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Learning on Hypergraphs with Sparsity
Canh Hao Nguyen and Hiroshi Mamitsuka Member, IEEE

Abstract—Hypergraph is a general way of representing high-order relations on a set of objects. It is a generalization of graph, in which
only pairwise relations can be represented. It finds applications in various domains where relationships of more than two objects are
observed. On a hypergraph, as a generalization of graph, one wishes to learn a smooth function with respect to its topology. A
fundamental issue is to find suitable smoothness measures of functions on the nodes of a graph/hypergraph. We show a general
framework that generalizes previously proposed smoothness measures and also generates new ones. To address the problem of
irrelevant or noisy data, we wish to incorporate sparse learning framework into learning on hypergraphs. We propose sparsely smooth
formulations that learn smooth functions and induce sparsity on hypergraphs at both hyperedge and node levels. We show their
properties and sparse support recovery results. We conduct experiments to show that our sparsely smooth models are beneficial to
learning irrelevant and noisy data, and usually give similar or improved performances compared to dense models.

Index Terms—Sparse Learning, Learning on Hypergraphs, Learning on Graphs, Sparsistency.
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1 INTRODUCTION

Graphs and hypergraphs are very useful in data analysis,
by which they currently are of much interest in machine
learning, particularly when dealing with high-dimensional
data and complicated distributions [1], [2]. It is the main tool
for network analysis [3], [4]. Hypergraphs can be found in
broad applications: multi-label learning [5], computer vision
[6], biology [7], information retrieval [8], social networks
[3] and scientific literature [4]. For encoding high-order
relationships among objects, hypergraphs have been studied
in different settings. One is high-order logical relationships
among many objects, being the subject of statistical relational
learning area [9], [10]. Another is the collective classification
or regression [11], [12], in which the relationships are not
specified and need to be learnt [13]. However, in this paper,
we consider the setting of hypergraphs with similarity
relationship.

While graphs encode various types of relationship [3], [4],
similarity relationship has received the most of the interest. In
similarity graphs, the main target is to learn smooth functions
in many problems such as the graph Laplacian regularization
[14], harmonic functions on graphs [15], Lp Laplacians [16],
trend filtering on graphs [17]. These are the main tools
for semi-supervised learning [18], manifold learning, graph
embedding [19] and clustering on graphs [20]. The main
assumption behind these methods is that the graphs are
random geometric [21], meaning that the nodes of a graph are
randomly sampled from a fixed but unknown distribution
and the edges encode their neighborhood relationship (by a
knn or an ε neighborhood graph).

In this paper, we focus on learning with similarity hyper-
graphs, in which the nodes in a hyperedge of a hypergraph are
meant to be similar to each others. This is a direct generaliza-
tion of similarity graphs with the assumption that the nodes
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on a hyperedge are random samples from a neighborhood in
an unknown underlying space. Therefore, smooth functions
also play a key role in this setting. On graphs, smoothness
measures are mainly based on the graph Laplacian [14] and
its variants [16], [22]. However, generalizing to smoothness
measures on hypergraphs poses new challenges. So far, in
most of the methods, smoothness measures on hypergraphs
have been studied simply by reducing hypergraphs to graphs
using clique or star expansions [23], [24]. Since these expan-
sions are not one-to-one mappings, the original hypergraph
topology is lost, potentially resulting in information loss
and other undesirable effects such as graphs with different
hyperedge degrees. Another direction is total variation [25],
which is later shown to be inflexible for several reasons.

One of the main problems in machine learning is that
data can be noisy or irrelevant to the problem. This could
happen with hypergraphs and it is desirable to handle it
explicitly. For example, in predicting house price, data can
come in form of a hypergraph, of which each hyperedge is
a group of houses. A hyperedge containing houses in the
same street is relevant to the problem in the sense that their
prices are expected to be similar (i.e. prices are smooth on
the hyperedge). However, a hypergraph for houses whose
owners are of the same ethnic group might be irrelevant. In
recommending music for users on social networks, while
communities (as hyperedges) with the same listening pattern
might be relevant, communities with the same workplace
might not. This is inherently similar to irrelevant and noisy
features problem in multivariate data. In such data, with
additive models, sparse learning [26], [27] is a solution
due to its ability to make the models sparse, potentially
removing irrelevant and noisy data automatically. Lasso [26]
would be able to eliminate irrelevant features to the problem
and its variants [28], [29], [30] can detect noisy features
within a given group using appropriate sparse-inducing
regularization terms. It is noteworthy that previous work on
hypergraph did not explicitly consider noisy and irrelevant
information, potentially hindering their performances in
practice.

In this work, we aim to derive new hypergraph learning



2

methods that are theoretically sound and flexible enough to
handle noisy and irrelevant information in the data set. In
a similar manner to additive models, to eliminate irrelevant
hyperedges and noisy nodes, we wish to incorporate sparsity
into hypergraph learning that automatically detect irrelevant
hyperedges and noisy nodes. In hypergraph setting, sparsity is
meant to be that (i) the label is very smooth on only a small
number of hyperedges (highly non-smooth on others), or (ii)
the label is very similar on some nodes, different on others
within a single hyperedge. These concepts are to be defined
formally later on.

We first present a unified framework that generalizes all
other smoothness measures for graphs/hypergraphs, such as
graph Laplacian-based learning, star and clique expansions
[24] or total variation [25]. The framework allows to analyze
if a measure can be achieved with expansions, or whether it is
useful for keeping hypergraph information in its formulation.
The framework is general enough to be used to design
new smoothness measures. We then derive sparsely smooth
formulations, which learn functions on the nodes of a hyper-
graph that are smooth on only a subset of nodes or hyperedges
in a hypergraph. We further present theoretical properties
of learning on hypergraphs that statistical consistency of
sparse support recovery (sparsistency) of these models can be
achieved. Finally, we conducted experiments to show that
our formulations allow us with great flexibility in supervised
learning on hypergraphs. Overall, the contributions of this
work are:

1) We present a unified framework for the problem of
learning smooth functions on hypergraphs that cov-
ers all previously proposed smoothness measures.

2) We propose new models for learning smooth func-
tions with sparsity on hypergraphs at both hyper-
edge and node levels.

3) We show the theoretical properties of our formula-
tions, including computational efficiency and consis-
tency of sparse support recovery. We also empirically
examine the performance of several models in this
framework and show the benefit of sparse models.

This paper is organized as follows. Section 2 describes
the unified smoothness measure framework, which is a
generalization of previous work. We show a key property
that learning on hypergraph cannot be achieved by simply
using graphs. Section 3 and 4 devotes to formulation and
theoretical analyses of learning on hypergraph with sparsity.
We then show simulations to show properties of these
formulations. Sections 6 shows experiments on real data
sets to show how sparsity can help improve supervised
learning performances. We then conclude the paper.

2 SMOOTHNESS MEASURES ON HYPERGRAPHS

A hypergraph G is defined as G = (V,E) comprising of
a node set V and hyperedge set E. As an example of a
similarity hypergraph in Figure 1, the nodes are sampled
from an unknown space with hyperedges are nodes lying
in fixed neighborhoods. Each hyperedge is a subset of the
nodes, E = {ek}mk=1 and E ⊆ 2V . Cardinality |V | = n and
|E| = m. Each hyperedge e ∈ E is a subset of the nodes with
size |e| and weight w(e) (could be given or set appropriately
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Fig. 1: Hypergraph example with nodes, which are houses in
a neighborhood, numbered from 1 to 7. Hyperedges (street 1,
street 2 and street 3) contain houses on the same streets. For
the problem of predicting house prices, this is a similarity
hypergraph as houses on the same street are expected to
have similar prices.

for each method). Note that a graph is a special hypergraph
with the special requirement that each hyperedge is of size 2.
It is commonly assumed that the set of hyperedges encode
similarity relationship among the nodes in V .

