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Abstract

A quantum phase transition is one of the central problems with strongly correlated

materials. It has been discussed that quantum fluctuations can become significant when

the system is near a quantum critical point (QCP), a point in which a zero-temperature

transition occurs through the control of certain nonthermal parameters. It is believed

that these quantum fluctuations give rise to the non-Fermi liquid (NFL) behaviors

and are responsible for an unconventional superconductivity. Thus, understanding the

physics associated with quantum fluctuations is of primary importance.

One canonical example of such QCP is an antiferromagnetic (AFM) QCP, which

has been realized in a variety of correlated materials, including heavy fermion com-

pounds, iron-pnictides, and cuprates. Notably, near the putative AFM QCP, the fol-

lowing set of anomalous charge transport behaviors have been universally observed

and discussed in terms of NFL behaviors: (i) The resistivity ρ deviates from a typ-

ical Fermi liquid behavior (ρ ∝ T 2, where T is the temperature). Instead, it varies

as ρ ∝ T . Moreover, the T -linear scattering rate 1/τ is often found to be close to

the Planckian limit, i.e., h̄/τ = αkBT with α ∼ 1. (ii) The Hall coefficient exhibits

an anomalous temperature dependence. In addition, in certain cases, the cotangent

of the Hall angle, cotθH=ρxx/ρxy, has a simpler temperature dependent form, i.e.,

cotθH ∝ T 2. (iii) The magnetoresistance cannot be scaled using the conventional

Kohler’s rule (∆ρxx/ρxx(0) = F (H/ρxx(0)), where ∆ρxx(T,H) ≡ ρxx(T,H)− ρxx(T, 0)

and the function F (x) is related to the Fermi surface). Instead, modified Kohler’s

scaling is observed, i.e., ∆ρxx/ρxx(0) ∝ tan2θH.

In this study, we focus on another type of QCP, i.e., a QCP of a nematic order

that breaks the rotational symmetry of the underlying crystal lattice. The presence

of the nematic order in many families of unconventional superconductors has been
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extensively reported, implying the close relationship between the nematic order and

superconductivity. However, in most materials, the nematic order coexists with the

other forms of ordered phase, such as the AFM order, making it difficult to determine

the effect of nematic fluctuations under both normal and superconducting states.

From this perspective, the iron-based superconductor FeSe1−xSx is unique. The

FeSe1−xSx is a multiband compound without a magnetic order. For x = 0, a nematic

order appears at below Ts ∼ 90 K. As the sulfur doping increases, the transition tem-

perature Ts decreases, and finally reaches zero at the critical doping xc ∼ 0.17. At

approximately xc, the elastoresistance measurements reveal that nematic fluctuations

diverge toward T = 0 K, indicating the presence of a nematic QCP. In addition, the nu-

clear magnetic resonance measurements on the spin-lattice relaxation rate suggest that

the AFM fluctuations are suppressed by the S-doping and no sizable AFM fluctuations

are observed near the nematic QCP.

To investigate how the nematic fluctuations affect the transport properties, we mea-

sured the dc-resistivity, Hall effect, and magnetoresistance at various doping levels

across the nematic QCP of FeSe1−xSx. At approximately xc ∼ 0.17, we found that the

resistivity shows a linear dependence at low temperatures, and the associated scattering

rate is close to the Planckian limit. The cotangent of the Hall angle, cotθH=ρxx/ρxy,

is proportional to T 2. Moreover, the low-field magnetoresistance obeys a modified ver-

sion of Kohler’s rule. Because this set of transport behaviors are pronounced near

the nematic QCP and cannot be reproduced through a conventionally compensated

two-band model, we speculate that the critical nematic fluctuations are responsible for

the observed behaviors. It should be noted that the AFM fluctuations can also lead

to similar anomalous transport behaviors. However, different from the AFM fluctua-

tions with finite momentum qAF, the nematic fluctuations are peaked at qnem ≈ 0. It

remains an open question how the critical fluctuations with qnem ≈ 0 result in this set

of NFL behaviors. A common set of anomalous charge transport properties observed

in strongly correlated electron systems having essentially different types of critical fluc-

tuations appear to capture a universal feature of the NFL transport properties near

the QCP.
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1
Introduction

1.1 Fermi liquids

Understanding the behavior of interacting electrons at low temperature is an im-

portant subject in condensed matter physics. In 1957, Landau proposed a phenomeno-

logical theory to describe the properties of liquid 3He [1]. It was soon realized that

this theory can also be applied to the electrons in solids. It has since become our basis

for understanding metals. As one successful aspect of this theory, it explains why the

interacting electrons in conventional metals can be treated as free electrons.

The answer rests on the concept of quasiparticles [2–4]. In this theory, Landau

imagined an adiabatic evolution from a non-interacting to an interacting electron sys-

tem. He argued that there will be a one-to-one correspondence between the low-energy

excited states of non-interacting and interacting systems. Therefore, the elementary ex-

citations of an interacting system can be marked with quantum numbers (such as the

moment k) of corresponding non-interacting excitations. These low-energy elementary

excitations are called quasiparticles.

As a result of interactions between electrons, a single quasiparticle has a set of

renormalized parameters, such as the mass of a quasiparticle, which is renormalized

from the band mass to the value of m∗. In addition, excited quasiparticles can interact
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with each other, which Landau included in an effective two-particle interaction function

f(k,k
′
). Hence, the energy of a single quasiparticle is now expressed as

ϵ̃k = ϵk +
∑
k
′

f(k,k
′
)δn

k
′ . (1.1)

Here, ϵk = h̄2k2/2m∗, and δnk = nk − n0
k is the change in the distribution function

with respect to the ground state (where n0
k is the Fermi distribution function).

Eq. 1.1 can be used to calculate many different thermodynamic properties, including

the electronic specific heat Ce and Pauli susceptibility χ, which are given by

Ce =
π2N∗(EF )

3
k2BT = γeT, (1.2)

χPauli =
µ2
BN

∗(EF )

1 + F a
0

, (1.3)

respectively. Here, N∗(EF ) = m∗kF/(π
2h̄2) is the normalized density of state at the

Fermi energy, and F a
0 is a Landau parameter related to the interaction function f(k,k′

).

These expressions are similar to those for a free electron gas but have modified param-

eters that reflect the effects of the interactions.

One scaling relation can be derived from Eqs. 1.2 and 1.3, namely, the ratio of

specific heat coefficient γe to Pauli susceptibility χPauli , which is often referred to as the

Wilson ratio:

R =
χPauli
γe

π2k2B
µ0µ2

eff

=
1

1 + F a
0

. (1.4)

As seen from the formula, this ratio reflects the strength of quasiparticle interactions.

In the case of non-interacting metals, the ratio R is close to 1. By contrast, for the

correlated Fermi liquids, R can be larger than unity. For example, in heavy fermion

compounds, R ∼ 2 is widely observed.
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1.2 Quantum phase transition

Despite the success in describing many conventional metals, Fermi liquid theory

fails to apply in many strongly correlated materials. In particular, this breakdown of a

Fermi liquid description has often been observed within the vicinity of a quantum phase

transition (QPT). Therefore, the physics of such a transition have been extensively

studied [5–8].

Unlike the classical finite temperature phase transition, the QPT is a zero-temperature

transition that occurs by varying a non-thermal parameter g (e.g., pressure or chemical

doping). In this case, the ordered phase is destroyed by quantum rather than ther-

mal fluctuations. For a continuous QPT, the point where it takes place is called the

quantum critical point (QCP). Near the QCP, the critical quantum fluctuations of the

ordered parameter are expected to be large. The associated order parameter correlation

length ξ and correlation time ξτ diverge as

ξ ∝ |g − gc|−v, ξτ ∝ |g − gc|−vz, (1.5)

Figure 1.1: Phase diagram near a QCP [5].
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where v and z are the correlation length and dynamical exponent of the quantum phase

transition, respectively.

Although the QCP is located at absolute zero, its influence can extend up to a

finite temperature. Fig. 1.1 shows the typical phase diagram. The disordered phase

is divided into two regimes: ξτ > Lτ and ξτ < Lτ . Here, Lτ = h̄/kBT is the thermal

timescale, which characterizes the thermal fluctuations (i.e., thermal length along the

imaginary time axis). As ξτ diverges when approaching the QCP, it is clear that the

boundary line can have a funnel-like shape. The two separate regimes are characterized

by distinct temperature dependent behaviors. In the regime where ξτ < Lτ , the physical

quantities can be described by the ground state wave function. The metallic systems in

this region show conventional Fermi liquid behaviors. By contrast, in the regime where

ξτ > Lτ , i.e., the so-called quantum critical regime, the physical quantities exhibit

unusual power law temperature dependencies which are influenced by the QCP. For

example, in a two-dimensional system, the electronic specific heat coefficient γe shows

a divergent behavior, γe = Ce/T ∝ logT .

The problem of quantum criticality has been studied in many correlated materi-

als, including heavy fermion compounds, iron-pnictides and cuprates. Fig. 1.2 shows

several examples, most of which are related to the AFM phase. For both CeRhIn5

and BaFe2(As1−xPx)2, the NFL properties are observed near the end point of the AFM

order, indicating the development of critical AFM fluctuations near the QCP. More sig-

nificantly, the superconducting phase is stabilized when the AFM order is suppressed.

This fact suggests the unconventional superconductivity caused by the AFM fluctua-

tions.

For the cuprate superconductors, the situation is somehow different. In most phase

diagrams of hole-doped cuprates (Fig. 1.2c), the AFM phase is outside the supercon-

ducting dome. Instead, the highest Tc and NFL behaviors are often observed near the

end of the so-called pseudogap regime, which is characterized by a reduction of the

density of states (DOS). Although the origin of a pseudogap is still controversial, some

experiments have shown evidence of the rotational or time-reversal symmetries break-

ing inside this regime. These results appear to support the idea that some sort of QCP
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is present inside the superconducting dome.

Figure 1.2d shows the phase diagram of the system studied in this thesis, i.e., iron

chalcogenides FeSe1−xSx. Differing from previous examples, this system has a nematic

phase without a magnetic order at ambient pressure. By substituting with sulfur,

one can access the nematic QCP at xc ∼ 0.17. This fact promotes the interest in

investigating the physics related to the critical nematic fluctuations. In the following

sections, iron-based superconductors will be briefly reviewed. We will then discuss the

physical properties of FeSe1−xSx.
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Figure 1.2: Phase diagrams of CeRhIn5 [9], BaFe2(As1−xPx)2 [5], cuprates [10], and
FeSe1−xSx [11].
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1.3 Iron-based superconductors

The first iron-based superconductor, iron-pnictide LaFePO (T c ≈ 6 K), was reported

by Hosono’s group in 2006 [12]. However, it was the discovery of high T c in LaFeAs(O,F)

in 2008 that attracted significant interest, particularly when it was found that T c can

reach 43 K by applying pressure, and an even higher temperature (T c ≈ 56 K) by

substituting La with another lanthanoid element. Since then, this class of materials

has become a new family of high-T c superconductor.

1.3.1 Crystal structure

Figure 1.3: Crystal structures of four typical families of iron-based superconductors [13].
Here, X and R represent alkali earth and rare earth elements, respectively.

Thus far, a number of iron-based superconductors have been reported. These mate-

rials commonly contain Fe-pnictide(Pn)/chalcogenide(Ch) layers, in which the Pn or

Ch atoms sit alternatively above and below the Fe square lattice centers. Fig. 1.3 shows

four major types of iron-based superconductors, which are referred to as the 11, 111,
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122, or 1111 series based on the ratio of the constituent elements of their parent com-

pounds. The main structural difference between these families comes from the spacer

layers added between the Fe-Pn/Ch layers. For example, for 122 families, the spacer

layers consist of a single X atomic layer, whereas for 111 families, the spacer layers are

the double layers of alkali ions. Note that the 11 family has no spacer layer. Therefore,

this family is structurally the simplest among iron-based superconductors.

1.3.2 Electronic structure

The electronic structures of iron-based superconductors at low energies have been

well investigated both theoretically and experimentally. For most iron-based supercon-

ductors, the Fermi surfaces are similar. They consist of hole pockets at the BZ center

(Γ point) and electron pockets at the BZ corner (M point). The dominant orbital

characters near the Fermi energy come from the 3d orbitals of the Fe2+ ions with a 3d6

configuration. As an example, we show the electronic structure of NaFeAs predicted

by the local density approximation (LDA) calculations in Fig. 1.4. As with other iron

pnictides, the hole and electron pockets are well separated and their main orbital char-

acters are dxz, dyz, and dxy. Depending on the materials, the shape, number, and orbital

characteristics of the pockets can differ.

Figure 1.4: Electronic structures of NaFeAs calculated using LDA method [14].

