optimization scheme [21] depending on
the history of the optimization process for the center of mass,
where the test error P defined below is the cost function
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FIG. 3. Flow chart of machine-learning procedure. Regression procedure of the normal self-energy X" (k, ) and anomalous self-energy
2 *(k, w) using the experimental spectral function A*?(k, w). Here (R)BM and COM (green arrows) stand for (restricted) Boltzmann machine
and center of mass, respectively. The procedure starts from the central top (initial guess) to the training process (the inner loop) consisting of
the red and black arrows to optimize all the BM parameters. When the error converges, the outer loop (blue and black arrows) updates the
COM positions to decrease the test error, which delivers the initial values for the next inner loop until the test error is minimized. The test error
is minimized by repeating the combined inner and outer loop updates. The histograms are schematic w-dependences of Im %73k, o) at a
fixed k: The stepwise representation of Im¥*"(k, w) (the open purple boxes) is obtained by antisymmetrizing the superposition of the three
BM distributions (red, blue, and green filled boxes), D(S), to satisfy the odd-function property in w, where the light or dark gray histograms
are added. ImX"™ is directly given from C(S) as the open red boxes. In total, the machine learning minimizes the training (inner loop) and test
(outer loop) errors given by the average [E over w for Egs. (26) and (28), respectively.

to be minimized instead of Xz, to avoid overfitting. Then
we construct the initial values for D(S) that defines Im X"
for the next inner loop by using the updated center of mass
with the weight and variance obtained above. Each Boltzmann
machine in the mixture distribution D(S) is initialized as
the Gaussian distribution with the weight, the updated center
of mass, and variance. One may wonder why we initialize
the Boltzmann machine again with the Gaussian distribution:
Since the next inner loop optimizes the Boltzmann machine
again, the initialization by the Gaussian does not alter the
final results, where the final convergence to the optimized
self-energies is reached after the inner loop. The reason to
reduce the distribution temporarily to the Gaussian is that the
outer loop optimization can be handled easily since only the
three lowest moments are needed.

To define the test error, first, we generate synthetic exper-
imental data from the original data. Because the overfitting
originates from reproducing detailed noisy behaviors in the

experimental data finer than the experimental resolution [22],
to eliminate the noise, the experimental data A®*P are fitted
by a smooth function A defined as a linear combination
of the Gaussian distributions [21] with standard deviation
Vo2 =10 meV equal to the experimental resolution. Then
we can estimate amplitude of noise in the experimental data
as

o2 = N7 Y AN (@) — A% ()] @7
J

This error estimate is a standard procedure in the linear
regression problem [23]. Inferring error or noise of the ex-
perimental data from the smoothed curve represented by an
interpolation of the experimental data based on the physical
assumption of smooth and continuous behavior in nature is a
general established procedure in the linear regression problem
(see, for instance, Ref. [21]). This is a natural regularization
to infer the generalization error reliably. There it is important
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to assume the smoothness within the scale of the experimen-
tal resolution and with a frequency scale sufficiently longer
than the interval of the experimental discrete points to ex-
clude overfittings. This is achieved by the superposition of the
Gaussian with the 10 meV width to meet the experimental
resolution, 10 meV (see Ref. [9] as well).

By using the probability distribution p(A®"|Af, w) o
exp{—[AY"(w) —Aﬁt(a))]z/2on2}, we can generate synthetic
experimental data A%Y". By assuming that p(A%"|Af, w) well
reproduces real experimental data, the cost function to avoid
the overfitting is defined by

a

Ny N
— 1

=N SN A (@) — f(@)A)], @8)

s=1 r=1

where A" is the rth synthetic experimental data indepen-
dently generated by the probability distribution p(A%"|Af, )
and {w{"} is a set of randomly chosen frequency points for all
synthetic data A)”". See also Appendix F.

The optimization of the internal parameters of the Boltz-
mann machines in the inner loop and the optimization of the
center of mass of each mixture distribution in the outer loop
is repeated together several tens. The self-energies that give
the minimum of x2 for the test data are called the optimized
self-energies.

IV. BENCHMARK TESTS

In this section, we benchmark the performance of the
present self-energy inference by utilizing the artificial neural
network representation. First, we reproduce the normal self-
energy of metals. Since there is no anomalous component,
the regression becomes easier and less underdetermined. As
typical examples, the surface state of Be and normal state of
(La, Sr),CuOy are analyzed.

Next, we perform the regression to reproduce the known
normal and anomalous self-energies of superconductors. The
present method indeed reproduces these self-energies for a
model of strong coupling Bardeen-Cooper-Schrieffer (BCS)
superconductors. The readers who are interested in the main
results on the superconducting cuprates may skip this section
and go to Sec. V.

A. Normal metals

To benchmark the capability of the present scheme, we
analyze nonsuperconducting metals as trivial examples.

1. Surface state of Be

The ARPES spectrum of Be (0001) surface state [24] is
analyzed as a typical metal. In Fig. 4(a) the spectral func-
tion at the Fermi momentum kr obtained by our regression
task reproduces the experimental data. The optimized normal
self-energy is consistent with the self-energy given by the
combination of Migdal-Eliashberg (ME) theory and data from
experiments by considering a constant shift of the imaginary
part due to elastic scatterings, as shown in Fig. 4(b). Note
that our machine-learning procedure does not assume the ME
theory and shows the ability of reliable regression later even

(a) 3 (b) 0.1
o~ o Beatk
\> —=— present scheme % ey
> = Y e T e -
21 ol g
=) AN Y
3 = Im¥
IS & = ReX
= & ©
E = — Im¥xPh
=1 o 01F ReXxPh
— [}
e 7]
3
o h
T e [
0 : : : L— 0.2 ‘
-1 075 -05 -0.25 0 -0.2 -0.1 0
w (eV) w (eV)

FIG. 4. ARPES spectrum of Be (0001) surface state at the Fermi
momentum kg and self-energy. In the left panel, the red open squares
represent the ARPES data and blue crosses show the theoretical
spectral function given by the machine-learning self-energy, which
is shown in the right panel. The red (blue) closed squares represent
the imaginary (real) part of the self-energy obtained by the present
Boltzmann machine learning with ny = 0.5 (n, is the ratio of the
measured weight to the total weight). For the definition of ng, see
Sec. III D. The magenta (cyan) curves represent the imaginary (real)
part of the self-energy obtained in Hengsberger et al. [24] by using
the Migdal-Eliashberg theory with a constant shift of the imaginary
part due to elastic scatterings. Here we note that wavy structures in X
shown in the right panel simply originates from the wavy structures
in the experimental ARPES data superimposed on top of the sharp
peak shown in the left panel (red open squares) likely to be ascribed
to the experimental noise.

when the ME theory is not a priori justified as in the case of
strongly correlated electron systems.

2. Normal state of (La, Sr),CuQy

We have also analyzed the ARPES data of Zhou et al.
[25], to see the normal-state self-energy of (La, Sr),CuQy.
After subtracting the background proposed in this paper, we
have analyzed the intrinsic spectral function by the machine
learning and succeeded in reproducing the spectral function
from the optimized self-energy as shown in Fig. 5.

We also compare thus obtained self-energy with the results
of the standard Kramers-Kronig (KK) transformation scheme
and found that they are essentially consistent each other. Here
the standard KK transformation scheme employed in Ref. [25]
consists of three steps: First, a high-energy tail is attached
to the spectral function to obtain the full @ dependence of
—(1/m)ImG(w). Second, by assuming the particle-hole sym-
metry, the KK transformation is used to obtain the real part
of G. Then, from the Dyson equation, the self-energy ¥ =
@ — G~ is obtained. Without the assumption on the high-
energy tail and the particle-hole symmetry, our regression
scheme indeed reproduces the results of the standard KK
transformation.

B. BCS superconductors

Here we show that the present scheme reproduces the self-
energies of the strong coupling BCS superconductors. In the
BCS superconductors, the amplitude of the self-energies is
smaller than those in strongly correlated electron systems such
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FIG. 5. Self-energy analysis of EDC curve at the Fermi momentum kg reported by Zhou et al. [25]. The raw EDC data (red squares) and
background function b(w) determined by a standard way (black solid curves) are shown in (a). The EDC curve after subtracting b(w) from the
raw data is shown as A®*P(w) by red squares in (b), in comparison with the spectral function reproduced by the Boltzmann machine self-energies
[see (d)] illustrated by blue crosses. To perform the KK transformation, a high-energy Gaussian tail is added to A*?(w) for v < —0.8 eV as
shown in (c). Real and imaginary parts of the normal self-energy (blue and red squares, respectively) obtained from the machine learning using
the EDC curve shown in (b) are compared with the real and imaginary parts obtained by the standard KK transformation (cyan and magenta
solid curves, respectively). The standard KK scheme is detailed in Appendix D.

as cuprate superconductors. The weaker self-energy effects
are suitable for perturbative treatments for forward problems
such as the ME theory if the ME theory is justified. In
contrast, the present self-energy regression from the spec-
tral functions works well for the strongly correlated electron
systems because the spectral functions provide more informa-
tion necessary for solving the inverse problem to obtain the
self-energies, such as large superconducting gaps and broader
quasiparticle peaks. Then the regression of the BCS super-
conductors are difficult tasks to perform by using the present
scheme when the amplitude of the anomalous self-energy and
its influence on the spectral function are small. Nevertheless,
in this section, we demonstrate the successful regression of the
self-energies for a BCS superconductor when it is close to the
strong-coupling limit, in which we have substantial amplitude
of the anomalous self-energy.

As a typical model, the superconducting state described by
the following Eliashberg equations is examined. By following
the standard strong coupling theory for boson-mediated su-
perconductors [5,26,27], the superconducting gap A(w) and
particle-hole symmetric component of the normal self-energy
o[l — Z(w)] at zero temperature are given by the Eliashberg
equations

(29)

A(w)

N]: @e ,
dw'Re 5 -
[w/ _ A(w/)z _I_m]l/z

Z(®) Ja,

x Ky (w, o),

Alw) =

oo

[1 —Z(w)]o = NF/

Ao

da)’Re{ o }
[0 = A + in]'/2

(30)
where Ay = ReA(Ay), w, is the cutoff frequency, and 7 is a
positive broadening factor. Again, we assume that the non-

interacting density of states is given by a momentum- and
energy-independent constant N for simplicity and the super-

x K (0, @) + O (w),

conducting symmetry is the momentum-independent s-wave.
In the following, we use the name “phonon” for the boson,
although Egs. (29), (30), and (31) can be used to describe
electrons coupled to any localized optical boson mode, irre-
spective of the origin of the boson mode. Here we assume that
the kernel functions K originate from the Einstein phonon as

1
o' +w+Q2—in

, 1
Kulo, o) = ggl_l)h( * w’—a)—}-Q—iT])’ Gl

where 2 is the Einstein phonon frequency and gei—_ph is the
electron-phonon coupling constant. With the assumption that
the density of states is a constant around the Fermi level, the
self-energies obtained by the Eliashberg equations are inde-
pendent of the electron density and dimension of the system.
Then the normal component of the Green function is defined
as

_ Z(w)w + €

G (e, @) = [Z(w)w]? — €2 — p(w)> + in’

(32)

where ¢(w) = Z(w)A(w) and € is the energy measured from
the Fermi energy. The spectral function is defined as Ay(w) =
—(1/7) fep(@)ImG* (e = 0, w), where frp(w) is the Fermi-
Dirac distribution, and the superconducting density of states
is given by

Np(®) =NF/de|—(1/n)1mcg°f(e,w)|. (33)

The notation of the self-energies used in the literature on
the phonon-mediated superconductors [26,27], o[l — Z(w)]
and ¢(w), is different from X""(w) and T*"°(w) in the
present paper. The normal and anomalous components of the
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FIG. 6. Spectrum and self-energies of phonon-mediated superconducting model. (a). The exact spectral function of the phonon-mediated
superconductor, Ay (w), (red solid squares) is compared with A(w) (blue curve with crosses) obtained from the machine learning using Ay (w)
within —1 eV < w < 0.0 eV. The inset shows the electronic density of states in the superconducting state normalized by the normal state
density of states Ng. The vertical dotted lines show w = —Ag, —Ag — 2, and —A( — 22, where anomalies appear reflecting strong electron-
phonon couplings and formation of the superconducting gap A,. While the spectral function at the Fermi momentum A,(w) shows a dip at
o = —Ay — 2, the density of state shows a shoulder due to the so-called kink in the renormalized dispersion that appears when a finite energy
shift e is introduced. (b), (c) The imaginary part of the self-energies of the phonon-mediated superconductor, £, ", %', and W, (curves),
are compared with the self-energies obtained from the machine learning (symbols). Note that the curves for £ and X" are nearly overlapped

in (c).

self-energies are obtained as

5% (w) = 0 — Z(w)w, (34)

(@) = ¢(w) = Z(w)A(w). (35)

In Fig. 6 an example of the self-energy inference for the
phonon-mediated superconductors is shown. Here we set the
coupling constant gﬁl_thF = 0.275 eV, the Einstein phonon
frequency Q = 0.075 eV, the cutoff frequency w. =4 eV,
and the broadening factor 1 = 0.0075 eV2. The parameters
in 2@ (w) are chosen as a = 0.008 eVZ, b =0.016 eV?, and
a = 0.005 eV3. For normalization of the spectral function,
we choose ng = 0.3 without tuning. Although its effect is
negligibly small in the inferred self-energies, the Fermi-Dirac
distribution with T =40 K is introduced in the spectral
function used in the machine learning just by following
the scheme with finite-temperature experimental data. The
machine-learning results capture essential features of the orig-
inal normal and anomalous self-energies that generate the
target spectrum Ap, where the anomalous self-energy has
a dip around —(Ap + ©2) and —(Ag + 2R2) and the normal
self-energy shows a sharp drop. The dip in the anomalous self-
energy, which arises from the electron-phonon coupling and
gives the superconducting gap through the Kramers-Kronig
relation, is responsible for the s-wave superconductivity.
These features are characteristic of the strong coupling
BCS (phonon-mediated) superconductors and the anomaly of
Np(w) at —(Ag + 2) shown in the inset of (a) is regarded as
the evidence of the phonon mechanism. Although there is the
slight deviation between ImX{°" and the inferred self-energy
ImX"" for < —0.3 eV due to the finite high-energy cutoff
in ImX"", in contrast to ImX;°" that stays constant even for
o < —0.3 eV, the machine learning well reproduces the exact

results of the dip in Im¥"° and the sharp drop in ImX""
indicating the reliability of the present method.

V. RESULTS: CUPRATE SUPERCONDUCTORS

In this section, we will show the results of the regression
for ARPES data of Bi2212 and Bi2201. The prominent peak
structures are found in both the normal and anomalous self-
energies, which cancel each other.

A. Experimental data

We utilize high-resolution ARPES data taken for two
cuprate compounds, Bi2212 for an optimally doped sample
with critical temperature 7. ~ 90 K [12] and Bi2201 under-
doped sample with 7. ~ 29 K [28]. We analyze Bi2212 data
at temperature 7 = 12 K and Bi2201 at T = 11 K, which
are both well below 7;. The machine learning enables us to
obtain X"" and X" separately and reveals prominent peak
structures in both of them, which are apparently hidden in the
original ARPES data, because of the cancellation of these two
contributions. We elucidate its profound consequences for the
superconducting mechanism.