Similar to learning on graphs, for the similarity relation-
ship in hypergraphs, it is expected that the nodes in the
same hyperedge tend to have similar labels, such as the
same class, the same cluster assignment or similar regression
values. Therefore, the label function to be learnt will vary
less within a hyperedge. These label functions will be called
smooth on the graph or hypergraph. This is why smoothness
measures are at the core of learning problems on graphs
and hypergraphs: to score how much a label function varies
within the hyperedges.

We show that all previously proposed smoothness mea-
sures of a function f : V → R on graph or hypergraph G,
with fi being the value on node i, has the following unified
form (as in Table 1):

sh(f) = Te∈E(ti,j∈e(wij · s(fi, fj))), (1)

• sh(f): smoothness measure of function f (on G),
• T (.): the function combining smoothness measures

on all hyperedges,
• t(.): the function combining smoothness measures on

all pairs of nodes belonging to a hyperedge,
• s(fi, fj): smoothness measure on the pair of nodes

(i, j), and
• wij : weight of pair of nodes (i, j).

In other words, smoothness measure of a function on a
hypergraph is a combination (T ) of smoothness measures
on each hyperedge, which, in turn, is a combination (t) of
smoothness measures on all pairs of the nodes in the hyper-
edge. The combinations, at both hypergraph or hyperedge
levels, can have many variants such as

∑
, max, lp and other

possibilities.
There are many variants of smoothness measures by

simply choosing different T and t. We list them in Table 1 and
show their corresponding names and interpretations. When
T and t are both

∑
or max, the smoothness measures of a
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TABLE 1: Different variants of (1) as smoothness measures for graphs/hypergraphs. Unreferenced formulations are newly
derived from this framework.

type T t s(fi, fj) sh(f)

graph
∑

. (fi − fj)2 fTLf : graph Laplacian [31]
graph

∑
. |fi − fj |p < f,∆pf >: p-Laplacian [16]

graph
∑

. |fi − fj |p→∞ Lipschitz extension (lex-minimizer) [22]
graph max . |fi − fj | Lipschitz extension (inf-minimizer) [22]

hypergraph
∑ ∑

(fi − fj)2 fTLf of clique/star expansion [24]
hypergraph

∑ ∑
|fi − fj | clique expansion + 1-Laplacian

hypergraph
∑

max |fi − fj | total variation [25]
hypergraph max max |fi − fj | inf-minimizer + star/clique expansion
hypergraph max

∑
|fi − fj | max hyperedge smoothness

hypergraph any (
∑
·)

1
p |fi − fj |p within-hyperedge lp norm

hypergraph (
∑
·)

1
p any |fi − fj |p between-hyperedge lp norm

hypergraph can be expressed in the smoothness measures
of its star or clique expansion graph. In the other cases
listed in the Table, sh cannot be computed on expansion
graphs. For example, when T =

∑
, t = max, then sh(f)

becomes the sum of maximum differences in all hyperedges,
which is total variation [25]. The reason sh(f) cannot be
computed in its star or clique expansion graphs is that
hyperedge information is no longer available in graphs.
This kind of measures is unique to hypergraph setting and
useful for keeping hypergraph information (which star and
clique expansions would fail to keep). It can be seen that
these variants captures all previously proposed smoothness
measures to the best of our knowledge. There are also many
other variants that have not been proposed before. Therefore,
within this general framework, we could propose many new
smoothness measures, shown as the ones without references
in the table.

3 SPARSELY SMOOTH MODELS

While there are many existing and newly proposed smooth-
ness measures for hypergraphs as in the previous Section,
it is the main objective of this work to study the cases
of smoothness measures with sparsity property, to show
different sparsity patterns and their usefulness. Sparsity is
an exciting topic in machine learning and statistics, used
to improve interpretability, robustness, effectiveness and
efficiency of learning models [32]. It have been used to
select features in additive models such as lasso [26] and
many extensions in many situations. Similar to learning
additive models, we consider the problem that there are
many hyperedges that are irrelevant to the problem or within
a hyperedge, many nodes are noisy. This is a practical setting
as one may have data of a hypergraph without knowing
which hyperedges are useful for the prediction problem in
hand. In this case, one wishes to learn a function f on (the
node set of) a hypergraph that:

1) f is only smooth on an unknown subset of the
hyperedge set Er ⊆ E, not smooth on the rest Ei
(= E\Er). In this case, we say that f has the property
of hyperedge-wise sparsity or hyperedge selection.

2) f is only smooth on an unknown subset of the nodes
in a hyperedge. We say that f has the property of
node-wise sparsity or node selection.

Definition. Any function f with either of the two
properties is called sparsely smooth. Ideally, smoothness
measure can be 0 on some hyperedges/nodes, so that these
hyperedges/nodes are considered relevant to the problem
while the other hyperedges/nodes are not. However, this
is not usually possible in practice. The solution is to have a
(nonzero) cut-off threshold that separates smooth and non-
smooth hyperedges or nodes, which we call hyperedge or node
selection ability, respectively.

3.1 Supervised Learning

In the scope of this paper, we specifically deal with su-
pervised learning problem. We work on regression setting,
with smoothness measures are used as regularization. Clas-
sification, semi-supervised learning can be done by simply
replacing the label fitting term in the objective function. For
regression, we are given a hypergraph G on which we know
the label of some node encoded in label vector L ∈ Rn. We
also assume that in the hypergraphs, some hyperedges are
not supposed to be relevant to the learning problem. To learn
sparsely smooth functions on a hypergraph, we formulate
the following optimization problem

f∗ = arg min
f∈Rn

1

2
|f − Y |2L + λsh(f). (2)

with λ is the tradeoff parameter between faithfulness to
the known label Y and smoothness measures. |.|L is the
difference between the known and predicted labels only on
the nodes with known labels. T and t are chosen so that sh has
hyperedge and/or node selection abilities. Since constraining
a fixed number of nodes/hyperedges usually results in
computationally inefficient and non-optimal formulations,
we use l1 norm in a similar manner to lasso [26] as a convex
relaxation of the problem. We use a lasso-like formulation,
which can be regarded as star expansion, equipped with l1
norm for sparsity while preserving convexity.

3.2 Sparsely Smooth Models

We propose new formulations using a slack variable µk
for each hyperedge ek ∈ E, which can be interpreted
as star expansion-styled formulations and µk becomes
the label of star node of ek, which plays the role of
mean/central/representative label of a hyperedge. Note that
while the formulations we propose are still mathematically
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equivalent to, but not of exactly the same form as the general
form of smoothness measure in (1). We propose to use the
following formulation:

sh(f) = Tek(ss(f, ek)) (3)

where ss(f, ek) is the smoothness measure on hyperedge ek.
ss(f, ek) plays the same role as ti,j∈e(wij · s(fi, fj)) in (1).
We show some examples of ss(f, ek) that we will use later.

Case 1. ss1(f, ek) = minµk∈R w(ek)
∑
i∈ek |fi − µk|.

ss1(f, ek) is the sum of absolute differences between the
labels of the nodes in hyperedge ek and a value µk that
is chosen to minimize the sum. This smoothness measure
shows the total difference of the labels from µk, which play
the role of a representative label of the hyperedge.

