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A B S T R A C T   

Background: Automated classification of glomerular pathological findings is potentially beneficial in establishing 
an efficient and objective diagnosis in renal pathology. While previous studies have verified the artificial in-
telligence (AI) models for the classification of global sclerosis and glomerular cell proliferation, there are several 
other glomerular pathological findings required for diagnosis, and the comprehensive models for the classifi-
cation of these major findings have not yet been reported. Whether the cooperation between these AI models and 
clinicians improves diagnostic performance also remains unknown. Here, we developed AI models to classify 
glomerular images for major findings required for pathological diagnosis and investigated whether those models 
could improve the diagnostic performance of nephrologists. 
Methods: We used a dataset of 283 kidney biopsy cases comprising 15,888 glomerular images that were anno-
tated by a total of 25 nephrologists. AI models to classify seven pathological findings: global sclerosis, segmental 
sclerosis, endocapillary proliferation, mesangial matrix accumulation, mesangial cell proliferation, crescent, and 
basement membrane structural changes, were constructed using deep learning by fine-tuning of InceptionV3 
convolutional neural network. Subsequently, we compared the agreement to truth labels between majority de-
cision among nephrologists with or without the AI model as a voter. 
Results: Our model for global sclerosis showed high performance (area under the curve: periodic acid-Schiff, 
0.986; periodic acid methenamine silver, 0.983); the models for the other findings also showed performance 
close to those of nephrologists. By adding the AI model output to majority decision among nephrologists, out of 
the 14 constructed models, the results of the majority decision showed improvement in sensitivity for 10 models 
(four of them were statistically significant) and specificity for eight models (five significant). 
Conclusion: Our study showed a proof-of-concept for the classification of multiple glomerular findings in a 
comprehensive method of deep learning and suggested its potential effectiveness in improving diagnostic ac-
curacy of clinicians.   
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1. Introduction 

Renal pathology is important for the diagnosis and management of 
patients with kidney disease. The renal survival rate tends to be better 
with histologic evaluation by renal biopsy than without renal biopsy [1], 
thus, accurate and robust diagnosis is essential for the proper manage-
ment of patients with kidney disease. On the other hands, making an 
accurate diagnosis is a time-consuming process even for experienced 
pathologists. It has been expected that automated processing to support 
this procedure will improve the efficiency of renal pathology and 
contribute to a more objective and standardized diagnosis [2], especially 
in hospitals, areas, or countries where there are an insufficient number 
of nephropathologists. A field called digital pathology, which aims to 
diagnose and quantify disease based on image data obtained by scanning 
pathological tissue specimens, has rapidly been developed. With the use 
of current state-of-the-art techniques of deep learning (DL), the artificial 
intelligence (AI) approach has made a significant progress in medical 
image analysis of retinal fundus images [3], skin images [4], and pa-
thology mainly on cancer [5]. Currently, the implementation of these 
technologies in the clinical process and their effect on healthcare 
workers are of great interest [6]. 

There are some studies trying to apply DL to renal pathology. While 
some studies have validated DL models analyzing the structures other 
than the glomeruli, such as the tubules, blood vessels, and interstitium 
[7–10], many studies have focused on the glomeruli, which present 
various histological findings essential for diagnosis. As a first step in the 
automation of this diagnostic procedure, detection of a glomerulus in a 
whole slide image (WSI) of renal tissue specimens has been recently 
attempted in many studies with the use of methods to define various 
features [11–24] or using convolutional neural networks (CNNs) [25], 
such as InceptionV3 [26], AlexNet [27], U-Net [28], R-CNN [29,30], or 
DeepLab V2 ResNet [31]. 

On the other hands, studies trying to classify pathologic findings 

from the glomerular images are still very few, and the pathological 
findings analyzed in these studies are quite limited. Barros et al. [32] 
constructed a model to classify proliferative lesions. Sheehan et al. [24] 
quantified mesangial matrix proliferation, numbers of nuclei, and 
capillary openness. Ginley et al. [31] also quantified nuclei, luminal 
space, and periodic acid-Schiff-positive component. Kannan et al. [26] 
and Marsh et al. [33] reported models to distinguish between sclerotic 
and nonsclerotic glomeruli. The pathological findings analyzed in these 
studies are quite limited, and do not cover the pathological findings 
necessary for accurate diagnosis, and there has been no study which 
enables the comprehensive evaluation of the essential pathological 
findings necessary for the diagnosis. 

In this study, we focused on seven major pathological findings 
required for pathological diagnosis: global sclerosis, segmental sclerosis, 
endocapillary proliferation, mesangial matrix accumulation, mesangial 
cell proliferation, crescent, and basement membrane structural changes, 
and developed AI models to classify these findings. In addition, we 
examined whether our AI model can cooperate with nephrologists and 
improve their diagnostic performance. Although many studies have 
compared the performance between AI and the specialists [3,4], vali-
dation of the effect of the collaboration between AI and clinicians on the 
diagnostic judgment is also important and clinically relevant. Assuming 
a situation in which a majority decision of diagnosis is taken among 
specialists at a case conference, we demonstrated that the diagnostic 
performance was improved by adding AI model as one of the specialists. 