Although tremendous efforts have been devoted since the
discovery of the cuprate superconductors with many fruit-
ful clarifications, various puzzling issues remain open. The
normal-state A(k, w) is highly unusual including the pseudo-
gap. Nevertheless, the superconducting phase does not look
so unusual except for the d-wave-type nodal gap itself and
somewhat inconspicuous “peak-dip-hump” structure (see red
square symbols in Fig. 7(a) [12,28]): Outside the sharp quasi-
particle peak [at ~—40 meV in Fig. 7(a)] expected at the
superconducting gap edge, A(k, @) [energy distribution curve
(EDC)] particularly at the antinodal point k = kayn is char-
acterized by a deeper-energy weak dip followed by a broad
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FIG. 7. Comparison of experimental A(kan, @) and Boltzmann-
machine fitting. Spectral function (EDC curve) A(kan,w) of
(a) optimally hole-doped Bi,Sr,CaCu,0s.5 (Bi2212) at 12 K (left)
[12] and (b) underdoped Bi,Sr,CuOg. 5 (Bi2201) at 11 K (right) [28]
at the antinodal point k = kar (more precisely the closest point to the
antinodal point, at which the momentum distribution of the quasi-
particle dispersion curve is peaked). Red squares are experimental
data. Blue crosses are reconstructed from the self-energies, which
are deduced from Boltzmann machines.

hump [1,2]. In contrast, the underdoped sample does not
show the gap-edge peak [Fig. 7(b)], although comparable gaps
~30 meV open as a first look. They are in contrast with the
strong-coupling BCS superconductors, where the solution of
the Eliashberg equation using the phonon density of states
predicts prominent peaks (or sawtooth-like) structures outside
the gap in A(k, w) (or density of states after angle integra-
tion), which has finger-print correspondence to the actual
peak measured by the tunneling spectra, while the peak is
shown to be crucial in the emergence of the superconductivity,
thus constitutes the decisive testimony of the electron-phonon
mechanism [5,6,11].

There are limitations on information available from the
ARPES measurements. The unoccupied states invisible in the
ARPES spectra may impose such a limitation. The bilayer
nature of Bi2212 may also affect our regression scheme. There
are also issues such as photon energy dependence and effects
of matrix elements. The influence of these uncertainties and
issues do not change our results in the following sections, as
examined in Appendixes F and J.

B. Prominent peaks in self-energies revealed
by Boltzmann machine

By using the Boltzmann machine learning, a dramatic
consequence is revealed for X" and X" by reconstructing
them from the mild structure of A(k, w) given by ARPES.
The present reconstruction is a nonlinear underdetermined
problem as in many of machine-learning problems. To obtain
a reliable solution, we utilize physically sound constraints
such as the rigorous causality encoded as the Kramers-Kronig
relation. Sparse and localized nature of Im %" has resulted a
posteriori as the optimized solution under physical constraint
as detailed in Sec. IIC. To represent the self-energies and
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FIG. 8. Normal and anomalous self-energies derived from
machine learning and their decomposition. Normal self-energy
2" (kan, w) and anomalous self-energy X" (kan, @) deduced from
A(kan, w) in Fig. 7 by the machine learning for Bi2212 (a) and
Bi2201 (b). The vertical dashed lines indicate the peak positions
wpgak 1n the imaginary part. The error bars for the peak en-
ergy and height are shown as horizontal and vertical error bars.
ImX " (kan, @), ImW (kan, @), and Im X' (kan, ) are plotted for
Bi2212 (c¢) and Bi2201 (d). The peaks of ImX"(ksn,w) and
ImW (kan, @) are completely canceled in their sum Im X (kan, @).
ImX'" is decomposed into simple BCS-type superconducting con-
tribution Lpcs(kan, @) [a Lorentzian around w = 0 (dotted blue
curve)] and the rest ImXy(kan, @) = ImZ© — Lycs(kan, @) (see
Appendix K). The latter is fitted by a superposition of many Gaussian
distributions (blue dashed curve). Then the unusual structures are
identified as ImXpgak (kan, @) = ImE"" (kan, @) — ImXyN(kan, @)
(yellow shaded area) and ImWpgak(kan, @) = ImW (kan, @) —
Lpcs(kan, @) (pink shaded area). The yellow and pink areas cancel in
their sum both in (c) and (d). The magenta dash-dotted curves show
a quadratic (linear) fitting of Im X" (kan, @) of Bi2212 (Bi2201) for
|w| < 35 meV.

incorporate the physically sound constraints, the Boltzmann
machine as universal function approximators developed in
machine learning is employed. See Sec. III and also Fig. 3
for the flow chart.

The obtained A(kan,®) (cross points in Fig. 7) per-
fectly reproduces the distinct behaviors of both the optimally
doped and underdoped samples. These EDC curves are
constructed from ImX""(kan, @) and ImX?™(kan, @) in
Figs. 8(a) and 8(b). Remarkably, prominent peaks are found in
ImX*°(kan, w) at w = wf,’]f:’AK ~ 370 meV for Bi2212 and at
© = wyP,« ~ £45 meV for Bi2201, accompanied by weaker
peaks at 180 meV and 160 meV, respectively. We will
show below that the discovered peaks are the main source of
superconductivity. Although the peak of Im¥"(kan, w) had
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been searched for long time in analogy to the strong coupling
BCS superconductors [2,13], its clear signature was missing
in the cuprates. The machine learning now has succeeded
in its identification. Surprisingly, ImX"*"(w) also has distinct
(positive or negative) peaks at the same energy as Im¥*"°(w),
and, as we clarify below, their contributions to the spectral
function cancel out each other.

The robustness of our finding against noise, uncertainty
in experimental data and the experimentally uncertain high-
energy part is demonstrated in Appendixes F and D. In
Fig. 8(a) we also plot the error bars of the peak position
and height inferred from the experimental uncertainty and
the machine-learning error (for the detailed procedure of the
error-bar estimate, see Appendix F 1, Fig. 17, and Sec. III
“Minimization of training error” and “Minimization of test
error” as well as Appendix G). The small error bars indicate
that the existence of prominent peak is reliable. For this analy-
sis, we have utilized the inferred experimental noise estimated
from the interpolated smooth A(k, w) [namely, the inferred
true smooth A(k, w)] obtained in the standard linear regression
analysis. Then the error bars of our peak estimate here is given
from the optimization to hypothetical experimental data points
generated with the same level of noise to the inferred true
A(k, w). See Sec. II1E for details. We note that in the case of
underdoped Bi2201 sample below T, there exists subtlety in
the machine-learning solution. Although the superconducting
solution presented here is the optimized solution that gives
the smallest mean-square error in the fitting of A(k, ®), an
insulating solution is also found with larger error. This may be
related to severe competition of insulating and superconduct-
ing behaviors in the real sample. We show the properties of the
superconducting solution because it gives the best optimized
solution and the sample is indeed superconducting.

Despite the peaks in Im X", and ImX*"°, prominent peaks
are missing in ImX'(w) as shown in Figs. 8(c) and 8(d)
(black symbols). We discuss below why the peaks in Im>2"°
at o # 0 necessarily show up and their contribution cancels
with ImX"" when we impose physically justifiable con-
straints such as the Kramers-Kronig transformation. Instead
of the peak in ImX""(w) and ImX*"°(w), a negative promi-
nent peak [29] generating the superconducting gap is found
centered at @ ~ 0 in ImX'®, which arises from the zero of
the denominator in Eq. (5), common to the conventional BCS
superconductors.

C. Role of self-energy peaks to superconductivity

To understand the significance of the peaks at wpgak
in ImX®°, we show the contribution of the peaks to
ReX®°(k, w = 0) estimated from the normalized partial
Kramers-Kronig relation [30] (Cauchy relation) [see also
Egs. (24) and (25)] defined by

2[5 doImE (ka, @)/
wTReXZ 0 (kan, w = 0)

ReX®°(k, w = 0) is a measure of the superconducting am-
plitude, because the gap A(k,w = 0) is proportional to
2k, w = 0) [Eq. (6)]. Since I (2 = —o0) = 1, the con-
tribution of the peak in Im%" to the superconductivity can
be estimated from the increment in I (€2). Figure 9(a) shows

I5(Q2) = (36)
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FIG. 9. Contribution of peak of ImX**(kan, @) showing domi-
nance to superconductivity. /5 (€2) calculated from Im ¥ (kaN, @)
is shown for the Bi2212 (a) and for the Bi2201 (b) The right neg-
ative peaks of Im¥*"(kan, w) both contribute to more than 90%
of ReX*(w = 0). (¢) ImX"" (kan, @) and ImX*°(kan, @) modi-
fied from the originals in Figs. 8(a) and 9(a) by eliminating the
low-energy peaks around @ = —70 meV for Bi2212. The peak
component of Im¥"" (kan, @) to be subtracted is Im Xpgak (kan, @)
in Fig. 8(c) and the subtracted ImX""(kan, ) is nothing but
ImXN(kan, @). On the other hand, ImX*(kan, ) consists of
only two peaks and the right peak around w = —70 meV can be
easily subtracted by using the sigmoid function. Peak-subtracted
ImX"" (kan, @) and ImX*°(kan, @) are represented by red and
purple circles, respectively. [See Appendix K for the prescription
to decompose the self-energy, and see Appendix C that the peak
position of the gap function A(w) is slightly shifted from ¥*"°(w).]
(d) In comparison to the experimental A(k, @) (blue thin curve),
spectral function obtained from the peak-subtracted ImX""(w) and
ImX*°(w) is shown by red circles, where superconductivity disap-
pears resulting in a good normal metal with a quasiparticle width
comparable to the experimental resolution (~10 meV).

that the inner energy peak at wpgax ~ —70 meV (—45 meV)
for Bi2212 (Bi2201) both contribute to more than 90% of
ReX(kan, @ = 0) (note that Im¥?"° is an odd function of
). Namely, these peaks are indispensable in the emergence
of the superconductivity.

To further demonstrate the crucial role of the inner peak in
ImX*°(kan, @), we have hypothetically eliminated the peaks
in Im¥™" and ImX*"° as shown in Fig. 9(c) for Bi2212. The
resultant A(k, w) in Fig. 9(d) shows the gap disappearance and
switching to a normal metal with a sharp quasiparticle peak,
confirming the crucial role of the peaks to superconductivity.

Through our Boltzmann machine analyses, X", £*"° and
W are revealed to have prominent (positive or negative) peaks,
while they cancel each other in the sum X', It is important
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that this conclusion is obtained directly from experimental
data without assuming any theoretical models aside from
mathematical (causal) requirement for the Green function. A
recent self-energy analyses of ARPES data [13,31] did not
identify the present prominent structure. However, our anal-
yses on the momentum dependence suggest that the results
are not necessarily inconsistent each other for the case of
Ref. [13], because the momentum range in Ref. [13] is limited
in the nodal region far from the antinodal point, where we
also see that the prominent peak is missing because of the
d-wave symmetry of the superconducting gap. It is crucially
important to see the antinodal region to see the prominent
peak as we discuss in Appendixes A and L. Further, we show
in Appendix A that physically inappropriate assumptions for
strongly correlated electron systems posed in Refs. [13] and
[31] lead to failures of identifying the existence of the peaks.

If a large superconducting gap is open around w = 0 as
in the experimental A(k, w), it requires the corresponding
famous gap structure in ReX*" around w = 0, where inside
the two peaks at the gap energy w = £A, ReX®° shows a
plateau as shown in Fig. 8(a). Then consistency requires a
prominent peak structure around wpgak in Im %" through the
Kramers-Kronig relation. The peak of Im¥*" in turn naively
anticipates prominent structures outside the gap in A(k, w)
through Eq. (3). However, such structures are missing. This is
possible only when X" plays a role to cancel the prominent
structure in ImW . This is corroborated by the vanishing super-
conductivity in Fig. 9(d). Furthermore, the superconducting
order accompanied by coherent quasiparticle excitations ob-
served in experiments can be generated from ImX**°(w) only
when electrons at w become coherent, signaled by the reduc-
tion of [ImX'®| (or more precisely |ImXy|) [see Figs. 8(c)
and 8(d), their captions, Sec. III, and Appendix K for the
definition of |ImXy/|] seen in the region |®| < w* ~ 0.07 eV.
This restricts wpgax to this range. The present machine learn-
ing indeed reproduced this natural expectation in a physically
transparent and reasonable way.

We show some analyses on the temperature dependence of
the self-energies including a case above T; and the momentum
dependence away from the antinodal point in Appendix M and
L, respectively, as supporting data of the present analyses. The
results confirm the validity of the present conclusion.

Although we found that the prominent peak in ImX*"
is crucial for the high critical temperature of the curates,
full understanding and the mechanism of prominent peaks
in ¥"(w) and T¥°(w), which are absent in ¥°Y(w), are
open to further analyses. Our result is significant because the
cancellation poses a severe constraint on theories of curate
superconductors and calls for further consistent studies based
on this finding. In the next section we refer to one possible
explanation.

VI. DISCUSSION

A. Insights into intrinsic (Planckian) dissipation

In this and next subsections, we discuss further possible
connection gained from the main findings of the peaks and
their cancellation to other more open issues of the cuprate
superconductors in regard to the damping (incoherence) of

quasiparticle and the factors that determine 7. to emphasize
the significance of the findings with an outlook. The present
machine learning is also useful to separately extract other
theoretically fundamental quantities such as the momentum
resolved superconducting order parameter (the density of
Cooper pairs or the superfluid density) F (k), mass renormal-
ization factor zqp(k), and the single-particle relaxation time
7, which had been inferred only indirectly or only in com-
binations of more than one quantity in experiments in the
literature, although these quantities play crucial roles inde-
pendently of each other below in understanding physics (see
Sec. II B for a precise definition of the above quantities).

How frequently the single-particle excitations are scattered
is encoded in the imaginary part of the normal self-energy
ImX"". Landau’s Fermi-liquid-like behavior characterized by
ImX™ (w) o w?, is satisfied only in a small region (Jo| <
0.03 eV) for Bi2212 and looks even linear ( |w|) in the
same region for Bi2201, implying non-Fermi liquid (marginal
Fermi liquid) behavior [32] [see Figs. 8(c) and 8(d)], which
can be fit by ImX""(k, w) ~ co(k) + sign(w)c; (k)iw in
the range 15 meV < w <40 meV with a dimensionless
marginal-Fermi-liquid coefficient c|(k). The w-linear com-
ponent c;(k)w is disruptive to the quasiparticle picture, and
manifests emergent inelastic dissipation absent in Landau’s
Fermi liquids. As supporting information, the tiny quasipar-
ticle renormalization factor zg, corroborating the non-Fermi
liquid together with its effects on pair breaking is also shown
in Appendix B [see definition of zq, in Eq. (9)].

