
1. Introduction 

The nature is composed of infinite process, and 

each process is surely deterministic (out of mention for 

the micro process on the level of quantum physics, 

which is under the uncertainty principle of Heisenberg, 

1927), but affected by uncountable number of factors. 

What we are trying to do with modeling is to find the 

most dominating factors on a process and to simplify 

the process with an understandable structure which is 

composed of those several effective and observable 

factors.  

For any natural phenomenon that we are trying to 

forecast, if the spatiotemporal boundary or initial 

condition were exactly known, and if the model exactly 

simulated the process, then the computed phase path 

would provide an exact forecast. But, unfortunately, 

neither assumption is valid based on current technology 

or knowledge. One should bear in mind that there are 

always initial error in a model at the beginning of 

simulation and there are always additional error during a 

simulation generated by the imperfect model structure. 

To estimate the effect of those errors on the forecast 

results, it is necessary to supplement such deterministic 

forecasts with detailed information by estimates of 

forecast reliability. By this reason, the stochastic concept 

has been included in forecasting, and ensemble 

simulation has been used as a good tool for carrying 

those stochastic concepts in a computer simulation. 

Recent trends of flood forecast are away from the 

conventional deterministic forecasts of hydrographs 

toward offering probabilistic forecasts, which include its 

prediction uncertainty. Deterministic flood forecast 

specifies a point estimate of the predicted values, such as 

precipitation and river stages/discharges. On the other 

hand, a stochastic forecast specifies a certain probability 

distribution function of the predicted values. The 

predictive probability in a probabilistic forecast is a 

numerical measure of the certitude degree about the 

intensity of a flood event, based on all meteorological or 

hydrological information utilized in the forecasting 

process (R. Krzysztofowicz, 2001).  
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This study discuss about a stochastic forecasting 

based on an ensemble simulation and presents a real-time 

flood forecast algorithm, which is built in a probabilistic 

way, with weather radar and a distributed hydrologic 

model. The algorithm mainly consists of two parts; 

probable rainfall forecast with a radar image 

extrapolation model and state variables update in a 

distributed hydrologic model.  

2. Stochastic Forecasting by Ensemble 

Simulation Method 

2.1 Historic Ensemble Simulation 

In atmospheric modeling, stochastic dynamic 

forecast was introduced more than three decades ago 

(Epstein, 1969). Until now, main purpose of ensemble 

forecasting in those models is to consider uncertainties 

of initial conditions and boundary conditions at the 

beginning of forecasting. After Lolenz (1963) found 

that only slightly different initial conditions yield quite 

different results in a numerical weather prediction 

model, small perturbation of initial condition in a 

beginning of model simulation has been used as a 

trigger of an ensemble forecasting. One good example 

of short-range ensemble forecasting of precipitation 

with well-documented review can be found in Due and 

Mullen (1997).  

Most of ensemble simulations in early stage are 

concerned only the internal growth of error arising 

from the difference in initial conditions and ignore the 

external growth of error arising from the difference 

between a numerical model and the real atmosphere 

(Leith, 1974). Until now, ensemble simulation for a 

probabilistic forecasting is criticized of its 

underestimation of the total uncertainty because not all 

sources of uncertainty are accounted for in the 

ensemble generator (Krysztofowicz, 2001). Because of 

the improper model structure, which is carrying the 

simulation, there is always a chance that the initiated 

variant initial conditions for an ensemble simulation 

have resulted in different forecast projection (Fig. 1). 

Figure 1 presents schematic drawings of ensemble 

forecasting, plotted in terms of an idealized two- 

dimensional phase space. The first circles at initial time 

t represent initial states for ensemble forecasting, and a 

dot stands for the best guess or the best observation at 

the beginning of the simulation. The solid line 

represents phase path of the states by the process in the 

(a) Forecasted result from a model gives shifted 

projection to the real projection at t+dt.

(b) Model gives diverged projection. 

(c) Model gives localized projection. 