One notable feature of this band structure is the quasi-nesting of the hole and

electron pockets. If the hole pockets are inverted and then shifted by a vector Q = (π, π)
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(2-Fe BZ), we expect that the hole and electron pockets will partially overlap, i.e.,

εe(khs) = −εh(khs +Q). (1.6)

This situation is called Fermi surface nesting, and Fermi surface spots satisfying such

condition are called hot spots. It has been pointed out that such nesting can enhanced

the susceptibility at wave vector Q at low temperatures. To qualitatively understand

this point, one can consider the limit of perfect nesting, in which one hole and one

electron pocket have the relation εe(k) = −εh(k +Q) = k2/2m∗. The real part of the

spin susceptibility (without interactions) can then be given by

χ′
0(q, ω = 0) =

m∗

π
log| Λ

q −Q
|, (1.7)

where Λ is the bandwidth [15]. The spin susceptibility diverges as q approaches Q.

It has been pointed out that such an enhancement of the spin susceptibility can give

rise to an AFM phase and is a candidate for providing unconventional superconducting

pairing interaction [16, 17].

Figure 1.5: a Top view of Fe-Pn/Ch plane. The 1-Fe and 2-Fe unit cells are outlined
with blue and black dotted lines, respectively. b The Fermi pockets in 1-Fe BZ. The X
point of 1-Fe BZ corresponds to the M point of 2-Fe BZ. c The Fermi pockets in 2-Fe
BZ. The green arrow indicates the nesting wave vector Q=(π,π).

Finally, we discuss two BZs frequently used when describing the electronic structure

in iron-based superconductors. Fig. 1.5a shows a top view of a common Fe-Pn/Ch layer.

9



The crystallographic unit cell will have two Fe atoms because of the two inequivalent

positions of Pn/Ch atoms. Typically, one should employ the BZ corresponding to

this 2-Fe unit cell. However, for simplicity, many theoretical calculations employ a BZ

corresponding to 1-Fe unit cell (see Fig. 1.5a). This is allowed because only Fe d states

dominate the low-energy excitations. In such a case, the BZ becomes twice as large as

the 2-Fe BZ. The reproduced Fermi surfaces are shown in Fig. 1.5.

1.3.3 Phase diagram

The iron-based superconductors show the complex interplay between various ordered

states by chemical doping or pressure. Fig. 1.6 shows the typical phase diagram for the

iron-pnictides, which includes the three most common phases, i.e., magnetic, nematic,

and superconducting phases. Most parent compounds of iron-based superconductors

have an AFM phase. Slightly above or at the AFM transition temperature TN, a

tetragonal to orthorhombic structural transition always occurs. Both phases can be

tuned by chemical doping or applying pressure. Superconductivity emerges when the

AFM and structural transitions are suppressed.

Magnetic order

For most iron-based superconductors, the magnetic structure is a stripe type, i.e.,

the spins on the Fe sites are arranged ferromagnetically along one Fe-Fe bond direction

and antiferromagnetically along the other. This AFM order has a wave vector (π,π)

in the tetragonal (2-Fe) unit cell, which coincides with the nesting wave vector Q (see

subsection 1.3.2). In itinerant electrons, the magnetic state arises from the instability

caused by this (π,π) Fermi surface nesting.

Nematic order

The electronic state associated with the structural tetragonal-to-orthorhombic tran-

sition is another interesting phase in iron-based superconductors. The results of trans-

port, angle resolved photoemission spectroscopy (ARPES), and scanning tunnelling
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Figure 1.6: a Typical phase diagram for iron-pnictides. b The crystal and magnetic
structures in each phase. Two inequivalent positions of Fe atoms are marked with
different colors. For convenience, the Ph/Ch atoms are not shown. In the orthorhom-
bic AFM order, the spins on the Fe sites are arranged ferromagnetically along the bo
direction and antiferromagnetically along the ao direction (ao > bo). Adapted from
Ref. [14].

microscopy (STM) measurements have revealed large in-plane electronic anisotropy in

an orthorhombic structure [18, 19]. This anisotropy breaks the rotational symmetry

while preserving the translation symmetry of the tetragonal crystal lattice and is thus

called an electronic nematic state. It has been argued that a small lattice distortion can-

not explain the large electronic anisotropy observed through experiments. Furthermore,

the magnetic torque measurements in a series of isoelectronic substituted BaFeAs1−xPx

samples showed evidence of electronic nematicity well above the structural transition

temperature T s [20]. These observations suggest that the structural transition in most

iron-based superconductors is actually driven by the electronic degree of freedom. This

is important because the same electron-electron correlation mechanism might also lead

to superconductivity and magnetism.

The origin of the electronic nematic order has been discussed in terms of the critical
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magnetic and orbital fluctuations [21]. In the former image, the nematic order is the

result of an unequal development of thermal spin fluctuations, which peaks unequally

at two possible stripe ordering wave vectors QX = (π, 0) and QY = (0, π) (1-Fe BZ)

within the temperature range T nem < T < TN. It has been argued that this is the

most likely scenario for iron-pnictides, where T s and TN are close to each other in the

phase diagram [22, 23]. By contrast, in an orbital-driven image, the nematic state is a

consequence of orbital ordering [24], in which the occupations of dxz and dyz orbitals

differ. This scenario has been suggested for the nematicity in FeSe [23, 25], which does

not exhibit a magnetic order at ambient pressure.

Critical fluctuation mediated superconductivity

Figure 1.7: The superconducting gap structures of a s±-wave and b s++-wave repre-
sented in 1-Fe BZ. The green and orange colors are used to emphasize that the signs of
these gaps differ.

As shown in the phase diagram, the superconductivity emerges when the AFM and

nematic order are suppressed. In addition, the maximum T c is located near the putative

AFM and nematic QCPs. These imply that the AFM and the nematic fluctuations will

have an important impact on the superconducting pairing. Indeed, most of the discussed

superconducting gap structures are related to these fluctuations. Fig. 1.7 shows two

typical examples, i.e., s± and s++ gap structures. In the case of the s± state, the spin-

fluctuations enhanced through the nesting effect provide strong repulsive interpocket
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interactions with wave vector Q = (π, π) (2-Fe BZ), leading to a gapped s± structure

with the opposite signs between the hole and electron pockets. By contrast, the s++ gap

structure arises from orbital fluctuations that are enhance by the Fe phonons. In this

case, an interpocket interaction is attractive. One important characteristic of this gap

structure is its robustness against impurities. It has been discussed that an impurity-

sensitive s± state can evolve smoothly into an s++ state as the doping concentration

increases [26].

In this context, experimentally identifying the role of the nematic and AFM fluctu-

ations is crucial to unveiling the unconventional superconductivity in iron-based super-

conductors. From this perspective, studying the nature of pure nematic fluctuations in

the FeSe1−xSx system is important.
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1.4 Physical properties of FeSe

We now turn to the parent compound of the FeSe1−xSx system, i.e., FeSe. The

nematicity in FeSe has many distinct features compared to iron-pnictides. As the most

pronounced aspect, the nematic phase in FeSe is not accompanied by the magnetic

order. Moreover, the superconductivity in FeSe shows orbital selective characteristics.

In this section, the physical properties of this interesting material are introduced.

1.4.1 Crystal structure

The high-temperature crystal structure of FeSe is shown in Fig. 1.8. It consists of

stacked Se-Fe-Se triple layers without any spacer layer between them. The unit cell

(Fig. 1.8a) contains two Fe and two Se atoms and has the tetragonal symmetry with

space group P4/nmm. The lattice constants are aT = bT = 3.77 Å < cT = 5.52 Å

at room temperature [27]. As the temperature decreases, FeSe exhibits a tetragonal-

to-orthorhombic structure (space group Cmma, a ̸= b) transition at T s ∼ 90 K. The

associated lattice distortion δ = (aOR − bOR)/(aOR + bOR) evolves continuously when

crossing T s, suggesting a second-order phase transition (Fig. 1.9a) [28]. In the or-

thorhombic phase, a larger unit cell containing 4 Fe atoms is adopted (Fig. 1.8b). The

lattice constants are aOR = 5.31 Å, bOR = 5.33 Å and cOR = 5.48 Å at 5 K [29]. Fig. 1.9b

shows an STM image of the FeSe surface measured at ∼ 0.4 K [30]. The bright spots

are the topmost Se atoms. However, because the orthorhombic distortion is too small

(δ < 0.3%), it is difficult to distinguish the structure anisotropy from the image.

One important feature associated with the tetragonal-to-orthorhombic structure

transition is the formation of twin domains. Fig. 1.9c shows the schematic atomic

structure near a boundary where the two orthorhombic domains meet (twin boundary).

As shown, one domain is rotated by π/2 when crossing the boundary. For the non-local

probes, such as the ARPES and resistivity measurements, the measured quantities are

averaged over these domains. Therefore, care must be taken when explaining these

data.
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Figure 1.8: Crystal structure of FeSe in the tetragonal phase. a Three-dimensional view
of FeSe. The tetragonal unit cell is outlined with the blue line. The lattice constants
are aT = bT = 3.77 Å < cT = 5.52 Å. b Top view of FeSe. The green dashed line
outlines the Cmma unit cell used in the orthorhombic phase. The corresponding lattice
constants are aOR = 5.31 Å, bOR = 5.33 Å and cOR = 5.48 Å at 5 K.

Figure 1.9: a The lattice distortion δ = (aOR − bOR)/(aOR + bOR) of FeSe, determined
from the X-ray diffraction data, plotted as a function of the temperature [28]. b STM
images of the FeSe surface measured at ∼ 0.4 K [30]. The bright spots represent the
Se atoms. c Crystal structure near the twin boundary.
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1.4.2 Band structure

Broadly speaking, the electronic structure of FeSe is similar to the iron-pnictides in

the following ways: (i) It consists of hole pockets at the BZ center and compensating

electron pockets at the BZ corner. (ii) The bands within the vicinity of the Fermi

level have mainly dxy,dyz and dxz orbital characters. The notable characteristics are its

extremely small Fermi surface size and Fermi energy. Compared with the density func-

tional theory (DFT) calculation, the measured Fermi surface size is much smaller, and

the band dispersion is significantly renormalized. In addition, the small Fermi energy

is often found to be on par with the other energy scales, such as the superconducting

gap, leading to many exotic states, such as the superconducting state in the Bardeen–

Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover regime [30].

In this subsection, experimental evidence regarding these electronic structure properties

is introduced.

The Fermi surface of FeSe has been demonstrated in a number of ARPES mea-

surements. Fig. 1.10a-d shows the ARPES data for the twinned FeSe [31]. In the

tetragonal phase, there are two circular hole pockets and two elliptical electron pockets.

When entering the orthorhombic phase, these pockets heavily distort. The cross-section

area of each pocket is extremely small, which equals 1%−3% of the total BZ [11, 32].

Figs. 1.10c and d show the dispersion of the electron and hole pockets along the kz-

direction, respectively. The cylinder-like kz-dependence of both pockets indicates the

quasi-two-dimensional nature of the Fermi surface. Note that the Fermi surface shown

here are averaged over two orthorhombic domains (Fig. 1.9c), leading to uncertainty

in explaining the data. Hence, ARPES measurements have also been conducted on de-

twinned samples [33–35]. As shown in Fig. 1.10e, elongated hole and electron pockets

are observed at the Γ and Y points, respectively, breaking the 4-fold symmetry. Inter-

estingly, the other electron pocket at point Y , which has been proposed to exist within

various schemes (Figs. 1.10f and 1.16d), is not detected. This is an open question at

present, and the shape of the pocket at both points Y and X also remains uncertain.

Fig. 1.10f shows one proposed Fermi surface in the nematic phase. It has been pointed
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Figure 1.10: a−d Electronic structure of twinned FeSe investigated by ARPES [37].
e ARPES data for the Fermi surface of FeSe detwinned by the external strain [35].
f One proposed Fermi surface during the nematic phase [36].

out that the peanut-like pocket at point X can be divided into two Dirac points if the

orbital splitting is large [36].

Qualitatively, the ARPES results are in agreement with the observations in the

quantum oscillations [32, 38]. Fig. 1.11 shows the field dependence of transverse mag-

netoresistance (H//c) measured at ∼ 40 mK [38]. The oscillations in the resistivity,

the so-called the Shubnikov-de Haas (SdH) effect, are observed at above 16 T. By tak-

ing the fast Fourier transformation (FFT), four characteristic frequencies at below 1

kT are identified, as shown in Fig. 1.11. The extremal cross-section areas A of the

Fermi surface, which are related to the frequencies F by the so-called Onsager relation

F = (h̄/2πe)A, are estimated to equal only 0.2−2.3% of the BZ. The FFT spectrum

for different field angles are also plotted in Fig. 1.11b. As expected from the quasi-two-

dimensional Fermi surface, the characteristic peak positions are weakly angle dependent.