Case 2. ss2(f, ek) = minµk∈R w(ek)maxi∈ek |fi − µk|.
ss2(f, ek) is the maximum absolute difference of all the
labels of the nodes in ek from a value µk that is chosen
to minimize the maximum difference. A property of this
measure is that µk becomes the midpoint of the maximum
and minimum labels of the nodes. In other words,

min
µk∈R

ss2(f, ek) =
1

2
w(ek)(max

i∈ek
(fi)−min

i∈ek
(fi))

=
1

2
w(ek) max

i,j∈ek
|fi − fj |.

Note that this is half of total variation [25].
Using the notion of ss(f, ek), we can define our sparsely

smooth formulations as follows.

Definition 1. Hyperedge selection: our efficient version of total
variation [25], the formulation is

f∗ = arg min
f∈Rn,δk,µk∈R

1

2
|f − Y |2L + λ

m∑
k=1

w(ek)δk (4)

s.t |µk − fi| ≤ δk,∀i ∈ ek, k = 1..m.

At the optimal solution of (4), slack variable δk =
maxi∈ek |µk − fi| and µk is set to minimize δk. This makes
w(ek)δk = ss2(f, ek) as in the aforementioned case 2. Hence,
µk becomes the mid-range of fi, ∀i ∈ ek. δk becomes half of
their range and δk is half of total variation. This formulation
is mathematically equivalent to total variation regularization
(with appropriate λ) using star expansion style with µk plays
the role of label of star node [25]. This is more efficient than
original total variation formulation as analyzed later on. This
formulation has hyperedge selection ability in the sense that
having

∑m
k=1 w(ek)δk, which is similar to l1 norm of the

vector (δk)mi=1, many δk would become 0, and the remaining
become large. One can select hyperedges that have very
smooth labels on them.

Definition 2. Node selection: the formulation is

f∗ = arg min
f∈Rn,δk,µk∈R

1

2
|f − Y |2L + λ

m∑
k=1

w(ek)δ
2
k (5)

s.t
∑
i∈ek

|µk − fi| ≤ δk, k = 1..m.

At the optimal solution, slack variable

δk =
∑
i∈ek

|µk − fi| =
ss1(f, ek)

w(ek)
,

and µk becomes the median of {fi}i∈ek . Using l1 norm
constraint, many of the |µk−fi|would be close to zero, giving
this formulation node selection ability. Having δ2k would not
make many δk = 0, therefore no hyperedge selection ability.

Definition 3. Joint hyperedge and node selection: the formu-
lation is

f∗ = arg min
f∈Rn,δk,µk∈R

1

2
|f − Y |2L + λ

m∑
k=1

w(ek)δk (6)

s.t
∑
i∈ek

|µk − fi| ≤ δk, k = 1..m.

Similar to (5), at the optimal solution, slack variable

δk =
∑
i∈ek

|µk − fi| =
ss1(f, ek)

w(ek)
.

Having |µk − fi| would have node selection ability in the
sense that many |µk − fi| would become 0. Different from
(5), having

∑m
k=1 w(ek)δk in the objective function, this

formulation has hyperedge selection ability in a similar
manner to (4). Table 2 summarizes sparse-inducing property
of formulations.

TABLE 2: Comparison of smoothness measures and their
sparse-inducing property.

Selection T ss(f, ek)
none

∑
k

∑
i∈ek

|µk − fi|2
hyperedges

∑
k maxi∈ek |µk − fi|

node maxk
∑

i∈ek
|µk − fi|

joint
∑

k

∑
i∈ek

|µk − fi|

3.3 Properties
We show properties of our sparsely smooth formulations one
by one.

Computation. All these formulations are quadratic pro-
grams, can be solved efficiently with off-the-shelf softwares.
Note that these formulations, similar to star-expansion,
incur m more variables to optimize. However, instead of
computing all fi − fj in a hyperedge, we use |µk − fi|
constraints, reducing from |ek|(|ek|−1)

2 to |ek| terms, with |ek|
being the number of nodes in the hyperedge. For the problem
having hyperedges of large cardinalities, star expansion-
styled formulations are recommended.

Regularization parameter λ. It is noteworthy that too
large λ will lead to many smooth hyperedges/nodes. The
reason is that large λ forces smoothness measures of all
hyperedges to be small, making the gap between those of
relevant hyperedges and of irrelevant hyperedges small. The
small gap is then dominated by random error of labels,
making relevant and irrelevant hyperedges indistinguishable.
Hence, different from additive models [26], sparsely smooth
models need small enough λ. This is purely for sparse
support recovery purpose. It is noteworthy that too small λ
is not for generalization purpose that requires λ not to be
arbitrarily small (or large). Finding the balance is a key issue,
but is out of the scope of this paper.

Related formulations. Our proposed formulations are
corresponding to two well-known formalisms in sparse
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learning: generalized adaptive fused lasso [27], [33] for
its requirement of parameters with similar values, and
overlapping group lasso with intra-group or inter-group
sparsity [29], [30]. In fact, joint hyperedge and node selection
formulation is a generalization of fused lasso to a the whole
group (rather than only two variables for usual fused lasso).

Out-of-Sample Extension. Previous models for learning
on graphs and hypergraphs are only in transductive setting,
requiring test samples to be included at training time. In our
proposed formulations with star expansion in (4) (5) and (6),
we can have out of sample extension, meaning that labels of
new samples can be predicted with (µ̂k, δk), k = 1, . . . ,m,
without re-learning the model. This is advantageous com-
pared to transductive learning models. For new samples
(nodes) with known hyperedge membership, their labels f
can be inferred based on its hyperedge representative/mean
labels {µ̂k}k and their smoothness measures δk by optimiz-
ing the same objective function as learning the model (3)
with fixed µk as follows.

f̂ = argmin
f
Tek(ss(f, ek)) s.t µk = µ̂k. (7)

3.4 Sparsistency

We wish to see if these formulations would recover the
support of a set of hyperedges that are relevant to the
problem in the same manner as lasso and others [34], [35].
This is known as model support consistency, and for sparse
modeling, it is called sparsistency. Since each hyperedge is
associated with a smoothness measure, a relevant hyperedge
should have a small enough smoothness measure and an
irrelevant hyperedge should not. We first define relevant and
irrelevant hyperedges based on their smoothness measures.
We then introduce assumptions about noise level and how
the hypergraph is constructed as n→∞ before main results
showing the probability of recovering the correct sparse
models.

Definition 4. γ-smooth: Label function f is considered γ-
smooth on a given hyperedge e if and only if its smoothness
measure satisfies ss(f, e) ≤ γ.

Definition 5. Relevant hyperedges: Given a γr ∈ R, a
hyperedge e is relevant to the problem with true label y if and only
if y is γr-smooth on e.

Definition 6. Irrelevant hyperedges: Given a γi ∈ R, a
hyperedge e is irrelevant to the problem with true label y if and
only if y is not γi-smooth on e.

3.4.1 General assumptions

We present the set of general assumptions behind our
sparsistency analysis.

(1) Noise assumption. Each observed label Yi is the true
label yi plus white Gaussian noise: (Yi − yi) ∼ N(0, δ2).

(2) Relevance assumption. We assume that all hyper-
edges in E are either relevant (γr-smooth) or irrelevant (not
γi-smooth) to the problem with given γr, γi ∈ R.