The single-particle relaxation time t is defined by
wk,w)™ ! = Zqp(K)IME""(k, w)/h. When the carrier re-
laxation time is estimated from t, the w-linear term,
Zgp(K)c1 (k)w, is associated with the universally observed T -
linear resistivity in the cuprates [33,34] through the w-T
correspondence t(/iw) <> t(kgT) transformed to the self-
energy of two-particle Green function for the conductivity.
The temperature-insensitive zqp(k)c (k) shown in Appendix N
also supports the correspondence. [See Fig. 25 for each zq, (k)
and ¢ (k).]

A remarkable property of the inelastic relaxation rate
(k) = zgp(k)ci (k) is its high value (~1) with only weak
dependence on the doping, momentum [see Fig. 10(a)], and
temperature. This universal behavior of I' ~ 1-1.5 seems to
support a local and universal mechanism of the relaxation, for
instance, the Planckian dissipation mechanism of the hydro-
dynamic state, which claims T = TkgT /h or N w) =
I'w with a universal constant I" of the order unity [35,36].

Although a simple version of the Planckian mechanism
expects only an extended broad self-energy structure due to
“unparticle physics,” the self-energy has a broad but promi-
nent peak structure around @ = wpgax Which is responsible
for the superconductivity through the Kramers-Kronig trans-
formation as we discussed. At the same time, the actual line
shape is rather broad with the width around 0.05 eV [see
Figs. 8(c) and 8(d)], which is comparable to wpgak itself.
More importantly, the peak is smoothly connected in the tail
with the w-linear behavior near the zero energy, implying
that the “Planckian dissipation and hydrodynamic behavior”
associated with the strange metal [35] is caused by the source
of the superconductivity. The broad prominent peaks could
be due to the damped pole, but it could also be ascribed to
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FIG. 10. Relation between superfluid density F, T, carrier relaxation time, and self-energy peak derived from machine learning. (a) Angle
and doping dependences of I" = zqpc; for Bi2201 and Bi2212. (b) Proposed scaling between F, T, g, and I'. (c) Possible scaling between F
and T, for Bi2201, which mimics the Uemura plot (see text). (d) Possible scaling between F and I'"! for Bi2201 and Bi2212, which mimics
the Homes plot (see text). The scaling gF o« T./I" in (b) gives the best fitting: The standard deviation is 0.03 meV for (b), while 0.25 for
(c) (excluding the 2212 data because it is far away from the linear fitting) and 0.29 for (d). Even for the standard deviation of normalized
values, (a; — af‘t) /af‘t with a; (a:.i‘) being the ith data of OF or ZqpF (the fitting line value), instead of a; — af“ employed above, we obtain 0.023
(b), 0.19 (c) (excluding 2212), and 0.26 (d). Inset of (b): Experimental plots of the muon-spin relaxation rate R [37] vs 7. (Uemura plot) or
T.04.(T.) (Homes plot) [38,39] for Bi2201 and Bi2212. Here the standard deviation is 0.07 us~'(0.25 us™1), and the standard deviation of the

normalized values is 0.22 (0.26) for the Uemura plot (Homes plot).

“unparticle object” generated by entangled bare electron and
dark object.

The marginal fermi liquid behavior [ImX""(w) x w]
needs to be understood with care. Since the present photoe-
mission data could include an extrinsic background effect,
our analysis may not clarify the high-energy part of intrinsic
w-linear behavior. In fact, in relation to the T -linear resistivity,
the related w-linear behavior should show up around the gap-
less nodal region, while the peak of the normal self-energy
vanishes at the nodal point (see Fig. 22 below). Therefore,
the w-linear coefficient observed as the tail of the peak is not
necessarily the same as the T -linear coefficient in the resistiv-
ity. In fact the high-energy w-linear component in Figs. 8(c)
and 8(d) (black squares) has a substantially smaller slope than
the present w-linear component directly associated with the
prominent peak. This smaller slope at the high-energy region
(w < —0.1 eV region) is consistent with the high-temperature
T -linear resistivity [34] through the correspondence relation
hw < mwkgT and the w-linear self-energy in the high-energy
part identified in an earlier study [13]. We need further studies
on the relation between these two w-linear components.

The T-linear scaling may remind the readers of quantum
critical behaviors. In the present study, we examine only two
sets of data for different compounds with different doping
concentrations. Therefore, we could not exclude the possibil-
ity that these samples are by chance both close to quantum

critical points. In fact, the underdoped sample shows more
linear behavior than the optimum doped sample, which might
imply that the underdoped sample is closer to the quantum
critical point. Alternatively, the T-linear scaling behavior
could emerge in a distinct phase covering a finite range of
doping concentrations as discussed above as the Planckian
fluid. However, it is impossible to draw a conclusion from
these two samples only, and it is left for future studies.

B. Factors that determine the superconducting
critical temperature

Fundamental quantities revealed by the machine learning
provide further insight into the superconductivity through the
scaling among experimental observables: The linear relation
F « T, between T; and the superfluid density F' measured
from the muon-spin relaxation rate R (theoretically propor-
tional to F (k)zqp(k) averaged over Fermi surface momentum)
has been examined through the Uemura plot [40] in high-T;
superconductors as in an example of the purple triangles in
the inset of Fig. 10(b) for Bi2201 [37]. The linearity should be
satisfied for attractive interaction stronger than the effective
Fermi energy scale Ep, which is proportional to the carrier
density in two spatial dimensions. Here Ef is roughly the
effective bandwidth of the dispersion zgp€;. This proposal
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interprets the linearity as a signature of the Bose-Einstein
condensation (BEC) regime.

Homes et al. [39] proposed empirical but more universal
fitting as plotted in an example of Bi2201 by blue upside-
down triangles in the inset of Fig. 10(b) [37,38], where the
dc conductivity og. at T, enters as R ~ CT.o4.(T;) with a
material-independent constant C. Since oy. iS proportional
to the momentum relaxation time, the Homes relation pro-
poses qualitatively different physics involving dissipation and
scattering effects beyond the naive BEC regime. However,
since og4. is believed to be proportional to both the carrier
density and the relaxation time, it is not easy to single out
the relaxation effect. Related scaling of the superfluid density
Fzq, proportional to the quasiparticle peak weight was also
proposed [41,42].

Here we heuristically propose a better scaling for 7, by
utilizing the present finding to show the power of the ma-
chine learning and the significance of the peak. The amplitude
of the self-energy peak discovered here responsible for the
superconductivity has to represent the scale of the effective
attractive interaction for the Cooper pair in analogy to the
Eliashberg formalism and should enter the 7. scaling. Our
proposal for T; is given by

kpTe = I'(kn)g(kan)F (kan), 37

where I is the damping introduced before and F is the super-
fluid density. The factor g is the scale of the effective attractive
interaction as will be discussed later. It is reasonable that T; is
scaled by the mean field acting on the formation of the Cooper
pair given by the product of the attractive interaction g and the
order parameter given by F' (superfluid density).

Let us first discuss how the characteristic effective attrac-
tive interaction g is extracted from our self-energy analysis.
We first introduce the bare attraction 2y(kan), which is
represented by the ratio of the peak intensity Wpgak (kan)
(peak intensity of W) in Fig. 8 to the absolute value of the
peak energy wpgak (kan). Note that Wegak (kan)/@wpeak (kan)
is proportional to the gap through Kramers-Kronig relation.
[Through Eq. (5), the residues of the poles of W, ¥"", and
22 follow the same scaling at the self-energy peak.] Here we
assume that the antinodal value is the representative of this es-
timate, because the gap is the maximum. Now Wpgak (kan) =
f dolmWppak (k, ) is the integrated intensity of the peak
ImXppax = —ImWpgak plotted as the yellow and pink areas
in Figs. 8(c) and 8(d). We note that the quasiparticle weight
constrains the coherent pairing so that the peak intensity
Wreak (kan) should involve the averaged quasiparticle weight
at the peak energy. For the quasiparticle weight, instead of zq,
defined in the @ — 0 limit, we employ the renormalization
factor Q at kan [see Eq. (7)] averaged in the self-energy peak
region, namely, 0= f dwlmWpgak (k, @)Q(k, w)/Wpgak (k)
with the integration over the interval w < 0. Then

glkan) = O(kan)Qo(kan) (38)

gives the scale of the attractive interaction.

The damping I" in Eq. (37) looks counterintuitive because
it tells that the strongly damped electrons would have higher
T.. However, in this strong coupling superconductor, the
strong damping is originated from the quantum entanglement
as is discussed in the previous subsection, which may promote

the quantum mechanical singlet pairing. In Fig. 10(b), the fit
by Eq. (37) is shown [the main panel of Fig. 10(b)].

Although the Homes plot does not offer how T; is de-
termined because o(7;) o« 1/T. cancels in the relation to
F, the present result indeed shows 7; linearly scaled by
I'(kn)g(kan)F (kan). The linearity is crucially different from
the Uemura plot as well because of the dependence on the
relaxation rate I'. Intuitively, t = i/(TkgT) or ii/(Tkpw) is
related to the characteristic length scale A for the extension
of the quantum mechanically entangled area through A ~ vgt
[35], where vg is the characteristic electron velocity (“Fermi
velocity”). The larger attraction generates a stronger self-
energy peak. It necessarily generates the steeper w-linear tail
of ImX"" near zero energy, further enhancing more local
and stronger pairing adiabatically continued to the BEC limit
beyond the realistic cuprate regime, and raises 7. through
Eq. (37). The strange (dissipative) metal and high 7; with the
strong attraction represent the two sides of the same coin. It
is also interesting to note that Eq. (37) looks compatible with
the scaling E. o< y.T.2, where E. is the condensation energy
and y. is the Sommerfeld constant of the specific heat [43,44],
because gF plays the role of the gap, which generates the
energy gain.

Note that I'(k) should be analyzed around ky, while 2
and F contribute to T; at kan for better fitting. The in-plane
transport and the quantum entanglement are dominated by the
contribution around the nodal region, while the pairing looks
driven in the antinodal region, both of which contribute to
raise T¢.

Equation (37) is the best scaling among various attempts
we have made. To convince readers, we just show two ex-
amples of plot in Figs. 10(c) and 10(d). The first example is
Zgp(kan)F (kan) vs T plotted in Fig. 10(c), which, though not
perfectly equivalent, apparently mimics the Uemura plot. The
second is Zgp(kn)F (kan) Vs 1/zgp(kn)ci(kn) which mimics
the Homes plot, because T.o(T¢) o< 1/z4p(kn)cy(kn) is ex-
pected [see Fig. 10(d)]. The standard deviation is by far best
for the present fit in Fig. 10(b) with Eq. (37).

The primary origin of the large difference of 7. be-
tween Bi2201 and Bi2212 is identified as the difference
in Wppax (namely, the coupling strength of the electron
with the dark object which makes the prominent self-energy
peaks), supplemented by the difference in wpgax . (see Table I;
Wreak (kan) ~ 7.6 X 1073 eV? and wpgak (kan) ~ 0.07 eV
for the optimum Bi2201 and Wpgak (kan) ~ 1.4 x 1072 eV?
and wpgak (kan) ~ 0.045 eV for the optimal Bi2212 at k =
kan). [For more quantitative details, see also the list of
Qp(kan) in Table I and the angle and doping dependences of
Wreak (k)/@pgax (k), and Q(k) in Fig. 25.]

A recent intensive study [45] on clean thin films of
(La, Sr);CuQy4 has revealed that the Uemura plot shows a
linear scaling for T, = 10 K and a quadratic scaling, where
T. is proportional to the square root of the relaxation rate,
for T. < 10 K. Consequently, the higher T; linear scaling
extrapolates 7; to a finite value at the zero relaxation rate limit.
The present scaling modifies the higher 7 linear scaling by
taking into account gI'. If g is approximately a constant for
a given crystal structure, and I" increases by decreasing the
doping, as already reported in the overdoped region [46], the
linear scaling in Fig. 10(b) is consistent with the sublinear
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scaling of 7. to F observed in Ref. [45]. We note that, if "
diverges as 7. decreases in the underdoped region, intrinsic
doping dependence of I' may explain the square-root scaling
at the underdoped limit qualitatively. However, the quantita-
tive estimate of the power of the scaling is beyond our scope.
On the other hand, ARPES measurements on clean samples at
the low T¢ limit in the overdoped region are not available.

The present result is significant because the whole anal-
yses are obtained solely from the single ARPES line shape
of A(k, w) and contains much less ambiguity than before.
The present machine learning purely from experimental data
sheds new light on understanding the superconducting mech-
anism, where the energy dissipation plays a role through the
extension of quantum entanglement. For detailed doping con-
centration and momentum dependences of T, F(k), ci(k),
Zgp(k), and the superconducting gap Ag(k) for Bi2201 at 11 K
are found in Appendix O.

C. On cancellation of peaks

On the cancellation of the two self-energy contributions
which make the superconducting temperature high and the
role of dissipation in determining T, it is desired to examine
the present results in other cuprate compounds by measuring
A(k, w) at high accuracy and resolution.

The present finding also call for research to find the
microscopic origin of the canceling self-energy peaks. A two-
component model was proposed [47,48] for the cancellation
of the self-energy poles, but even if it is the case, based on
the present experimental evidence, further pursuit for the mi-
croscopic description of the hidden-fermion excitation and its
interaction is highly desirable. In the two-component fermion
theory, electrons are fractionalized into the bare electrons and
dark fermions (hidden fermions) consistently with the cluster
dynamical mean-field theory (cDMFT) [47,48]. However, the
prominent tail of the peak extending to w ~ 0 as w-linear
feature suggests that the dark fermion must have strong in-
teraction effect. See also Ref. [49] for the prediction of the
fractionalization expected in other spectroscopic data such as
the resonant inelastic x-ray scattering.

If the spontaneous symmetry breaking such as the stripe
order coexists with the superconductivity, the cancellation
may be accounted for as an alternative interpretation [47,48].
A phenomenological resonating valence bond theory [50] also
accounts for the cancellation because of the same fractional-
ized description as is discussed in Ref. [51]. The present result
poses severe constraints on possible theories. Whether there
exist other origins of the peaks and their cancellation rather
than the above possibilities would be equally intriguing based
on the present finding.

D. Kink

A kink structure was observed in the dispersion of mo-
mentum distribution curve (MDC) peak of Bi2212 and other
compounds mainly near the nodal point [52—54]. In addition, a
kinklike structure was identified in the study on the Hubbard
model [55]. It is an intriguing future issue to study whether
this kink in the MDC peak dispersion has any connection
to the peak and accompanied sudden change of the slope

and sign in the real part of normal self-energy found here in
Figs. 8(a) and 8(b), because the energy scale ~—0.07 eV of
the sign change for Bi2212 is similar to the kink energy scale.

VII. SUMMARY AND OUTLOOK

We have formulated a reliable way of extracting the normal
and anomalous self-energies separately from the ARPES data
of superconductors by taking advantage of recently developed
machine-learning method. Careful benchmark tests includ-
ing simple metals, conventional BCS superconductors and
model systems that have established solutions indicate that
the method offers an accurate and reliable regression of the
self-energies only from the ARPES data even for challenging
strongly correlated electron systems.

Then the method has been applied to cuprate superconduc-
tors, Bi2201 and Bi2212. We have successfully extracted the
normal and anomalous components of the self-energy from
the ARPES spectra.