In addition, in Ref. [38], the Fermi energies EF have also been estimated. This can be

achieved by using the formula EF = h̄2k2F/2m
∗ = h̄2A/2πm∗, where the effective mass
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Figure 1.11: SdH oscillations observed in twinned FeSe [38]. a Field dependence of
transverse magnetoresistance. b FFT spectrum of SdH oscillations for different field
angles.

m∗ is determined from the temperature dependence of the oscillation amplitude. The

Fermi energies obtained are 3.6−18 meV, which are much smaller than that of 103 ∼ 104

meV in normal metals.

Quasiparticle interference (QPI) measured by STM provides another way to detect

the underlying band structure. The QPI patterns are the electronic standing waves

induced by defects or impurities. The scattering wave vector q determined from the

QPI pattern connects two quasiparticle states that have the same energies, allowing

us to infer the information about the electronic structure. Fig. 1.12b and c show the

energy dispersion of the Fourier-transformed QPI patterns along the crystallographic

directions b and a, respectively [30]. The magnetic field of 12 T is applied to suppress

the superconductivity. The observed hole-like dispersion in Fig. 1.12b and electron-like

dispersion in Fig. 1.12c can be ascribed to the intrapocket scattering (Fig. 1.12a) in the

hole and electron pockets, respectively. In such case, the Fermi energy of the hole and

electron pocket can be estimated from the top of the hole branches and the bottom of

the electron branches. The estimated values are ϵhF ∼ 10 meV for the hole pocket and

ϵeF ∼ 2− 3 meV for the electron pocket, in agreement with the SdH results.
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Figure 1.12: a Fermi surface of FeSe proposed by QPI. b,c QPI dispersions taken at 12
T along qb and qa directions, respectively. Peak positions of the representative branches
are fitted with a quadratic function to obtain Fermi energies (red lines). Adapted from
Ref. [30].

1.4.3 Electronic nematic order

As described above, in FeSe, the structural transition at T s is accompanied by elec-

tronic structure anisotropy. A natural question is whether the transition is driven by

the electronic or lattice degree of freedom. Similar to the iron-pnictides, the electron-

ically driven scenario is preferred. One important experimental piece of evidence is

from the elastoresistance measurements [39–42]. In this experiment, the nematic sus-

ceptibility χnem is understood to be proportional to the derivative of the resistivity

anisotropy ψ = (ρa − ρb)/(ρa + ρb) with respect to the lattice strain ϵ, i.e., χnem ∝

dψ/dϵ. Here, ρa and ρb represent the resistivity along the a and b orthorhombic crystal

axes, respectively. As shown in Fig. 1.13a and b, upon cooling toward T s, the ne-

matic susceptibility of FeSe shows a Curis-Weiss temperature dependence and diverges.

The arguments based on the phenomenological Ginzburg-Landau model show that the

quantity dψ/dϵ can diverge as 1/T only in the case of electronically driven transition,

and otherwise remains a constant [43]. Therefore, the 1/T divergent behavior observed

in FeSe suggests the electronic origin of the transition.

Furthermore, in the orthorhombic phase, orbital-dependent band shifts have been

observed through ARPES measurements and discussed in terms of orbital ordering.
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Fig. 1.13c shows the change in energy dispersion curves (EDCs) at point M with tem-

perature [44]. Upon cooling to below T s ∼ 90 K, the degeneracy between the dxz and

dyz orbital bands is lifted, manifested as the splitting of the peaks in the EDCs (marked

by orange). At the lowest temperature, the magnitude of the splitting is ∼ 50 meV.

It has been argued that this dxz/dyz energy splitting value is much larger than the

one predicted by the DFT calculation (∼ 10 meV), indicating the orbital origin of the

structure transition.

Figure 1.13: a Temperature dependence of the nematic susceptibility χnem for FeSe.
The blue line is the fit to the Curie-Weiss formula. b Curie-Weiss plot of the same data
shown in a. c Temperature evolution of EDCs at twinned point M measured using
ARPES. Adapted from Refs. [39, 44].
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1.4.4 Magnetic properties

a b

Figure 1.14: a Spin-lattice relaxation rate divided by temperature, 1/T 1T , of FeSe
plotted as a function of temperature T , measured using NMR at ambient pressure [25].
Here, l1 and l2 represent two splits of the 77Se line in H ∥ a, whereas l3 is the 77Se
line in the H ∥ c configuration. The inset shows the same plot in a low-temperature
regime. b The phase diagram of FeSe under pressure. Different types of the pressure
cells (PCC, clamp type CAC, and constant loading CAC) are used [45]. The nematic
(T s), magnetic (Tm), and superconducting (T c) transition temperatures are determined
from the resistivity data ρ(T ).

Unlike other iron-based superconductors, the FeSe shows no magnetic order in the

nematic phase at ambient pressure. Despite this point, it has been found that the FeSe

is still closely related to magnetism.

Fig. 1.14a shows the 1/T 1T of 77Se in FeSe measured through nuclear magnetic

resonance (NMR), where 1/T 1 is the spin-lattice relaxation rate [25]. Upon cooling

below T s ∼ 90 K, the 1/T 1T gradually increases and reaches the peak at T c. Given

that 1/T 1T is related to the imaginary part of the dynamical susceptibility χ
′′
(q, ω0)

by 1/T 1T ∝
∑

q |A(q)|2χ
′′
(q, ω0)/ω0 (where |A(q)|2 is hyperfine-coupling constant), the

unusual enhancement at low temperature is attributed to the growing contribution from

the spin fluctuations. This observation indicates that the superconducting FeSe is close

to the magnetic instability. Similar results have also been reported in FeSe powders [46].

Notably, the spin fluctuations are weak near T s, suggesting that the driving force of the
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nematic transition is non-magnetic.

In addition, it was established that the magnetic order can be induced by pressure.

Fig. 1.14b shows the temperature-pressure phase diagram of FeSe obtained from the

resistivity measurements [45]. The magnetic order, which is possibly a spin density

wave (SDW), is onset at ∼ 1.8 GPa and shows a dome-shaped pressure dependence.

The generation of the magnetic order at low pressure supports the argument that the

FeSe is nearly magnetic. Notably, near or at the boundaries of the magnetic phase,

the pressure profile of T c shows local maximums, indicating the intimate correlation

between the superconductivity and the magnetism under pressure.

1.4.5 Superconducting gap

The FeSe exhibits a superconducting transition at T c ∼ 9 K. To unveil the nature of

this superconductivity, it is essential to identify its superconducting gap structure. The

measurements that are sensitive the low-energy quasiparticle DOS, such as the thermal

conductivity and STM, are important tools used to study this issue.

It has been established that the superconducting gap structure in FeSe is extremely

anisotropic [30, 47, 48]. Fig. 1.15a shows the thermal conductivity measurements from

our group [30]. The residual linear term κ0/T ≡ κ/T (T → 0) in the thermal conduc-

tivity, which is coupled to the zero-energy quasiparticles, shows a finite value (inset of

Fig. 1.15a). This indicates the presence of a finite residual DOS at zero energy, which

is typical for the nodal superconductors [49]. The same conclusion has also be obtained

from scanning tunneling spectroscopy (STS) studies on the clean thin film and bulk

samples [30, 47, 48]. In these experiments, the dI/dV spectrum, which is proportional

to the local DOS, has a V-shaped profile (Fig. 1.15b). By contrast, the results against

the nodes have been reported [50–52]. Fig. 1.16a and b show the thermal conductivity

measurements reported by Bourgeois-Hope et al. [50]. In contrast to Fig. 1.15a, their

residual κ0/T is negligibly small (Fig. 1.16a), suggesting the absence of a gap node. This

result is further confirmed by its exponential field dependence at below B∗ (Fig. 1.16b).

Moreover, κ0/T increases rapidly at above B∗, indicating the presence of a small gap

22



Figure 1.15: Experimental evidence for the node gap structure of FeSe [30]. a Tempera-
ture dependence of κ/T . Inset: the same plot in a low-temperature regime. b Tunneling
spectroscopy measured at 0.4 K. The arrows indicate the superconducting gaps.

minimum (see section 1.5.4). Although no consensus has been reached on the presence

or absence of the gap nodes, these studies agree that the superconducting gap structure

of FeSe is extremely anisotropy. The disagreement between these studies might indicate

that the gap nodes in FeSe are not protected by the symmetry and are thus sensitive

to the amounts of the defects or twin boundaries. Indeed, near the twin boundaries,

where the time reversal symmetry is broken, the suppression of the superconducting

gap was observed through the STM measurement [53].

The momentum dependent gap structures of FeSe have been deduced from the

Bogoliubov QPI patterns [51]. As shown in Fig. 1.16c and d, the gap structure on

the hole band (labeled as α-band) and one of the electron bands (labeled as δ-band)

have been detected and exhibit a two-fold symmetric anisotropy. By comparing the gap

magnitude with the orbital weight of the calculated band structure (Fig. 1.16d), it was

found that the gap maximums and minimums are located at the Fermi surface parts

dominated by the dyz and dxz/dxy orbital characteristics, respectively. This provides
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evidence for the orbital selectivity pairing mechanism in FeSe. Moreover, these two

gaps have different signs, suggesting a s± superconducting state. Notably, no gap have

been assigned to the Y point. This fact is consistent with the failure of detection of

one electron pocket in ARPES measurements.

Figure 1.16: Node-less gap structure of FeSe revealed through thermal conductivity and
STM measurements [50, 51]. a The thermal conductivity divided by temperature, κ/T ,
plotted as a function of T 2 at several magnetic fields. The black lines are linear fits. b
Field dependence of the residual term in thermal conductivity, κ0/T . Here, B∗ marks a
kink in the curve. c The gap structures inferred from Bogoliubov QPI. d Fermi surface
of FeSe proposed by STM.
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1.5 FeSe1−xSx

Having reviewed the basic properties of FeSe, we now turn our attention to the

isoelectronic S-substituted effect in FeSe. The FeSe1−xSx system is thought to have

a nonmagnetic nematic QCP, providing a unique platform to study the effect of pure

nematic fluctuations under both normal and superconducting states. In this section,

we briefly introduce some experiment findings related to this nematic QCP.

1.5.1 Phase diagram and nematic QCP

Fig. 1.17a shows the phase diagram of FeSe1−xSx [39]. As the S concentration

increases, the nematic transition temperature T s gradually decreases and becomes zero

at xc ∼ 0.17. In contrast to the pressure effect (Fig. 1.14b), no magnetic order is

induced by S substitution. These facts make FeSe1−xSx a candidate system that harbors

a nonmagnetic nematic QCP.

Indeed, a strong enhancement of the nematic susceptibility as concentration S ap-

proaches xc ∼ 0.17 has been reported. The colors in Fig. 1.17a represent the magnitude

of χnem measured based on the resistivity anisotropy (see section 1.4.3). It can be seen

that χnem(T ) in the nematic regime of FeSe1−xSx strongly increases upon cooling. In

fact, these data can be fitted with the Curie-Weiss formula: χnem(T ) = λ/a(T−Tθ)+χ0

(Fig. 1.17b). The obtained Weiss temperature Tθ is also plotted in Fig 1.17a. Note that

Tθ is interpreted herein as the nematic transition temperature decoupled from the lat-

tice. Upon doping, Tθ is suppressed to zero at xc ∼ 0.17, implying that the nematic

fluctuations continuously increase to 0 K. Moreover, when approaching xc, the magni-

tude of χnem shows a strong enhancement (Fig. 1.17a). These observations suggest the

existence of the nematic QCP at xc ∼ 0.17.

Another noticeable point in this phase diagram is the evolution of the supercon-

ducting transition temperature T c with S doping. Upon doping, T c first shows a slight

enhancement and then gradually decreases as x > 0.08. In contrast to the case of AFM

QCP (see section 1.3.3), T c is not peaked at this nematic QCP. Instead, it slightly
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Figure 1.17: a Phase diagram of FeSe1−xSx. Colors in the tetragonal regime represent
the magnitude of the nematic susceptibility χnem. The Weiss temperature Tθ is ob-
tained by fitting χnem(T ) curves to the Curie–Weiss formula. The nematic transition
T s and superconducting transition temperature T c are determined from the resistivity
data. b Upper panel: Temperature dependence of χnem for x = 0.17. Bottom panel:
Temperature dependence of 1/(χnem − χ0) for x = 0.17. According to the Curie-Weiss
formula, 1/(χnem − χ0) is proportional to T − Tθ. The red lines are the fits to Curie-
Weiss formula. The grey shaded regions mark the deviations of the data from the fit.
Such deviations might arise from the impurities. Adapted from Ref. [39].
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decreases from ∼ 8 K to ∼ 5 K when crossing xc [54]. Interestingly, as shown in sec-

tion 1.5.4, the superconducting gap structure changes dramatically when crossing the

nematic QCP.

