
1. Introduction 

In synthetic rainfall generation, several 

stochastic methods are often used with Monte Carlo 

simulation in the event when recorded data is 

insufficient for effective analysis.  Such synthetic 

data can be used in design storm evaluation for 

small impoundment structures and sewer systems.  

Detailed quantile design storm events of short and 

long duration can also be used in the preliminary 

evaluation of design conditions for large flood 

control structures such as dams and levees.  The 

generation of such synthetic rainfall records is thus 

an effective decision-making aid to water resources 

engineers.  

For such purposes, several families of 

stochastic models are available such as the Poisson 

Marks Model (PMM) (Rodriguez-Iturbe et al.
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(1987)), Poisson Rectangular Pulse Models 

(PRPM) (Rodriguez-Iturbe et al. (1987)), and 

Clustered Poisson Rectangular Pulse Models 

(CPRPM) (Rodriguez-Iturbe et al. (1987) and 

Burlando and Rosso (1993)).  A model from the 

latter type was the key technique used in this study.    

All previously mentioned models were based 

on the theory of point processes (Cox and Isham, 

1980).  Under this theory, a set of probabilities can 

be mapped to random occurrences of point events, 

such as rainfall.  Both the PMM and PRPM follow 

Poisson occurrences.  Under each model, rainfall 

arrival, intensity, and duration are random variables.  

However, the PMM models rainfall with no 

possibility of overlap while the PRPM permits 

overlap of occurrences.  Applications of the 

models have appeared in the literature (see 

Burlando and Rosso (1993) for an example) with 

the shortcoming that the models developed could 

not be consistent with more than one aggregation 

time period.                             

A Clustered Poisson Rectangular Pulse 

Rainfall Model (CPRPRM) is a special point 

process in which rainfall is generated from a system 

of cell clusters of random size, and arrival time.  

Upon the arrival of each cluster, rain cells of 

random birth, intensity, and duration are generated 

to produce the total effective rainfall intensity by 

superposition.  The Neyman-Scott model (NSM) 

is a CPRPRM in which rain cells arrive subsequent 

to the arrival of a cell cluster’s origin.  It was used 

in this study due to its consistency with more than 

one aggregation level (Rodriguez-Iturbe et al., 
1987).
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Fig 1.  Schematic diagram of the Neyman-Scott Model. 
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Based on the method of moments, the NSM 

parameters were estimated by optimization.  The 

NSM equations were then supplied with random 

numbers (uniform deviates) in a Monte-Carlo 

fashion to generate synthetic rainfall data yielding 

first order and second order moments (mean, 

standard deviation, autocorrelation coefficient order 

1, etc.) similar to those of the original (historical) 

data.  These NSM synthetic records, in the form of 

rainfall depth values were then analyzed for 

quantile-based events.  The main motivation for 

this study was on the acceptability of synthetic 

quantile rainfall depths as a possible 

decision-making aid in hydrologic design in lieu of 

historical records of appropriate length.   

Unlike previous studies, the emphasis here was 

the ability of the NSM to preserve the historical 

quantile rainfall depths of 1-hour and 24-hour 

duration such that longer NSM rainfall records, 

although synthetic, can be used as reliable bases of 

quantile events in hydraulic structure design (i.e.: 

impounding structures, sewer systems, etc).  The 

historical data used in this study were obtained 

from 16 yearly records (1988 to 2003) of hourly 

and daily rainfall taken from the Kamishiiba 

Observatory in Japan.        

2. NSM Rainfall Time Series Generation Method 

Fig. 1 show the random processes involved in 

the concept of the Neyman-Scott model.  This 

model consists of essentially five probability 

distributions.  In this NSM, clusters of cells are 

linked integrally to a storm origin with mean 

occurrence rate , regarded as a Poisson process, 

where waiting times are exponential in . The 

arrivals of these clusters are shown in the first time 

line of Fig. 1.  Each storm can have a random 

number of cells described by a geometric 

distribution, as shown in the second time line. The 

arrival of each cell is based on an exponential 

distribution, as shown in the third time line.  Each 

cell has a corresponding independent identically 

distributed (iid) random intensity and duration, 

characterized by the exponential distribution, 

shown in the fourth and fifth time line, respectively.  

The total rainfall intensity is then the superposition 

of the effects of these random cell intensities, as 

shown in the sixth time line.   