Fig. 1 Three different cases of forecast projection caused 

by variant simulation situations or variant models 

real nature, and the dashed line stands for the phase path 

of model simulations. Because of the imperfectness of a 

model, the forecast projection, which is represented by 

dashed line circle, can have shifted space to the real 

projection (solid line circle) as shown in Figure 1 (a). In 

other cases, the forecast projection can have diverged 

state space (Figure 1 (b)) or it can converged in a limited 

space area (Figure 1 (c)). These three cases can be 

happen in different model running or in different 

situations in one-model simulation. In any case, as 

forecasting goes on for t+ndt, the shifting or divergence 

of the simulation would make much bigger discrepancy 

to the real phenomena.  
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2.2 Proposed Ensemble Simulation Method 

If any model shows one specific pattern of 

discrepancy and if it can be recognizable, the model 

structure should be corrected for improving the 

forecasting behavior. If any model shows variant 

discrepancy pattern on a different simulation time or 

condition, which is more common in model simulations, 

the different forecast projection should be corrected by 

updating the model state vectors with the most recent 

observations. This kind of real-time updating can be 

fulfilled by adopting a data assimilation method, such as 

Kalman filter, or additional error simulation model.  

As a step towards addressing the updating of state 

vectors during an ensemble simulation, this study 

proposes a real-time forecasting algorithm using weather 

radar and a distributed hydrologic model. The algorithm 

mainly consists of two parts; probable rainfall forecast 

with a radar image extrapolation model and state 

variables update in a distributed hydrologic model. Brief 

illustrations for the proposed algorithm are as below. 

First, a new attempt of ensemble rainfall forecast is 

carried out with radar rainfall prediction and spatial 

random error field simulation (Kim et al., 2006). The 

radar extrapolation model gives a deterministic rainfall 

prediction, then its prediction error structure is analyzed 

by comparing with the observed rainfall fields. With the 

analyzed error characteristics, spatial random error fields 

are simulated using covariance matrix decomposition 

method. The simulated random error fields, which 

successfully keep the analyzed error structure, improve 

the accuracy of the deterministic rainfall prediction. Then, 

the random error fields with the deterministic fields are 

given to a distributed hydrologic model to achieve an 

ensemble runoff prediction. 

Second, a Kalman filter (Kalman, 1960) is coupled 

with a distributed hydrologic model to update spatially 

distributed state variables and to incorporate the 

uncertainty of rainfall forecast data (Kim et al., 2005). 

Here, rather than attempting an impractical algorithm 

formulation, several techniques are newly adopted. In the 

measurement update algorithm, the discharge and 

storage amount relationship is used as the observation 

equation, and the ratio of total storage amount was 

applied for setting the water stage for each cell in the 

distributed hydrologic model. For the prediction 

algorithm, a Monte Carlo simulation is adopted to 

propagate the state variable and its error covariance. 

3. Short-term Rainfall Forecast Using 

Weather Radar 

3.1 Translation Model 

Translation model (Shiiba et al., 1984), which is one 

of radar image extrapolation models, simulates 

short-term rainfall forecasts in this study. In this model, 

the horizontal rainfall intensity distribution, z(x,y,t) with 

spatial coordinate (x,y) at time t is represented as: 
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where, u and v are advection velocity along x and y,

respectively, and w is rainfall growth-decay rate along 

time. Characteristic of the translation model is that the 

vector u, v, and w are specified on each grid in a manner 

of: 
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so that the advection velocities can express the patterns 

of non-uniform movement of rainfall, such as rotation 

and sheer strain (Takasao et al., 1994). The parameters 

c1~c9 are sequentially optimized using observed rainfall 

data by the square root information filter. 

The translation model provides expected rainfall 

movements under the assumption that the vectors u and 

v are time invariant for the next several hours and that 

there is no growth-decay of rainfall intensities during 

that time. In this research, three consecutive observed 

rainfall fields, which have 3km and 5min of resolution, 

are used to determine u and v. When forecasting 

rainfall fields, the u and v are assumed spatially 

uniform. In a real nature, the rainfall movement would 

have spatially invariant movements. However, most of 

rainfall in Japan, which happens during rainy season 

and Typhoon season, has frontal rain band over wide 

area so that the movement of the rainfall band can be 

treated as a uniform movement in a single radar range. 



3.2 Prediction Error Structure Analysis 

Tachikawa et al. (2003) statistically analyzed the 

characteristics of absolute prediction error and relative 

prediction error defined as Equations 3 and 4.  

ipioia RRE ,,,
           (3) 

ipipioir RRRE ,,,, /)(          (4) 

The absolute prediction error Ea,i on a certain grid i is 

calculated from the difference between predicted rainfall 

Rp,i and observed rainfall Ro,i on the grid, while the 

relative prediction error Er,i is the ratio of the absolute 

prediction error to its predicted rainfall. Tachikawa et al.
(2003) examined the timely accumulated error values 

with variant spatial resolutions and found that the 

distributions of absolute and relative error are 

respectively close to normal distribution and lognormal 

distribution. This study concentrate on the absolute 

prediction error Ea,i and simulate the spatial random error 

fields of possible Ea,i on the future prediction target time 

on a real-time basis.  