1.5.2 Fermi surface

Figure 1.18: Electronic structure of FeSe1−xSx detected by QPI [55]. a Schematic image
of the proposed three-dimensional Fermi surface. qh1, qh2, and qe are the wave vectors
extracted from QPI imaging. b S content dependence of Fermi wave vectors. c S
content dependence of the Fermi velocities. The dotted lines are eye guides.

The electronic structure of FeSe1−xSx have been detected using the QPI tech-

nique [55]. The results are summarized in Fig. 1.18. Here, qh1 and qh2 are the wave

vectors obtained from the Fourier transform of the QPI imaging and are interpreted

as the results of the backscattering (scattering from k to −k state) in the outer three-

dimensional hole pocket (Fig. 1.18a). Under this scenario, qh1/2 and qh2/2 can be

identified as the Fermi wave vectors from the hole pocket at kz = π/c and 0, respec-

tively. The S content dependence of these two Fermi wave vectors and their Fermi

velocities are shown in Fig. 1.18b and c, respectively. Both Fermi wave vectors increase

with an increase in the concentration of S, indicating an increasing Fermi surface size.

Note that qh1/2 disappears for x > 0.14. This might indicate that the kz dependence

of the hole pocket becomes weaker with a higher S content. Importantly, the qh2/2 and

its Fermi velocity change continuously when crossing the nematic QCP.

The SdH measurements also show the electronic structure of FeSe1−xSx [55]. Fig. 1.19a

shows the S content dependence of the oscillation frequencies F . For most of the ob-
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Figure 1.19: Electronic structure of FeSe1−xSx detected by SdH measurements [56]. a
Evolution of the observed oscillation frequencies with S concentration. b S content
dependence of the estimated effective mass. The δ orbit is assigned to the outer hole
pocket. The blue dotted line indicates the location of the nematic QCP.

served branches, the frequencies increase with increasing concentrations in S, indicating

the expansion of the Fermi surface sizes. This trend continues when crossing the nematic

QCP, suggesting the change of the Fermi surface without reconstruction. Fig. 1.19b

shows the doping evolution of the effective mass m∗. Interestingly, the effective mass of

the δ branch, which is assigned to the outer hole pocket, does not change dramatically

near the QCP. This behavior is quite different from the situation near AFM QCP,

where the strong enhancement of the quasiparticle masses are observed.

To summarize, the above experiments reveal that the Fermi surface evolves smoothly

when crossing the nematic QCP.

1.5.3 AFM fluctuations

As discussed in section 1.4.4, the AFM fluctuations are still important in pure FeSe.

This makes it difficult to determine the effect of solely nematic fluctuations. Fortunately,

as will be shown below, the S substitution can suppress the AFM fluctuations.

Fig. 1.20 shows the phase diagram of FeSe1−xSx obtained from 77Se NMR measure-

ments [57]. The (1/T1T )AFM is the contribution of AFM fluctuations to the 1/T1T . For
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Figure 1.20: Phase diagram of FeSe1−xSx obtained from 77Se NMR measurements [57].
The (1/T1T )AFM is the AFM fluctuation term of 1/T1T . The values of T s and T c are
determined from the resistivity. The AFM fluctuations are suppressed near the nematic
QCP.

Figure 1.21: Evolution of the pressure-temperature phase diagram of FeSe with S dop-
ing [58]. The nematic (T s), magnetic (Tm), and superconducting (T c) transition tem-
peratures are determined from the resistivity data.
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the samples with a low S concentration (x < 0.1), a notable increase of (1/T1T )AFM

at low temperatures is found and is attributed to an enhancement of the AFM fluc-

tuations. Inside the nematic phase, the enhancement of the AFM fluctuations tracks

that of T c, suggesting the important role of AFM fluctuations in the superconductivity.

However, for x ≥ 0.17, the low-temperature enhancement is much weaker, indicating

the suppression of AFM fluctuations at near the nematic QCP.

Fig. 1.21 shows a temperature-pressure-concentration phase diagram of FeSe1−xSx

obtained from high-pressure resistivity measurements [58]. The nematic (T s), magnetic

(Tm) and superconducting (T c) transition temperatures are determined by the kink

anomalies in the resistivity. In pure FeSe, the SDW phase is onset at a relatively

low pressure and exists within a certain pressure range. With an increase in the S

concentration, the SDW onset pressure goes toward a higher value and the pressure

range where it occurs becomes narrower. Eventually, at x = 0.17, the magnetic phase

is found only at ∼ 5.0 GPa, suggesting that the sample is near the end of the pressure-

induced magnetic order. These observations indicate that the FeSe1−xSx system is

driven away from the magnetic instability through S-doping.

Therefore, combined with the observation of large nematic fluctuations at around

xc, we can state that the FeSe1−xSx system is a good platform for studying the effect

of pure nematic fluctuations under both normal and superconducting states.

1.5.4 Superconducting state

The superconducting gap structure of FeSe1−xSx has been revealed through field-

dependence studies of thermal conductivity κ. In the presence of a magnetic field,

the quasiparticle energy spectrum will shift as E(k) → E(k) − h̄k · vs (where vs

is supercurrent velocity around the vortex) owing to the Doppler effect [49, 59]. As a

result, the quasiparticle DOS can change significantly if the line nodes exist. It has been

pointed out that, for a line node with linear energy dependent DOS, i.e., N(E) ∝ E,

N(H) can change as H1/2, leading to the H1/2 dependent κ/T . However, for the s-

wave gap structure, the κ/T changes exponentially with the field when the Doppler
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Figure 1.22: Thermal conductivity measurements for a series of FeSe1−xSx [11]. The
field direction is parallel to the c-axis.

shift is smaller than the gap amplitude. Fig. 1.22 shows the field dependence of κ/T

for FeSe1−xSx [11]. For the nematic samples (x = 0.08, 0.13, and0.16), κ/T increases

as H1/2 up to a certain field H∗ (below Hc2) and then follows a much weaker field

dependence. The initial rapid increase of κ/T with the field indicates the presence of

the gap node or deep gap minimum. In addition, the shoulder at field H∗ has been

attributed to the suppression of the smaller gap at a certain Fermi surface, suggesting a

multigap characteristic. However, for the tetragonal sample (x = 0.2), such a multigap

behavior is not observed, i.e., κ/T shows H 1
2 dependence at up to Hc2. These results

suggest a dramatic gap structure change at the nematic QCP.

The above finding is consistent with the STM measurements. Fig. 1.23a shows

the STS measurements of FeSe1−xSx for various S concentrations [55]. The tunneling

spectrum, which is proportional to the local DOS, has a V-shaped profile near the zero

bias for all measured samples. This indicates the presence of the superconducting nodes

in FeSe1−xSx [48]. The peak features in the spectrum indicate the superconducting gap.

To resolve more gap features, the authors take the second energy derivative of each

tunneling spectrum. Note that the dip in the second derivative curve corresponds to

the peak of the original value. As shown in Fig. 1.23b, several gaps have been resolved.

These gaps change little in the nematic samples. However, when crossing the nematic
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QCP (xc ∼ 0.17), the gap features change dramatically, indicating a superconducting

phase transition at the nematic QCP. Notably, the gap size is also reduced for x > 0.17.

This is consistent with the suppression of T c in the tetragonal samples [54].

Figure 1.23: STS measurements for a series of FeSe1−xSx [55]. a Tunneling spectrum
of FeSe1−xSx. The green bars mark the main peaks. b The second derivative of the
tunneling spectra with respect to the sample bias.

1.5.5 Transport properties

Although the Fermi surface changes smoothly when crossing the nematic QCP in

FeSe1−xSx, the nematic QCP can have a significant impact on the transport proper-

ties [60–62]. Fig. 1.24a shows the low-temperature resistivity for x = 0.16 [60]. In

a high field (35 T) parallel to the ab plane, the T -linear resistivity is observed down

to the extremely low temperature. In the conventional Fermi-liquid theory, the resis-

tivity is quadratic temperature dependent. Thus, the T -linear resistivity is a typical

NFL behavior. Fig. 1.24b shows the phase diagram of FeSe1−xSx based on such high

field results for various values of x. For the samples away from the nematic QCP, the

resistivity deviates from the T -linear dependence when decreasing the temperature to

below T 1 and changes to the a strictly T 2 dependence at below T 2. The doping profiles
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of both T 1 and T 2 have a funnel centered at xc ∼ 0.16, similar to the typical QCP

phase diagram shown in Fig. 1.1, indicating that the nematic fluctuations extend up to

a finite temperature. These results suggest that the critical fluctuations of the nematic

order can indeed give rise to the NFL behavior.

Figure 1.24: a Low temperature resistivity of FeSe0.84S0.16 measured at 0 and 35 T. The
field is applied parallel to the ab plane. b Phase diagram of FeSe1−xSx obtained from
the high field resistivity measurements. Adapted from Ref. [60].
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1.6 Purpose and organization of this study

As discussed above, quantum fluctuations emanating from a QCP are often consid-

ered a possible source for the unconventional superconductivity and NFL behaviors [63,

64]. Therefore, understanding the physics associated with quantum fluctuations is of

primary importance. Looking at the specific case of iron-based superconductors, two

putative QCPs are often found near the superconductivity (Fig. 1.6), i.e., the AFM

and nematic QCP. It has been discussed that spin fluctuations can lead to a s± su-

perconducting state, whereas the orbital fluctuations prefer s++ superconductivity. In

this context, experimentally identifying the role of the nematic and AFM fluctuations

is crucial to revealing an unconventional superconductivity.

In section 1.5, we demonstrated that the iron-based superconductor FeSe1−xSx,

which has a nematic QCP without sizeable spin fluctuations, is particularly suitable

to studying the nature of critical nematic fluctuations. In addition, recent transport

measurements indicated a critical fan-like region of T -linear resistivity in a temperature-

doping phase diagram (Fig. 1.24), indicating the influence of the nematic fluctuations

on normal transport properties. Because FeSe1−xSx is a multi-band system, it is impor-

tant to find other evidence of NFL behaviors during charge transport. For this reason,

we conducted systematic measurements of the resistivity, Hall effect, and magnetore-

sistance across the nematic QCP of FeSe1−xSx at low fields.

The remainder of this thesis is organized as follows. In Chapter 2, we provide a back-

ground on a Fermi liquid and NFL behaviors during charge transport. In Chapter 3,

we describe some experimental details, including the crystal growth and characteri-

zation, as well as the transport techniques. In Chapter 4, we discuss our transport

measurements on FeSe1−xSx. Finally, we conclude this study in Chapter 5.
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2
Non-Fermi liquid behavior in trans-
port properties

2.1 Boltzmann transport theory

In this section, we introduce a theoretical treatment for the electrical transport phe-

nomenon, i.e., the Boltzmann transport theory [65]. This semiclassical theory, which

describes how to determine the distribution function f(r,k, t) in a steady state, re-

mains one of most important and straightforward theories in explaining the transport

properties in solids.

Let us start from the semiclassical equation for the motion of the carriers in the

presence of the electrical and magnetic fields E and B, which is given by

h̄
dk

dt
= −e(E + vk ×B), (2.1)

where vk = ∂εk/∂k is the carrier velocity (where εk is the band dispersion). With this

equation, we expect that f(r,k, t) can change as

∂f(r,k, t)

∂t
|field = − e

h̄
(E + vk ×B) · ∂f(r,k, t)

∂k
. (2.2)

35



However, in a steady state, f(r,k, t) should not vary over time. Here, we consider that

the effect of scattering balances that of the external fields. Thus,

∂f(r,k, t)

∂t
|field +

∂f(r,k, t)

∂t
|scatt = 0. (2.3)

The scattering term in Eq. 2.3 is complex and involves various scattering mechanisms,

such as the electron-phonon and inelastic electron-electron interactions. A simple

method used to model this term is the relaxation time approximation.

Within the relaxation time approximation, the change in function f(r,k, t) is as-

sumed to be
∂f(r,k, t)

∂t
|scatt = −g(r, k, t)

τ
(2.4)

Here, g(r, k, t) = f(r, k, t) − f 0(r, k, t). In addition, f 0(r, k, t) is the equilibrium dis-

tribution function. Moreover, τ is called the scattering time, which can be understood

as the time required to return to the equilibrium when the external field is suddenly

turned off. Indeed, it can be shown that in such a case g(r, k, t) decays as

g(r, k, t) = g(r, k, 0)−t/τ . (2.5)

By substituting Eqs. 2.2 and 2.4 into Eq. 2.3, and ignoring the higher order terms, we

can obtain

g(r, k, t)
τ

+
e

h̄
(vk ×B) · ∂g(r,k, t)

∂k
= [−∂f

0(r,k, t)

∂ε
]eE · vk. (2.6)

Having known this linearized Boltzmann equation, we can calculate the conductivity

J through the following formula:

J =
1

4π3

∫
evkg(r, k, t)d3k. (2.7)

For example, for an isotropic Fermi surface, the zero magnetic field conductivity is
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expressed as follows:

σ =
ne2τ

m∗ , (2.8)

where n is the carrier numbers. This formula is consistent with the result derived from

the Drude model. Although this is based on a relatively simple assumption, Eq. 2.8

provides a useful starting point to understand the conductivity.