2. Materials and methods 

2.1. Data preparation 

We used WSIs of 283 renal biopsy cases that were agreed to be used 
for research at the Kyoto University Hospital between 2012 and 2017. 
The renal biopsy samples, including the transplanted allografts, were 

Fig. 1. Examples of glomeruli with each pathological finding. 
The images show the representative glomeruli that were annotated as positive for the following findings: global sclerosis, segmental sclerosis, endocapillary pro-
liferation, basement membrane structural changes, mesangial matrix accumulation, mesangial cell proliferation, and crescent formation. 
PAS, periodic acid-Schiff; PAM, periodic acid methenamine silver 
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obtained by needle biopsy. Specimens that were stained by periodic 
acid-Schiff (PAS) and periodic acid methenamine silver (PAM) were 
used. Details of the staining and scanning of the slides are provided in 
the Supplementary Material. 

Patients provided written informed consent for the use of the spec-
imens in this research. Moreover, we posted an announcement regarding 
this research study on our department website and provided information 
on exclusion from participation in the study. The study protocol was 
approved by the Ethics Committee on Human Research of the Graduate 
School of Medicine, Kyoto University (No. R643− 2 and G562). 

2.2. Annotation of images 

Using the ImageJ software [34], two nephrologists annotated and 
recorded the positions and coordinates of the glomeruli in all the WSIs. 
Subsequently, the pathological findings in the cropped glomerular im-
ages were annotated using an original graphical user interface-based 
input system (Supplementary Figure S1). The following seven findings 
in all glomeruli were respectively evaluated as positive (+), undecidable 
(±), or negative (− ): global sclerosis, segmental sclerosis, endocapillary 
proliferation, basement membrane structural changes, mesangial matrix 
accumulation, mesangial cell proliferation, and crescent formation 
(examples in Fig. 1). In this study, basement membrane structural 
changes were defined as the presence of basement membrane thick-
ening, spike formation, bubbling appearance, or double-contoured 
basement membrane. Additionally, for all glomeruli, the quality of the 
sample was evaluated and annotated as “artifact,” which represents 

glomeruli that were not suitable for evaluation of the findings, such as 
those collapsed by external forces, not in focus, or had dust on them 
(examples in Supplementary Figure S2). 

In Japan, as the number of nephropathologists is still quite small, 
nephrologists are trained and are practicing renal pathology in most 
clinical situations. Thus, we asked nephrologists to annotate the data-
sets. The annotators were blinded to the patient information, clinical 
information, and diagnosis, because this study aimed at judging the 
findings based on the image alone. 

2.3. Train/validation dataset 

We used the images obtained between January 2012 and June 2016 
as the train/validation dataset, which was used for training and 
parameter tuning for the AI models. The train/validation dataset was 
annotated by a total of 16 nephrologists. Two nephrologists were 
randomly allocated to each case and independently conducted the 
annotation (Fig. 2a). 

Subsequently, we performed label aggregation process in order to 
determine a truth label for each image (Fig. 2a). For training the model, 
an image in the train/validation dataset was defined as positive when 
the respective labels annotated by the two nephrologists were (+) and 
(+) or (+) and (±) or as negative when the respective labels were (− ) 
and (− ) or (− ) and (±). Images that were respectively labeled as (+) and 
(− ) or (±) and (±) were excluded from the dataset. Images with artifact 
labels were also excluded. 

Fig. 2. Dataset construction and framework for training and testing of the models. 
(a) Train/validation dataset. Out of a total of 16 nephrologists, two are assigned to each case and annotated glomerular images. For each image, two labels are 
aggregated to determine a truth label (label aggregation). This dataset is used for model training, tuning hyperparameters, and its validation. (b) Test dataset. Out of 
a total of nine board-certified nephrologists, at least three are assigned to each case and annotated glomerular images. For each image, a randomly selected label is 
adopted as a truth label (label sampling). This sampling process is repeated five times, and the average performance of the model is assessed in comparison with the 
nephrologists. (c) Nephrologist–AI collective intelligence approach by majority decision. It is examined whether adding model results to decision making can improve 
the performance. We compare the agreement to truth labels between majority decision among nephrologists alone and that with the AI model as a voter. 
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2.4. Development of AI models for glomerular classification 

We constructed models to classify a glomerular image as positive or 
negative for each pathological finding in each staining (Fig. 3). We 
performed fine-tuning with InceptionV3 [35], which is widely used for 
the classification problems of other medical images [3,4], with Ten-
sorFlow [36] as the backend. The models were trained and tested 
separately for each pathological finding. The technical details are pro-
vided in the Supplementary Material. 

2.5. Test dataset 

We used the images obtained between July 2016 and June 2017 as 
the test dataset to evaluate the performances of the models (Fig. 2b). The 
test dataset was annotated by a total of nine nephrologists, who were 
different from the evaluators of the train/validation dataset and had 
been board certified by the Japanese Society of Nephrology. At least 
three of the nephrologists were assigned to each case, and annotation 
was performed independently. Specifically for relatively rare remarks, 
such as crescent formation or basement membrane structural changes, 
cases with pathological diagnosis containing such remarks were allo-
cated to a maximum of six nephrologists to attain enough numbers of 
positive labels for evaluating model performance and its comparison to 
nephrologists. 

2.6. Performance evaluation of the models and nephrologists 

The performance of the models was evaluated by the test dataset. 
The glomeruli with artifacts labels were excluded from the dataset in 
advance. We performed 5-time label sampling processes to determine a 
truth label for each image and to compare the performance between 
each nephrologist and the model (Fig. 2b). For each image in the test 
dataset, an annotated label by a randomly selected nephrologist was 
adopted as a truth label. The annotated labels by the other nephrologists 
were used to evaluate their performances. Images that were sampled as 
truth labels of undecidable (±) were excluded from the dataset within 
that sampling process. This sampling process was repeated five times, 
and the average performance of the model was calculated. The mean 
performance of each nephrologist was also calculated in the five sam-
pling results. Images that were labeled as truth by sampling were 
excluded from the calculation of the sampled nephrologist’s own 
performance. 