(3) Separation assumption. We assume that the relevant
and irrelevant hyperedge sets, as defined above, are disjoint,
meaning that γi > γr. γi − γr should be large enough to
make sure that the two set of hyperedges can be separated

according to their smoothness measures with high probabil-
ity. We note that this plays a similar role as Irrepresentable
Conditions for Lasso consistency [34].

Let γ = γr+γi
2 be the midpoint of {γr, γi}. Call the

set of relevant hyperedges Er = {e1, · · · er} and irrelevant
hyperedgesEi = {er+1, · · · em}. We callEr the support of the
problem. We now show the probability that star expansion-
styled joint hyperedge and node selection formulation (6)
and star expansion-styled hyperedge selection formulation
(4) will recover the correct (sparse) model support in the
sense that the relevant hyperedges are γ-smooth but the
irrelevant hyperedges are not.

3.4.2 Sparsistency for hyperedge selection (4)
This is the case for

ss = ss2 = min
µk∈R

w(ek)max
i∈ek
|fi − µk|.

This is equivalent to total variation in [25]. As also used
in [25], we let w(ek) = 1 for the reason that smoothness
measure does not increase linearly with the number of nodes
in a hyperedge.

To simplify discussion, we use the following growth
model. As having more training data n → ∞, we assume
that the hyperedge set is fixed and the number of points
belonging to each hyperedge grows linearly with n, meaning
that rk = |ek|

n = const with respect to n. This follows
the assumption that, similarity hypergraphs are generated
from connecting the nodes in fixed neighborhoods in a
latent space of the nodes, in a similar manner to ran-
dom geometric graphs. Sampling more data points boils
down to the process of sampling on each neighborhood
separately. This makes w(ek) = 1

|ek| = O(n−1), and
nw(ek)) = 1

rk
. Let d ∈ Rn be the scaled weight vector:

di = n
∑
k|i∈ek w(ek) =

∑
k|i∈ek

1
rk

. Let R = maxk rk
and D = maxi

∑
k|i∈ek dk = maxi

∑
k|i∈ek

1
rk

, which are
constants with respect to n. The sparsistency result is shown
as follows.

Theorem 1. Suppose that the general assumptions hold. Without
loss of generality, assume that all labels have unit range yi, Yi ∈
[0, 1] and γi−γr > 2

√
2δ√
π

. As ss(f, ek) = minµ∈Rmaxi |µ−fi|,
let

f̂ = arg min
f∈Rn

1

2
|Y − f |2 + λ

∑
k

ss(f, ek)

be the optimal solution of the learning problem (equivalent to (4)).
Then for 0 < λ <

√
π(γi−γr))−2

√
2δ

D
√
π

, with a probability of at
least (1− 1

1+c2n )
n for some constant c, it will recover the correct

support of the problem in the sense that:

1) f̂ is γ-smooth on all hyperedges in Er , and
2) f̂ is not γ-smooth on all hyperedges in Ei.

Please find the detailed proof in the next Section.
The condition γi − γr > 2 δ

√
2√
π

is a necessary condition
for sparsistency. This states that the smoothness gap γi − γr
should be higher than the later term, which is the label
error incurred by white noise in observed labels (N(0, δ2)).
The condition for λ means that it has to be small enough
not to force the label to be smooth on all hyperedges.
This looks counter-intuitive as one usually requires higher
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regularization hyperparameters to force irrelevant variables
to have zero weights in lasso [26]. However, this actually
makes sense by the nature of smooth functions in hypergraph
situation where smaller λ would not force all smoothness
measures to be small, making smoothness measures of
irrelevant hyperedges to be much larger than those of
relevant hyperedges, resulting in a large gap and hence,
sparsistency can be obtained. Similarly, λ needs to be small
enough to guarantee sparsistency.

One thing to note about the probability is as follows.

lim
n→∞

(1− 1

1 + c2n
)n = 1− e

−1

c2 < 1

There is one key implication is that, the lower bound for
probability of sparsistency (1− 1

1+c2n )
n does not converge to

1 as n→∞. Sparsistency is only guaranteed with a limited
probability regardless of sample size n. This is a drawback of
sparsistency result of total variation [9]. While this result does
not automatically mean that sparsistency cannot be achieved,
another argument can be used to show the limitation of
hyperedge selection (total variation) as follows.

Proposition 1. Suppose that Xn is any set of n white noises
xi = Yi − yi ∼ N(0, δ2), then for any constant a ∈ R,

lim
n→∞

P (max
i∈Xn

|xi| < a) = 0.

Proof. This is the case we assume that the differences between
node labels and the representative label µ̂k follow a zero
mean and fixed standard deviation. In this case, total
variation, which is twice as large as the maximum absolute
deviation, would go to infinity as n→∞ as

lim
n→∞

P ( max
i=1···n

|xi| < a) = lim
n→∞

P (|xi| < a)∀i

= lim
n→∞

P (|x| < a)n = 0.

This is obvious as the larger the sample size is, the larger the
maximum deviation (half of total variation) becomes. Hence,
as n → ∞, maxi=1···n |Yi − yi| would go to infinity with
high probability, exceeding the magnitude of the constants
γr, γi and δ. Hence, at some large n on, there is a high
probability that ss(f, e) is fully dominated by errors of the
observed labels. This is different from the previous case
of joint hyperedge and node selection where the mean of
absolute deviation converges to a constant. This explains the
lack of sparsistency guarantee in Theorem 1.

3.4.3 Sparsistency for joint hyperedge and node selection
(6)
This is the case for

ss = ss1 = min
µk∈R

w(ek)
∑
i∈ek

|fi − µk|.

We assign w(ek) = 1
|ek| , making ss(f, ek) =

minµ∈R
1
|ek|

∑
i∈ek |fi − µ| the mean absolute deviation of

labels on the hyperedge. This is suitable as we consider n
grows (n → ∞) while keeping γi, γr and δ constant. In
this setting, all these parameters and ss would be of the
same magnitude. Note that there might be other weights,
but in these cases, λ cannot remain a constant, which not
convenient for practical uses.

We use the same growth model with n → ∞ and fixed
hyperedge set, γr, γi and δ to simplify discussion. The
following theorem shows the conditions and probability
that the model recovers the correct support.

Theorem 2. Suppose that the general assumptions hold. Assume
that the gap is wide enough with respect to label noise standard
deviation δ in the sense that γi − γr > 2

√
2δ√
π

. As ss(f, ek) =

minµ∈R
1
|ek|

∑
i∈ek |fi − µ|, the optimal solution of the learning

problem (equivalent to (6))

f̂ = arg min
f∈Rn

1

2
|Y − f |2 + λ

∑
k

ss(f, ek)

for 0 < λ <
√
π(γi−γr)−2

√
2δ

2
√
πDR

will, with a probability of at least
1−O(n−1), recover the correct support of the problem in the sense
that

1) f̂ is γ-smooth on all hyperedges in Er , and
2) f̂ is not γ-smooth on all hyperedges in Ei.

Proof can be found in the next Section. The theorem
states that under general assumptions, if the regularization
parameter (γ) is small enough, the optimization problem will
find the correct sparsity pattern with a probability of at least
1 − O(n−1). In other words, as n → ∞, the probability of
having sparsistency approaches 1 with a O(n−1) rate. This
means that the model is statistically consistent by converging
to the true model with large enough n.