2.2 Transport properties in Fermi liquid

To understand the NFL behaviors that arise from the critical fluctuations, it is

necessary to know the conventional Fermi liquid behaviors. In this section, we focus

on three fundamental charge transport coefficients, i.e., the resistivity, Hall coefficient,

and magnetoresistance, which are described well within the image of the Fermi liquid.

Resistivity

In a Fermi liquid, the resistivity that is dominated by the inelastic electron-electron

scattering is expected to vary as

ρ = ρ0 + AT 2, (2.9)

where ρ0 is the residual resistivity owing to the scattering from impurities and defects.

The coefficient A reflects the strength of the electron-electron interactions. In a two-

dimensional isotropic model, A can be expressed as

A =
8π3ack2B
e2h̄3

m∗2

k3F
, (2.10)

where a and c are the lattice constants [66]. This T 2 resistivity has indeed been ob-

served in many correlated materials, such as the high-Tc cuprates and heavy fermion

compounds. Notably, in weakly correlated metals, A is usually too small to be ob-

served. Instead, the low temperature resistivity is dominated by the electron-phonon

interaction and exhibits T 5 temperature dependence.
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A simple but non-rigorous way to better understand the effect of the electron-

electron scattering mechanism on the resistivity is as follows [66–70]: At finite tem-

perature T , the scattering electrons are restricted to the energy ∼ kBT of the Fermi

surface. Therefore, the available number of initial states, as well as the final states, of

the scattering will be on the order of ∼ N(EF )kBT . Because the scattering probability

is proportional to the numbers of both the initial and final states, the scattering rate

1/τ will vary as ∼ (N(EF )kBT )
2. Thus, a T -square resistivity is expected.

Hall coefficient

The Hall effect appears when the magnetic field H is applied perpendicular to the

electrical current I. It gives the information on the Fermi surface topology and carrier

density. In an isotropic one-band model, the Hall coefficient RH is expressed as follows:

RH ≡ ρxy
H

=
1

ne
, (2.11)

where n is the carrier number. As shown, RH depends only on the carrier numbers and

does not change with temperature. Considering that σ = ne2τ/m∗ (Eq. 2.8), we have

the following:

cotθH =
m∗

eB

1

τ
=

1

ωcτ
, (2.12)

where ωc is the frequency at which the magnetic field causes the electrons to sweep

across the Fermi surface. It can be seen that the resistivity and Hall angle are governed

by a single scattering time.

The situation becomes complex when multiple bands are involved. For simplicity,

we consider the case for the two-band model [71]. The RH is given by the following:

RH =
(σ2

hRh + σ2
eRe) + σ2

hσ
2
eRhRe(Rh +Re)H

2

(σh + σe)2 + σ2
eσ

2
h(Rh +Re)2H2

, (2.13)

where σi and Ri are the conductivities and the Hall coefficients for the two carriers.

RH can vary with temperature if the conductivities of each carrier have a different

temperature dependency.
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In this study, we focus on FeSe1−xSx. This system is known to be a compensated

semimetal with an equal number of electrons and holes (ne ≈ nh). In a compensated

two-band model with circular pockets, the RH is reduced to the following:

RH =
1

ne
× σh − σe
σh + σe

, (2.14)

In this case, even a slight difference in the T dependence of σi can produce a strong

temperature dependent RH, as well as a change in sign.

Orbital magnetoresistance

The orbital magnetoresistance arises from the change in the electron trajectory by

the Lorentz force. For a spherical Fermi surface, the magnetoresistance is zero owing

to the cancellation of the Lorentz force by the Hall electrical field. However, if more

than one type of carrier is considered, the magnetoresistance can be finite.

Considering a specific case of a two-carrier model [71], according to the Boltzmann

equation, the resistivity is given by

ρxx =
(σh + σe) + σhσe(σhR

2
h + σeR

2
e)H

2

(σh + σe)2 + σ2
eσ

2
h(Rh +Re)2H2

. (2.15)

At low fields, ρxx shows a H2 dependence, which is typical for conventional metals. By

contrast, its tendency of saturation at a high field is dependent on the specific Fermi

surface topology. Indeed, if the two carriers have different signs and ne ≈ nh, Eq. 2.15

is reduced to the following:

ρxx =
1 + 1

ne
σhσeH

2

(σh + σe)
. (2.16)

In this situation, ρxx varies quadratically with a magnetic field without saturation.

In conventional metals, the magnetoresistance is often analyzed in terms of Kohler’s

rule [72], which states that in a system with a single scattering time, the ratio ∆ρxx(T,H)
ρxx(T,0)

can be expressed by ωcτ . Here, ∆ρxx(T,H) ≡ ρxx(T,H)− ρxx(T, 0) and ωc ≡ eBh̄/m∗

is the cyclotron frequency. Because the resistivity in a zero field ρxx(T, 0) is inversely
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proportional to τ (see Eq. 2.8), the following is obtained:

∆ρxx(T,H)

ρxx(T, 0)
= F (ωcτ) = F

(
H

ρxx(T, 0)

)
, (2.17)

where the function F (x) is related to the Fermi surface. Again, we take the case of the

two-carrier model as an example [65]. Following Eq. 2.15, we obtain the following:

∆ρxx(T,H)

ρxx(T, 0)
=

σhσe(σhRh − σeRe)
2H2

(σh + σe)2 + σ2
eσ

2
h(Rh +Re)2H2

. (2.18)

Assuming that the two carriers are governed by a single scattering time τ , the ratio
∆ρxx(T,H)
ρxx(T,0)

can then be written as follows:

∆ρxx(T,H)

ρxx(T, 0)
=

λ(Rh − λRe)
2(σhH)2

(1 + λ)2 + λ2(Rh +Re)2(σhH)2
= F (σhH). (2.19)

Here, λ = σe/σh is a constant. It can be seen that Kohler’s rule holds. However, it

should be noted that this rule can be violated if τ is strongly carrier dependent.

2.3 Anomalous transport properties near quantum

critical point

As mentioned in Chapter 1, the NFL behaviors have been observed in the correlated

materials at near the QCP. Among them, some common features in the charge transport

properties have been recognized. In this section, these experimental results are briefly

reviewed, particularly in cuprates, iron-pnictides, and heavy-fermion compounds.

2.3.1 Linear-in-temperature resistivity

One of the most well known NFL behaviors is a resistivity that varies linearly with

temperature, i.e.,

ρ(T ) = ρ0 + ATα, α = 1. (2.20)
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Figure 2.1: a Temperature dependence of resistivity for BaFe2(As1−xPx)2 [76]. b Tem-
perature dependence of resistivity for heavy fermion superconductor CeCoIn5 [77]. In
this type of compound, the f -electrons start to couple with the conduction electrons at
below T coh and become itinerant. At ambient pressure, the resistivity exhibits T -linear
dependence at below T ∗ ≈ T coh/2.

This is initially noted in cuprate superconductors. Early experiments on optimally

doped materials show that the T -linear behavior of resistivity extends over a broad

temperature range, ranging from an extremely high temperature down to T c [73, 74].

Note that the conventional electron-phonon scattering can also give rise to T -linear

resistivity at T >> ΘD, where ΘD is the Debye temperature. However, this mechanism

is unlikely to be the origin in the cuprates because the T -linear resistivity discussed

here starts from a much lower temperature, i.e., T < ΘD/5 [75].

Since then, the T -linear resistivity has also been observed in iron-pnictides and

heavy fermion compounds. The optimally doped BaFe2(As1−xPx)2 and CeCoIn5, which

have AFM QCP at x ∼ 0.3 and Pc ∼ 0 Pa, respectively, are two such examples [76, 77].

In Fig. 2.1a, we show the ρ(T ) profiles of the over-doped iron pnictide BaFe2(As1−xPx)2.

At x = 0.33, which is near the AFM QCP, the resistivity shows linear-in-temperature

dependence at above Tc. As the concentration of P increases, the T -linear dependence of
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resistivity gradually evolves into the T 2 temperature dependence (x > 0.64), indicating

a change into a Fermi liquid state. In Fig. 2.1b, we show an example of a heavy fermion

compound CeCoIn5. Similar to the BaFe2(As1−xPx)2 system, the T -linear dependence

of the resistivity is also observed within the vicinity of the AFM QCP.

Planckian limit

In addition to the temperature dependent behavior, the resistivity also shows an

anomaly in the scattering rate 1/τ [78–80]. In Ref. [78], the authors estimate the

scattering rate within the T -linear regime of the resistivity through

1

τ
=
e2ρ

hd

∑
i

kFivFi (2.21)

for two-dimensional materials. Here, d is the distance between the layers and the

summation is over all Fermi pockets i, and h is the Planck constant. Information on the

Fermi wave vector kFi and Fermi velocity kFi can be obtained from other experiments,

such as ARPES, the specific heat, and de Haas-van Alphen (dHvA) measurements. The

Figure 2.2: The averaged ne2/(kBkF )(dρ/dT ) plotted as a function of the averaged
Fermi velocity vF for many different types of materials [78]. According to the one-band
Drude model, ne2/(kBkF )(dρ/dT ) = α/vF . The black line corresponds to α = 1.
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results are summarized in Fig. 2.2. Interestingly, for various kinds of the correlated

materials, including cuprates, iron-pnictides, heavy fermion compounds, and organic

superconductors, the estimated scattering rates are near the Planckian limit, i.e.,

h̄

τ
= αkBT, α ∼ 1. (2.22)

It was suggested that α ∼ 1 is a universal upper limit for the T -linear scattering

rate [78–80]. Indeed, even in normal metals, where the dominated phonon scattering

causes T -linear resistivity at high temperatures, α ∼ 1 is also observed. Although

the underlying reason for the universal scattering rate is still unknown, this empirical

finding provides a new insight into the problem [78, 81].

2.3.2 Unusual Hall effect

The Hall effect also shows interesting deviations from the Fermi liquid behavior. In

cuprates within optimally doped and underdoped regimes, iron pnictides, and heavy

fermion superconductors, RH exhibits a strong temperature dependence. Fig. 2.3 shows

examples of these three classes of correlated materials. As the temperature is lowered,

|RH| increases rapidly. At a low temperature, the value of |RH| is estimated to be

much larger than that obtained from a band calculation [76, 77, 82]. Notably, for

BaFe2(As1−xPx)2 and CeRhIn5, the enhancement of |RH| at low temperature becomes

more pronounced upon approaching the AFM QCP, suggesting the influence of the

AFM fluctuations on the Hall effect.

Hall angle

In cuprates, it has been pointed out that the Hall angle θH ≡ tan−1(ρxy/ρxx) has

a simple temperature dependent form. Fig. 2.4a shows the earlier Hall angle measure-

ments of Zn-doped YBa2Cu3O7−δ (YBCO) [85]. For various Zn-doped samples, the

cotθH follows a T 2 dependence, i.e.,

cotθH = a+ bT 2, (2.23)
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Figure 2.3: a Temperature dependence of RH for optimally doped (x ∼ 0.15) and under-
doped La2−ySryCuO4 [83]. For x = 0.15, RH increases as 1/T with decreasing tempera-
ture. b Hall data for optimally doped (xc ∼ 0.3) and over-doped BaFe2(As1−xPx)2 [84].
c Hall data for CeRhIn5 at several pressures [77]. The AFM QCP of CeRhIn5 is located
at ∼ 2 GPa. The Hall coefficient for LaRhIn5 at 0 Pa is also plotted. As expected for
a Fermi liquid, RH of LaRhIn5 is weakly temperature dependent.

Figure 2.4: a Cotangent of Hall angle, i.e., cotθH, plotted as a function of T 2 for various
Zn-doped YBCO [85]. b |cotθH| plotted as a function of (T/T coh)

2 for CeRhIn5 under
several pressure levels [77].
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where a and b are constants. Given that ρ ∝ T , this observation agrees well with the

prediction made using a theoretical model in which two different scattering rates are

assumed (see section 2.4). In heavy fermion superconductors CeRhIn5 and CeCoIn5 at

near AFM QCP, the T 2-dependent cotθH has also been reported within the T -linear

regime of resistivity (Fig. 2.4b). Therefore, this Hall angle behavior, when combined

with the T -linear resistivity, is an important hallmark of the NFL behaviors.