Spatial correlation coefficients of absolute prediction 

error, which shows how much the error is spatially 

correlated to each other, is calculated by grouping every 

pair of the absolute error values on each error field. The 

correlation coefficients shows high values for close 

distance and decrease, as the distance gets longer. It is 

found that the absolute error from longer prediction time 

has higher values, and the values are almost diminished 

around 15km in most prediction cases. More details of 

error structure analysis can be found in Kim et al (2005). 

Similar to the other extrapolation models, the 

translation model usually ignores the growth and decay 

of the rainfall intensities or nonlinear motion of rainfall 

bands. To forecast precipitation accurately, however, it 

needs to understand not only the exact rain band 

movement but also the generation, growth, and decay of 

rain cell, particularly in mountainous regions such as in 

Japan. For checking of the relationship between 

topographic pattern and rainfall prediction error, which is 

mainly caused by the ignorance of the growth and decay 

of rain cell, absolute prediction error was calculated and 

accumulated on every grid. The absolute prediction error 

Ea,i on grid i was calculated from the difference between 

predicted rainfalls Rp,i and observed rainfalls Ro,i on the 

grid ( Ea,i = Ro,i - Rp,i ). As shown in Figure 2, there were  

(a) Accumulated 60min prediction error 

(b) Accumulated 120min prediction error 

Fig. 2 Accumulated prediction error (Observed at 

Miyama radar station, Japan on June 1993) 

certain spatial patterns of prediction error on each 

accumulation. It was also found that different wind 

direction gives different spatial pattern of the prediction 

error through the same test on other rainfall events. The 

frequency distribution of the absolute error follows a 

normal distribution. 

3.3 Simulation of Prediction Error 

The main part of the error field simulation 

algorithm is to simulate possible error fields of the 

future prediction using the current prediction error 

structure, assuming temporal persistency of the error 

characteristics from the current time to the prediction 

target time. The proposed scheme is using certain 



duration of prediction error data for the simulation of 

future prediction error as shown in Figure 3.  

In the figure, the observed rainfall fields, the 

previous prediction fields, and the prediction error 

fields are sequentially illustrated until the current time t.
There would be various prediction fields on each time 

by various prediction lead-times. However, for the 

simplicity, only one prediction with the lead-time t is 

considered in the figure. Again, every prediction field at 

each time step is the prediction results that are carried at 

t time before of that time step. At the current time t,
the translation model carries another prediction for the 

time t+ t and the probable prediction error of the 

prediction at t+ t is trying to be simulated with the 

current error characteristics. 

 The current characteristics of the prediction error 

can be presented by basic probabilistic statistics under an 

assumption that time series of the error on each grid 

follows normal probability distribution. Here, the basic 

statistics stand for mean and standard deviation values of 

the most recent error in certain duration, last one hour for 

example, on each grid. Based on this simple procedure, 

the statistic fields can compromise spatial and temporal 

pattern of the current errors and these can be updated on 

real-time basis. If the spatiotemporal characteristic of the 

prediction error lasts for couple of hours, therefore the 

statistic characteristics of the error on the prediction 

target time t+ t are similar to the characteristics of the 

current statistic fields, the possible error fields at t+ t can 

be simulated by using the current statistic fields. 

The statistic field, the mean and standard deviation 

field of error, make it possible to compromise the spatial 

and temporal pattern of the most recent prediction errors, 

and it can be updated on a real-time basis. The statistic 

field was then converted to spatially correlated random 

values to the probable error field by Equation 5, which is 

the goal of the error filed simulation. 
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Here, the mi and sdi are the mean and standard deviation 

of the current prediction error on the grid i, respectively. 

The yi is the unit random error of the vector Y, which is a 

Fig. 3 Schematic illustration of the probabilistic error 

field simulation using statistic error fields and error 

persistency assumption 

set of spatially correlated random values with zero mean 

and unit standard deviation; N(0,1). The vector Y was 

generated using spatial correlation of the current error by 

the covariance matrix decomposition method of Davis 

(1980). The Es,i is the simulated error for the prediction 

target time. Equation 5 is a linear equation, thus the 

spatial correlation structure of Y, which was obtained 

from the Ea, was maintained in the Es. Generation of 

many sets of Y made it possible to get many target error 

fields.  