The condition γi−γr > 2 δ
√
2√
π

has the same interpretation
as in Theorem 1. That is the level of noise should not exceed
the level of signal. The condition of mall enough λ is also
required.

All in all, we presented the conditions to recover the
correct model support of the two formulations (4) and (6) .
While sparsistency of (6) is guaranteed with large n, it is not
the case for (4).

We note that this is different from hyperedge lasso [36] in
several aspects. First, our framework is strictly about learning
smooth functions on a hypergraph. However, in [36], there is
an additional constraint that labels from different hyperedges
must be different. This is the case of non-overlapping hy-
peredges. As non-overlapping hyperedges divides the node
set into disjoint subsets without any interrelationship, their
labels can be learnt separately and this becomes unrelated
problems. Our setting of overlapping hyperedges is more
realistic.

4 PROOF FOR SPARSISTENCY

Due to their lengths, we present sparsistency proofs in this
section.

4.1 Sparsistency for hyperedge selection

ss(f, ek) = min
mk∈R

w(ek)max
i
|mk − fi|

We first prove two lemmas to support the main proof.
For w(ek) = 1.

Lemma 1. Given a true label function y on a hypergraph. Suppose
that label Y is a noisy observation with white noise in the sense that
(yi−Yi) are independent following a normal distributionN(0, δ2).



7

Then, with a probability of at least t2n

(1+t2)n , max|yi − Yi| <
δ
√
2√
π
+ tδ

√
π−2√
nπ

and ∀t ≥ 0.

Proof. As (yi−Yi) follows normal distribution with standard
deviation δ, according to one-sided Chebyshev’s inequality
(also known as Cantelli’s lemma), for any i,

P (|yi − Yi| −
δ
√
2√
π
≤ tδ

√
π − 2√
nπ

) ≥ t2

1 + t2
.

Then, ∀i = 1..n,

P (max
i
|yi − Yi| −

δ
√
2√
π
≤ tδ

√
π − 2√
nπ

)

=P (∀i : |yi − Yi| −
δ
√
2√
π
≤ tδ

√
π − 2√
nπ

)

≥ t2n

(1 + t2)n
.

Lemma 2. Given any label Y on a hyperedge e. Let max |f −
Y | = maxi∈1..n |fi − Yi| and likewise max |f − Y |e =
maxi∈e |fi − Yi|. Any close approximate f of Y would have
smoothness measure close enough to that of Y by:

ss(Y, e)− w(e)max |f − Y |e
≤ss(f, e)
≤ss(Y, e) + w(e)max |f − Y |e. (8)

Proof. Let µy = argminµ∈R w(e)
∑
i∈e |yi − µ| and µf =

argminµ∈R w(e)
∑
i∈e |fi−µ|. We prove the second inequal-

ity.

ss(f, e) = w(ek)max
i∈e
|fi − µf |

≤ w(e)max
i∈e
|fi − µy|

≤ w(e)max
i∈e

(|Yi − µy|+ |fi − Yi|)

≤ ss(Y, e) + w(e)max |f − Y |e.

Due to symmetry, we can also have the first inequality.

ss(Y, e) ≤ ss(f, e) + w(e)max |f − Y |e
ss(Y, e)− w(e)max |f − Y |e ≤ ss(f, e).

We now restate and prove the main theorem
Theorem 1. Suppose that the general assumptions hold.

Without loss of generality, assume that all labels have unit
range yi, Yi ∈ [0, 1] and γi − γr > 2

√
2δ√
π

. As ss(f, ek) =

minµ∈Rmaxi |µ− fi|, let

f̂ = arg min
f∈Rn

1

2
|Y − f |2 + λ

∑
k

ss(f, ek)

be the optimal solution of the learning problem (equivalent to (7)).
Then for 0 < λ <

√
π(γi−γr))−2

√
2δ

D
√
π

, with a probability of at
least (1− 1

1+c2n )
n for some constant c, it will recover the correct

support of the problem in the sense that:

1) f̂ is γ-smooth on all hyperedges in Er , and
2) f̂ is not γ-smooth on all hyperedges in Ei.

Proof. Step 1: Bounding max |f − Y |.
For 0 ≤ Yi ≤ 1, let mk = argminmmaxi∈ek(fi − m).

Hence mk becomes the mid-range value of fi, and therefore
0 ≤ mk ≤ 1.

Let f (abuse the notation of f̂ for simplicity) be the opti-
mal solution of f = argminf∈Rn

1
2 |Y −f |

2+λ
∑
k ss(f, ek).

Then, at the optimal point,

∂( 12 |Y − f |
2 + λ

∑
k ss(f, ek))

∂f
= 0.

Set the partial derivative on fi to be zero. Derivative of the
first term (quadratic) is f − Y . Note that ss(f, ek) is not
differentiable. However, we can have the subderivatives of∑
k ss(f, ek) and −(f − Y ) should be in this range.
We show that any directional derivative of

∑
k ss(f, ek)

for fi is contained within [−λdi2 , λ
di
2 ].

Step 1.1: For each ek. Let take an infinitesimal change ∂fi
of fi. If fi is not at the border (|fi − µk| < maxj |fj − µk| =
ss(f, ek)), then fi + ∂fi would not change ss(f, ek), making
the directional derivative 0. If fi is at the border (|fi − µk| =
maxj |fj−µk| = ss(f,ek)

w(ek)
) then taking an infinitesimal change

∂fi of fi still keeps fi at the border, and µk, being the mid-
range, would change ∂fi

2 . In this case, ss(f, ek) would change
w(ek)∂fi

2 making the directional derivative either w(ek)
2 or

−w(ek)
2 . Then the directional derivative of ss(f, ek) on fi is

bounded by ∂ss(f,ek)
∂fi

∈ [−λw(ek)
2 , λw(ek)

2 ].
Step 1.2: For the whole hypergraph: summing from all

ek, we have upper bound

(fi − Yi) ∈[−λ
∑
k|i∈ek w(ek)

2
, λ

∑
k|i∈ek w(ek)

2
]

=[−λdi
2
, λ
di
2
]

(−(fi − Yi) is in the range of the subderivative of the latter
term).

Therefore, we have:

− λd

2
≤ f̂ − Y ≤ λd

2

max|f − Y | < maxi
λdi
2

=
λD

2
(9)

(as D = maxidi being the max degree of any node, being
constant with respect to n).

Step 2: bounding ss(f, ek).
Step 2.1: For relevant hyperedges Er: k = 1..r:

• ss(y, ek) < γr as in the general assumptions.
• ss(Y, ek) < γr + w(ek)max |y − Y |ek (Lemma 2).

Then, according to Lemma 1, for any t > 0, with a probability
of at least t2n

(1+t2)n , we can have:

ss(Y, ek) < γr +
δ
√
2√
π

+ tδ

√
π − 2√
nπ

. (10)

Then, according to Lemma 2 and (9),

ss(f, ek) < γr +
δ
√
2√
π

+ tδ

√
π − 2√
nπ

+
λD

2
(11)

with a probability of at least t2n

(1+t2)n .
Step 2.2: For irrelevant hyperedges Ei: k = (r + 1)..m
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• ss(y, ek) > γi as in the general assumptions.
• ss(Y, ek) > γi − w(ek)max |y − Y |ek (Lemma 2).