2.3.3 Scaling of magnetoresistance

As mentioned in section 2.2, the magnetoresistance in many conventional metals

is scaled using Kohler’s rule. However, in cuprates, iron pnictides, and heavy fermion

compounds, the violation of this scaling relation has been reported [76, 77, 82, 86]. As

an example, we show Kohler’s plot for underdoped YBCO (T c = 60 K) in Fig. 2.5a. The

orbital component of the magnetoresistance is obtained by subtracting the longitudinal

magnetoresistance ∆ρ/ρ∥ (I ∥ H ⊥ c) from the transverse magnetoresistance ∆ρ/ρ⊥

Figure 2.5: a The orbital magnetoresistance plotted as a function of (H/ρ)2 for YBCO
(T c = 60 K). The inset shows the same plot at higher temperature. b The temperature
dependence of the coefficient aorb for YBa2Cu3O6.6 (T c = 60 K), YBa2Cu3O7 (T c = 90
K), and La1.85Sr0.15CuO4 (T c = 28 K). The inset shows the cotθH plotted as a function
of T 2 for La1.85Sr0.15CuO4. Adapted from Ref. [86].
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(I ⊥ H ∥ c). The distinct curves shown in Fig. 2.5a clearly indicate that Kohler’s rule

is not obeyed.

To understand the origin of the anomaly in the magnetoresistance, identifying the

valid scaling law is important. A new scaling law, which scales the magnetoresistance

in term of the Hall angle, i.e.,

∆ρxx(T,H)

ρxx(T, 0)
∝ tan2θH, (2.24)

has been reported in cuprates, iron pnictides, and heavy fermion superconductors [76,

77, 86, 87]. Historically, this so-called modified Kohler’s rule is first recognized in

cuprates [86]. Harris etal. measured the magnetoresistance in optimally doped YBCO

(T c = 90 K), underdoped YBCO (T c = 60 K), and optimally doped LSCO (T c = 38

K). In these materials, the orbital part of transverse magnetoresistance is found to vary

quadratically with the field, i.e., ∆ρxx/ρxx ∼ aorbH
2. The temperature dependence of

the coefficient aorb for the three samples is shown in Fig. 2.5b. At above ∼100 K, the

coefficient aorb varies as ∼ aT 4 for the two YBCO samples and as ∼ m2/(bT 2+c)2 for the

LSCO sample. Intriguingly, the authors found that, in these samples, the temperature

dependence of the aorb follows that of tan2θH. This indicates that the magnetoresistance

Figure 2.6: a Kohler’s plot for optimally doped BaFe2As1−xPx. The inset shows the
modified Kohler’s plot from the same data [76]. b Kohler’s plot (left panel) and modified
Kohler’s plot (right panel) for CeRhIn5 [77].
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is proportional to tan2θH, i.e., ∆ρxx/ρxx ∝ tan2θH.

2.4 Theoretical studies

Many theoretical models have been proposed to explain these NFL transport prop-

erties. Broadly speaking, these theories are classified into two categories:

One category is models based on the NFL physics, in which the carriers are exotic

objects. One famous example is Anderson’s spin-charge separation model that was

originally proposed for cuprates [88]. Here, the elementary excitations of an electron

are fractionalized into the spin (spinons) and charge (holons). This introduces two

different scattering times for momentum displacements parallel and perpendicular to

the Fermi surface. It can be seen that the Hall scattering rate 1/τH owing to the

spinon-spinon scattering varies as T 2, and the transport scattering rate 1/τ tr owing to

the backflow of spinons (scattering the holons) varies with T . As a result, the resistivity,

Hall angle and magnetoresistance behave as ρxx ∝ τ−1
tr ∝ T , cot2θH ∝ τ−1

H ∝ T 2, and

thus ∆ρxx/ρxx ∝ τ 2H ∝ tan2θH, respectively. Although this model successfully predicts

the transport results in optimal cuprates, it has not explained the evolution of the

transport properties with doping [82]. In addition, it is unlikely that this model based

on the CuO2 plane is realized in heavy fermion CeMIn5 (M= Co and Rh) [77].

The other category is models based on the Fermi liquid physics, for which the

concept of the Landau quasiparticles is still useful. With this approach, the NFL

behaviors arise from the anisotropic scattering times owing to the electron-electron

correlations. For example, in the presence of large AFM fluctuations, the Fermi surface

regions connected by the nesting vectors qAF are strongly scattered, and hence have

unusual short scattering times (see Fig. 4.16). Such Fermi surface regions are called“hot

spots.” In the simplest case, the unusual Hall effect can be understood as follows: The

Fermi surface parts with longer scattering times will short out the transport contribution

from the hot spots, and thus the effective carrier density neff decreases. It therefore

follows from RH = 1/ne that RH will enhance. This anisotropic scattering time model

can also give rise to the T -linear resistivity and the modified Kohler’s scaling of the
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magnetoresistance [89, 90]. However, for some materials, such as underdoped YBCO

and CeMIn5, it fails to give the quantitatively correct results [91, 92].

It was pointed out that the current vertex correction effect should be included in

the Fermi liquid approach [92]. This correlation effect modifies both the magnitude

and direction of the currents at the hot spots, significantly influencing the transport

properties. The theory quantitatively explains the NFL behaviors observed in cuprate

superconductors and CeMIn5. We will consider this effect in chapter 4.
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3
Experiments

3.1 Single crystalline samples of FeSe1−xSx

All samples were provided by Prof. Shigeru Kasahara in our group. The details of

the crystal growth and characterization are presented in this section.

3.1.1 Crystal growth

The single crystals of FeSe1−xSx were made through a chemical vapor transport

(CVT) method. The Fe, Se, and S powders were mixed with the atomic ratio of

1.1 : 1 − x : x and then loaded into an SiO2 ampoule together with a mixture of KCl

and AlCl3 powders (ratio of 3 : 7). In this configuration, the mixture of KCl and AlCl3
serves as the transport agent. The slightly excess of Fe powder can reduce the number of

Fe defects. To avoid contamination, this procedure was conducted in a glove box filled

with pure Ar gas. The SiO2 ampoule was subsequently sealed under a high vacuum (∼

10−4 Pa). During the CVT process, one end of the ampoule (so-called source zone) was

kept at ∼ 390–450 ◦C, whereas the other end (the so-called deposition zone) was kept at

∼ 140–200 ◦C. After 2–4 weeks, millimeter-sized plate-like single crystals of FeSe1−xSx

can be obtained.

Most of the samples used in this study were cut into a regular shape with typical
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sizes of 2 × 1 × 0.05 mm3, as shown in Fig. 3.1. The actual x values were determined

through an energy dispersive X-ray analysis.

Figure 3.1: Single crystal of FeSe0.82S0.18. The contacts were made using indium-
soldering.

3.1.2 Characterization

Following the success of crystal growth, we turn our attention to characterizing

the grown FeSe1−xSx. There have been several experiments examining the quality of

the grown crystals including STM, quantum oscillations, and magnetic susceptibility

measurements.

STM

STM is a powerful tool for characterizing a surface. Fig. 3.2 (A to E) shows the

STM images of the surfaces of FeSe1−xSx within a range of 0 ≤ x ≤ 0.25 [55]. In pure

FeSe, the topmost Se atoms are clearly shown. However, in the S-doped samples, sulfur

atoms are imaged as depressions owing to the smaller atomic radius than Se atoms.

The locations of sulfur atoms can be determined by analyzing these atomic-resolution

topographic images. As shown in Fig. 3.2 (F to J), the red dots that represent S atoms

are uniformly distributed. No apparent segregation is observed. These STM results

indicate a good homogeneity of crystals obtained through our CVT method.
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Quantum oscillations

The observation of quantum oscillations in FeSe1−xSx confirms the low level of im-

purities and defects in our sample. Indeed, as one major condition for the observation

of quantum oscillations, the broadening of Landau levels owing to impurity scattering

should be smaller than the cyclotron energy (h̄ωc ≡ eBh̄/m∗). Thus, only pure crystals

with long mean free paths show quantum oscillations. Fig. 3.3 shows the first derivative

of magnetoresistance at high magnetic fields [56]. The oscillatory part of the resistivity

can be clearly visualized up to x ∼ 0.19, demonstrating that the crystals are clean and

the substituted-sulfur atoms do not act as strong scattering centers.

Magnetic susceptibility

In this study, we picked out samples from the same bathes as those characterized

above. This ensures a high quality of our crystals. Before conducting the electrical

transport experiments, we measured the low temperature magnetization using a mag-

netic property measurement system (MPMS) (Quantum Design, Inc.). The results are

shown in Fig. 3.4a. For all samples, the measured magnetic susceptibility exhibits a

sharp decrease when entering the superconducting state, which indicates the homoge-

neous nature of our single crystals of FeSe1−xSx.

Residual resistivity ratio

A simple estimation for the degree of purity is the residual resistivity ratio (RRR).

Here, we use the ratio ρxx(250 K)/ρxx(11 K) for the RRR value. In conventional

metals, the resistivity at a sufficient high temperature is dominated by the scattering

from phonons and seems to not change between samples of specific materials. By

contrast, the resistivity at 0 K (i.e., residual resistivity) depends on the purity of the

sample. Thus, the higher this ratio is, the lower the number of impurities. As shown

in Fig. 3.4b, the RRR values varies between 11 and 30. These values are comparable

with those reported in Ref. [62], indicating the high quality of our measured crystals.

51



Figure 3.2: Characterization of FeSe1−xSx by STM [55]. (A to E) Topographic images
of FeSe1−xSx. Sulfur atoms are imaged as depressions. (F to J) Distributions of sulfur
atoms in wider fields of view. Each red dot denotes a sulfur atom.
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Figure 3.3: The first derivative of magnetoresistance plotted as a function of the mag-
netic field [56]. The oscillatory part of the resistivity of FeSe1−xSx can be visualized.
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Figure 3.4: a Temperature dependence of zero-field-cool and field-cooled magnetization
at 5 Oe for FeSe1−xSx. The magnetic fields were applied along the c-axis of FeSe1−xSx.
b The residual resistivity ratio RRR (defined as ρxx(250 K)/ρxx(11 K)) plotted as a
function of x.
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3.2 Electrical transport measurements

Preparation

To measure the resistivity and Hall resistivity in the same cooling run, we made

six contacts on each sample (Fig. 3.1). To obtain good electrical contacts, we soldered

Ag/Au wires with indium onto the sample. A soldering iron with a small tip (∼ 0.3

mm) is used. To avoid the possible damage to the sample surface, we used a non-acid

flux to remove the oxidized surface and kept the soldering temperature at ∼ 200 ◦C

(the melting point of indium is 156 ◦C). The resulting contact resistance is less than

100 mΩ. Note that using the usual silver paste technique may result in a resistance of

several kilo-ohms owing to the oxidized surface of the FeSe1−xSx. After the soldering,

we washed the sample with acetone and/or ethyl alcohol to remove the residual flux.

The dimensional factors, i.e., l, w and t (where l is the distance between the longi-

tudinal voltage contacts and w, t are width and thickness of a crystal, respectively.),

are measured using optical microscopy (Leica M205C). The ruler etched on the optical

microscopy allows us to resolve the factors within an accuracy of 10 µm.

The samples were then put onto the measurement cell. As illustrated in Fig. 3.5,

one end of the sample is fixed to a Ag heat bath using Ag paste. To monitor the

temperature of the sample, we thermally connect one inner voltage lead to the Cernox

thermometer through an Ag wire (with the Cernox thermometer fixed to a Kapton

tube). Actually, this setup was originally designed to measure the kappa, seebeck, and

Nernst coefficients. Here, it is used to measure the resistivity, Hall resistivity, and

magnetoresistance.

Magnets and Cryogenics

Because FeSe1−xSx has a relatively high Tc, the lowest temperature needed is ∼ 2

K. This temperature can be achieved through our superconducting magnet system

(SM6). Fig. 3.6 shows a schematic of SM6. The variable temperature insert (VTI)

is connected to helium (He) reservoir through the capillary. By adjusting the needle
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Figure 3.5: Schematic of the setup used for electrical transport measurements.

Figure 3.6: Schematic used in superconducting magnet system.
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value and pumping, the sample can be cooled to ∼ 1.6 K. The superconducting coils

are submerged in the liquid He and can generate a magnetic field in the longitudinal

direction. Outside the vacuum jacket, there is a liquid nitrogen reservoir that can reduce

the heat radiation from the helium reservoir.

Measurement

We used Labview Programs (National Instruments, Inc.) to control the measure-

ments and acquire the data. Each component is connected through a General Purpose

Interface Bus (GPIB) interface. Fig. 3.7 shows a schematic of the circuit. Because

the computer and magnetic controller can produce noise, we electrically isolated them

from the other measurement components using a GPIB-120A bus expander/isolator

(National Instruments Inc).

The temperature measurement and control are regulated using Labview software.

The software obtains the Cernox thermometer resistance measured through an Model

350 Temperature Controller (LakeShore Cryotronics, Inc.) and converts the resistance

into temperature. To stabilize the temperature, the software set the heater power on

the sample stage with a 7651 dc current source (Yokogawa, Inc.).