The trained models were evaluated by area under the curve (AUC) of 
receiver operating characteristic (ROC) curve, sensitivity (or recall, true 
positive rate), and specificity (true negative rate). The performance of 
each annotator of the test dataset was evaluated by sensitivity and 
specificity. 

2.7. Performance evaluation of the majority decision among nephrologists 
with the AI models 

We examined whether the results of our models improved the 

sensitivity and specificity of the nephrologists in classifying each 
finding. We compared the agreement to truth labels between majority 
decision among nephrologists alone and that with the AI model as a 
voter (Fig. 2c). The truth labels were sampled by the same method stated 
above. A nephrologist whose label was chosen as truth was excluded 
from the voting. In the majority decision, when the number of positive 
and negative judgments in an image was the same, the result was 
randomly decided. Outputs of the AI models were determined by the 
mean cutoff values corresponding to the best Youden’s indices. We also 
compared the performances of each individual nephrologist with and 
without the AI models. Statistical analyses were described in the Sup-
plementary Material. 

3. Results 

3.1. Patients and annotation of images 

The train/validation and test datasets included 218 and 65 cases, 
respectively. The demographics and pathological diagnoses of these 

Fig. 3. Model abstract. 
Classification of glomeruli by the fine-tuned 
InceptionV3 CNN in each finding. The model 
is trained for each of the seven findings of 
global sclerosis, segmental sclerosis, endoca-
pillary proliferation, basement membrane 
structural changes, mesangial matrix accumu-
lation, mesangial cell proliferation, and cres-
cent formation. The outputs of the models are 
the degree of a positive finding when a cropped 
glomerular image is inputted. 
CNN, convolutional neural network   

Table 1 
Baseline case characteristics of the datasets.   

Train/validation 
dataset (N = 218) 

Test dataset (N =
65) 

Sex     
Male 110 (50.5 %) 33 (50.8 %) 
Female 108 (49.5 %) 32 (49.2 %) 
Age, years     
Mean (SD) 52.1 (18.7) 50.2 (19.7) 
Median (IQR) 51 (36–69) 47 (32–68) 
Serum creatinine, mg/dL     
Mean (SD) 1.45 (1.25) 1.25 (1.14) 
Median (IQR) 1.02 (0.73–1.64) 0.96 (0.65–1.52) 
Pathological diagnosis     
IgA nephropathy 35 (16.1 %) 17 (26.2 %) 
Lupus nephritis 25 (11.5 %) 7 (10.8 %) 
Membranous nephropathy 23 (10.6 %) 3 (4.6 %) 
Mesangial proliferative 

glomerulonephritis 
23 (10.6 %) 8 (12.3 %) 

Crescentic glomerulonephritis 12 (5.5 %) 1 (1.5 %) 
Diabetic nephropathy 12 (5.5 %) 3 (4.6 %) 
ANCA-associated crescentic 

glomerulonephritis 
11 (5.0 %) 3 (4.6 %) 

Focal segmental glomerulosclerosis 11 (5.0 %) 2 (3.1 %) 
Minimal change nephrotic syndrome 11 (5.0 %) 3 (4.6 %) 
Sclerosing glomerulonephritis 11 (5.0 %) 2 (3.1 %) 
Interstitial nephritis 9 (4.1 %) 3 (4.6 %) 
Henoch-Schönlein purpura nephritis 8 (3.7 %) 1 (1.5 %) 
Anti-glomerular basement 

membrane glomerulonephritis 
4 (1.8 %) 0 (0%) 

Endocapillary proliferative 
glomerulonephritis 

3 (1.4 %) 1 (1.5 %) 

Others 20 (9.2 %) 11 (16.9 %) 

ANCA, antineutrophil cytoplasmic antibody; SD, standard deviation; IQR, 
interquartile range. 
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cases are shown in Table 1. The median numbers of annotated images by 
one nephrologist were 1625 (532–1698 [minimum, maximum]). In the 
train/validation dataset, the cropped glomerular images comprised of 
5571 images on PAS staining and 5876 images on PAM staining. After 
removing the images labeled as artifact (examples in Supplementary 
Figure S2) by at least one annotator, 4489 images on PAS staining and 
4744 images on PAM staining were used for model construction. The 
images of 3.9–21.3 % were excluded from training due to disagreement 
in the annotators. The numbers of annotated labels in each finding are 
shown in Table 2. In the test dataset, the cropped glomerular images 
comprised 2175 images on PAS staining and 2266 images on PAM 
staining. After removing the images labeled as artifact by at least one 
annotator, 1704 images on PAS staining and 1777 images on PAM 
staining were used for performance evaluation. The numbers of anno-
tated labels in each finding are shown in Table 3. 