Then, according to Lemma 1, for any t > 0, with a
probability of at least t2n

(1+t2)n , we can have:

ss(Y, ek) > γi −
δ
√
2√
π
− tδ
√
π − 2√
nπ

. (12)

Then, according to Lemma 2 and (9),

ss(f, ek) > γi −
δ
√
2√
π
− tδ
√
π − 2√
nπ

− λD

2
(13)

with a probability of at least t2n

(1+t2)n .
Hence, from (12) and (13) we can bound the estimated f .
Step 2.3: For all hyperedges. We investigate the condition

that there exists λ > 0 and t > 0 such that smoothness
measures of relevant hyperedges are smaller than those of
irrelevant hyperedges: γr+ δ

√
2√
π
+tδ

√
π−2√
nπ

+λD
2 < γ ∀k = 1..r

(equivalently, γi− δ
√
2√
π
− tδ

√
π−2√
nπ
− λD

2 > γ ∀k = (r+1)..m).

This is equivalent to γr + δ
√
2√
π
< γ, or

γi − γr >
2
√
2δ√
π
. (14)

With the condition that γr+ δ
√
2√
π
< γ, then we can choose

λ > 0 such that γ−γr− δ
√
2√
π
− λD

2 > 0 ∀k = 1..r, equivalently

γi − γ − δ
√
2√
π
− λD

2 > 0 ∀i = (r + 1)..m), or equivalently:

λ <
2(γ − γr)

D
− 2
√
2δ

D
√
π

=

√
π(γi − γr))− 2

√
2δ

D
√
π

. (15)

With λ satisfying condition (15), then we choose t so that
γr +

δ
√
2√
π

+ tδ
√
π−2√
nπ

+ λD
2 < γ (equivalently, γi − δ

√
2√
π
−

tδ
√
π−2√
nπ
− λD

2 > γ). Choosing the largest possible t0:

t0 =

√
nπ

δ
√
π − 2

(γ − γr −
δ
√
2√
π
− λD

2
). (16)

Note that t0 = O(
√
n). To simplify (16), let t = c

√
n for some

constant c. For λ satisfying (15), t0 satisfying (16) we can
conclude that

• ss(f, ek) < γ ∀k = 1..r and
• ss(f, ek) > γ ∀k = (r + 1)..m

with a probability of at least t2n0
(1+t20)

n = (1− 1
1+c2n )

n.

Note that, limn→∞(1− 1
1+c2n

)n=(1− 1
c2n

)n = e
−1

c2 (with e

being Euler’s number, the base of natural logarithm) not
converging to 1.

4.2 Sparsistency for joint selection

ss(f, ek) = min
µ∈R

w(ek)
∑
i∈ek

|fi − µk|

We set w(e) = 1
|e| to avoid hyperedge weight size

effect. This setting makes the smoothness measure on each
hyperedge become the average variance. Let rk = |ek|

n ,
R = maxk=1..m rk and R

′
= mink=1..m rk. For simplicity,

we assume that the number of nodes in a hyperedge grow
linearly with hypergraph size, meaning that rk are constant,
so are R and R

′
. Hence w(ek) = 1

nrk
= O(n−1).

We first prove some lemmas to support the main proof.

Lemma 3. Given a true label function y on a hypergraph. Suppose
that label Y is a noisy observation with white noise in the sense
that (yi − Yi) are independent following a normal distribution
N(0, δ2). Then, with a probability of at least 1− 1

1+t2 , for ∀t ≥ 0,(
|y−Y |1
n − δ

√
2√
π

)
≤ tδ

√
π−2
πn .

Proof. As (yi − Yi) is follows normal distribution with stan-
dard deviation δ, |yi − Yi| follows a half-normal distribution
with a mean of δ

√
2√
π

and a standard deviation of δ
√
1− 2

π .
Hence, |y − Y |1 =

∑n
i=1 |yi − Yi|, as the sum of n

independent random variables, will have a mean of nδ
√
2√
π

and a standard variation of δ
√
n(1− 2

π )

According to one-sided Chebyshev’s inequality (also
known as Cantelli’s inequality),

P

((
|y − Y |1 −

nδ
√
2√
π

)
≤ tδ

√
n(1− 2

π
)

)
≥ t2

1 + t2

Dividing the inequality by n, then

P

(( |y − Y |1
n

− δ
√
2√
π

)
≤ tδ

√
π − 2

πn

)
≥ t2

1 + t2

meaning that the probability that |y−Y |1n is far enough from
its expected value δ

√
2√
π

approaches zero as n→∞.

Lemma 4. Given any two labels f and Y on a hyperedge e. Let
|f − Y |e =

∑
i∈e |fi − Yi|. Then their smoothness measure on e

is bounded by each other in the sense that.

ss(Y, e)−w(e)|f−Y |e ≤ ss(f, e) ≤ ss(Y, e)+w(e)|f−Y |e.
(17)

Proof. Let µy = argminµ∈R w(e)
∑
i∈e |yi − µ| and µf =

argminµ∈R w(e)
∑
i∈e |fi − µ|.

ss(f, e) = min
µ∈R

w(e)
∑
i∈e
|fi − µ|

= w(e)
∑
i∈e
|fi − µf |

≤ w(e)
∑
i∈e
|fi − µy|

≤ w(e)
∑
i∈e

(|Yi − µy|+ |fi − Yi|)

= w(e)
∑
i∈ek

|Yi − µk|+ w(e)|f − Y |e.

This proves the second inequality. Due to symmetry, the first
inequality can be equivalently induced.

We now restate and prove the main theorem.
Theorem 2. Suppose that the general assumptions hold.

Assume that the gap is wide enough with respect to label noise
standard deviation δ in the sense that γi − γr > 2

√
2δ√
π

. As
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ss(f, ek) = minµ∈R
1
|ek|

∑
i∈ek |fi − µ|, the optimal solution of

the learning problem (equivalent to (9))

f̂ = arg min
f∈Rn

1

2
|Y − f |2 + λ

∑
k

ss(f, ek)

for 0 < λ <
√
π(γi−γr)−2

√
2δ

2
√
πDR

will, with a probability of at least
1−O(n−1), recover the correct support of the problem in the sense
that

1) f̂ is γ-smooth on all hyperedges in Er , and
2) f̂ is not γ-smooth on all hyperedges in Ei.

The theorem states that under general conditions, if the
regularization parameter is small enough, the optimization
problem will find the right (γ) sparsity pattern with a
probability that approaches 1 as n → ∞. We abuse the
notation to use fi for f̂i for simplicity from here on.

Proof. Step 1: bounding f − Y .
As f̂ = argminf∈Rn

1
2 |Y − f |

2 + λ
∑
k ss(f, ek), at the

optimal point, derivative of the objective function becomes
zero.

∂( 12 |Y − f |
2 + λ

∑
k ss(f, ek))

∂f
= 0.

Set the partial derivative on each fi to be zero. Derivative
of the first term (quadratic) is (fi − Yi). The second term is
not everywhere differentiable. However, we can have the
subderivative of

∑
k ss(f, ek) and −(fi − Yi) in its range at

optimal point of f .
Step 1.1: For each ek, we show that any directional deriva-

tive of ss(f, ek) is contained within [−λw(ek), λw(ek)]. Note
that as µk = argminµ∈R w(ek)

∑
i∈ek |fi − µ|, µk is either

the median of all {fi}i∈ek if |ek| is an odd number or within
the two medians of {fi}i∈ek if |ek| is an even number.