In contrast to previous studies, the result shows that the
imaginary part of the normal and anomalous self-energies
have prominent peak structures as a function of the frequency.
However, the contributions of the normal and anomalous
components cancel in the spectral function, which accounts
for the failure to identify the prominent structure for long
time. Nevertheless the peak in the anomalous self-energy has
been shown to generate more than 90% of the supercon-
ducting gap and thus turned out to be the primary source of
the superconductivity. Therefore, the discovered these peak
structures and their cancellation pose a severe constraint with
insight on the mechanism of the high transition temperature of
superconductivity.

The origin of the failure in identifying the peak structures
in the previous studies is elucidated in Appendix A to be pri-
marily the assumptions in the previous studies: The previous
studies assumed linear energy dispersion, and/or self-energies
that are momentum independent along the direction perpen-
dicular to the Fermi surface, for example, in Ref. [13]. These
assumptions are not justified in the strongly correlated elec-
tron systems.

Thus newly obtained quantities hidden in the direct exper-
imental measurements in the past allow us to show that the
superconducting transition temperatures are well scaled by
the product of the superfluid density F, the effective attractive
interaction g, and the Planckian dissipation I.

Present successful examples of insight obtained purely
from the machine-learning analysis of experimental data
indicates an opening of a promising field which allows under-
standing physics hidden in experiments, without relying on
involved and specific theoretical assumptions and constraints
that are not shown to be justifiable in strongly correlated
electron systems. At the same time, we have shown that
very accurate experimental data are required to extract hidden
quantities. For instance, in Refs. [56-58], the signal-to-noise
ratio in the ARPES measurements for Bi2212 seems to be
already sufficiently small while available momenta in the
Brillouin zone are limited. Although Ref. [59] for Bi2212 and
Ref. [60] for Bi2201 reported the ARPES spectra in a wide
range of momenta, the signal-to-noise ratio does not seem to
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be small enough. It is important to improve the experimental
resolution and suppress errors to increase the reliability of the
machine-learning inference.

In addition combining with other independent measure-
ments such as the quasiparticle interference obtained from
the scanning tunneling microscope in this case is important to
reach better statistics. By combining with other experimental
data and indisputable theoretically basic constraints such as
symmetry, much more powerful tools will be provided for
understanding physics of complex phenomena.

The present study will stimulate studies on the origin of the
peak structures. Indeed, there have been studies [61,62] on the
origin of the peak structures, which are inspired and motivated
by our results.
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APPENDIX A: COMPARISON WITH PREVIOUS
STUDIES ON SELF-ENERGY

Here we discuss the comparison with the analysis by Bok
et al. [13], which has not clearly identified a prominent peak
structure in the normal and anomalous self-energies. We first
point out that the primary origin of the discrepancy may be the
momentum region they studied. They have analyzed mainly
only around the nodal region and at most up to 6 = 20°
measured from the nodal point, which is far away from the
antinodal point. This makes the identification of the promi-
nent peak difficult. In Appendix L, we show the momentum
dependence of the EDC curve for the optimally doped Bi2201
(see Fig. 22 below). In this notation, 20° from the nodal point
in [13] nearly corresponds to the point between Fig. 22(h).
It is natural that the peak structure is not clearly visible
there. However, if we take a close look, aside from the clear
difference of the featureless slope arising from the instru-
mental difference and presumable different background effect,

the peaklike (or shoulder-like) structures at —0.06 eV in the
imaginary part of the normal and anomalous self-energies in
Fig. 3 of Ref. [13] shares a common feature with our result in
Fig. 22(h). Unfortunately, this tiny signature and the cancella-
tion in the spectral function are hardly identified conclusively
because of the momentum far from the antinodal point.

More importantly, a crucial origin of the underestimate
of the peak is the usage of the Dynes function as explained
below. It leads to the underestimation of peaklike structures in
the imaginary part of the self-energies. The underestimation
inevitably leads to the difference in the self-energies obtained
in the present paper and Ref. [13].

Before going into the explanation of the underestimation,
we review the method used in Ref. [13] to make the discussion
self-contained. The method assumes that the real part of the
Dynes function N (w) defined as

)
R R
V! — A(w)?
is equal to the ratio of the integrated spectral function at the
normal and superconducting states as

ReN(w) = Ag(w)/ An(w),

where the integrated spectral functions are obtained with
respect to the bare dispersion € (k ) along momentum perpen-
dicular to the Fermi surface as Ag(w) = fdkle(kL, ¢, w)
and Ag(w) = [ dk Au(k1, ¢, ). Here, A (A,) is the spectral
function of the superconducting (normal) state. The relation,
however, holds only when the bare dispersion € (k) is linear
at the large bandwidth limit. Practically, the method approx-
imately works around the nodal direction where the bare
band is linear within a certain energy range. However, even
around ¢ = 20°, the approximation does not work, where
€(k, ) shows strong deviation from the linear dispersion, as
shown below.

Here we concretely demonstrate that the relationship
ReN(w) = As(w)/ Ay(w) indeed underestimates the imagi-
nary part of the self-energies. As the most striking example,
we would like to demonstrate that, even if there are peak
structures in the genuine self-energies, the self-energies
estimated by using ReN(w) = Ag(w)/An(w) collapse to
shoulder structures instead of the peak structures.

When there is no background b(w) in the experimentally
observed spectral function, the scheme to extract the self-
energies used by Bok er al. is summarized as follows:

(1) ReN(w) is (initially) estimated by Ag(w)/An(w).

(2) ImN(w) is obtained from ReN(w) by using the KK
transformation. Then A(w) is obtained from ReN(w) +
iImN () = o/ w* — A2

(3) By inputting A(w) into the Green function in the su-
perconducting phase, Z(w) = 1 — X" (w)/w and X*"°(w) =
¢(w) = A(w)X""(w) are obtained.

Below we estimate the self-energies by following Bok ez al.
[13].

As amodel self-energies that show peak structures, we take
the self-energies at ¢ = 21.24° obtained in Fig. 22(h), which
is shown in the left panel of Fig. 11. We also assume a typical
bare dispersion for bismuth cuprates, €(k) = u — 2t;(cos k, +
cosky) + 4t cos ky cos k, — 2t3[cos(2k,) + cos(2k,)], where
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FIG. 11. Imaginary part of normal self-energy estimated by the hypothetical equation N (w) =

w (eV)

w (eV)

As(w)/ An(w) using the data for Bi2201 of

Ref. [12]. The left panel shows the self-energies in the superconducting state that are obtained around ¢ = 20° in Fig. 22(h). The middle panel
shows self-energies for the normal state, which are obtained by artificially eliminating the peak structure in ImX"" in the left panel. The right

panels shows the estimated Im %" (black solid curve) by the hypothetical relation N(w) =

ImX"" (red squares). For details, see Appendix A.

u =405 meV, t; =360 meV, 1, =108 meV, and #3 =
36 meV. Then, we integrated the spectra Ag(w) with X" and
32 along the momentum cuts (in the first quadrant of the
Brillouin zone) specified by the angle ¢ measured from the
antinode and obtain Ay (w). To estimate Ay (w), we generate
the normal state self-energy X" by eliminating peak struc-
tures that cancel the peak structure in X", which is shown
in the middle panel of Fig. 11 by assuming that the effect of
the superconductivity appears at the peak structure only in the
normal self-energy. Then, in the right panel of Fig. 11, we ob-
tain the estimated X"°" (black curve) by assuming ReN (w) =
As(w)/ Ay(w), in comparison with the original X" taken
from Fig. 22(h). Although we started from X" and X"
that contain prominent peaks, in the resultant X"°" derived by
assuming the above Dynes function shows the disappearance
of the peak. This shows that the usage of the assumption of
the Dynes function leads to the self-contradiction with the
underestimate of the peak structure.

As shown in the right panel of Fig. 11, the estimated
Im X" shows the shoulder structure around —50 meV, instead
of the peak around —70 meV in the original ImX"™". The
shoulder structure of ImX"" found in Fig. 3D of Ref. [13]
around —50 meV is interpreted as a remnant of the original
peak structure in the genuine self-energies, which is consistent
with our present results. Therefore, the difference between
our results and those of Ref. [13] is attributed to the artificial
reduction in the amplitude of ImX™" due to the assumption
ReN(w) = As(w)/ Ay (w) in Ref. [13].

The self-energies obtained in Ref. [13] also show a remnant
of the cancellations of the peak structures of Im%"°" and ImW
found in the present paper. As shown in Fig. 12, the shoulder
structure of ImX"" obtained in Ref. [13] is canceled by ImW .
Then ImX® = ImX"" + ImW does not show any shoulder
structure.

The above general underestimate (or elimination) of the
self-energy peak is a universal failure of the assumption em-
ployed by the Dynes function and the assumption of the wide
band limit. The physical origin is the following: In the wide
band width limit, Ay(w) only contains the information of
the bare band, which does not depend on whether the sys-

As(w)/ Ax(w), in comparison with the original

tem is normal or superconducting. Then the left-hand side
of As(w)/An(w) = Re(w/+/w? — A?) does not contain not
only the normal-state self-energy but also the bare band infor-
mation, which are absent in the right-hand side of the relation.
However, even at ¢ = 20°, the assumption of the wide band
width is invalid. Therefore, the normal-state self-energy infor-
mation remains in the denominator of the ratio Ag(w)/An (),

As(w)/ A (@)
[ dk,Im[

w+id+e(ky)/Z,(w) ]
Z(0) [w+is—e(k1)/Z())[w+is+€ (k1) /Z(@)]—A(w)

[ dk [ s o ]

where Z,(w) [Zs(w)] is Z(w) = 1 — " (w)/w in the normal
(superconducting) state. To compensate the contribution of
2™ in the left-hand side of the relation Ag(w)/Ayn(w) =
Re(w/+v/w? — A?), the normal-state self-energy X" below

’

0.05

o Im¥"" (w)
o ImW (w)

—~ a] ImZtOt( )

>
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FIG. 12. Imaginary parts of X", W, and X' obtained by Bok
et al. [13]. The shoulder structure in ImX"" (red circles) and the
peak structure in ImW (green circles) around w = —0.06 eV are can-
celed in ImX*" (black squares). The peak structures in ImX"™" and
ImW for w > —0.02 eV, which are interpreted as impurity effects
in Ref. [13], are also canceled each other in Im X', For details see
Appendix A.
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T, whose contribution is contained in Ag(w), may resemble
the self-energy X" above T, whose contribution is contained
in Ay(w). When the normal state self-energy does not show
significant structures and, thus, does not introduce pseudo-
gap and anomalies, such as peak-dip-hump structures, in the
normal-state spectral functions, the estimated superconduct-
ing self-energies indeed do not show significant structures.
We note that the shoulder structure consistently present in
Ref. [13] and Fig. 12(b) in ImX"°" without a signature of the
pseudogap around 20° momentum could be contributed from
the background. However, the above analysis does not change
even when the background is subtracted, because it appears
both in Ag(w) and Ay(w) and the effect of the subtraction
cancels.

In addition, Bok et al. [13] have assumed that the nor-
mal and anomalous self-energies are momentum independent
along the direction perpendicular to the Fermi surface. The
assumption imposes crucially restrictive condition when one
infers the self-energy and superconducting gap function from
the momentum distribution curve (MDC) as in Ref. [13] [see
Eq. (S8) in the supplementary information of their paper].
This assumption is adequate in the BCS superconductors in
conventional weakly correlated systems, while it is ques-
tionable in the present strongly correlated cases such as the
cuprates, where even the normal self-energy can be singular
and strongly dependent on the momentum. In addition to the
restricted momentum dependence assumed in [13], they have
assumed the quasiparticle representation along the momentum
perpendicular to the Fermi surface (or the Lorentzian form of
the MDC) and the spectral function that cannot be represented
by the Lorentzian form are interpreted as the background,
while these have not been assumed in the present paper, be-
cause, though it is satisfied in the Fermi-liquid normal state,
it is not clear whether these constraints are satisfied in the
strong coupling cuprate superconductors. Indeed, there exist
a number of numerical evidences for the violation of the
assumption: For instance, the singular momentum dependence
of the normal self-energy with emergence of the coexisting
zeros and poles of the Green function [63] and nonquasipar-
ticle spectral function [64,65] in doped Mott insulators. The
machine learning is more fit in solving the present problem,
because the flexible fitting of the self-energy function is re-
quired at least away from @ = 0 particularly in the antinodal
region, where the breakdown of the quasiparticle picture is
apparent. Concerning the difference in the high-energy part
(w < —0.1 eV) of the original two ARPES data (namely, in
[13] and [12]), we have already analyzed the effect of the
possible extrinsic high-energy part in F and have shown that
it does not affect the structure of the peaks as clarified in
Fig. 19 and it cannot be the origin of the difference in the
peak structure.

Next we discuss the origin of discrepancy in the result by
Li, et al. [31]. They assumed momentum-independent self-
energy in the MDC analysis as one sees in Eq. (3) of their
supplementary note 2, whose basis is unclear. More crucially,
they assumed the imaginary part of self-energy in the forms
Eq. (5) or (6) in supplementary information of Ref. [31] for
the normal part and

M (g) = 1/(e(w7E3)/WB + 1)+1/(6(w7E4)/W4+1), (A1)

0.4 :
Bi2212 OP9OK

<)
o
T
\
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0 Im¥""(w)
Rezallo (w)
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FIG. 13. Self-energies obtained from a constrained anomalous
self-energy for Bi2212. The solid cyan and magenta curves represent
the real and imaginary part of the anomalous self-energy, obtained
by following the assumption by Li ez al. [31]. The blue and red open
squares represent the real and imaginary part of the normal self-
energy given by the Boltzmann machine as in our present scheme.
For details, see Appendix A.

with constant fitting parameters W, Wy, E3, and Ey4, for the
anomalous part, which is unjustified. Particularly, the assumed
form Eq. (A1) does not allow the formation of peak or dip
and it does not allow the cancellation with the structure in
the normal contribution in the spectral function as we dis-
covered. It is crucially important to allow the flexibility of
the self-energy form and the machine learning is one of the
best way to incorporate it while the attempt by Li er al.
failed in implementing the flexibility. We have attempted
to fit the self-energy with the constraint of Eq. (Al) for
the anomalous part and found the resultant optimized x? is
XMLF = 6.1x107°, which is much higher than the present
result xmr = 2.1x107%. Because the experimental resolu-
tion is xg, = 1.4x107° as mentioned above, the intrinsic
x> defined by 8x5yr = Xnip — Xexp 1 4.7x107°. Then the
intrinsic machine-learning error in the unit of the experimental
standard deviation is 8 xmr/Xexp = 2.1, which is larger than
the twice of the standard deviation. Namely, the probability
that this constrained choice is true is less than 4%. The re-
sultant self-energy does not show any appreciable peak as
it should be in contrast to the present result as one sees in
Fig. 13. Note that, despite the constrained anomalous part,
due to the unbiased choice of the normal self-energy here, the
self-energies in Fig. 13 should be a much better fit than the
more constrained ones (including the normal part) in Li ef al.
[31]. The spectral function obtained from the additional con-
straint in the normal part, Eq. (5) or (6) in the supplementary
information of Ref. [31] must give even higher x? than x2; p.