3.2. Performance of AI models for glomerular classification 

The performances of the models for classification of each patholog-
ical finding on PAS and PAM staining are shown in Figs. 4 and 5, 
respectively. The nephrologists showed high agreement for global scle-
rosis in both staining, and the models also showed high performance, 
with an AUC of 0.98. The classification examples of global sclerosis are 
shown in Supplementary Figure S3. In the other findings, the perfor-
mance of the model ranged from an AUC of 0.59 to 0.87, with perfor-
mance variation among nephrologists. For segmental sclerosis, 
endocapillary proliferation, membrane proliferation, and crescent for-
mation, the nephrologists showed high specificity, but the sensitivity 
largely varied among them. Therefore, we evaluated the sensitivity of 
each model output based on a cutoff value that was the closest to the 

mean specificity of the nephrologists in the test dataset. The sensitivity 
of each model was lower than the average sensitivity of the nephrolo-
gists but exceeded the sensitivity of some nephrologists (Figs. 4 and 5). 

3.3. Performance of the majority decision among nephrologists with and 
without the AI 

The performance of the majority decision of with/ without the AI 
models is shown in Table 4. In the 14 constructed models, the results of 
the majority decision showed improvement in sensitivity for 10 models 
(four of them were in levels of p-values < 0.05) and specificity for 8 
models (five of them of p-values < 0.05) when the model results were 
included (Table 4). Out of 1704 PAS and 1777 PAM images in the test 
dataset, there were 1.7–30.9 % disagreement in majority decision 
among nephrologists and the AI models substantially made the final 
decision (Supplementary Table S1). When the AI output was added to 
each nephrologist’s decision, sensitivity was increased but specificity 
decreased in most of the findings (Supplementary Table S2). 

4. Discussion 

We constructed AI models to classify several pathological findings of 
glomerular images. To the best of our knowledge, this is the first study to 
verify classification models that comprehensively included as many as 
seven findings essential for renal pathological diagnosis. In the 

Table 2 
Annotated labels for the train/validation dataset.   

Positive label Negative label Excluded 

Global sclerosis       
PAS 834 (18.6 

%) 
3399 (75.7 

%) 
256 (5.7 %) 

PAM 819 (17.3 
%) 

3663 (77.2 
%) 

262 (5.5 %) 

Segmental sclerosis       
PAS 25 (0.6 %) 4240 (94.5 

%) 
224 (5.0 %) 

PAM 19 (0.4 %) 4525 (95.4 
%) 

200 (4.2 %) 

Endocapillary 
proliferation       

PAS 104 (2.3 %) 4018 (89.5 
%) 

367 (8.2 %) 

PAM 100 (2.1 %) 4258 (89.8 
%) 

386 (8.1 %) 

Basement membrane structural changes     
PAS 66 (1.5 %) 4142 (92.3 

%) 
281 (6.3 %) 

PAM 101 (2.1 %) 4211 (88.8 
%) 

432 (9.1 %) 

Mesangial matrix accumulation     
PAS 582 (13.0 

%) 
2953 (65.8 

%) 
954 (21.3 

%) 
PAM 272 (5.7 %) 3567 (75.2 

%) 
905 (19.1 

%) 
Mesangial cell proliferation     
PAS 304 (6.8 %) 3426 (76.3 

%) 
759 (16.9 

%) 
PAM 59 (1.2 %) 4219 (88.9 

%) 
466 (9.8 %) 

Crescent formation       
PAS 112 (2.5 %) 4159 (92.7 

%) 
218 (4.9 %) 

PAM 124 (2.6 %) 4435 (93.4 
%) 

185 (3.9 %) 

PAS, periodic acid-Schiff; PAM, periodic acid methenamine silver. 

Table 3 
Annotated labels for the test dataset.   

Positive label Negative label Excluded  

Global 
sclerosis       

PAS 231.8 ±
3.3 

(13.5 
%) 

1459.4 ±
6.2 

(84.8 
%) 

12.8 ±
3.5 

(0.7 
%) 

PAM 250.2 ±
6.2 

(13.9 
%) 

1516.4 ±
6.2 

(84.2 
%) 

10.4 ±
2.3 

(0.6 
%) 

Segmental 
sclerosis       

PAS 44.8 ±
5.4 

(2.6 
%) 

1651.8 ±
5.6 

(96.0 
%) 

7.4 ± 2.3 (0.4 
%) 

PAM 35.6 ±
1.8 

(2.0 
%) 

1734.6 ±
3.4 

(96.3 
%) 

6.8 ± 2.3 (0.4 
%) 

Endocapillary 
proliferation      

PAS 96.0 ±
4.9 

(5.6 
%) 

1572.2 ±
5.6 

(91.4 
%) 

35.8 ±
4.8 

(2.1 
%) 

PAM 64.2 ±
3.3 

(3.6 
%) 

1672.6 ±
6.8 

(92.8 
%) 

40.2 ±
4.1 

(2.2 
%) 

Basement membrane structural 
changes     

PAS 40.2 ±
3.8 

(2.3 
%) 

1649.2 ±
6.7 

(95.8 
%) 

14.6 ±
3.9 

(0.8 
%) 

PAM 82.0 ±
2.3 

(4.6 
%) 

1671.8 ±
4.0 

(92.8 
%) 

23.2 ±
4.1 

(1.3 
%) 

Mesangial matrix accumulation     
PAS 847.6 ±

11.5 
(49.3 
%) 

825.2 ±
11.3 

(47.9 
%) 

31.2 ±
1.3 

(1.8 
%) 

PAM 717.0 ±
11.8 

(39.8 
%) 

1033.2 ±
12.7 

(57.3 
%) 

26.8 ±
5.4 

(1.5 
%) 

Mesangial cell proliferation     
PAS 667.4 ±

19.9 
(38.8 
%) 

989.2 ±
19.3 

(57.5 
%) 

47.4 ±
2.3 

(2.8 
%) 