Table 1.  Parameters of Neyman-Scott Model

SYMBOL NAME DISTRIBUTION 

mean arrival 

rate of a storm 

Poisson

c mean number 

of cells in a 

Geometric 

x mean intensity 

of a cell 

Exponential 

1/ mean 

displacement 

Exponential 

1/ mean cell life 

span

Exponential 

A succinct representation of the previously 

mentioned distributions can be written as: 
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where:

= mean number of occurrences

= T; T is the time period in consideration 

p[N=n] = probability that the number of clusters N 

is equal to n

ts storm arrival time

= mean arrival rate of a storm 

f(ts)  = probability that the arrival of a storm 

origin is ts

p[C=c] = probability that the number of cells of a 

storm C is equal to c
c  = mean number of cells in a storm

f(td) = probability that the arrival of a cell from 

the storm origin is td



1/ = mean displacement of a cell from the storm 

origin

f(ic) = probability that the intensity of a cell is 

equal to ic

x  = mean intensity of a cell 

f(tc) = probability that the duration of a cell’s life 

is equal to tc

1/   = mean cell life span

It is from the method of moments that the NS 

parameters can be linked to actual record data 

moments.  Such expressions include the following 

(Rodriguez-Iturbe, 1987): 
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where:

 i    = time interval counter 

 h    = integer specifying time step interval of 

data (1-hour, 24-hour, etc.) 

h
iY    = rainfall depth in the ith time of interval h 

h
iYE      = mean rainfall depth record at 

h-hours 
h

iYvar    = variance of rainfall record at 

h-hours

h
ki

h
i YY ,cov  = covariance or rainfall record at 

h-hours at lag k 

3. Parameter Estimation 

Five parameters are required in the NSM: , ,
c, x, and .  As shown previously, these 

parameters are directly connected to sample 

moments of the rainfall records in the form of 

equations (7)-(9).  Several nontrivial combinations 

of these equations are available in the literature of 

the NSM.   

Normally, these systems are solved for the 

required parameters by unconstrained minimization 

of an objective function.  Such combinations 

include those used in the studies of 

Rodriguez-Iturbe et al. (1987), Burlando and Rosso 

(1993), Cowpertwait et al. (1996), Calenda and 

Napolitano (1999), and Favre et al. (2002), to cite a 

few.  These combinations range from the most 

basic (5 equations in the objective function to solve 

for the 5 parameters are used) to the more thorough 

(more than 5 equations in the objective function to 

solve for the 5 parameters are used).  Only the 

former combinations were considered for the 

preliminary output of this study.  Thus, as of this 

writing, the determination the five parameters of 

the NS model included the following equations:  

1. hourly mean of rainfall depth ((7) cast in h 

= 1 hr) 

2. variance of hourly rainfall depth ((8) cast 

in h = 1 hr) 

3. variance of daily rainfall depth ((8) cast in 

h = 24 hrs) 

4. lag-1 covariance of hourly rainfall depth 

((9) cast in h = 1 hr, and lag k = 1) 

5. lag-1 covariance of daily rainfall depth ((9) 

cast in h = 24 hr, and lag k = 1) 

In succeeding phases of this study, it may be 

necessary to include more moments of the records 

such as variances at different levels of aggregation, 

lag-2 covariances, the probability of dry time 

intervals, and transition probabilities 

(Cowpertwait ,1996).  The expressions of these 

moments are deferred to future editions of this 

report for brevity.   



The objective function used in the estimation 

follows the form: 
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where:

iYf j  = jth NS moment equation (items 1-5 

previously mentioned) of rainfall depth Yi.

jW     = actual moment value from rainfall 

record.

This choice of the objective function was made to 

ensure that large numerical values do not dominate 

the fitting procedure (Favre et al., (2004)).  

Weight factors can also be included for each term to 

integrate precedence of the modeled moment.  For 

instance, Cowpertwait (1996) used a weight factor 

of 100 for the mean rainfall depth term of F (in (7)). 