In addition, the form of the imaginary part of the
anomalous self-energy is unphysical. The form assumes the
attractive interaction ranging to the infinite frequency scale
(namely, instantaneous attractive interaction), which cannot
exist in the real experiments.

In summary, constraints or assumptions unjustified a
priori such as momentum-independent self-energy, strictly
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FIG. 14. Renormalization function Q(kan, @) and Gap function
A(kan, ) obtained by machine learning. Q(kan, @) (a), (b) and
A(kan, @) (c), (d) are plotted for optimally doped Bi2212 (a), (c)
and underdoped Bi2201 (b), (d) for the experimental data shown
in Fig. 1. The width of shaded area shows the experimental reso-
lution (see Secs. III D and III E). The positive part in ImA (kan, @)
near @ = 0 indicates the pair breaking contributing to destroy the
superconductivity.

constrained but unjustifiable self-energy form, and the Eliash-
berg equation in the previous works do not allow prominent
peak structures and at the same time give higher errors in the
regression of the experimental data than our result indicating
the superiority of our analysis. It supports that the cancellation
of the normal and anomalous contribution in the total self-
energy found in our analysis and not in the former studies
should be considered seriously.

APPENDIX B: PAIR-BREAKING EFFECT

The renormalization factor (quasiparticle residue) esti-
mated from the expression

(k) = Q(k, w)]o—0 (BI)

theoretically equivalent to zy, defined in Eq. (9) is the weight
of the quasiparticle, which can be substantially reduced from
the noninteracting value z(k) = 1 due to the interaction ef-
fects. The renormalization factor estimated from the fitting of
Eq. (B1) is zgp ~ 0.1 for Bi2212 and zq, ~ 0.03 for Bi2201
(see Fig. 14) supporting the non-Fermi liquid behavior espe-
cially in the underdoped case.

As shown in Figs. 14(c) and 14(d), the non-Fermi-liquid-
like ImX™"(w) affects the gap function A(w) (in Eq. (6)
through Q(w) [see Eq. (7)]. In general, negative ImA (w) for
w < 0 enhances ReA(w = 0) through the Kramers-Kronig
relation and is indeed negative in most of @ in Fig. 14(c)
and 14(d). However, ImA(w) is positive at |w| < 0.04 eV
(o] < 0.06 eV) for Bi2212 (Bi2201). Because ImX?™ is
found to be always negative for w < 0, it is ascribed to the
pair breaking effect of Q, arising from poles of X" inside
the superconducting gap as already pointed out [47]. The pair
breaking is much more prominent for underdoped sample,
Bi2201.

Although a similar conclusion for the underdoped Bi2201
suggests a universal nature, the prominent non-Fermi liquid
behavior and the pair breaking could be accounted for by an
alternative at k = kan, namely, the pole of X" shifts to the
energy w ~ 0 and destroys X*"° accompanied by an insulating
gap. Although such a solution gives worse x2 in our analysis,
a momentum selective insulating behavior at the antinodal
point deserves to be explored further together with the full
momentum and temperature dependences.

APPENDIX C: GAP FUNCTIONS

1. Resolution of gap functions

The gap function A(w) defined in Eq. (6) can show sig-
nificant § dependence near the small § limit around w ~ O.
The & dependence originates from the finite imaginary part
of the normal self-energy ImX"*"(k, @ = 0) inevitable in the
experimental data. When we modify Q as

1
Q(ks 0)) = 1 — S0 (k 0+i8)— 2T (k, —w—id)* °
2(w+id")

(ChH

we obtain stable behaviors of A(w) for |w| > 10 meV by
keeping § = 10 meV and restricting to 8’ < §. In Fig. 14 we
use 8’ = 2.5 meV.

2. Peak shift in gap function

Figures 14(c) and 14(d) show the gap function A defined in
Egs. (6) and (7). It reveals that the peak positions in A(kan, @)
are different from those in Im>?"°, which is consistent with
the hidden fermion theory [47]. In fact, the peak positions
of ImA(kan, w) (~ £ 80 and +£220 meV for Bi2212 and
~ £ 80 and £210 meV for Bi2201) are nearly the same as
the peak positions of ReX®°, while the peak positions of
ReA(kan, @) (~ =£ 50 and £180 meV for Bi2212 and ~ £ 50
and £160 meV for Bi2201) are nearly the same as the peak
positions of Im X", This is because the imaginary part of Q is
dominant in the relevant frequency region (~100-200 meV)
as shown in Fig. 14. The shift of the peak positions indicates
the strong renormalization effect in the normal quasipar-
ticle contained in Q. In any case, in the contribution to
the real order parameter of the superconductivity Aan =
ReA(kan, @ = 0) is expected to be contributed mostly from
the two peaks in ImA (kan, @) through the Kramers-Kronig
relation. The d-wave gap amplitude Aay is 30 meV for the
optimally doped Bi2212 while it is around 10 meV. However,
at small energy (~60 meV), the gap amplitude is both around
40 meV, which is comparable to the peak energy of ImX"°

043099-20



HIDDEN SELF-ENERGIES AS ORIGIN OF CUPRATE ...

PHYSICAL REVIEW RESEARCH 3, 043099 (2021)

and Im X" suggesting the similar pseudogap energy for opti-
mum and underdoped samples.

APPENDIX D: ACCURACY, STABILITY, AND
ROBUSTNESS TESTED BY SOLVABLE BENCHMARKS

In this section, we employ exactly solvable models as
benchmarks. We examine whether our machine learning cor-
rectly reproduces the exact self-energies (with prominent peak
structures), if the exact solution indeed shows the cancellation
of the normal and anomalous self-energy contributions in the
total self-energy and the spectral function A(w) shows only
a weak peak-dip-hump structure. To our knowledge, exact
solution, which shows such a cancellation is not found except
for the case of the two-component fermion model. Then, as a
benchmark, we inferred the self-energy of a superconducting
two-component fermion model defined by the Lagrangian,

L) =) {lo+is —etk) = ZO)]c] ko — €ad] ,dis
k,o

—Vile} ydvo +He) — Dy(d] d}

oV —k,—o

+H.c)},
(D1)

which is essentially the same form as that introduced in
Ref. [47] and discussed in Ref. [48]. In the following dis-
cussion, we assume that the noninteracting density of states
determined from €.(k) is a constant Ny and focus on a specific
momentum k at the Fermi momentum just for simplicity.
Because of the momentum independence, this consideration
at a specified momentum does not cause loss of generality.
Here we add X ©(w) at the above momentum defined by

a { Vb Ja

w+ivb w+iva
in addition to €.(k) to mimic the additional normal Fermi-
liquid-like component seen in the experimental result arising
from interaction effect for the part not represented by the
coupling to the d fermion, where a, b, and « are constants. The
self-energy in the exact solution of this two-fermion model is
given as

2O(w) = ;
—a

} (D2)

Vi(w+i8 + €)

2% (w) = +e +2Pw), (D3

3 (@) @t (@1 D) (@), (D3)
V2D

25 (@) = = (D4)

(w+i8) — (€ +D?)

For simplicity, we have dropped the momentum dependence
in the solutions (D3) and (D4). In our calculation, we set
a=0.008 eV%, b=0.2 eV? a =0.08 eV?, V| = 0.075 eV,
Dy =0.0375 eV, and ¢; = ¢, = 0. The present choice of
the parameters is enough to generate the spectral function
observed at the Fermi momentum we focus on, and the de-
pendence on the doping and dimension of the system etc. are
implicitly contained in Ng. By using the exact solution for the
spectral function A (), we add small but finite noise, where
o2 of the noise is set to be 6x107* to simulate the role of
noise in experiments and perform the machine learning using
this noisy Ays(w). Although it is irrelevant to the inferred
self-energies, the Fermi-Dirac distribution with 7 =40 K

is introduced in the spectral function used in the machine
learning just by following the scheme with finite-temperature
experimental data. In Figs. 15(a)-15(c), the spectral func-
tion of the two-component fermion model A,f(w) and the
self-energies are shown for the exact solutions (solid and
dashed curves) and the machine-learning results (symbols).
In the self-energy inference, we choose ny = 0.45 without
fine tuning and use the spectrum within —0.55 eV < w <
0.05 eV. The peak position in ImX"™" and Im¥?"° and the
Fermi liquid-like normal contribution in the exact solution
(shown with the index 2f such as A,y (w) illustrated by solid
and dashed curves) are well reproduced by our machine-
learning results (symbols). The peak cancellation in 25‘;} in
the exact solution is also well reproduced.

In Figs. 15(d)-15(f), we show an artificial case, where the
pole of X" is shifted 0.03 eV from the solution (D4), where
the pole cancellation in the total self-energy does not occur
any more and the spectral function shows weird two peaks.
The concrete representation of the self-energies of the modi-
fied two-component model is given by the following form:

Vlz(a) +iré + €4)

E]nﬂor w) = + €.+ Z(O) w), D5
‘72 D AD
Emano(w) - ! ( ! 1) (D6)

(o +ir8)? — [€2 + (D1 + AD)?]’

where the pole of X" is shifted from that of £*"° because
of AD; = 0.03 eV and a factor r = 2 is introduced to avoid
singular spectrum. The spectrum and self-energies of the
modified two-component model are denoted with the index
m as Ap(w). Even in this case, the machine-learning results
well reproduce all the line shapes. This indicates that our
machine learning flexibly and accurately reproduces the exact
solution irrespective of the presence or absence of the peak
cancellation.

APPENDIX E: NUMERICAL
OPTIMIZATION PROCEDURE

1. Details in minimization of training error

The parameters in the Boltzmann machine, «"" =

(b, (Wi} and o™ = (w;, {b}}, {V}))), are optimized by
using the standard gradient method. The parameters at the
k + 1th step, Y} and e}’ , are updated from the kth values

janp
as
nor __ ,nor —1 nor —1/2 —1_nor
Ui = %, _G(HS 8 ”1) STg s (ED)
an = e (g e @)
where
1 ImXE™ (w;) dImXE""(w;
Sw=3 @) @D @3
Na Do darner
o _ 0X°
gil = 8an0r’ (E4)
3x?
no — , ES
gi dogane ( )
and || - - - ||; represents L; norm. The factors (||S~'gi"||;)~!/*

and (||gi™|l;)""/? are introduced to accelerate the
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FIG. 15. Spectrum and self-energies of two-component fermion model and its modified version. (a) The exact spectral function of the
two-component fermion model, A,s(w), (red open squares) is compared with A(w) obtained from the machine learning using A,;(w) (blue

curve crosses) within —0.55 eV < @ < 0.05 eV. (b), (c) The imaginary part of the self-energies of the two-component fermion model, X

nor

2f

Zg‘}", and Wy (curves), are compared with the self-energies obtained from the machine learning (symbols). (d) The exact spectral function of

the modified two-component fermion model, A, (w), (open squares) is

compared with A(w) obtained from the machine learning using A, (@)

within —0.55 eV < w < 0.05 eV. (e), (f) The imaginary part of the self-energies of the modified two-component fermion model, X7, 3%,
and W,, (curves), are compared with the self-energies obtained from the machine learning (symbols).

optimization. Here we use the natural gradient method to
optimize the variational parameters in ImX" (w;) because
of its efficiency [20,66,67], while the simple steepest descent
method is employed to optimize the part of ImX*°(w;)
because the natural gradient method assumes that the
optimized distribution is positive or negative definite, while
ImX*°(w;) does not satisfy this condition. During the
optimization of the Boltzmann machine, we may introduce
a regularization term by L; norm of the mixture of the
Boltzmann machines as A,, ), |w;|. While A, = 1073 will
accelerate the optimization, the results of the optimization is
confirmed to be insensitive if A,, < 103 In the actual fitting,
we employed A, = 1073,

2. Parameters in optimization

In the present paper, first, we optimize the Boltzmann
machine with L = 8 visible nodes and 2L = 16 hidden nodes
for the part InX"" and, then, we enhance the resolution with
L =9 visible nodes and 18 hidden nodes to obtain better
resolution with reasonable numerical cost. In the optimization

with L = 9, we skip the outer loop (the update of the center of
mass by the Bayesian process) to reduce the computational
cost and perform longer minimization steps up to 2x10*.
We employ the broadening factor § = 10 meV throughout
this paper. We show in Appendix E 3 that the result does not
sensitively depend on the choice of §.

3. Effects of resolution §

In the present study, the small imaginary part i§ utilized in
the Green functions is chosen to be equal to the experimental
resolution. When substantially larger resolution § is taken, the
detailed spectra are trivially not reproducible. On the other
hand, when smaller resolution § is taken, the spectra may be
easily fitted. Here we examine how the smaller § affects the in-
ferred self-energy. As a typical example, we take § = SmeV,
which is a half of § used in the main article, and confirmed
that the smaller § does not change the qualitative structure
of the self-energy. As shown in Fig. 16, the peak structures
in ImX™" and ImW, and the cancellation between them are
reproduced.
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FIG. 16. Resolution (§) dependence of self-energies. Self-
energies are obtained from the machine learning using the ARPES
EDC curves with § = 5meV. The ARPES EDC is taken from the
experimental data of Bi2212 at optimum doping at 11 K, supplied by
Kondo et al. [28]. The peak position and their cancellation between
W and "' remain essentially the same even for § smaller than the
experimental resolution.

4. Gaussian distribution represented by Boltzmann machine

When we choose the parameters as

1 /AN
wk = ——|( =) 2™, E6
tm 2s§<2t> (E6)
1 A
b = (A2 +xA)2—Lz£, (E7)
A
— L (A /2)?
w, = 20, 57 (s +A/2) (ES)

J2ns?

in Egs. (26) and (27), the Boltzmann machine easily repre-
sents the Gaussian distribution with the center x;, variance
si, and weight wy;, which is a localized sparse distribution.
Superposition of the Gaussian distribution can easily be ex-
pressed by Eq. (22) by taking M larger than 1 (typically we
take M several).

APPENDIX F: ROBUSTNESS OF MACHINE LEARNING

The present use of machine learning is categorized to a
general class of regression analysis as addressed in the first
paragraph of Sec. IT A. In the standard simple case of the re-
gression task, training data set is simply given by the observed
A at discrete number of x and we infer the functional form of
A(x). In the present case, it is more involved and the training
data is the experimentally measured discrete and limited num-
ber of A and w, and the regression task is to determine X as
a continuous function of w. In terms of the optimization with
the machine learning, our task is to minimize the difference
between the measured data A and that obtained from the
inferred X (w), which is a continuous function of w. Therefore,
our work is categorized to the machine-learning application

to a regression task, one of the most widely applied machine-
learning fields. Our regression scheme is illustrated in Fig. 5.

In the regression analysis, it is helpful to examine the
reliability of the machine learning by using solvable cases as
the benchmark, as in other type of the regression task found
in the problem of solving quantum many-body problems and
classical statistical physics problems [10]. It is also important
to test the stability of the procedure by adding noises. In
this section we show the robustness against the noise and in
Appendix D we show several benchmark tests for solvable
models.

1. Stability against noise

We examine stability of the present machine-learning
scheme. By using A™ and o? introduced in Sec. Il E, we can
generate synthetic experimental data with the same or larger
amplitude of noise than the original data. Here we use the
synthetic data to examine the input data dependence of the
present scheme.