3.4 Generation of Extended Prediction Fields 

Deterministic prediction from the translation model 

is extended to many possible prediction rainfall fields 

by combination with the simulated error fields in a 

form of: 

isipie ERR ,,,                          (6) 

where, Es,i is the simulated prediction error value on grid 

i, Rp,i is the deterministic prediction from the translation 

model, and Re,i is the extended prediction. Because the 

simulated error keeps the error statistics of the absolute 

prediction error (Es,i Ea,i), the extended prediction can 

be close to the observed rainfall on the prediction target 

time. In other words, the properly simulated prediction 

error can improve the accuracy of the deterministic 

prediction. 

Negative values could occur on the extended 

prediction field, since some values on the simulated error 

field could have a negative value, which can be larger 



Fig. 4 Correlation coefficient to observation of deterministic and extended prediction 

(Results are from the testing with the Miyama radar station data). 

than the deterministic prediction rainfall value on that 

point. This negative rainfall set to zero, and the same 

amount of negative values compensated the positive 

rainfall values for keeping the total rainfall amount. 

Evaluation with correlation coefficient of 

observation and extended prediction using the 

extended 60min prediction fields are presented in 

Figure 4. The coefficient values from the extended 

prediction show more improved results than from the 

deterministic prediction. 

4. Distributed Hydrologic Model, CDRMV3 

with Kalman Filter 

The objective of the real-time update algorithm 

was to couple the Kalman filter (Kalman, 1960) to a 

physically based distributed model for recursive state 

variables updating and for incorporating of rainfall 

input data uncertainty into the simulated discharge 

output data. The model used here is the Cell-based 

Distributed Runoff Model Version 3 (CDRMV3, 

Kojima et al., 2003). The model solves the 

one-dimensional kinematic wave equations for both 

subsurface flow and surface flow using the 

Lax–Wendroff scheme on every computational node 

in a cell. Discharge and water depth propagate to the 

steepest downward adjacent cell according to a flow 

direction map generated from DEM data. The flow 

direction map that defines the routine order for water 

flow propagation in CDRMV3 is prepared by the 

conventional eight-direction method. A specified 

stage-discharge relationship, which incorporates 

saturated and unsaturated flow mechanism, was 

included in each cell (Tachikawa et al., 2004). The 

stage-discharge relationship is expressed by three 

equations corresponding to the water levels divided 

into three layers. 

4.1 Updating Spatially Distributed Water Depth 

To minimize the discrepancy between simulation 

output and observed discharge, correcting the model 

internal state variables is the commonly used 

updating scheme in real-time simulation. However, in 

updating the measurement for a distributed 

hydrologic model, not only the magnitude of the state 

variable but also its spatial distribution pattern should 

be considered. During a rainfall-runoff simulation, 

inappropriate rearrangement of spatial distribution of 

state variables produces obvious effects on the runoff 

simulation results (Kim et al., 2004).  

To avoid an unpredictable collapse of the internal 

model state during a simulation, the update method 

we used retains the spatial distribution pattern of the 

state variables before and after the updating as shown 

in Figure 5. Only the total amount of the state 

variables was updated by multiplying the variables by 

a specific factor. This factor was calculated from the 

ratio of the total storage amount, estimated from 



Fig. 5 Resetting of state variables using the ratio of 

storage amounts  

observed discharge, to the simulated total storage 

amount. The simulated water depth on every 

computation node in the model was multiplied by the 

calculated factor, and the model retained the spatial 

distribution pattern of the internal state variables. 

To calculate the ratio of total storage amount, both 

the simulated and observed storage amounts must be 

acceptably accurate. Simulated total storage amount 

in a model is easily calculated from each water depth 

on each grid cell by multiplying by its cell area. 

However, because the total storage amount cannot be 

measured directly, the corresponding total storage 

amount must be estimated from the observed 

discharge, assuming a discharge–storage relationship. 

To relate discharge at the basin outlet Q and the total 

storage amount S, the Q–S relationship under a 

steady-state assumption was used. Applying a 

constant rainfall intensity over the study basin until it 

reached a steady state, one pair of total storage 

amount and discharge values was acquired from the 

CDRMV3. Applying variable rainfall intensities, the 

Q–S relationship can be obtained. A runoff simulation 

under unsteady-state conditions produced a loop- 

shaped Q–S relationship, and the curve differed from 

event to event, but the difference of the total storage 

amount obtained from the curves of the steady state 

and unsteady-state condition was not significant. 