Table 2. NSM Parameters for Kamishiiba rainfall.

c x

M
on

th

1/hr  mm/hr 1/hr 1/hr 

1 0.0112 5.20 1.208 0.708 0.168 

2

3

4

5

6

7

Not evaluated (as of this preliminary stage)

8 0.00426 16.54 0.511 6.306 0.0658

9 0.00399 50.30 3.539 1.771 0.0723

10 0.00366 8.46 3.802 0.705 0.0436

11 0.00504 19.77 1.904 1.863 0.126 

12 0.00466 2.58 2.055 0.427 0.0728

Following some stationarity assumptions 

inherent to NSM, it was necessary to obtain specific 

parameter sets of the NSM for each month.  Such 

practice is now considered standard as homogeneity 

and stationarity assumptions seem to hold only in 

periods within seasons or months rather than years 

(Cox and Isham, 1998).  The objective function 

was then minimized for each month of the 16-year 

long rainfall record of the Kamishiiba Observatory 

in Japan.  The search algorithm used was the 

Levenberg-Marquardt method, a gradient based 

method following the framework of Gauss-Newton 

method with a Jacobian estimate for the Hessian 

Matrix.  The results of the estimation are shown in 

Table 2.   

4. NSM Model Implementation 

To use the NSM parameters, a uniform deviate 

generator (random numbers within (0,1)) was 

developed from the method described in Press et al.
(1987) which made use of the Park-Miller 

“Minimal Standard” generator based on the simple 

multiplicative congruential algorithm: 

mII jj mod1                (11)

where:

= multiplier = 75 = 16,807

m      = modulus = 231 – 1 = 2,147,483,647 

mod    = modulus operator 

Ij       = previous random integer between 0 and 

m-1

Ij+1    = succeeding random integer between 0 

and m-1.

To generate the required random variables, a 

uniform deviate was used in the inverse of a 

required distribution’s CDF.  In the case of the 

exponential distribution, a continuous distribution 

for the rainfall intensity, position, and cell life, the 

solution was algebraic.  On the other hand, the 

discrete Poisson and geometric distributions were 

handled by deriving an empirical CDF.  The 

uniform deviates were then applied in a look-up 

table fashion.  Facilitating the task of generating 

uniform deviates and random variables, tallying 

rainfall intensity time series and bookkeeping 

synthetic data moments was a simple FORTRAN 

program dubbed “Rainmaker.exe”.

     Using this program, 16 synthetic rainfall 

record depths were generated for each target 



duration (1- and 24-hour).  Each record was then 

searched to obtain a sample of synthetic maxima.  

Only several sets of parameters were available as of 

this writing.  A brief analysis of these maxima 

appears in the succeeding section.   

EXPONENTIAL Q-Q Plot For January, Kamishiiba Rainfall
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Fig. 2. Deviations in historical and synthetic rainfall quantiles from Kamishiiba Obsevatory data. 

EXPONENTIAL Q-Q Plot For September, Kamishiiba Rainfall
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5. Preliminary Analysis 

5.1. Neyman-Scott Parameters 

Following the previous work of Calenda and 

Napolitano (1999), the Neyman-Scott Parameters 

obtained by the Levenberg-Marquardt method.  

Based on the mentioned study’s framework, 

applications using 1-hour and 1-day target 

durations may be regarded as applications with 

separations large enough such that any 

minimization algorithm (if it converges) would 

yield an estimate irrelevant of starting values (no 

bias).  To test this, for the month of January, a 

relatively coarse grid of the five parameters of 

NSM was constructed from a range of allowable 

values.  The centroids of these 5x5 “volumes” 

were regarded as the starting point of a search.  In 

this study, the range used was (see Napolitano and 

Calenda, (1999) is shown in Table 3.   

Dividing each range by two, a set of 32 trial 

centroids was obtained.  Not all these initial 

values yielded answers, indicating the complexity 

inherent to changing the historical components of  

the objective function (the Wj terms in equation 10).  

In cases when a solution was obtained, the solutions 

were practically indistinguishable from those of 

other centroids, indicating weak or no bias, as cited 

previously (Napolitano and Calenda, 1999).  

Table 3.  Range of NSM parameters for optimization. 

Parameter Min Max 

 (1/h) 0.001 0.050 

c 2.0 100.0 

b (1/h) 0.01 0.50 

c (mm/h) 0.30 15.0 

(1/h) 0.10 5.0 

5.2. QQ Plot Representation 

For a preliminary test of synthetic data, the 

quantile-quantile plot (QQ plot) of the historical 

and synthetic rainfall for January and September 

are shown in Fig. 2.  The vertical coordinates of 

each point is based on the maximum of each 

monthly record while the horizontal coordinates are 

the corresponding quantile of each maximum.  