Here x? of the optimized A(k,w) by the machine
learning from the synthetic ARPES spectrum A®" gener-
ated by the maximally likelihood inference of the ARPES
spectrum is given by xZ; = x2 =Y Y M [AMM () —
AP (@)]?/NgN, = 2.1x107° [defined in Eq. (28)], which
is the same level as the experimental X2, namely, Xezxp =

o} = vad [A%P (w;) — A (w;)]> /Ny = 1.4x107° obtained in
Eq. (27). The same level of x? value indicates that the
machine-learning optimization to fit the experimental A(k, )
is successfully achieved within the limit of the level of the
experimental noise. The standard deviation of the experi-
mental uncertainty is around exp = 1.2x 1073, To estimate
the likelihood (degree of certainty) of the present solu-
tion as the experimental interpretation, we used a standard
index (for noise, variance, and bias decomposition, see
Ref. [21]) expressed as 8xmL = v Xy — Xexp = 0-8x107°.
This is nothing but the pure generalization error/test er-
ror derived after subtracting the experimental noise. Here
S XML/ Xexp = 0.7 is the intrinsic machine-learning error in the
unit of the experimental standard deviation. This is well within
the experimental error bar. We show in Appendix A that other
example of optimization without peak structure shows much
larger standard error. If we assume that the inferred A(k, )
follows the probability distribution P = exp[— gy /2Xep]
given from the maximum likelihood inference (see Ref. [21]),
one can estimate the corresponding variance of the inference
for the self-energy by sampling the variation of the peak
structure. The variance is plotted in Fig. 17(b) for the peak part
of ImW . This indicates that the variance for the peak position
and the weight is small and the existence of the peak is robust.

To further examine the reliability of the emergence of the
peak, in Fig. 17(a), we first show the estimated Afi and ampli-
fied noise 6, = 40, for the optimum doped Bi2212. With &,
we generate many synthetic experimental samples. The reason
why we take 6, instead of o, is to secure the stability of the
peak structure in the presence of the experimental noise with
the safety factor 4. Then we perform the machine learning
and extract the self-energy from the synthetic A(k, @), which
provides us with the error bars of the estimated self-energies
in our machine learning. As shown in Fig. 2(c), the variance
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FIG. 17. Robustness of the machine-learning procedure. (a) Ex-
amples of synthetic spectral function with amplified noise &, = 40,
shown for Bi2212 at 12 K (a) obtained at the antinodal point in
the following way: The fitting of the experimental data (open red
squares) by linear regression is shown as red curves and the standard
error (or noise) of the experimental data are estimated as the blue
belt. The inset shows the zoom out to see the overall feature. Then
synthetic random noise with this standard deviation &, is added to
the red curve to generate synthetic experimental samples and the
machine-learning solution of the self-energy for this synthetic data
provides us with the error bar for the self-energy in (b). For the
method of imposing noise, see Sec. III and Appendix F. (b) Imag-
inary part of normal self-energy ImX"" (kan, @), ImW (kan, @),
and ImX "' (kan, w) deduced by the present machine learning from
A(k, w). The error bars are those for the dip energy (horizontal bar)
and the dip depth (vertical bar) derived in the procedure mentioned
above.

of ImX™", and ImX?"° thus obtained from the synthetic data
is reasonably small with the peak structure in the imaginary
part of the self-energy, which indicates that our solution of
the inverse problem is numerically stable. Note that the error
bars are somewhat overestimated here [namely, larger error
bars than those of Fig. 2(c)] because of the factor 4 above,
but still the peak structure is reasonably retained. However,
further increase of the noise to several times of &, smears out
the peak structure, implying that very accurate experimental
data in the present ARPES quality are required to reveal the
peak structure.

The stability in the present inverse problem shown here
clearly indicates the difference from notorious ill-conditioned
problems such as the analytic continuation from the imaginary
time (Matsubara frequency) variable to the real frequency typ-
ically studied by the maximum entropy method. In contrast to
the nonsparse and involved nature of the analytic continuation
from the Matsubara frequency, the present stability numeri-
cally shown here is consequences of the sparse structure of
the transformation between the spectral function and the self-
energy. The mapping between A and X is, though strongly
nonlinear, diagonal in the variable w and transformation is
sparse confined in a limited frequency range. Imposed phys-
ical requirement further ensures the stability. The machine
learning including the Boltzmann machine in known to be
powerful to strongly nonlinear transformation [7,9,14,68,69]
such as Eqgs. (1) and (2).

Of course if the noise is too high, the peak structure is
smeared out. Our synthetic data analysis tells that 64 times

higher noise level than the estimated experimental noise
washes out the peak structure (not shown) and the factor 10
to the present experimental level would be the limit for the
meaningful quantitative analysis.

2. Dependence on initial guess

The stability of the optimal solution is examined in the
previous subsection. While a single local minimum of the
cost function is analyzed above, in the present regression
scheme, a multivalley structure of the cost function in the
parameter space may appear due to the nonlinear nature of
the regression. To explore the nature of the possible multi-
minima, we perform the outer loop optimization, which is
illustrated in Figs. 1 and 3. In the outer loop optimization,
we update the initial condition of the imaginary part of the
anomalous self-energy to prepare for the next iteration of the
inner loop optimization. During the practical optimization,
the initial guess for the (R)BM parameters at the first stage
of the optimization shown in Fig. 3 will affect the optimized
self-energies.

To illustrate the initial guess dependence, here, we exam-
ine typical solutions for Bi2212 at 12 K obtained from the
randomly chosen initial guesses for ImX"°. As explained in
Sec. III A, we initialize Im>?"° as a linear combination of
the Gaussian distributions. We randomly chose the center of
mass, height, and width of these Gaussian distributions. From
the physical constraint, we choose the center of mass within
|lw| < 0.3 eV. In Fig. 18 the typical examples of the solutions
are shown.

There are two kinds of the solutions: Superconducting
and pseudogap solutions are found. When an initial guess
for ImX*"° generates a large enough superconducting gap,
superconducting solutions are obtained. The superconducting
solutions show a minimum of the amplitude of Im %"°" around
w = 0, while the amplitude of ReX?" around w = 0 is sub-
stantial enough to generate a quasiparticle gap in the spectral
function. In contrast, if an initial guess for Im¥*"° cannot
generate a large enough superconducting gap, the amplitude
of the normal component ImX"™" shows a (negative) peak
around w = 0 to generate a gap in the spectral function. We
call such a solution the pseudogap solution. A typical example
of the pseudogap solution is shown in Fig. 18(a), which shows
a three order of magnitude larger cost function as illustrated in
Fig. 18(d). Two superconducting solutions with cost functions
larger than the minimum value x2; = 1.6x107° are shown
in Figs. 18(b) and 18(c). Similarly to the optimal solution
shown in Fig. 8(a), the superconducting solution shown in
Fig. 18(b) exhibits peak structures of ImX**°. However, due
to the shift in the peak position, the solution gives an one
order of magnitude larger cost function. A featureless Im X"
also generates a superconducting solution with a large cost
function as shown in Figs. 18(c) and 18(d).

Here we note that the larger cost functions originate from
systematic deviation of the regression model A(w) from the
experimental data A®*P(w). The difference between them,
A(w) — A¥P(w), is shown for the three solutions in Fig. 18(e).
The pseudogap solution [Fig. 18(a)] and the superconducting
solution with the featureless Im X" [Fig. 18(c)] overestimate
the spectral function within the quasiparticle gap: A(w) is
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FIG. 18. Typical examples of self-energies obtained by random initial guesses for Bi2212. From random initial guesses for the imaginary
part of the anomalous self-energy, we often obtain solutions with cost functions, Xfau higher than the current best value, 2.1x 1070 eV 2.
(a)—(c) Three examples of different self-energies obtained from the different random initial guesses for ImX*" are shown. The self-energies
in (a) seems to correspond to a pseudogap or insulating phase, which is characterized by a peak of ImX"" around @ = 0. On the contrary,
(b) and (c) are interpreted as variants of superconducting solutions. In (b), small signature of peaks are found in the imaginary parts of the
self-energies. (d) The cost functions are given for the solutions with the self-energies summarized in (a) and (b). The horizontal solid line shows
the minimum value x2; = 2.1x107° eV~2 while the horizontal broken line shows the experimental noise level Xezxp = 1.6x107°eV~2. (e) The
differences between the regression models A(w) and the experimental data A*P(w) are shown. For the regression model with the self-energies
(a), the difference, A(w) — A™P(w), multiplied by a factor 0.1 is shown because the difference is larger than those with the self-energies shown
in (b) and (c). The black solid curve shows the difference, A(w) — A”P(w), for the optimal solution with Xf,IL =2.1x107° eV~2 [shown in

Fig. 8(a)].

larger than A®P(w) for w ~ 0 eV. In contrast, the solution
with a peak of ImX®"® at a higher energy scale shows stronger
superconducting gap, which results in A(w) < A**P(w) around
w=0eV.

As examplified by the solutions from randomly chosen
initial guesses in Fig. 18, the optimal self-energies shown in
Fig. 8 indeed give the spectral function closer to the experi-
mental data. Within our many attempts, we found the unique
solution that has a cost function value comparable to the
estimated experimental error, as shown in Fig. 8.

3. Stability against energy cutoff and background

The present machine-learning scheme is based on the
imaginary parts of the self-energy within a finite fre-
quency range —A < w < A, where A ~ 0.4 eV, because the
experimental data observed within —0.4 < @ < 0.2. There-
fore, in the genuine self-energy, there is a possible unknown
contribution from the outside of the cutoff energy A. How-
ever, as explained below, such a contribution is a monotonic
and bounded function of w, and, thus, possible errors due to
the lack of information can be estimated.

Due to the Kramers-Kronig relation, the real part of the
self-energy can be affected by the cutoff energy A. Because
the imaginary part of the normal self-energy is expected to
extend over the cutoff energy, the real part of the normal
self-energy has a monotonic and bounded contribution from
the outside of the cutoff energy. On the other hand, because
the anomalous self-energy is finite only within the cutoff
energy scale, the real part of the anomalous self-energy can
be affected by the cutoff only through the normal self-energy.

In the main text, we ignored the contribution of the high-
energy part of normal self-energy. To critically examine the
possible contribution from the outside of the cutoff energy,
here we assume a possible distribution of the imaginary part
of the normal self-energy outside the cutoff: The imaginary
part of the normal self-energy outside the cutoff is assumed to
be confined within Q" — W'/2 < w < Q' + W'/2 centered at

', where |Q'| > A 2 W' and the amplitude of the imaginary
part is approximately constant within this energy range. Then
the contribution to the real part is given by

ImXror (Y QL+W'/2 do'
AReE™ (o) ~ 1METEY) © _FD
b4 Q-wp ©—o
which is monotonic for —A <w < A. When |Q/] >

W’ is assumed, the contribution AReX™ (w = 0) and
its derivative d AReX""(w)/dw|,—o are approximately es-
timated as [—ImZ"™"(Q)/(@Q)HW' + O(W/Z/Q’)] and
[ImX™" (") /(x QHIW’ + O(W/Z/Q’)], respectively. If we
consider formation of a lower Hubbard band, for instance,
we may assume that |Q'| ~ [ImE™"(Q")| ~ O(1) eV and
W’ < A. Then the contribution from the outside of the
cutoff is bounded as | — ImX™"(QYW' /()| < A/ and
ImE" QW' /(%) < 1/(27).

As we show in Fig. 19(a), the qualitative feature of the peak
structure at w < —0.4 eV does not change even when we add
an artificial high-energy part for the normal self-energy, where
we compare the self-energy inferred from the experimental
ARPES data with the self-energy inferred with an additional
high-energy part ©H. Here we added the following fixed high-
energy part X! in the optimization process:

sb ( Vb A )
(c—a)b—c)\w+ivb w+iJc

sa Je Ja
+(a—b)(c—a)<w+iﬁ_w+iﬁ>, (F2)

where s =0.15eV3, a =0.3eV2, b=0.025eV?, and ¢ =
0.01 eV?, whose imaginary part becomes substantial for & >
—0.4 eV as shown in the inset of Fig. 19(a). Then we fit
the experimental ARPES data within the experimentally mea-
sured energy range using this self-energy form with the added
high-energy tail. Indeed, in the solution, the artificial high-
energy part does not affect the prominent peak structures at

sHw) =
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FIG. 19. Effect of high-energy contributions and background on the self-energy structure for Bi2212. (a) Artificial normal self-energy 1
added by hand in the high-energy region shown in the inset does not have appreciable effect for the self-energies near the Fermi level and the
deep dips (peaks) as shown in the main panel. This artificially added normal self-energy is chosen to satisfy the Kramers-Kronig relation in
the form of Eq. (F2). Note that the self energies with (filled symbols) and without (open symbols) the high-energy contribution are mostly
closely overlapped except for the region near —0.3 eV. See the text for details of the procedure. (b) Similarly to (a), artificial Lorentzian peak
added by hand in the high-energy region as =" shown in the inset by broken curve does not have appreciable effect on the deep dips (peaks) as
shown in the main panel. (c) The spectral function obtained by subtracting the possible extrinsic origin b(w) (thin black curve in the inset) from
the experimental data AP (k, w) (open red squares in the inset) is given as the open red squares in the main panel. Here the spectral function
is rescaled with ny = 0.4. The machine-learning result to fit AP (k, w) — b(w) is plotted as blue crosses and blue fitting curves. b(w) can be
regarded as a hypothetical background contribution similar to the form in Ref. [70]. (d) The self-energies Im¥"*"(k, w) and ImX**°(k, w)
obtained by the machine learning of the procedure in (c). Inset: ImX"" (k, ) and ImW (k, w) together with ImX''(k, @), showing the robust
cancellation of ImX" (k, w) and ImW (k, @) in the peak (dip). The blue dashed line w/m has a similar slope with ImnX''(k, @), implying a
universal origin of this marginal Fermi liquid behavior.

all in ImX"" and Im X2"°. When the energy range covered by
the measured A(k, w) becomes wider after excluding the ex-
trinsic background, the uncertainty becomes of course further
reduced.

To examine effects of high-energy structure of ImX"" fur-
ther, especially effects of a possible peak structure responsible

for the waterfall structure around —0.5 eV [71-76], we con-
ducted the following analysis by adding X" that has a peak
around —0.5 eV to the Boltzmann-machine representation
of ImX"". Here we assume a Lorentzian peak around w =
—0.5 eV as X! instead of monotonic w dependence at high
energies and find optimized X +X to fit the experimentally
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observed ARPES data of the optimally doped Bi2212. As
shown in Fig. 19(b), the presence of the peak structure around
—0.5 eV does not essentially change the structures of the low-
energy self-energy in the region w > —0.2 eV. Here, we note
that larger amplitude and/or wider width of the Lorentzian
cannot fit the experimental spectral function, and we also note
that the anomalous cusp in ImX"*" near the peak structure
around —0.5 eV is inevitable to minimize the cost function if
one keeps the Lorentzian peak structure. Aside from details,
thus, the potential peak structure does not alter the peak struc-
ture of our interest. As examined in theoretical and numerical
studies (for example, Ref. [77]), we also note that the realistic
waterfall structure can be derived from broader structures in
ImX"" than %H in Fig. 19(b). In this case the effect of that
broad structure becomes smaller than the present critical test.