Let take an infinitesimal change ∂fi of fi, then µk only
changes if i is exactly the median point (fi = µk). In this
case, the total change to ss(f, ek) is 0 as µk changes with
fi, fi − µk = 0. For all the other cases, ss(f, ek) only
changes at |fi − µk| being w(ek)∂fi as µk remains the same.
Hence, the maximum change of ss(f, ek) is w(ek)∂fi. Then,
the directional derivative of ss(f, ek) on fi is bounded by
∂ss(f,ek)

∂fi
∈ [−λw(ek), λw(ek)].

Step 1.2: For the whole hypergraph, summing up from
all ek:

(fi − Yi) ∈ [−λ
∑
k|i∈ek

w(ek), λ
∑
k|i∈ek

w(ek)].

Then d is constant with respect to n. Then we have

−λd
n
≤ f − Y ≤ λd

n
. (18)

Step 2: bounding ss(f, ek).
Step 2.1: For relevant hyperedges in Er : k = 1..r

• ss(y, ek) ≤ γr as in the general assumptions.
• ss(Y, ek) ≤ ss(y, ek) + w(ek)|y − Y |ek (Lemma 4).

Then, according to Lemma 3, for any t > 0, with a probability
of at least 1− 1

1+t2 ,

ss(Y, ek) < γr +
δ
√
2√
π

+ tδ

√
π − 2

π|ek|

= γr +
δ
√
2√
π

+ tδ

√
π − 2
√
nrkπ

. (19)

As D = maxi
∑
k|i∈ek dk = maxi

∑
k|i∈ek

1
rk

, lemma 4
together with (18) give:

ss(f, ek) < γr +
δ
√
2√
π

+ tδ

√
π − 2
√
nrkπ

+
∑
i∈ek

λdi
n

≤ γr +
δ
√
2√
π

+ tδ

√
π − 2
√
nrkπ

+ λDrk. (20)

Step 2.2: For irrelevant hyperedges in Ei, k = (r + 1)..m

• ss(y, ek) > γi as in the general assumptions.
• ss(Y, ek) > ss(y, ek)− w(ek)|y − Y |ek (Lemma 4)

Then, according to Lemma 3, for any t > 0, with a
probability of at least 1− 1

1+t2 ,

ss(Y, ek) > γi −
δ
√
2√
π
− tδ

√
π − 2

π|ek|

= γi −
δ
√
2√
π
− tδ
√
π − 2
√
nrkπ

. (21)

Lemma 4 together with (18) give:

ss(f, ek) > γi −
δ
√
2√
π
− tδ
√
π − 2
√
nrkπ

−
∑
i∈ek

λdi
n

> γi −
δ
√
2√
π
− tδ
√
π − 2
√
nrkπ

− λDrk. (22)

Hence, from (20) and (22), we can bound the estimated f .
Step 2.3: For all hyperedges. We investigate the condition

that there exist λ > 0 and t > 0 so that smoothness measures
of relevant hyperedges are smaller than those of irrelevant
hyperedges: γr + δ

√
2√
π
< γ, then for λ > 0 such that γ− γr −

δ
√
2√
π
−λDrk > 0 ∀k = 1..r, (equivalently γi− δ

√
2√
π
−λDR−

γ > 0 ∀k = (r + 1)..m ), or equivalently:

λ <
γ − γr − δ

√
2√
π

DR
=

√
π(γi − γr)−

√
2δ√

πDR
(23)

as R = maxk rk in the growth model.
For λ satisfying this condition (23), then for any t so that

γr+
δ
√
2√
π
+ tδ

√
π−2√
nrkπ

+λDR ≤ γ ∀k (equivalently γi− δ
√
2√
π
−

tδ
√
π−2√
nrkπ

− λDrk ≥ γ ∀k), such as:

t0 = (γ − γr −
δ
√
2√
π
− λDR)

√
nR′π

δ
√
π − 2

(24)

Note that t0 = O(
√
n). For λ satisfying condition in (23),

t0 satisfying the condition in (24), we can finally conclude
that

• ss(f, ek) < γ ∀k = 1..r, and
• ss(f, ek) > γ ∀k = (r + 1)..m

with a probability of at least 1− 1
1+t20

= 1−O(n−1).
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5 SIMULATION

We designed experiments with simulated data to demon-
strate how sparsely smooth models work and the benefit
of sparsity. Similarity hypergraphs were generated keeping
in mind that nodes on a hyperedge are from a fixed neigh-
borhood in some unknown space as follows. Labels vector
Y for 200 nodes were i.i.d. samples following a uniform
distribution on [0, 1]. Ten relevant hyperedges were generated
as ten groups of nodes i that a ≤ y(i) < a+ 0.15 for evenly
spaced a from 0 to 0.9. A number of irrelevant hyperedges
(depending on the simulations) were generated by randomly
grouping 20 points regardless of Y . A number of noisy nodes
were randomly chosen to add into each relevant hyperedge.
Ten-fold cross-validation to split train/test data and averaged
RMSEs over ten runs. We used transductive setting to include
test data at learning stage for all models. The lower the RMSE,
the better the model. Tradeoff parameter λ was chosen to be
the one with the lowest RMSE among {10i−5}, i = 1..7. To
show the properties of different sparsely smooth models, we
compare the following models:

• (i) dense: the non-sparse model in the sense that it
does not use l1 regularization (equivalent to star and
clique expansions [24], [37] and then using graph
Laplacian regularization),

• (ii) hyperedge selection: (4) equivalent to total varia-
tion model [25],

• (iv) node selection: (5) (our proposed formulation),
• (iii) joint selection: (6) (our proposed formulation).

5.1 Irrelevant Hyperedges
This is to simulate the situation that there are irrelevant
hyperedges in data. We generated hypergraphs with different
numbers of irrelevant hyperedges ranging from 1 to 10,
without noisy nodes. We split the data to train and test
as described above. We summarized RMSEs of the models
for different numbers of irrelevant hyperedges in Figure 2.
We could observe that hyperedge selection model had very
stable performances even when the number of irrelevant
hyperedges increased. In contrast, the other models were
sensitive to the number of irrelevant hyperedges. This
showed that hyperedge selection model could select relevant
hyperedges in presence of irrelevant hyperedges without
noisy nodes while the other methods were not as effectively.

5.2 Noisy Nodes
We simulated the case of having only noisy nodes inside
relevant hyperedges (no irrelevant hyperedges). We gener-
ated hypergraphs with different noisy nodes and without
irrelevant hyperedges. We slitted train/test data and con-
ducted experiments in the same way as above. We showed
RMSEs of the models for different numbers of noisy nodes
in Figure 3. We found that hyperedge selection model has
the worst performance in terms of RMSEs consistently. The
other models, while sensitive to the number of noisy nodes,
have lower better performances with lower RMSEs. Joint
hyperedge and node selection model were the one with
the lowest RMSEs, then followed by node selection and
dense models. The experiments showed that joint selection
model had similar performances to node selection models
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Fig. 2: Simulation with irrelevant hyperedges without noisy
nodes. X axis was the number of irrelevant hyperedges
and y axis was the RMSEs of different models on test
data. Hyperedge selection method gave the lowest RMSEs
consistently at different numbers of irrelevant hyperedges.
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Fig. 3: Simulation with noisy nodes and without irrelevant
hyperedges. X axis was the number of noisy nodes added to
each hyperedge and y axis was the RMSEs of the models. Hy-
peredge selection model had the worst performances while
the node selection and joint selection models performed best
in terms of RMSEs.

only, showing its flexibility in case of noisy nodes without
irrelevant hyperedges.