To measure the resistivity and Hall effect, we used the AC resistance bridge Model

372 paired with a Model 3780 preamp (LakeShore Cryotronics, Inc.) or the delta model

method applying a Model 6200/2182A combination (Keithley Instruments, Inc.). The

choice depends on the signal-to-noise ratio. In addition, for all measurements, electrical

currents I of up to 3 mA were used to avoid self-heating.

When measuring the Hall effect and magnetoresistance, we cannot ignore the mis-

alignment of the contacts. Indeed, in practice, the contacts are not perfectly aligned

in the transverse (longitudinal) direction perpendicular (parallel) to the current flow.

As a result, the actual measured voltage contains both the longitudinal and transverse

components. To overcome this problem, we sweep the magnetic field from positive

to negative and then antisymmetrize (symmetrize) the data to cancel the longitudinal

(transverse) component of the measured voltage. Therefore, the electrical and Hall
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voltage can be calculated as

Vxx(|H|) =
Vxx(H) + Vxx(−H)

2
, (3.1)

Vxy(|H|) =
Vxy(H)− Vxy(−H)

2
. (3.2)

We then obtain the electrical and Hall resistivity as follows:

ρxx(|H|) =
Vxx(|H|)

I

wt

l
, (3.3)

ρxy(|H|) =
Vxy(|H|)t

I
, (3.4)

where I is the electrical current, l is the distance between the longitudinal voltage

contacts, and l, w are the width and thickness of a crystal, respectively.

Figure 3.7: Schematic of the circuit for electrical transport measurements.
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4
Evolution of charge transport prop-
erties across the nematic quantum
critical point of FeSe1−xSx

4.1 Resistivity

4.1.1 Temperature dependence of zero-field resistivity

Fig. 4.1a shows the temperature dependence of the resistivity ρxx normalized by ρxx
at 250 K in a zero field for a series of FeSe1−xSx. For x = 0, ρxx has a kink at Ts ≈ 90 K

owing to the nematic transition. As the concentration of S increases, Ts is suppressed

to ∼ 62 K for x = 0.12 and finally disappears for x ≥ 0.17, indicating that the system

is in a tetragonal phase.

The evolution of the transition temperature Ts can be more clearly seen in the

temperature derivative of the resistivity, as shown in Fig. 4.1b. For x = 0 and 0.12, the

nematic transition temperature Ts is accurately determined by the dip position. For

x = 0.17 and 0.18, the derivative curves evolve more smoothly. No obvious anomalies

are observed. We believe these two samples are near the nemtaic QCP. For x = 0.22,

no anomalies are observed as well.
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a b

Figure 4.1: a Temperature dependence of the resistivity ρxx normalized by ρxx at
250 K in zero field of FeSe1−xSx for various S substitution levels [93]. The arrows
indicate the nematic transition temperature Ts. Data are shifted vertically for clarity.
b The derivative of the resistivity with respect to temperature. The nematic transition
temperature Ts is defined by the dip position.

4.1.2 Low temperature resistivity

We now focus on the resistivity below 40 K, where the temperature is sufficiently

below the Fermi energy of each pocket (see section 4.1.3). Fig. 4.2 depicts the low

temperature behavior of ρxx for FeSe1−xSx. The most distinct feature is the linear-

in-temperature resistivity typical to the NFL behavior down to low temperatures at

x = 0.17 and 0.18, at or slightly above the nematic QCP. For x = 0.22, the T -linear

dependence of the resistivity changes to approximately the T 2-dependence as expected

for a Fermi liquid at lower temperatures. Similar behavior has been reported by several

other groups [62, 94].

The crossover from the NFL to the Fermi liquid can be more clearly seen in the
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Figure 4.2: Temperature dependence of zero-field resistivity for FeSe1−xSx at below
40 K [93]. a Zero field resistivity at temperature of below 40 K for x = 0.17. The
red dashed line represents a line fitted by ρxx ∝ T . b The same plot in the zero field
and at µ0H = 12 T applied parallel to the ab plane for x = 0.18. The red dashed line
represents a line fitted by ρxx ∝ T . c The same plot in the zero field for x = 0.21. The
red dashed curve represents a fitting curve ρxx ∝ T 1.5. d The same plot in the zero field
for x = 0.22. The red dashed curve represents a fitting curve ρxx ∝ T 2.

color plot of the exponent α in the T -dependence of the resistivity,

ρxx = ρ0 + ATα (4.1)

shown in Fig. 4.3. Blue and red show the regions in which the Fermi liquid (α ≈ 2)

and NFL (α ≈ 2) behaviors are observed, respectively. In the nematic regime below

Ts, the T -dependence of ρxx exhibits a concave downward curvature, which is likely to

be caused by a change in the carrier scattering time τ associated with orbital ordering
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Figure 4.3: Phase diagram of FeSe1−xSx [93]. The colors in the tetragonal state rep-
resent the evolution of the exponent α in the resistivity fitted by Eq. 4.1. The green
dashed line represents the tetragonal-orthorhombic (nematic) transition temperature Ts
determined by the resistivity measurements. Solid orange circles represent the super-
conducting transition temperature. The T -dependent exponent α(T ) is estimated by
the logarithmic derivative of the measured quantity, i.e., α(T ) = dln[ρ(T ) − ρ0]/dlnT .
The ρ0 values are estimated by the extrapolation of the zero-field resistivity (see the
dashed red lines in Fig. 4.2). The resulting α(T ) curves are highly smoothed for the
color plot.

at Ts. We do not discuss the temperature dependence of ρxx at below Ts in detail. The

Fermi liquid regime with α ≈ 2 is seen within the low temperature regime at large x

values. The phase diagram also includes a funnel of T -linear resistivity centered on

x ≈ 0.17, indicating that the critical fluctuations originating from the nematic QCP

extend up to a finite temperature.

4.1.3 Planckian limit

In addition to the temperature dependence of the resistivity, the absolute magnitude

of the scattering rate is also an important quantity. In cuprates and other correlated
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systems, the T -linear scattering rate reaches the Planckian limit, where h̄/τ = ΛkBT

with Λ ≈ 1 is fulfilled, despite the different nature of the QCP (see chapter 2). If this

empirical fact is the fundamental principle, new theoretical approaches are needed to

understand how it works.

To examine whether FeSe1−xSx is within the Planckian limit, we use a standard

Fermi-liquid approach to estimate h̄/τ , as in Ref. [80]. From the Drude expression for

the two-dimensional system (see Eq. 2.21), we can obtain the following expression:

d(h̄/τ)

dT
=

e2

2πd

∑
i

kFivFi
dρ

dT
. (4.2)

Here, d is the interlayer distance and the summation is over all the pockets i. Note that

the scattering rate 1/τ is linear-in-temperature dependent, i.e., h̄/τ = ΛkBT , when

ρxx = ρ0 + AT . Given that εiF = (h̄/2)(kFivFi), this expression is reduced to the

following:

Λ(
h

2e2
) =

∑
i

A

d
(
εiF
kB

), (4.3)

where A is the slope of the T -linear resistivity.

Next, we estimate Λ for the sample near the nematic QCP (x = 0.17). First, we try

to obtain the Fermi energies from other experiments. In FeSe in the nematic phase, the

Fermi energies of both the hole and the electron pockets are extremely small: εhF ≈

10 meV and εeF ≈ 5 meV, respectively (see section 1.4.2). As the concentration of S

increases, εhF increases gradually without exhibiting an abrupt change at the nematic

QCP [55]. In the tetragonal phase at x ≥ 0.17, the Fermi surfaces consist of two

hole and two electron pockets [95, 96]. The ARPES measurements report εhF ≈ 14

meV for both hole pockets [97]. However, direct measurements of the electron pockets

by ARPES are lacking. As discussed in section 1.5.2, the Fermi surface of FeSe1−xSx

evolves smoothly when crossing the nematic QCP, no dramatic change in Fermi wave

vectors and Fermi velocities is observed. Therefore, we speculate that the Fermi energy

for both electron pockets is on the order of 5−15 meV. Here, for simplicity, we assume

that εe,hF ∼ 10 − 15 meV for all pockets. In addition, from the T -linear resistivity of
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x = 0.17, A ≈ 1.0 µΩcm/K is obtained. By using these values, we obtain Λ = 0.7− 0.9

from Eq. 4.3. An earlier analysis of the coefficient of the T -linear resistivity also found

that Λ ∼ 1 [60], implying that scattering within the quantum critical fan of a nematic

QCP is indeed close to the Planckian limit. A comparison of the estimated value of Λ

with those reported in other correlated materials is shown in Fig. 4.4.

Figure 4.4: A comparison of our estimated value of Λ in FeSe0.83S0.17 with those reported
in other materials that present T -linear resistivity. The averaged Fermi velocity of
FeSe0.83S0.17 is estimated from the STM measurements [55]. Adapted from Ref. [78].

4.2 Hall effect

Because S-doped FeSe is a multiband system, it is important to find other evidence of

NFL transport behaviors in addition to the T -linear resistivity. Therefore, we measured

the Hall effect and magnetoresistance across the nematic QCP of FeSe1−xSx. In this

section, the Hall results are described. The magnetoresistance results are presented in
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the following section.

4.2.1 Hall resistivity at low fields

Fig. 4.5 and 4.6 show the magnetic field dependence of Hall resistivity ρxy up to 7

T at several doping levels. The field is parallel to the c axis.

Fig. 4.5 displays ρxy for x = 0.12. At above 50 K (Ts ≈ 62 K), ρxy has a positive

sign and shows a linear-in-field dependence. Note that in a compensated two-band

model, the Hall resistivity varies linearly with increasing magnetic field (see Eq. 2.14).

In contrast, at a temperature of below 50 K, inside the nematic phase, ρxy shows a non-

linear field dependence, changing the sign from negative to positive at a higher field.

It has been pointed out that the compensated three-band model with an additional

high mobility small electron pocket can describe this non-linear behavior. However, the

origin of this small pocket is still under debate. One possible reason is the emergence of

the Dirac-cone like pockets at the corner of the Brillouin zone owing to the band shifts

in a nematic state [98, 99]. We do not discuss this herein. A related discussion can be

found in Refs. [37, 100, 101].

For samples with x ≥ 0.17, ρxy exhibits H-linear dependence in the present temper-

ature and magnetic field regions, as shown in Fig. 4.6 (b-e), reflecting the compensate

nature of the materials. Another common feature in the tetragonal samples is the sign

of ρxy being positive at below 100 K, indicating the dominate contribution from the

hole bands. In addition, it is worth mentioning that these ρxy behaviors are extremely

similar to that of the x = 0.12 sample within the tetragonal regime.

4.2.2 Temperature dependence of Hall coefficient

By estimating the zero-field slope of ρxy at each temperature, we can obtain the

temperature profile of Hall coefficient RH (Here, RH ≡ limH→0
dρxy
dH

). The RH curves

for a range of x are depicted in Fig. 4.7.

For x = 0.12, within the tetragonal regime, RH increases as the temperature de-

creases. Below the nematic transition temperature Ts, it rapidly decreases to a nega-
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Figure 4.5: Field dependence of the Hall resistivity ρxy for x = 0.12 at different tem-
peratures. At below Ts, ρxy becomes nonlinear.

a b

c d

Figure 4.6: Field dependence of the Hall resistivity ρxy for x = a 0.17, b 0.18, c 0.21,
and d 0.22. In tetragonal samples, ρxy varies linearly with an increasing field.
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Figure 4.7: Temperature dependence of the Hall coefficient RH for x ≥ 0.17 [93]. The
inset shows RH for x = 0.12. The nematic transition temperature Ts is indicated by
the black arrow.

x

60 K

Figure 4.8: Cotangent of the Hall angle, cotθH, plotted as a function of T 2 for x ≥ 0.17
at below 60 K [93]. The color lines are simply visual guides. Inset: the same plot for
x = 0.12.
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tive value and shows a minimum at lower temperatures. The drop of RH indicates the

growing contribution of the electron carriers to the transport properties in the nematic

phase.

For the tetragonal samples (x ≥ 0.17), the temperature dependent behaviors are

similar to each other. At high temperatures, RH is close to zero, reflecting nearly equal

mobilities of the electron and hole carriers. As the temperature goes down, it increases

rapidly. Slightly above Tc, at proximal 25 K, a maximum value is shown followed by a

decrease. The behavior of RH is complex. Here, we only note that the absolute values of

RH at low temperatures are enhanced when approaching the nematic QCP (x = 0.17),

which might be attributed to the critical nematic fluctuations.