Moreover, instead of direct conversion of observed 

discharge to the storage amount, the storage amount 

So,t at time step t was obtained as 

tstotsto QQHSS ,,,,         (7) 

where, Ss,t and Qs,t are, respectively, total storage 

amount and the outlet discharge simulated by the 

model at time step t, Qo,t is the observed discharge at 

the outlet, and H is the mean of the gradient values on 

the Q–S relationship at the point defined by Ss,t and 

Qs,t. The calculated total storage amount So,t from 

Equation 7 was regarded as the observed total storage 

amount.  

Since the calculated ratio from the storage 

amounts represented the ratio of average water depth 

in a catchment, this ratio was applied to the simulated 

water depth on every grid cell to rearrange the 

distributed storage amount. After this procedure, the 

updated water depths were equivalent to the storage 

amount So,t estimated from the observed discharge. 

The spatial distributed pattern of water depth 

contained the predicted water storage pattern before 

updating, and the pattern reflected the spatial 

distribution of rainfall and topographic properties. 

4.2 Kalman Filter Coupling with CDRMV3 

In the measurement update algorithm of the 

Kalman filter, an observation vector yk at time step k
is described as a linear vector function of a state 

vector xk, and observation noise vector wk assuming 

white noise is included in the observation as:  

kkkk wxHy , ),0(~ kk RNw         (8) 

which has an error covariance matrix Rk. The m×n 

matrix H relates the state vector to the observation. 

The state variables are updated as follows: 

))1(ˆ()1(ˆ)(ˆ kkxHyKkkxkkx kkk

)1()1()( kkPHKkkPkkP kk         (9)
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The difference, )1(ˆ kkxHy kk
, which is called 

the residual or innovation, reflects the discrepancy 

between the estimated observation )1(ˆ kkxH k
and

the actual observation yk. In the measurement update 

algorithm, the state vector )1(ˆ kkx  and its error 

covariance vector P(k k 1) as estimated at time step 

k 1, are updated by use of the m n matrix Kk at time 

step k. The matrix Kk, called Kalman gain, is chosen 

to minimize the updated error covariance P(k k). In 

the algorithm, the superscript ^  indicates estimated 

value and T  indicates the transpose of a matrix. 

Here, the observation equation is the Q–S



relationship, thus the scalar value of H represents the 

gradient of the Q–S relationship using the simulated 

results at the updating time step. The results from the 

measurement update algorithm were used to update 

the total storage amount of the study basin and its 

error variance. With the updated watershed storage 

amount, the ratio method described in the previous 

section was used to update the spatial distribution of 

water depth in the distributed hydrologic model. 

In the Kalman filter, n×n matrix F in the system 

equation: 

kkkkk vBxFx 1 ; ),0(~ kk QNv  (10) 

relates the state variables x at the current time step k
to those at the next step k+1. The system is 

continuously affected by white Gaussian system 

noise, vk, with system error covariance matrix Qk.

The matrix Bk provides optional control input to the 

state x. The time update algorithm 

kk BkkxFkkx )(ˆ)1(ˆ                  (11) 

k
T

kk QFkkPFkkP )()1(

is used to project forward the current state and the 

n×n error covariance to obtain estimates for the next 

time step. 

In the CDRMV3, a complicated relationship 

exists between the present and the next time-step 

state variable, i.e., the present and the next time-step 

total storage amount. The current water depth at each 

cell responds interdependently to the next step’s 

water depth according to the current spatial 

distribution of water depth and rainfall input. It is 

impractical to define the system matrix Fk to 

formally express this process from the hydrologic 

system equations. However, use of the Monte Carlo 

simulation method (see Figure 6) made it possible to 

project the nonlinear variation of system states and 

their error covariance without the need for linearized 

system equations. Evensen (1994) showed that 

Monte Carlo methods permit the derivation of 

forecast error statistics in the Kalman filter algorithm 

and thus, the inefficiency involved in the 

linearization of system states can be eliminated.  

Fig. 6 Schematic drawing of time update algorithm 

(a) of the conventional Kalman filter concept and (b) 

using Monte Carlo simulation methods. 

4.3 Setting the Uncertainty in Kalman Filter 

The most difficult part of applying the Kalman 

filter to a hydrologic model is determining the 

covariance of the system and observation noise. 