As an alternative way, one can also examine whether the
peak structure is insensitive to the possible slowly varying
extrinsic energy dependence or not, by studying the effect of
the possible background onto the spectral function. The origin
of the background in the experimental spectral function may
be the electronic incoherent part or the extrinsic experimen-
tal setup extended in the low- and high-energy regions. The
background is expected to have a broad (slowly w-dependent)
structure. Such a background has been studied before [70]
and we mimic such background structure as a possible effect
to see the sensitivity to the peak (dip) structure around w ~
—0.07 eV. In Fig. 19(c), we show the optimized solution when
a model background b(w) shown in the inset is subtracted
from the spectral function by hand. The high-energy offset
in the experimental A(k, w) does not appreciably depend on
temperature and momentum, implying such an extrinsic ori-
gin. The way of optimization to minimize x2 in Eq. (26) is the
same as before except that we fit A**P(k, w) — b(w) with a @
independent rescaling of the amplitude to satisfy the optimal
ny = 0.4, instead of A®*P(k, w). The result shows again that
such a broad structure does not affect the prominent peak
structure and the peak cancellation between the normal and
anomalous self-energies is retained. While the cancellation
continues to be retained even after the subtraction of the
background, the amplitude of the peak structures becomes
smaller after the subtraction of the background, as shown in
Fig. 19(d). Although the reduction of the peak intensity is
obtained as a consequence of the regression, it has a simple
physical interpretation originating from the renormalization
effect: The inferred renormalization factor is affected by the
amplitude of the imaginary part of the normal self-energy for
w < —0.1 eV. After the background subtraction, the amplitude
of the imaginary part becomes smaller, and, thus, the renor-
malization factor becomes larger. While the superconducting
gap amplitude estimated in the quasiparticle peak does not
depend on the background, the normalization factor depends.
To reproduce the gap amplitude, the smaller amplitude of
Im X is required when the renormalization becomes larger.
Therefore, the peak structures of Im %", which have to cancel
the peaks in Im X" to reproduce the spectral function become
smaller after the subtraction of the background. By the sub-
traction of the hypothesized background which is essentially
constant for o < —0.1 eV, we see that the high-energy imagi-
nary part of the normal self-energy has a marginal fermi liquid

feature ImX™"(k, w) o« w consistent with the coefficient of
the T -linear resistivity in experiments.

Here we remark that the realistic background estimated
from the ARPES data has a similar form to b(w), but with
much smaller amplitude. As a standard method to estimate
the background, we utilize the EDC curve at the momentum
far outside the Fermi surface provided by Kondo [78]. The
estimated background at the antinodal point can be well fitted
by a modified sigmoid function, w(l — aw)/{1 + exp[(w —
b)/cl}, where a = 2.24 eV, b=-0.02 eV, c =0.014 eV,
and the weight of the background w is determined to consti-
tute 20% of the original spectrum for —0.4 eV < w < 0.1 eV,
which is nearly a quarter of b(w) in amplitude employed in
Fig. 19(c). Therefore, the analysis in Fig. 19(c) is regarded as
the effect of unrealistically exaggerated background as a ex-
treme case. In the realistic background, the modification of the
self-energy peak by the background must be much smaller.

ARPES data are basically not available in the unoccupied
part and therefore the inferred behavior in the positive energy
side of the spectral function has relatively larger uncertainty.
In fact, electron-hole asymmetry was suggested in the scan-
ning tunneling microscope data [81]. If any kind of data in the
positive energy side can be analyzed together, the asymme-
try can be analyzed more quantitatively. However, this issue
is beyond the scope of the present work. Nevertheless, the
asymmetry expected in the optimally doped Bi2212 (our main
target of the analysis) is modest or weak if it exists as one sees
from the STM data and the level of quantitative uncertainty
in our analysis does not essentially alter the peak structure
in the negative energy side. Technically this is analogous to
the case of the uncertainty at the tail part of negative energy
side beyond the accessibility by ARPES or the effect of the
background discussed above. In fact, consideration of the
background assumed only in the negative energy side em-
ployed here necessarily introduces electron-hole asymmetry
in the measurement and the insensitivity to the background is
interpreted for the asymmetry as well.

4. Bilayer nature

In the bilayer cuprate, the bare band structure consists of
the bonding and antibonding band. However, we have ana-
lyzed the ARPES data by using the single-band description
of the Green function, which describes the bonding band,
because it crosses the Fermi energy. We here examine the
effects from the antibonding band, which is located above the
bonding band in the @ axis, and show that the contribution
from the antibonding band does not change the qualitative
results. Below, we explicitly take into account the two-band
nature of Bi2212 and demonstrate that the results from the
multiband treatment are consistent with those from the single-
band treatment.

Due to the symmetry of the Bi2212 crystal structure, the
bare band structure is diagonalized by using the bonding and
antibonding Wannier orbitals that are given by the bonding
and antibonding combination of the d,»_,» orbitals in two
adjacent CuO, planes. Even when the self-energies are taken
into account, the Green functions for the bilayer cuprates
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are diagonal if the interlayer components of the normal and
anomalous self-energies are negligible.

When we neglect the interlayer components of the normal
and anomalous self-energies, the self-energies in the two adja-

J

cent CuO, planes are identical. Therefore, we introduce only
the self-energies, X" (k, w) and X*"°(k, w), for both of the
adjacent CuO; planes. The Green functions for the bonding
and antibonding band are obtained as follows, respectively:

w+i8+ e,]? + XMk, —w)*

GBk, w) =

[0 +i8 — €f — Tk, w)][@ +i8 + €& + T (k, —w)*] — @Ok, w)?

o+ i + € + T (k, —w)*

G*B(k, w) =

[@+i8 — epfB — T (k, w)]|[w + i8 + 1B 4 o (k, —w)*] — T@0(k, 0)*

Here we note that the self-energies are identical even after
diagonalization to obtain the bonding and antibonding band,
irrespective of the amplitude of the interlayer hopping consti-
tuting the bare band.

Then the spectral function, A(w), is decomposed into the
contribution from the bonding orbitals, AB(w), and antibond-
ing orbitals, A?B(w), as follows:

A(w) = ppA®(0) + pasA™E ().

Here the orbital-dependent matrix elements pg(= 1 — pap)
and pap are taken into account.

Then, we extract the self-energies by using the two band
decomposition of A(w) = pgAB(w) + papA*B(w). As same
as in the single band picture, we train the self-energies by
minimizing the training error between the theoretical spectral
function A(w) and experimental spectral function A*P(w). By
following Kordyuk ef al. [80], we assume that the integrated
weight of the contribution from the antibonding band is 25%
as pap = 0.25. In Fig. 20 the optimized spectral function A(w)
and self-energies are shown.

Even when we take the multiband nature into account,
we obtain the self-energies that are essentially same as those
obtained in the single band analysis. The cancellation between
ImX"™" and ImW is also observed in Fig. 20(b).

APPENDIX G: DETAILS OF WAVELET ANALYSIS
AND IMPROVED ImX TO REDUCE TEST ERROR

Here we discuss why we employ this wavelet formalism.
The idea of using the binary representation (13) is to represent
a complex function of @ by successive coarse graining. If
a function has w dependence with various frequency scales,
this hierarchical structure can be efficiently picked up by
wavelet with different scales, and each wavelet is represented
by each digit of the binary number o; (j =0,1,...,L —1).
For example, the last digit o7 represents the slowest nonzero
modulation of frequency dependence (or in other words, short
real-time value), namely, with the period of the half of our
frequency range. o picks up the most rapid modulation in
frequency (or in other words, long real-time value) alternating
in the period of the frequency grid mesh Aw = w/2F etc.
One can have an analogy to Fourier series analysis, where the
first digit of the binary number oy corresponds to the largest
time component and the last digit o;_; corresponds to the
shortest nonzero time component in the form of &', It was
shown that the wavelet can represent the @ dependence in the
orders of magnitude different scales simultaneously and has a
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FIG. 20. Self-energy learning based on two-band Green function
for Bi2212. The total spectral function of the bilayer model A(w)
(blue crosses) is shown in (a), which reproduces the experimental
data (red squares). Here, the spectral function is rescaled to fulfill
ny = 0.3, where ny is the integrated spectral function for —0.4 eV
<w < 0.1 eV. See the end of Appendix F for the definition of
the integrated spectral function. We choose that the bilayer splitting
e"B — B at the antinodal region is equal to 0.19 eV by follow-
ing the tight-binding Hamiltonian for an underdoped Bi2212 with
T. = 78 K reported by Drozdov ef al. [79]. The matrix element of
the antibonding band pap is equal to 0.25 by following Kordyuk
et al. [80], where pg = 1 — pap. The optimized Boltzmann machine
self-energies shown in (b) reproduce the spectral function A(w)
(blue crosses) in (a). The cancellation between ImX"™" and ImW
is illustrated in (b). The contribution from the bonding band A®(w)
(magenta curve) and antibonding band A*8(w) (cyan curve) is shown
in (a).

flexible representability in the regression problem with small
number of parameters because of the logarithmic description
(in the present case, C and D with only L arguments, where
each of the L components represent logarithmically different
scales of frequency dependences) for any discrete data-point
set [16—-18].

The grid mesh Aw is chosen to be smaller than or compara-
ble to the experimental energy resolution (~10 meV [12,28])
to fully reproduce the experimental A(k, w) within the resolu-
tion of the grid size Aw.

If the experimental noise level is comparable to the energy
resolution, the step-wise representation is sufficient. How-
ever, when the experimental spectral data contains only small
noise, the stepwise representation for the imaginary part of the
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self-energies may introduce a systematic increase in the test
errors. To reduce the possible increased error, we introduce a
piecewise-linear representation instead of the stepwise repre-
sentation Im X"°"/2° Namely, we interpolate the self-energies
between w = w; and w = wyy linearly as

w —

Im Z;Or/a"o(a)) = ﬁlmznor/ano(w”rl)

1+1 — Wi

4 DL T @ gy ner/ano ()
w41 — W

(GD

for w; < w < wy4+1, where w; is the midpoint of the /(o)th
interval defined by w; = A(I + 1/2)/2F — A/2. Since the
estimated noise is very small for the experimental ARPES
spectra of the optimally doped Bi2212 (T, =90 K) at 11 K
[analyzed in Figs. 6(a), 7(a), 7(c), 8(a), 8(c), 8(d), and 9 in
the main text and Figs. 10(a), 10(c), 12, 13, 14, 15, 16, 19,
and 23 in the Appendixes), the piecewise linear representation
is helpful to achieve the comparable size of test errors with
the noise in the experimental data (see Appendix F for the
quantitative discussion).

APPENDIX H: DETAILS IN REAL PART OF SELF-ENERGY

The real part of the retarded self-energy is obtained through
the Kramers-Kronig relation as Eqgs. (28) and (29). For ex-

J

1+ w—wj
2Aw

o 252
Flw) = (w—w—Aw/2)"+8

AImE(w,){

where the width of the interval is given by Aw = A/2F
and the increment of the imaginary part is AlmX(w;) =
ImX" (wyy1) — ImE""(w;). The amplitude of the contri-
bution f; has the extremum significantly smaller than the
increment AImX(wy), because

AlmX(wy) 28 . Aw
< ——(1— —1t — ], H4
[fr(w)] < VAT (HH
for § > Aw and thus
AlmX(wy)

|fi(@)] ~ 107 x (H5)

i
is satisfied when § = 10 meV and Aw = A/2L ~ 3.2 meV.
Thus, the piecewise linear representation introduces a negligi-
ble correction to the real part.

APPENDIX I: OPTIMIZATION OF n,

We employed ng = 0.3 in the present analyses. This choice
is justified by the least square fit. We have examined the
optimum choice by the least square fit of P by taking several
choices of ng. Here we note that P is trivially scaled by
the square of the amplitude of A*P(w), and thus is scaled
by the square of ny. Therefore, we need to optimize p/n(z).
Figure 21(a) shows that x2 normalized by n} for optimally
doped Bi2212 at the antinodal momentum has indeed mini-
mum at ngp = 0.3, which indicates that the machine learning

n —_——
(w—wi+Aw/2)*+82  Aw

ample, the real part of normal self-energy in the stepwise
representation derived from Eq. (16) through the discretized
Kramers-Kronig relation is given as

ReX"(w)
_ Z C(S) n {A[1+1(0)]/2F — AJ2 — w)? + 82
- 27
S

[AI(0)/2L — A/2 —w]?> + 62
(HI)

where we introduce a broadening factor § to represent a prin-

cipal value,
Pfdw/ f((l)) ,
w

o —

by
Re/dw/f(—“’)
o +i8—w

When the piecewise linear representation in Eq. (G1) is
employed, the real part of the self-energy is corrected by f;
as

ReZ!(w) = ReX™ () + Y _ fi(), (H2)
1

where the correction term f; from the stepwise representations
in each interval [w;, wyy1) is calculated as

|:tan_1 (a) — w,;—Aw/Z)_ - <a)—a)1;Aa)/2>:|}’ (H3)

(

suggests that this choice is the optimized value of ny. The ob-
tained self-energies do not sensitively depend on the choice of
ng as one sees in Figs. 21(b)-21(d), and we see no qualitative
change in the feature of the pronounced peaks in Im¥*"° and
ImX"™" at the same energy together with their cancellation in
ImX',

APPENDIX J: UNOCCUPIED STATES, BILAYER
NATURE, AND MATRIX ELEMENT

1. Unoccupied states

One might be concerned with the effect of the unoccupied
states, especially the effect of the particle-hole asymmetry in
the scanning tunneling spectroscopy reported in the literature
[82,83]. Our present scheme does not assume the particle-hole
symmetry and is capable of the asymmetry if it exists, al-
though the asymmetry at the energies far from the Fermi level
may have some uncertainty because of the lack of the data.
Aside from the possible origin of the asymmetry [83,84], the
cancellation of the peak structures in the self-energies turns
out to be robust.

First of all, in the superconducting phase, the low-energy
spectra around the Fermi level are plausibly particle-hole sym-
metric. Therefore, due to the lack of the information about
the unoccupied states, the optimized self-energies are almost
symmetric. Then, the asymmetric behaviors could originate
from the self-energies away from the Fermi level. However,
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FIG. 21. Determination of n for Bi2212. In the main text, we have employed ny = 0.3. To assess the validity of this choice, we show ng

dependence of x2 defined in Eq. (27).

these high-energy asymmetric behaviors hardly affect the
cancellation. We have already demonstrated the robustness
of the cancellation under the high-energy perturbation in
Appendix F. Thus, the essence of the present results is not
affected by the asymmetry, which may originate from the
high-energy or unoccupied parts of the spectrum. See also
Appendix F2.