5.3 Both Irrelevant Hyperedges and Noisy Nodes
We simulated this case by having five irrelevant hyperedges
and different numbers of noisy nodes on each relevant
hyperedge and carried out experiments in a similar manner.
RMSE results were shown in Figure 4. We found that joint
hyperedge and node selection model (6) had the lowest
RMSEs consistently. It showed the ability of this model to
select both hyperedges and nodes at the same time. All
other models, dense, hyperedge selection and node selection
models, were not as effective to handle this case. We would
consider this was the most practical case as there would be
irrelevant and noisy data in the dataset. In this case, our
proposed joint selection model was the most advantageous
due to its flexibility to handle both irrelevant hyperedges
and noisy nodes.

5.4 Sparsity with λ
We also showed the sparsistency arguments (3.3) on sim-
ulated data with five relevant/irrelevant edges with our
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Fig. 4: Simulation data with both irrelevant hyperedges
and noisy nodes, generated with five irrelevant hyperedges.
X axis was different numbers of noisy nodes added to
each relevant hyperedge and y axis was the RMSEs of the
models. Joint selection gave the lowest RMSEs, showing its
effectiveness for both irrelevant hyperedges and noisy nodes.

Fig. 5: Simulation results on hypergraphs with five relevant
hyperedges and five irrelevant hyperedges. X axis was the
indexes of hyperedges. From 1 to 5 were relevant hyperedges
and from 6 to 10 were irrelevant ones. Y axis was the
smoothness measures on each hyperedge with different λ.
We could observe that when λ were small enough, large
gaps occured between smoothness measures of relevant and
irrelevant hyperedge groups.

proposed joint selection model. Data were split to train and
test as above. We showed the smoothness measures (δk)
with different values of regularization parameter λ. It was
proved in theory that the gap between smoothness measures
of a relevant hyperedge and an irrelevant hyperedge is
guaranteed if λ was small enough. We could confirm the
theory in Figure 5 that, as λ decreased, smoothness measures
on relevant hyperedges (indexed from 1 to 5) became signifi-
cantly smaller than that of irrelevant hyperedges (indexed 6
to 10).

6 EXPERIMENTS

We conducted experiments on real benchmark data to show
the effectiveness of the four models in real situations, together
with a general method not for hypergraphs. We compared
regression performances of these models to show the benefits
of learning sparsely smooth models on hypergraphs. We also
compared the performances of regression trees [38], being a

general method for multivariate data not for hypergraphs, to
show how hypergraph assumption works in general setting.
We generated a hypergraph from multivariate categorical
data as follows. For each categorical variable, each group
of points having the same category formed a hyperedge.
The set of all hyperedges (for all categories of all variables)
formed the hypergraph. We chose multivariate categorical
data that were publicly available in UCI machine learning
repository [39]. Parameter setting of this experiment was the
same as in simulations. We used ten-fold cross-validation
to split train/test data and averaged RMSEs over ten runs.
We collected the least RMSEs for different hyperparameter
values from its predefined set (as in previous section).

Performances of the models were shown in Table 3. We
observed that, among the models for hypergraphs, sparsely
smooth models always have lower or equal RMSEs compared
to the dense model. In fact, four out of eight datasets showed
the significantly lowest RMSEs, which are all from sparse
models.This might be attributed to the fact that sparse models
are usually robust to irrelevant hyperedges and noisy nodes.
We could conclude that sparsely smooth models are general
learning tools for hypergraphs and can be used to test for
irrelevant hyperedges or noisy nodes. However, compared
to more general models such as regression trees, hypergraph-
based methods can only have higher performances in a few
cases. This is expected as the data are more suitable for
general models, not for smooth models. However, the rare
higher performance of hypergraph based methods is highly
encouraging because this result shows that smoothness
models can sometimes be better candidates for multivariate
data analysis. Using or incorporating smooth models in these
situations would be beneficial, potentially improving usual
models as well as smooth models.

7 CONCLUSION

The paper dealt with the problem of learning smooth
functions on hypergraphs in the presence of irrelevant
hyperedges and noisy nodes. We first proposed a general
framework of smooth functions that includes all previous
models. The framework could be used to derive many new
models. To address the case of noisy and irrelevant data, we
propose to incorporate sparse learning into hypergraph set-
ting. To deal with irrelevant hyperedges and noisy nodes, we
proposed sparsely smooth formulations to learn the functions
that are smooth on a small number of hyperedges/nodes. We
showed their sparse-inducing properties and analyzed their
sparse support recovery (sparsistency) results. We found that
our proposed joint selection model was able to recover the
correct sparse support while hyperedge selection model was
not. We then conducted experiments on simulated and real
data to validate their properties and performances. Sparsely
smooth models were shown to be more robust in the presence
of irrelevant hyperedges and noisy nodes. In summary, our
proposed models guaranteed both theoretical soundness and
practical effectiveness.

In this work, we could see that hypergraphs resemble
multivariate data with each hyperedge plays the role of a
feature. This is different from graph setting where edges,
involving only two nodes, are too sparse to be considered
as features. Various problems of multivariate data may
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TABLE 3: RMSEs of the four models on real data. n and m are the numbers of nodes and hyperedges, respectively. Bold font
is the lowest RMSEs among the hypergraph-based methods with 95% statistical significance using t-test. The models with
the lowest RMSEs are sparse models. For regression trees, the cases that with the lowest RMSEs among all the methods are
emphasized with italic numbers.

Dataset n m Dense Hyperedge Selection Node Selection Joint Selectection Regression Trees
HayesRoth 132 15 0.587±0.044 0.600±0.071 0.758±0.076 0.746±0.067 0.293 ± 0.014
Lenses 24 9 0.730±0.215 0.574±0.248 0.767±0.227 0.770±0.227 0.661 ± 0.040
Congress 435 48 0.373±0.011 0.473±0.012 0.444±0.010 0.306±0.034 0.209 ± 0.009
Spect 267 44 0.384±0.035 0.400±0.021 0.405±0.057 0.404±0.031 0.408 ± 0.018
TicTacToe 958 27 0.468±0.009 0.476±0.009 0.481±0.019 0.476±0.009 0.234 ± 0.017
Car 1728 21 0.692±0.043 0.462±0.026 0.748±0.043 0.740±0.044 0.219 ± 0.010
Monks 124 17 0.469±0.008 0.437±0.023 0.528±0.029 0.504±0.004 0.330 ± 0.037
Balance 625 20 0.831±0.013 0.955±0.010 0.916±0.014 0.629±0.044 0.650 ± 0.019

happen to hypergraphs as well. Not only noisy or irrelevant
variables can be handled with sparse learning, there are
many other possibilities such as variable dependency and
interaction. These are future directions of great promise.
Another lesson is that it is possible to consider multivariate
data as hypergraphs. However, it is noteworthy that learning
smooth models are meant for similarity hypergraphs only,
may not work well with multivariate data in general, as evi-
denced by the comparison with regression trees experiment.
Nevertheless, it is also possible that the usual models (such
as additive models) and smooth models may co-exist in a
single dataset that some features should be in usual models
while others should be in smooth models. Combining these
two types of models would improve both of them. This is
also a promising future direction. H. M. has been supported
in part by JST ACCEL (grant number JPMJAC1503), MEXT
Kakenhi (grant numbers 16H02868 and 19H04169), FiDiPro
by Tekes (currently Business Finland) and AIPSE program
by Academy of Finland.
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