The calculation of quantiles is based upon a ranking 

of each monthly maximum (from smallest to 

largest), whereby a probability of exceedance was 

assigned via the equation: 

1tot
i N

iEP
                  (12)

where:

i  = ith largest maxima of monthly record 

EPi = exceedance probability of ith largest 

maximum 

Ntot     = total number of maximums in the 

monthly record 

Under this Weibull plotting position, a larger 

maximum would receive a lower probability of 

exceedance and vice-versa.  Other plotting 

position equations are possible and may appear in 

the sequel of this report (such as Cunane’s plotting 

position).   

Upon obtaining the exceedance probability of 

each maximum, the quantile is calculated as the 

inverse of the survival function.  In this case, the 

exponential distribution’s CDF yields: 

ii EPLnQ 1                 (13) 

where:

Ln(a) = natural logarithm of a 

Qi = exponential quantile value 

For the quantile-analyzing purpose of this 

study, the advantage of using a QQ plot in general 

stems from its inherent linearity.  In the case when 

an extreme value larger than the largest maximum 

of the sample is in question, this linearity gives a 

means to quantify its quantile, and hence its 

probability of exceedance.   

Note that this QQ plot yields a linear 

least-squares fitting problem.  This indicates that 

the goodness of fit of a presumed model 

(exponential, Pareto, Weibull, etc.), can be easily 

checked visually and quantified by means of the 

linear correlation coefficient.  In sequels of this 

study, a means to include the confidence interval of 

a presumed model will be included in these QQ 

plots (possibly by block bootstrap methods).   

The hourly quantiles are quite close in 

distribution, evidenced by the apparent overlaying 

of the fitted straight line equations of the historical 

and synthetic data.  This may indicate that more 

standard tests such as the Komolgorov-Smirnoff 

Test will show that the two samples are essentially 

drawn from the same population.  Proper plots of 



Table 4. Proposed test sets for NSM parameter estimation problem. 

Test Set I Hours of aggregation to be used 

 1 6 12 24 48 

Mean      

Variance    

Covariance    

Test Set II Hours of aggregation to be used 

 1 6 12 24 48 

Mean      

Variance 

Covariance 

Dry Interval Probability    

Test Set III Hours of aggregation to be used 

 1 6 12 24 48 

Mean      

Variance 

Covariance    

Dry Interval Probability    

Test Set IV Hours of aggregation to be used 

 1 6 12 24 48 

Mean      

Variance    

Covariance 

Dry Interval Probability    

KS tests are deferred to sequels of this study.   

For preliminary purposes though, the high 

correlation coefficients of the lines of best fit for 

the synthetic and historical data suggest that the 

exponential CDF is a good candidate distribution 

for the hourly rainfall maxima.  Essentially, the 

parameters determined can yield synthetic data with 

maximum rainfall depths at 1 hour similar to the 

historical data.  It would be sensible to check 

larger records of synthetic data for acceptability as 

well (see Section 6).   

However, the lines of best fit of historical daily 

and synthetic daily maxima shows a drastic 

deviation.  It may be possible that the NSM 

parameters estimated from the previously cited set 

of equations (see Section 3) may not be appropriate 

enough for modeling the daily maxima.  In this 

case, it may be necessary to include intermediate 

moments (6-hour variance, 12-hour variance, 

6-hour covariance lag 1, 12-hour covariance lag 1, 

etc.) as well as special daily dry probabilities in the 

search for the NSM parameters.  

6. Further Considerations 

Current results indicate that the selected set of 

historical moments is inadequate to model daily 

maxima.  It is therefore a primary concern to find 

this ideal set of historical moments.  However, the 

current equations used were based primarily on 

rainfall occurrences.  The dry probability of the 

NSM will also be used in the sequel (Cowpertwait, 

1996).
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where:

PD(h) = probability that the duration h within a 

series is dry. 



Table 4 presents several tests to be used for 

further studies.  Test Set I examines the case of 

using the original test set as well as the 48-hour 

moments in modeling of the daily maxima. Only 

this test does not make use of the dry interval 

probability given by eqn. (14) and eqn. (15).  Test 

Set II modifies the original set by including the 

12-hour data and the daily dry interval probability, 

or DIP (total number of days dry over total number 

of days).  Test Set III is a variance test examining 

the possibility that due emphasis to variance, along 

with the original historical moments will yield 

better parameter estimates.  Test IV is a similarly 

themed test set focused on covariances. 
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