PAM 430.0 ±
12.7 

(23.9 
%) 

1298.8 ±
13.6 

(72.1 
%) 

48.2 ±
2.6 

(2.7 
%) 

Crescent 
formation       

PAS 44.4 ±
6.9 

(2.6 
%) 

1645.6 ±
9.1 

(95.6 
%) 

14.0 ±
4.6 

(0.8 
%) 

PAM 39.6 ±
3.0 

(2.2 
%) 

1721.4 ±
3.5 

(95.9 
%) 

16.0 ±
1.9 

(0.9 
%) 

Values are expressed as mean ± standard deviation in the five sampling itera-
tions. 
PAS, periodic acid-Schiff; PAM, periodic acid methenamine silver. 
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classification of global sclerosis, our model showed high performance, 
AUC greater than 0.98, and that was also close to the performances of 
the nephrologists. Marsh et al. [33] reported a model to distinguish 
between sclerotic and nonsclerotic glomeruli on hematoxylin and 
eosin-stained sections of a renal graft. Their model, which used cut 
glomeruli beforehand, achieved a sensitivity of 0.865 and a specificity of 
0.962 with the classification of glomerulosclerosis. Although these 
values are not comparable directly with our study because they vary 
with the cutoff of the output value from the model, the discriminative 
ability of our model was almost the same for global sclerosis (Figs. 4 and 
5). There has been no previous report comparing experts and AI models 
in the renal pathology area. Our results showed that the current 
state-of-the-art AI models was not superior to the mean of experts but 
showed higher performance than some experts in classifying global 
sclerosis glomeruli. In the other findings, our AUC values were lower 
(0.6–0.8) than the results for global sclerosis. As for these findings, 
comparison of performance is difficult due to the difference of viewpoint 
from the existing research [24,32]. However, in all the findings, 
including crescents and membranous lesions that have not been re-
ported for classification by AI, the present study showed performance 
close to nephrologists by our common method in all the findings. This 
result suggests the usefulness of DL in classifying many findings in renal 
pathology. In future studies, evaluation of the other findings, compared 
to global sclerosis, would need to focus on the specific parts of the 
glomeruli. For example, compared to an entire glomerulus, the endo-
capillary area, basement membrane, mesangial area, and extracapillary 

area are very fine structures. Moreover, there may be segmental findings 
that correspond to only a portion of the glomeruli. Therefore, perfor-
mance may be improved by tuning, such as inputting images that are 
divided finely, rather than as an entire glomerulus. Some previous 
studies [32] showed that combination of quantification techniques may 
be important for findings that clinically need to be quantified, such as 
mesangial proliferation. In automation systems that use machine 
learning in other fields, performance can be improved by ensemble 
learning [37], which combines multiple machine learning models. In 
addition to the present technique, combination with these models or 
rule-based algorithms may further improve performance. 

As an important point in our study, overall performance tended to 
improve when the output of the models was combined with the majority 
decision in nephrologists, compared to the majority decision in ne-
phrologists alone. Notably, the current CNN can automatically extract 
general features from the training data [38], but it is difficult to correctly 
predict what greatly deviates from the data. In particular, in the path-
ological images with various phenotypes, compensation for situations, 
such as unprecedented or complicated results with pathophysiological 
theory or empirical knowledge, may be necessary. It is important to pay 
careful attention to how AI models and specialists can cooperate; how-
ever, only a few studies reported on the improvement in the prediction 
with the combined decision of humans and AI [39–41], and the effec-
tiveness of a clinical decision support system that uses the AI technique 
has not been sufficiently verified [6]. In the research field on clinical 
decision support, collective intelligence approach has recently attracted 

Fig. 4. Performance of glomerular classification for seven findings on PAS staining. 
The performances of the models and nephrologists in the test dataset are shown as ROC curves and plotted points, respectively. Classification sensitivity and 
specificity are shown as mean ± SD. The cutoff points of the model outputs are determined by the nearest specificity points of the nephrologists’ mean output. 
PAS, periodic acid-Schiff; ROC, receiver operating characteristic; SD, standard deviation; AUC, area under the curve 
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Fig. 5. Performance of glomerular classification for seven findings on PAM staining. 
The performances of the models and nephrologists in the test dataset are shown as ROC curves and plotted points, respectively. Classification sensitivity and 
specificity are shown as mean ± SD. The cutoff points of the model outputs are determined by the nearest specificity points of the nephrologists’ mean output. 
PAM, periodic acid methenamine silver; ROC, receiver operating characteristic; SD, standard deviation; AUC, area under the curve 

Table 4 
Classification performance evaluation of the AI models and the majority decision among nephrologists with and without the AI models.   

Sensitivity Specificity  

AI model Nephrologists Nephrologists + AI model p-value AI model Nephrologists Nephrologists + AI model p-value 