4.2.3 Hall angle

As mentioned in Chapter 2, in some cuprates and heavy fermion compounds, the

Hall problem can be simplified by analyzing the Hall angle. In these materials, the

cotangent of the Hall angle, cotθH, is proportional to T 2. Following the same procedure,

we plot the Hall angle as a function of T 2, as depicted in Fig. 4.8. Here, the cotangent

of the Hall angle is defined as

cotθH ≡ ρxx(0)

RH × 1T (4.4)

The inset of Fig. 4.8 displays the Hall angle behavior for a 12% S-doped sample.

It has a change in sign and does not vary as T 2. By contrast, for the samples with

x ≥ 0.17, the cotangent of the hall angle varies as T 2 at below 60 K. It should be

noted that this Hall angle behavior cannot be described by the compensated two-band

model if the T -linear resistivity is involved (see section 4.4.1). Thus, the simultaneously

observed quadratic temperature dependence of cotθH and the T -linear resistivity in the

tetragonal samples are important evidence of the NFL behavior.

66



4.3 Magnetoresistance

4.3.1 Transverse magnetoresistance

Figs. 4.9 and 4.10 show the field dependence of the normalized magnetoresistance,

∆ρxx/ρxx(0) ≡ [ρxx(H) − ρxx(0)]/ρxx(0), for a range of x at up to 7 T. The magnetic

field H is parallel to the c-axis, whereas the current I is in the ab plane. The transverse

magnetoresistance is positive for all samples at below 70 K.

To obtain a qualitative understanding of the field-dependent behavior of the trans-

verse magnetoresistance, we simply fit the data using the formula ∆ρxx/ρxx(0) = aHβ.

For x = 0.12, the magnetoresistance is roughly H1.52 dependent at 14 K and gradually

evolves into an H2 dependence when approaching the tetragonal phase. By contrast,

for the tetragonal samples, the magnetoresistance is approximately quadratic field de-

pendent in the present temperature region.

Next, we try to scale the magnetoresistance in terms of Kohler’s rule and the mod-

ified Kohler’s rule. To do so, we need the orbital part of the transverse magnetore-

sistance, which can be obtained by subtracting the longitudinal from the transverse

magnetoresistance. Note that the Lorenze force does not exist in longitudinal geometry

(I ∥ H ⊥ c) if the system is two dimensional. As reported in Ref. [60], the longitudinal

magnetoresistance of FeSe1−xSx in the tetragonal samples is negligibly small even at a

high field of up to 35 T. To verify this point, we measured the temperature dependence

of the resistivity at 12 T with H ⊥ c for x = 0.18 and 0.22. As shown in Fig. 4.2, in

both samples, the resistivity at 12 T is nearly the same as its corresponding zero-field

value. Thus, we believe that the orbital part of the transverse magnetoresistance is

dominant for x ≥ 0.17. For completeness, we also analyze the scaling behavior of the

transverse magnetoresistance for the x = 0.12 sample.

4.3.2 Kohler’s plot

To see whether the Kohler’s rule is obeyed, we plot the magnetoresistance as a

function of (µ0H/ρxx(0))
2 for various values of x, as illustrated in Figs. 4.11 and 4.12.
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Figure 4.9: Field dependence of the transverse magnetoresistance ∆ρxx/ρxx(0) for x =
0.12 at different temperatures.

a b

c d

Figure 4.10: Field dependence of the transverse magnetoresistance ∆ρxx/ρxx(0) for x =
a 0.17, b 0.18, c 0.21, and d 0.22.
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For the nematic sample (x = 0.12), the magnetoresistance curves fall on a single

curve below 25 K, which means the Kohler’s rule is obeyed. However, at higher temper-

atures, the magnetoresistance curves become different, which means the Kohler’s rule

is not obeyed.

For the tetragonal samples near the nematic QCP (x = 0.17 and 0.18), the distinct

magnetoresistance curves with different temperatures are clearly shown, which indicates

the violation of Kohler’s rule. For samples with a higher S concentration (x = 0.21 and

0.22), the Kohler’s rule holds at above 30 K, implying that the magnetoresistance is

dominated by a single scattering time.

It should be noted that the violation of Kohler’s rule here cannot be viewed as a

definite evidence of the anomalous transport behavior. This is because the S-doped

FeSe is a multiband material, and Kohler’s rule cannot be held even in conventional

metals if the scattering time is band-dependent. Thus, it is necessary to search for a

new scaling law.

4.3.3 Modified Kohler’s plot

As mentioned previously, in certain strongly correlated materials, the magnetoresis-

tance cannot be scaled by Kohler’s rule and a new scaling relationship called modified

Kohler’s rule, i.e., ∆ρxx/ρxx(0) ∝ tan2θH, has been observed. Herein, to investigate

whether this modified Kohler’s scaling is valid in our system, we plot the magnetore-

sistance as a function of tan2θH for various x, as shown in Figs. 4.13 and 4.14.

For the sample with x = 0.12, it is clear that the magnetoresistance cannot be

scaled by tan2θH in the nematic phase. By contrast, for the samples with x = 0.17 and

0.18, the positions of which are near the nematic QCP, the magnetoresistance curves

collapse onto one straight line of below 40 K, indicating the validation of the modified

Kohler’s scaling. At above 40 K, the slope of the curves increases with increasing

temperature, which indicates that modified Kohler’s scaling is invalid. For the higher

S-doping sample with x = 0.21, the modified Kohler’s scaling is valid within a narrower

temperature range of below 30 K. For x = 0.22, the magnetoresistance curves can be
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Figure 4.11: Kohler’s plot for x = 0.12 at different temperatures [93].

a b

c d

Figure 4.12: Kohler’s plot for x = a 0.17, b 0.18, c 0.21 and d 0.22 [93].
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Figure 4.13: Magnetoresistance ∆ρxx/ρxx(0) plotted as a function of tan2θH for x = 0.12
at below 70 K [93].

a b

c d

Figure 4.14: Magnetoresistance ∆ρxx/ρxx(0) plotted as a function of tan2θH for x = a
0.17, b 0.18, c 0.21 and d 0.22 [93].
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scaled as a function of tan2θH at below 30 K, whereas the curves are slightly non-linear

in tan2θH.

The observation of the modified Kohler’s scaling at below 40 K for x = 0.17 and

0.18 is unexpected and possibly provides evidence of the anomaly in the magnetoresis-

tance when combined with the violation of Kohler’s rule. Another important point is

that, within the same temperature range of below 40 K, we also observed the linear-in-

temperature resistivity and the quadratic temperature dependent cotθH. As discussed

in the next section, this set of transport properties cannot be described using a com-

pensated two-band model, implying the charge anomaly observed.

4.4 Possible origin of the anomalous transport prop-

erties

In previous sections, we show the transport results across the nematic QCP in

FeSe1−xSx. Herein, we highlight a set of anomalous transport behaviors observed at

below 40 K within the vicinity of nematic QCP (x ∼ 0.17):

• The zero-field resistivity shows a linear temperature dependence, the scattering

rate of which is estimated to be close to the Planckian limit.

• The value of cotθH shows a quadratic temperature dependence.

• The magnetoresistance violates Kohler’s scaling. Instead, it obeys the modified

Kohler’s rule.

In this section, the possible interpretation for this set of transport results is discussed.

4.4.1 Multiband effect

Because S-doped FeSe is a compensated multi-band material, one might consider the

multiband effect to be the origin of the anomalous transport properties. To check this

possibility, the calculation based on the compensated two band model was conducted
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Figure 4.15: Transport coefficients calculated using compensated two-band model [93].
Temperature dependences of a zero-field resistivity ρxx, b Hall coefficient RH, c cotan-
gent of the Hall angle cotθH, and d magnetoresistance ∆ρxx/ρxx(0) are shown. The inset
in panel c shows the plot of cotθH/T 2 versus T . It is clear that cotθH is not T 2 depen-
dence. The inset in panel d shows the temperature dependence of ∆ρxx/ρxx(0))/tan2θH.
The strong temperature dependence of ∆ρxx/ρxx(0))/tan2θH implies the violation of the
modified Kohler’s rule.

by our collaborator, Prof. Kontani. The results are summarized in Fig. 4.15. The

details can be found in Ref. [93]. As shown in Fig. 4.15a and Fig. 4.15b, we obtain a

T -linear profile of the zero-field resistivity ρxx and a low-temperature enhancement of

Hall coefficient RH. However, the profile of cotθH shown in Fig. 4.15c is quantitatively

different from the quadratic temperature dependence. This is apparent from the inset of

Fig. 4.15c, where the strong temperature dependent cotθH/T 2 is shown. Moreover, the

magnetoresistance calculated from the same parameters (Fig. 4.15d) cannot be scaled
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Figure 4.16: Schematic of the vertex correlations to the conductivity [77]. The two-
dimensional Fermi surface shown here is typical for cuprates. Because the AFM fluctu-
ations are peaked at the nesting wave vector qAF, the Fermi surface spots with moment
k and k′=k+qAF are strongly correlated. As a result, the Fermi velocity v⃗k should be
modified into J⃗k.

by tan2θH. Indeed, the temperature profile of the ratio (∆ρxx/ρxx(0))/tan2θH (inset

of Fig. 4.15d) deviates from the flat line, demonstrating the violation of the modified

Kohler’s rule. These calculated results have us believe that the experimentally observed

transport behaviors within the vicinity of nematic QCP in FeSe1−xSx cannot be simply

attributed to the multiband effect.

4.4.2 Possible vertex corrections

Because the observed deviations from the Fermi liquid behavior are pronounced near

the nematic QCP, we speculate that the nematic fluctuations can play an important

role in the transport properties. However, it is difficult to tell what effect the nematic

fluctuations can have on the charge transport properties. As mentioned previously, this

set of anomalous transport behaviors has already been observed in cuprates, CeMIn5

(M= Co and Rh) and iron-pnictides. Hence, it is natural to expect that the rele-

vant theoretical scenarios proposed for these materials might be applied to our system.
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Among others, one likely scenario is the vertex corrections to the conductivity [91, 92,

102]. This effect is briefly reviewed herein.

As described in Chapter 1, the quasiparticle energy with moment k depends not

only on its renormalized single-particle energy ϵk, but also on the distribution of the

other quasiparticles owing to the interaction, i.e.,

ϵ̃k = ϵk +
∑
k
′

f(k,k
′
)δn

k
′ , (1.1)

where δnk = nk − n0
k is the change in the distribution function with respect to the

ground state and f(k,k
′
) is the effective two-particle interaction function. Based on

Eq. 1.1, the current at each moment k can be calculated as follows:

Jk = ne∇ϵ̃k

= nevk + neN(0)

∫
FS

dk
′

∥f(k,k
′
)v

k
′ (4.5)

where vk = ∇ϵk is the carrier velocity, N(0) is the density of states at the Fermi

level. The second term is called a vertex correction. In the presence of large AFM

fluctuations, f(k,k′
) is proportional to the spin susceptibility χ(k−k

′
), which peaked

at the nesting vector qAF. As a result, for the Fermi surface spots connected through

qAF, the second term in Eq. 4.5 cannot be ignored and is proportional to vk+qAF . Such

a vertex correction can give rise to a T -linear resistivity, cotθH ∝ T 2 and modified

Kohler’s scaling of the magnetoresistance.

However, this scenario requires a finite value of |qAF|. In the case of nematic fluctu-

ations, qnem ≈ 0 as the order parameter preserves the transnational symmetry. Thus,

it is an open question whether vertex corrections with qnem ≈ 0 can give rise to the

observed anomalous transport behaviors. Further theoretical study is therefore needed.
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5
Conclusion

In summary, we conducted resistivity, Hall effect, and magnetoresistance measure-

ments for a series of FeSe1−xSx. We highlighted a set of transport behaviors observed at

near xc = 0.17: (i) The zero-field resistivity shows a linear dependence on temperature

at well below the Fermi energy (∼ 40 K). The associated scattering rate is close to the

Planckian limit. (ii) Within the T -linear regime of resistivity, the cotangent of Hall

angle cotθH (=ρxy/ρxx) is proportional to T 2. (iii) In the T -linear regime of resistivity,

the magnetoresistance violates Kohler’s rule. Instead, it can be scaled by the modified

Kohler’s rule, i.e., ∆ρxx/ρxx(0) ∝ tan2θH. Because this set of transport behaviors are

pronounced at near the nematic QCP and cannot be reproduced by the conventional

compensated two-band model, we conclude that the critical nematic fluctuations are

responsible for the observed behaviors.

Notably, these transport phenomena are similar to those reported in cuprate, iron-

pnictide, and heavy fermion systems. However, in these cases, the possible origin has

been discussed in terms of AFM fluctuations. Different from AFM fluctuations with

finite momentum qAF, the nematic fluctuations are peaked at qnem ≈ 0. Further the-

oretical work is needed to clarify how the qnem ≈ 0 fluctuations lead to the observed

NFL behaviors. Our results suggest that different types of quantum fluctuations might

result in the same anomalous charge transport behaviors.
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