Although the Kalman filter provides an algorithm for 

better forecasting by updating the state estimates, its 

success depends largely on an appropriate 

determination of the error statistics, which requires 

proper judgment by the hydrologist. 

The basic assumption of the Kalman filter is that 

the system and observation noise are both white and 

Gaussian. This assumption is justified physically 

when the noise is largely caused by a number of 

small sources (Mayback, 1979). From this point of 

view, the observation noise, which is usually 

corrupted by several definable error sources, can be 

regarded as a white, Gaussian distribution.  

In addition, an accuracy assessment test using 

data obtained over a long duration makes it possible 

to properly estimate the measurement error 

covariance (Kitanidis and Bras, 1980). However, the 

system error covariance is the critical value for the 

Kalman filter. It contains many error sources, which 

are difficult to define separately. The system error 

covariance should reflect system structure error, 

parameter identification error, and input data error, as 

well as system linearization error. Underestimation of 



Fig. 7 Observed and feedback through the Kalman filter under different system and observation noise conditions 

(The results are from testing at Kamishiiba Basin, Japan). SN 30 and ON 30 denote the given error 

covariance in the form of standard deviation of noise in discharge, ±30 m3/s, and SN 00 and ON 00 mean that no 

error covariance is given for system and observation, respectively. 

the system error leads to excessive confidence in 

the model behavior, and overestimated system error 

makes the filter too sensitive to observation values. 

In practice, the system error covariance is usually 

estimated by a trial and error procedure assuming it 

has a constant value. 

Because the main purpose of this research was 

to study a methodology for coupling the Kalman 

filter to a distributed hydrologic model, several 

cases of feedback performance with several 

assumed error covariances were tested. The Kalman 

filter-coupled with CDRMV3 was tested on the 

Kamishiiba basin under various error covariance 

conditions. Figure 7 shows the feedback through 

the algorithm under the three different error 

conditions. The filter-coupled CDRMV3 yielded 

better results than off-line simulations and can, thus, 

be used as a probabilistic forecast algorithm. 

Furthermore, the developed algorithm can 

incorporate the uncertainty of input and output 

measurement data as well as the uncertainty in the 

model itself. 

5. Conclusion Remarks 

This study reviewed ensemble forecasting using 

weather radar and a distributed hydrologic model. 

Using radar rainfall data in short-term forecasting is 

a great enhancement for giving fine resolution of 

input to a distributed hydrologic model. However, 

even though its powerful usage in operational 

hydrology, radar image extrapolation model has 

been hardly used for ensemble simulation so far. 

On the other hand, historic ensemble forecasting 

has been criticized for insufficient consideration of 

total uncertainty. Typical ensemble simulation has 

been based only on the initial condition uncertainty 

and usually passing over the structural uncertainty 

of model. 

This study proposes new attempt of ensemble 

forecasting for the radar extrapolation model with 

an external error simulation model. The error 

simulation model continuously analyze the most 

recent error characteristic and simulate possible 

error field for the next forecasting. Based on 

stochastic generation of future error field, the 

extended rainfall prediction fields offer its 

reliability range as well as correction of the 

prediction bias.  



Fig. 8 Example of an ensemble rainfall-runoff forecasting for 60min ahead (Ieno basin 476km2, Japan) 

Rainfall forecasting is done by radar observed data during 17- 20, August 1992. 

Figure 8 shows one good example of improved 

ensemble rainfall-runoff simulation using the 

proposed method. The red line stands for the 

discharge generated from the observed radar data. 

The blue line is the discharge hydrograph from the 

deterministically forecasted rainfall using the 

translation model. The purple lines are from the 

extended rainfall forecasting, which is generated 

using the error simulation model. The forecasting is 

for 60min forehead. It can be clearly seen that the 

discharge results from the ensemble forecasting 

give much improved runoff simulation results. 

Moreover, distributed model can give us its 

improved runoff simulation performances when it is 

coupled with recursive state variables update 

algorithm, such as Kalman filter proposed in this 

study. Stochastic real-time flood forecasting system, 

using radar extrapolation with error simulation 

model and the Kalman filter coupled distributed 

hydrologic model, can give us improved forecasting 

accuracy and reliable ensemble ranges. The 

developed real-time forecasting algorithm is under 

working for applying on the Gam-cheon Basin, 

South Korea with Typhoon Rusa flood events in 

2002, which was one of the most disastrous flood 

disasters in South Korea. 
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