Global sclerosis        
PAS 0.972 ± 0.005 0.919 ± 0.014 0.955 ± 0.007 0.0019 0.931 ± 0.002 0.984 ± 0.001 0.985 ± 0.002 0.75 
PAM 0.967 ± 0.008 0.910 ± 0.024 0.944 ± 0.022 0.048 0.937 ± 0.003 0.984 ± 0.003 0.982 ± 0.002 0.28 
Segmental sclerosis        
PAS 0.360 ± 0.049 0.229 ± 0.029 0.199 ± 0.044 0.24 0.831 ± 0.001 0.982 ± 0.002 0.986 ± 0.002 0.0059 
PAM 0.101 ± 0.024 0.247 ± 0.035 0.146 ± 0.021 0.0011 0.979 ± 0.001 0.987 ± 0.002 0.995 ± 0.000 0.0013 
Endocapillary proliferation        
PAS 0.577 ± 0.020 0.241 ± 0.036 0.331 ± 0.021 0.0021 0.757 ± 0.003 0.962 ± 0.006 0.955 ± 0.003 0.040 
PAM 0.406 ± 0.055 0.245 ± 0.042 0.250 ± 0.056 0.88 0.858 ± 0.003 0.978 ± 0.003 0.976 ± 0.004 0.57 
Basement membrane structural changes     
PAS 0.751 ± 0.058 0.249 ± 0.021 0.299 ± 0.033 0.024 0.746 ± 0.002 0.986 ± 0.004 0.977 ± 0.002 0.0027 
PAM 0.503 ± 0.017 0.183 ± 0.007 0.207 ± 0.020 0.050 0.791 ± 0.001 0.963 ± 0.003 0.964 ± 0.001 0.32 
Mesangial matrix accumulation       
PAS 0.574 ± 0.006 0.685 ± 0.014 0.686 ± 0.009 0.88 0.716 ± 0.003 0.653 ± 0.016 0.685 ± 0.006 0.0079 
PAM 0.465 ± 0.007 0.570 ± 0.022 0.526 ± 0.011 0.0065 0.704 ± 0.004 0.708 ± 0.012 0.729 ± 0.010 0.021 
Mesangial cell proliferation        
PAS 0.581 ± 0.011 0.638 ± 0.015 0.641 ± 0.012 0.78 0.728 ± 0.003 0.755 ± 0.011 0.764 ± 0.010 0.19 
PAM 0.378 ± 0.018 0.488 ± 0.008 0.446 ± 0.012 0.00042 0.752 ± 0.006 0.829 ± 0.011 0.863 ± 0.003 0.0013 
Crescent formation        
PAS 0.692 ± 0.029 0.375 ± 0.068 0.414 ± 0.053 0.34 0.761 ± 0.002 0.986 ± 0.003 0.984 ± 0.003 0.26 
PAM 0.651 ± 0.067 0.441 ± 0.041 0.481 ± 0.055 0.23 0.885 ± 0.002 0.989 ± 0.001 0.989 ± 0.002 0.83 

Values are expressed as mean ± standard deviation in five sampling iterations. P-values are evaluated between the majority decision among nephrologists with and 
without the AI models. 
AI, artificial intelligence; PAS, periodic acid-Schiff; PAM, periodic acid methenamine silver. 
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attention, based on the reported higher diagnostic performance by 
several specialists than by a single specialist [42,43]. Although the 
performance of our models alone was not superior to that of the ne-
phrologists, our results suggested that the use of the models for collec-
tive intelligence may improve the overall diagnostic performance in the 
clinical setting; this is a promising approach to improve the accuracy of 
team-based diagnosis. On the other hand, when an output of the AI 
models was combined with each individual nephrologist, the overall 
improvement in performances was not shown (Supplementary 
Table S2). In this setting, we had to adopt the final decision randomly in 
cases where their decisions were disagreed, which seems relatively 
different from the actual clinical situation. In future studies, it is 
necessary to examine how these models can actually change the 
decision-making or outcomes in the actual clinical setting. 

This study has some limitations. A variety of annotated labels was 
observed among the annotators. This dataset was thought to reflect the 
actual variations among nephrologists, because a total of 25 annotators 
prepared the labels; thus, it is necessary to consider a more robust 
method to correct the discrepancies between evaluators. The numbers of 
images should be increased for the findings with the small number of 
positive labels, such as segmental sclerosis, although fine-tuning method 
had been used for training with a relatively small dataset. Our dataset 
was also limited to only PAS and PAM staining. Model construction and 
verification using a larger dataset will be required in the future. Also, 
clinical information was not used this study. In renal pathological 
diagnosis, since a suspicious disease or findings that should not be 
overlooked vary depending on clinical information, future models may 
utilize it, for example, to adjust cutoff values for each finding. 

In conclusion, we developed a classification model for seven major 
findings in renal pathology and demonstrated that DL method is effec-
tive for classifying these findings. We also showed that the output of the 
model can improve the diagnostic performance of nephrologists. The use 
of these models in cooperation with nephrologists, may improve the 
diagnostic performance for renal pathology. Further study is required to 
develop models that can be used in the actual clinical setting. 
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Summary Table 
What was already known  

- Deep learning models for analyzing renal pathology have been 
developed to establish an efficient and objective diagnosis in renal 
pathology, mainly for detecting glomeruli in whole slide images.  

- Previous studies for the classification of glomerular pathological 
findings have focused on a limited number of findings, and there has 
been no study which enables the comprehensive evaluation of find-
ings necessary for the diagnosis. 

- It also remains unknown whether these models can improve diag-
nostic performance of clinicians. 

What this study added to our knowledge  

- Deep learning models can classify glomerular images for as many as 
seven major pathological findings essential for pathological 
diagnosis.  

- Cooperation between nephrologists and these models is a potentially 
useful method to improve the diagnostic performance for renal 
pathology. 
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S1. SUPPLEMENTARY METHODS 

S1.1. Preparation of whole slide images 

All renal biopsy specimens in the study period were manually stained according to the 
following protocol for clinical practice. 