2. Matrix elements

One might also be concerned with the effects of the matrix
elements. Even when the energy-dependent matrix elements
exist, the self-energies obtained by using our method is robust
as far as the matrix elements are smooth functions of w. This
is because, when the energy-dependent matrix elements are
treated as a smooth function of w, the effects of the ma-
trix element can be simply taken into account as a smooth
background. As already examined in Appendix F 3, a smooth
background does not change the qualitative and essential
conclusion of the present paper. Only if the high-resolution
ARPES measurements on the entire Brillouin zone, especially
at the antinodal region, become available from different exper-
imental setups, quantitative examination of the effects of the
matrix elements and background will be conducted and these
are highly desirable. However, the data are not available yet
and clearly beyond the scope of the present paper.

APPENDIX K: DECOMPOSITION OF SELF-ENERGY

While the normal and superconducting components of
the total self-energy, ImX"*"(k, w) and ImW (k, w), show
the prominent peak structures, which are absent in the
Bardeen-Cooper-Schrieffer (BCS) mean-field theory [85],
there are an extended background and a BCS-like supercon-
ducting contribution, in addition to the peaks. To highlight the
peak part, we decompose ImX""(k, w) and ImW (k, w) into
the peaks and other components. As proposed in Ref. [29],
T (k, w) may consist of a single pole that generates a super-
conducting gap and a smooth normal state component. Then
we decompose Im X' (k, w) as

ImE“"(k, w) = ImXn(kk, ) + Lpcs(k, w). (K1)

Here, while the BCS-like superconducting contribution is rep-
resented by a Lorentzian,

1 AT

7 (w+e)+T?
where Ay and I' are phenomenological parameters that cor-
respond to a BCS-like superconducting gap and life time of
quasiparticles, respectively. The background Im Xy (k, w) can
be represented by a linear combination of many Gaussian
distributions, where its large amplitude signals either the in-
coherence of electrons at that energy or some extrinsic origin
arising from the experimental setup or background. Then the

peak contribution canceled in ImX'"'(k, w) is, if it exists,
obtained from ImX"°"(k, w) as

ImXpgak (k, @) = ImX"™ (k, w) — ImEn(k, ), (K3)

Lpcs(k, w) = — (K2)

and from ImW (k, w) as
ImWpgak (k, @) = ImW (k, @) — Lpcs(k, w),  (K4)

where ImEpEAK(k, (,()) = _ImWPEAK(k, (,()) holds.

APPENDIX L: MOMENTUM DEPENDENCE

We have shown the machine-learning results in the main
text at the antinodal point, because the remarkable structure of
the pronounced anomalous self-energy peak, coexisting with
the normal self-energy peak is most clearly identified with its
dominant contribution to the superconductivity. However, the
momentum dependence of the peak structure provides us with
useful insight. We here show the momentum dependence of
self-energy structure. Figure 22 shows the imaginary part of
the normal and anomalous self-energies together with W for
the ARPES measurement angle 1.0°, 11.1°, 21.2°, 31.3°, and
41.9° obtained by the machine-learning result of Bi2201 at
optimum doping at 11.3 K [12]. Note that 0° is the antinodal
and 45° is the nodal points. Although the peaks in the nor-
mal and anomalous self-energies become less significant with
approaching the nodal point as is expected, the cancellation
of ImX nor and W always holds and the prominent peak is
missing in ImX** similarly to the case at the antinodal point.
This result further corroborates the universal mechanism of
the peak cancellation and the dominant contribution to the
superconductivity.
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FIG. 22. Momentum (angle) dependence of self-energies. Self-energies are obtained from the machine learning using the ARPES EDC
curves plotted in the upper panel and taken from the experimental data of Bi2201 at optimum doping at 11.3 K at the angle 1.0° (a), (f), 11.1°
(b), (g), 21.2° (¢), (h), 31.3° (d), (i), and 41.9° (e), (j) supplied by Kondo et al. [12]. Although the quasiparticle peak becomes sharper when
the nodal point is approached, prominent peaks are found at all angles in imaginary parts of the normal and anomalous self-energies around
40.07 eV, which are missing in W at all the angles, though the peaks become less pronounced and are almost missing at 41.9° (nearly nodal

point).

APPENDIX M: MACHINE LEARNING RESULTS ABOVE T,

We have shown the machine-learning results in the
main text for the superconducting phase well below 7. to
show the remarkable structure of the pronounced anomalous
self-energy peak with its dominant contribution to the su-
perconductivity. However, the question how the cancellation
of the normal and anomalous self-energy evolves with rais-
ing temperatures provides us with further insight on its role
in the superconductivity. Figure 23 shows machine-learning
results of the normal and anomalous self-energies together
with W for the ARPES measurement obtained by the ma-
chine learning of Bi2212 at optimum doping at 40, 80 and
120 K [12]. The anomalous self-energy peak vanishes above
T. as it should be, which further confirms the validity of the
present machine-learning scheme. ImX"*"(w) at 120 K [red
curve overlapped with the black curve, InX'*"(w)] shows a
small signature of a pseudogap (small dip around w = 0). The
pseudogap, though not a standard behavior as observed in the
underdoped region, is clearly seen in the spectrum [Fig. 23(c)]
if one would perform the electron-hole symmetrization and
was analyzed in detail in the original experiments [Figs. 17(c)
and 1(d) in Ref. [12]]. In Ref. [12], it was even argued that
the (incoherent) electron pairing is formed below 150 K.
The energy of the dip of Im¥"*"(w) shifts with raising tem-
peratures and crosses the quasiparticle peak energy when T
crosses 1. consistently with the results in Ref. [47]. Then
the pseudogap is interpreted as generated by the peak of the
normal self-energy above T, which is continued from the peak
below 7;, while it is hidden in the spectral function in the

superconducting phase below T because of the cancellation
with the anomalous self-energy. It turns out that the d-wave
superconducting gap has an entirely different origin, which
emerges as the sharp drop around w = 0 in ImW, namely,
as arising from a pole of W, distinct from the pole of the
self-energies X" and X"". Although the superconducting
gap has a different origin, the main contribution to the su-
perconducting order is attributed to the peak (ideally pole)
of ImX?™ around w = —0.07(0.04) eV for Bi2212 (Bi2201)
(see Figs. 2 and 3). This indicates a tight relation of the
pseudogap (manifested by the normal self-energy peak) to
the superconductivity (contributed from the peak in ImX"°)
through their cancellation.

APPENDIX N: LOCAL AND TEMPERATURE
INSENSITIVE SCATTERING RATE z, (k)c, (k)

Angle (momentum) dependence of zq(kr)ci(kr) plotted
for Bi2201 in Fig. 4(a) and resultant t(k) shows that it is
only weakly dependent around the unity on the angle and
doping concentration. [See also Fig. 25 for the plots for
each zgp(kp) and c¢i(kg).] Even for the optimal Bi2212 at
the antinodal point, despite the large difference in T, the
value of zgp(k)ci(k) is similar (~1.4). [Note that the value
Zgp(kp)ci(kp) is somewhat large (~1.5) at the nodal point
for the underdoped Bi2201 sample, consistently with the in-
creasing slope of the 7'-linear resistivity in the underdoped
region [38]. This could be related to the effect of competing
insulating behavior.]

043099-31



YAMAIJIL YOSHIDA, FUJIMORI, AND IMADA

PHYSICAL REVIEW RESEARCH 3, 043099 (2021)

—~
2]
~
w
—~
Q
~

(@) s : : (b) o5 :
Bi2212 OP90K m Im¥" (w)
H\/\ = ImW (w)
o o A%P(w) — ® ImX 0t (w)
o 2r A(UJ) >
= ~
S 2
< 5
= =
= Q|
(A
— =05
j; 7]
|5}
<] El
D—i |
2]

40K 40K
03 02 01 0 01 los 02 041 0
w (eV) w (eV)

(e) 5 ‘ ® o5 ‘ ‘

—

7

> —~

L 2p > 0

= L

g :

g 51

= 1t =]

S P Wy
= .05} 1
— Q

< 2 -==- w/m + const.

]

& o

120K 120K
03 02 041 0 01 o3 02 04 0
w (eV) w (eV)

05
fo
> —
o 2r 1
2 % 0
- N
5 >
B ol 1 g
= ®
B % -0.5}
3 3
=Y
w2

O,

80K
03 02 01 0 o041 ‘03 02 041 0
w (eV) w (eV)

(9) 06 : : (h) 0.5 : : :

04 =2Im¥""(w)

DImEaHO w
ool ) S 0.025
o O
2
= 8
: R
5’ &
g - g ReA
@ S)-0008 °cReAw)
o ImA(w)
-0.6
120K 120K
8 ‘ ‘ -0.05 ‘ ‘ ‘
03 02 01 0 0. 03 02 01 0 0.1
w (eV) w (eV)

FIG. 23. Temperature dependence of spectral function at the antinode and corresponding self-energies [(a) and (b) at 40 K, (c) and (d) at
80 K, (e) and (f) at 120 K] obtained by the machine learning. (a), (c), (e) Blue crosses and curves are the machine-learning results to fit the
experimental data shown as open red squares (data of Bi2212 at optimum doping supplied by Kondo et al. [12]). (b), (d), (f) Self-energies
obtained from the machine learning yielding the spectral functions in the left panels. Although the peak (dip) cancellation between W and
2" around —0.07 eV still exists at 40 K and 80 K, the peak and dip of ImX* and ImW essentially vanish above T, while the dip of
ImX¥™" at w < 0 below T¢, shifts to the energy around w = 0, indicating the formation of the pseudogap. Furthermore, the total self-energy
(black symbols) below the peak energy (<0.07 eV) shows a constant slope approximately given by w/m as drawn as blue dashed lines,
supporting marginal Fermi liquid behavior except for the constant value of possible background. (g) Comparison of imaginary parts of normal
and anomalous self-energies at 120 K. The peak (dip) structure of ImX"" at @ = 0 (as shown in f) introduces the pseudogap even at 120 K in
the spectrum (e). (h) Gap function at 120 K. Even though A(w) is very small but finite at w # 0, A(w) is more strictly vanishing at w = 0.

With raising temperatures, experimentally observed T'-
linear resistivity has to lead to the temperature insensitive
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FIG. 24. Single-particle relaxation time derived from machine
learning. Temperature dependence of zgpc; of the underdoped Bi2201
with T, =23 K at kan. At the lowest temperature, the results of
two different samples are shown: The closed circle represents zq,c;
inferred from the underdoped Bi2201 reported in Ref. [28], and
the open circles denote zgyc; inferred from the underdoped Bi2201
reported in Ref. [12].

zgp(k)ci (k) at least near the node, because the transport is
governed by the nodal region. Temperature dependence of
Zgp(k)ci(k) in the normal state at kan, for instance for the
underdoped Bi2201 is also weak with a large constant offset
shown in Fig. 24, which implies that the T -linear dependence
[o¢ zgp(k)cy (k)T ] is preserved irrespective of the momentum.
It supports the local nature of dissipation saturated against
temperature below and above 7; and intrinsically quantum
mechanical.

APPENDIX O: MOMENTUM AND DOPING
DEPENDENCES OF F (k), 2y (k), ¢1(k) AND A, (k)

In Fig. 25 doping concentration dependences of the su-
perconducting carrier density F(k), the mass renormalization
factor zgp(k), ci(k) defined as the w-linear component of
ImX""(k, w), and Ag(k) at the Fermi momentum kg are
plotted. Here ¢ (k) is defined by

aImXE""(k, w)
Jw

obtained from the linear fitting of ImX"*(k, @) in the range
of 15 meV < w < 40 meV.

ci(k) = (O

w~0
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FIG. 25. Doping and momentum dependences of zq,(k), c1(k), wpgak (k), Wegak (k)/wpeak (k), O(k), F(k), and Ay(k) for Bi2201 and
Bi2212 at T = 11K. Angle ¢ (taken at Fermi momentum kg) dependences of (a) zq,(k) Eq. (9), (b) c;(k) [Eq. (O1)], (¢) wpeak, (d) Qo(k) =
Woeak (k)/@peak > Weeak (k) = [ dolmWegak (k, w), (e) O(k) = [ dwlmW (k, 0)Q(k, ®)/Weeak, (f) F (k) [Eq. (12)], and (g) A¢(k) [Eq. (10)],
for three choices of Bi2201 samples with 7; ~ 23 K (UD), 35 K (OP) and 29 K(OD) are plotted by filled symbols. Data for Bi2212 with 7, ~
90 K (OP) at the antinode (¢p ~ 0) are also added by open symbols. The solid curve in the most right panel is a cosine curve fitted to A (k) for

29 K (OD).

Discrepancy between the doping dependence of 7. and
quasiparticle gap amplitude, established in the literature
[42,43], is further examined by the present self-energy learn-
ing. In Table I the doping dependences of the density of
Cooper pairs F (k), the gap amplitude estimated from the peak
position in EDC, the superconducting gap Ao obtained by
the Boltzmann machine learning, the quasiparticle renormal-

ization factor zqp, c1(k), O, P, wpgak and £y obtained from

ARPES data of underdoped (UD), optimally doped (OP), and
overdoped (OD) Bi2201 samples [12] are summarized. While
the order parameter F and superconducting gap A, show
domelike doping dependence as 7. does, the gap amplitude
estimated from the peak position in EDC monotonically de-
creases upon increasing doping [42,43]. On the other hand,
Zgp(kan) monotonically increases. They are all consistent with
the observed trend in the cuprates.
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TABLE 1. Doping dependence of superconducting order parameters and quasiparticle gap. Physical quantities are calculated by the
self-energy inferred from ARPES data of three Bi2201 samples and Bi2212 at the optimum doping [12]. The doping dependence of the
superconducting order parameter F'(k), gap amplitude determined from the peak position in EDC, superconducting gap amplitude Ag(k)
obtained by the present Boltzmann machine learning (BML), quasiparticle renormalization factor zgp, ¢1(k), Q, Werak, wpeak, and 2, are
shown mainly at k = kan, where the doping p is estimated by doping dependence of 7. in Ref. [86]. The average over the Fermi surface of F,
F (kg) is also estimated.

Doping order parameter Gap from EDC Gap from BML
Sample T. (K) p 2F (kan)(2F (kg)) (meV) Ag(kan) (meV)
Bi2201 UD 23 0.12 0.085 (0.075) 60 18+ 1
Bi2201 OP 35 0.15 0.152 (0.126) 30 24.1 +£0.2
Bi2201 OD 29 0.18 0.108 (0.089) 12 11 +£2
Bi2212 OP 90 — 0.13 (-) 33 30

Z-factor Coefficient Z-factor Coefficient
Sample 1. (K) Zgp(kn) c1(kn) Zgp(kan) c1(kan)
Bi2201 UD 23 0.205 7.14 0.092 16.3
Bi2201 OP 35 0.211 4.24 0.155 5.20
Bi2201 OD 29 0.316 3.00 0.16 4.45
Bi2212 OP 90 — — 0.095 13.3

Renoimalization Weight Peak energy Energy scale

Sample 1. (K) O(kan) Wreak (kan) (eVZ) wpgak (kan) (eV) Qo(kan) (€V)
Bi2201 UD 23 0.007 0.015 0.05 0.31
Bi2201 OP 35 0.035 0.0076 0.07 0.11
Bi2201 OD 29 0.118 0.0024 0.061 0.039
Bi2212 OP 90 0.033 0.014 0.061 0.22
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