Periodic acid-Schiff (PAS) staining: Formalin-fixed paraffin sections were sliced into 3 μm and 
stained by a standard procedure using reagents such as 0.5% Orthoperiodic acid, and Schiff 
reagent (Merck, Darmstadt, Germany), 0.5% sodium pyrosulfite, Meyer's hematoxylin solution. 

Periodic acid methenamine silver (PAM) staining: Formalin-fixed paraffin sections were sliced 
into 2 μm and stained by a standard procedure using reagents such as 0.5% Orthoperiodic acid, 
0.5% thiosemicarbazide, mesenamine silver solution, 4% neutral buffered formalin, 0.2% gold 
chloride aqueous solution, 2% sodium thiosulfate, and Meyer's hematoxylin solution. In the 
final hematoxylin and eosin staining process, Leica ST5010 AutoStainer XL (Leica Biosystems, 
Wetzlar, Germany) system was used. 

All renal biopsy specimens were scanned with NanoZoomer-2.0HT whole slide imager, digital 

pathology slide scanner, and the software NDP.scan 3.1.7 (Hamamatsu Photonics, Hamamatsu 

City, Japan), using ×40 lens (0.23 μm/ pixel). The quality of all the images was checked 

manually after scanning; if the slides were out of focus, new scans were performed. The image 

files of the slides were converted from NDPI to JPEG files by a custom Python script, with 

image shape dimensions ranging from 3072 to 31744 pixels in width and 5440 to 39424 pixels 

in height. 

 

S1.2. Technical details of the fine-tuned CNN models for glomerular classification 

Various parameters (i.e., learning rate 0.01, mini batch 100, and step 4000) were determined by 

a five-fold cross-validation in the train/validation dataset. Because data augmentation did not 

improve the performance, in terms of enlargement and rotation of images (data not shown), it 

was not done in the final model. We used the steepest descent method to optimize the 

parameters at learning rate of 0.01. The training batch size was 100, and the number of training 
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epoch was 4000. For training and testing of the model, a computer that was equipped with a 

graphics processing unit (GeForce GTX 1080, NVIDIA) was used. 

 

S1.3. Statistics 

Results of the sensitivity and specificity by the five-time sampling upon voting among the 

nephrologists, with and without the models, were evaluated by the Welch's t-test; p values <0.05 

were considered statistically significant. The statistical analyses were performed by the R 3.5.1 

software. 
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S2. SUPPLEMENTARY FIGURES AND TABLES 

Supplementary Figure S1. Graphical user interface-based annotation system for the 

pathological findings 

 

An original graphical user interface-based annotation system was developed using the 
FileMaker Pro 15 Advanced software (FileMaker, Inc.). The system was used in Japanese, but it 
was shown with an English translation. The following seven findings for all glomeruli were 
respectively evaluated as positive (+), undecidable (±), or negative (−): global sclerosis, 
segmental sclerosis, endocapillary proliferation, basement membrane structural changes, 
mesangial matrix accumulation, mesangial cell proliferation, and crescent formation. Each 
positive or undecidable mesangial matrix accumulation or cell proliferation was further labeled 
as severe, moderate, or mild degree. A positive or undecidable crescent formation was labeled 
as cellular, fibrocellular, or fibrous type of crescent. These labels were not used for constructing 
the models, because the total number of annotated positive labels for these findings was small. 
In addition, for all glomeruli, the quality of the sample was evaluated and annotated using the 
two items “cut” and “artifact.” Glomeruli that were separated by the biopsy needle were labeled 

Global Sclerosis

Crescent

Endocapillary Proliferation

Basement membrane structural changes

Mesangial Cell Proliferation

Segmental Sclerosis

Mesangial Matrix Accumulation

Mild / Moderate / Severe

Mild / Moderate / Severe

Cellular / Fibrocellular / Fibrous

Cut

Italics in frame for translation
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as “cut.” Glomeruli that were not suitable for evaluation of the findings, such as those collapsed 
by external forces, not in focus, or had dust on them, were labeled as “artifact.”  
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Supplementary Figure S2. Examples of glomeruli with artifact labels 

 

 

 

 

 

 

 

 

 

 

The images are examples of glomerular images annotated as artifact, such as those deformed or 
collapsed by external forces, unfocused or blurred, or had dust or colored marker on them. 
These were excluded from the datasets because they were considered to be less useful for 
diagnosis in clinical use and inappropriate for evaluation of the findings. 

 

  

Deformed by external force Unfocused or blurred Dust or marker 
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Supplementary Figure S3. Examples of correct and error classification of global sclerosis on 

PAS staining 

 

The true positive and true negative images are examples of correct classification. The false 
positive and false negative images represent errors. Notably, these images may be difficult for 
humans to judge. 

PAS, periodic acid-Schiff 
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Supplementary Table S1. Performance of the AI models for glomeruli with disagreement in 

majority decision in nephrologists 

    Number of 
disagreements in 

nephrologists 

Sensitivity Specificity 

    Nephrologists Nephrologists 
+ AI model Nephrologists Nephrologists 

+ AI model 

Global sclerosis     

 PAS 29.2 ± 1.1 (1.7%) 0.497 ± 0.140 1.000 ± 0.000 0.302 ± 0.113 0.500 ± 0.087 

 PAM 37.2 ± 5.6 (2.1%) 0.422 ± 0.179 0.902 ± 0.041 0.471 ± 0.066 0.423 ± 0.088 

Segmental sclerosis      

 PAS 58.0 ± 5.9 (3.4%) 0.463 ± 0.119 0.214 ± 0.080 0.517 ± 0.052 0.697 ± 0.050 

 PAM 45.2 ± 2.4 (2.5%) 0.475 ± 0.109 0.217 ± 0.058 0.502 ± 0.115 0.912 ± 0.019 

Endocapillary proliferation     

 PAS 108.4 ± 5.3 (6.4%) 0.499 ± 0.085 0.637 ± 0.045 0.512 ± 0.084 0.481 ± 0.014 

 PAM 70.4 ± 5.8 (4.0%) 0.557 ± 0.082 0.518 ± 0.050 0.565 ± 0.078 0.634 ± 0.036 

Basement membrane structural changes    

 PAS 34.2 ± 3.2 (2.0%) 0.500 ± 0.373 1.000 ± 0.000 0.509 ± 0.120 0.578 ± 0.026 

 PAM 109.4 ± 2.6 (6.2%) 0.590 ± 0.097 0.836 ± 0.077 0.498 ± 0.051 0.549 ± 0.004 

Mesangial matrix accumulation     

 PAS 476.6 ± 4.4 (28.0%) 0.496 ± 0.037 0.497 ± 0.015 0.494 ± 0.042 0.600 ± 0.016 

 PAM 549.6 ± 22.3 (30.9%) 0.503 ± 0.056 0.401 ± 0.018 0.497 ± 0.031 0.565 ± 0.005 

Mesangial cell proliferation    

 PAS 408.8 ± 5.1 (24.0%) 0.484 ± 0.053 0.497 ± 0.011 0.505 ± 0.039 0.544 ± 0.021 

 PAM 379.8 ± 6.7 (21.4%) 0.507 ± 0.037 0.377 ± 0.025 0.502 ± 0.042 0.679 ± 0.011 

Crescent formation      

 PAS 40.0 ± 6.3 (2.3%) 0.430 ± 0.236 0.584 ± 0.065 0.501 ± 0.060 0.458 ± 0.054 

  PAM 30.4 ± 3.0 (1.7%) 0.310 ± 0.095 0.590 ± 0.153 0.470 ± 0.085 0.608 ± 0.053 

The numbers of glomeruli in which nephrologists disagreed in majority voting and the AI 
models helped to the decision in test dataset. Values are expressed as mean ± standard deviation 
in five sampling iterations. AI, artificial intelligence; PAS, periodic acid-Schiff; PAM, periodic 
acid methenamine silver 
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Supplementary Table S2. Classification performance evaluation of each individual 

nephrologist with and without the AI models 

We compared the performances of each nephrologist with and without the AI models for the 
agreement to the truth labels. For each glomerulus, if a nephrologist and the AI model disagreed, 
the result was randomly decided.  Values are expressed as mean ± standard deviation for the all 
the combination of annotated glomeruli and nephrologists in five sampling iterations, except for 

    Sensitivity Specificity 

    Nephrologist Nephrologist 
+ AI model 

p-value Nephrologist Nephrologist 
+ AI model 

p-value 

Global sclerosis 
      

 
PAS 0.874 ± 0.009 0.930 ± 0.005 < 0.0001 0.978 ± 0.003 0.954 ± 0.003 < 0.0001 

 
PAM 0.863 ± 0.019 0.923 ± 0.019 0.0010 0.975 ± 0.005 0.952 ± 0.005 < 0.0001 

Segmental sclerosis 
     

 
PAS 0.272 ± 0.07 0.344 ± 0.087 0.19 0.972 ± 0.001 0.896 ± 0.003 < 0.0001 

 
PAM 0.261 ± 0.047 0.152 ± 0.041 0.0044 0.980 ± 0.001 0.979 ± 0.001 0.20 

Endocapillary proliferation 
     

 
PAS 0.288 ± 0.024 0.452 ± 0.030 < 0.0001 0.941 ± 0.003 0.848 ± 0.004 < 0.0001 

 
PAM 0.254 ± 0.039 0.301 ± 0.058 0.18 0.954 ± 0.002 0.903 ± 0.003 < 0.0001 

Basement membrane structural changes 
   

 
PAS 0.243 ± 0.033 0.528 ± 0.074 < 0.0001 0.966 ± 0.003 0.854 ± 0.004 < 0.0001 

 
PAM 0.229 ± 0.006 0.393 ± 0.031 0.0002 0.953 ± 0.002 0.875 ± 0.004 < 0.0001 

Mesangial matrix accumulation 
     

 
PAS 0.655 ± 0.007 0.637 ± 0.007 0.0040 0.672 ± 0.004 0.693 ± 0.005 0.00018 

 
PAM 0.547 ± 0.004 0.520 ± 0.014 0.0091 0.716 ± 0.006 0.717 ± 0.007 0.92 

Mesangial cell proliferation 
     

 
PAS 0.611 ± 0.012 0.615 ± 0.007 0.46 0.746 ± 0.007 0.743 ± 0.009 0.57 

 
PAM 0.434 ± 0.015 0.430 ± 0.019 0.69  0.814 ± 0.002 0.788 ± 0.004 < 0.0001 

Crescent formation 
     

 
PAS 0.459 ± 0.033 0.613 ± 0.040 0.0002  0.969 ± 0.005 0.860 ± 0.011 < 0.0001  

  PAM 0.484 ± 0.015 0.626 ± 0.047 0.0016  0.978 ± 0.003 0.929 ± 0.003 < 0.0001 
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the labels chosen for truth label. AI, artificial intelligence; PAS, periodic acid-Schiff; PAM, 
periodic acid methenamine silver 
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