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Abbreviations 

Symbol Description Unit 

Cp Heat capacity of air J g-1 °C-1 

d Zero-plane displacement m 

E Canopy transpiration rate g m-2 s-1 

ENN Canopy transpiration rate predicted by the model 

based on neural network 

g m-2 s-1 

ea Vapor pressure of air hPa 

e*(Tc) Saturated vapor pressure at temperature Tc hPa 

G Soil heat flux density W m-2 

gc Canopy diffusive conductance m s-1 

H Sensible heat flux density W m-2 

ra Aerodynamic resistance s m-1 

ra’ Aerodynamic resistance by the original heat 

balance model 

s m-1 

ra* Aerodynamic resistance under windless conditions s m-1 

Rh Radiation from heater W m-2 

Rn Net radiation W m-2 

RH Relative humidity of air % 

Ta Air temperature °C 

Tc Canopy surface temperature °C 

U Wind velocity m s-1 

z Altitude m 

z0 Ground roughness length m 



γ psychrometric constant hPa °C-1 

κ von Karman’s constant (no unit) 

λ Latent heat of vaporization J g-1 

ρ Air density kg m-3 
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Chapter 1 

 

Introduction 

 

1.1 Demand and challenges for rice yield improvement 

The world population has reached approximately 7.7 billion in 2019 and is 

estimated to be grown up to 10.6 billion in 2050. The global calorie supply should be 

approximately doubled by 2050 from 2010 level (Keating et al., 2014). Rice (Oryza 

Sativa (L.)) has been used as a primary food in the most part of Asia and Africa. These 

two regions account for a 76.8 % of global populations in 2019, and their population 

growth rate from 2020 to 2050 is estimated to be 1.58 % per year (United Nations, 2019). 

However, the rice yield in 2019 is 2.2 t ha-1 in Africa and 4.5 t ha-1 in Asia except East 

Asia, while is 7.0 t ha-1 in East Asia (FAO, 2019). Additionally, future expansion of 

cultivated acreage will be limited because of ongoing urbanization and desertification. 

Therefore, an increase of total production and yield per unit area of rice is a prime task 

for us. 

In 1960s, appearance of high-yielding cultivars such as IR8, released by 

International Rice Research Institute (IRRI), and spread of cultivation techniques 

occurred, known as Green Revolution. The key point of this innovation is an introduction 

of a semi-dwarf characteristic, which prevented lodging and enabled high input of 

nitrogen fertilizers and improve harvest index (Yoshida, 1972; Evans, 1993; Peng and 

Khush, 2003). This innovation much contributed to an increase of rice yield more than 

double from 1960 to 2000 (Khush, 2001). Green Revolution was followed by a breeding 

of hybrid rice and new plant type (NPT) rice. The characteristics of first-generation NPT 
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rice is represented by large panicles, low-tillering capacity, and dark green leaves (Peng 

et al., 1994). Although yield of first-generation NPT rice was disappointing because of its 

poor grain filling, second-generation NPT rice achieved higher yield than conventional 

indica-inbred varieties. In second-generation NPT rice, greater grain filling and disease 

and insect resistance was derived from indica germplasm. Hybrid rice has been grown 

since 1973 in China and since 1978 at IRRI. The yield advantage of hybrid rice was 

approximately 15 % in China (Yuan, 1994) and 9 % at IRRI (Peng et al., 1999). Hybrid 

rice has a great biomass productivity, leaf area expansion, and efficient sink formation 

(Yamauchi, 1994; Laza et al., 2001; Kabaki, 1993). It is reported that hybrid rice showed 

higher yield than NPT rice because of its higher biomass production, larger size of 

panicles, and greater grain filling (Yang et al., 2007).  

The yield of field crops is determined by the product of harvest index and total 

biomass production, and harvest index almost reached its upper limit (Evans, 1993; Mann, 

1999; Horton, 2000). Future improvement of rice yield potential may be realized mainly 

by an increase of biomass production (Peng et al., 2000). The dry matter production can 

be determined by the product of solar radiation, light interception efficiency, and radiation 

use efficiency (Monteith, 1977; Long et al., 2006). Among these factors, light interception 

efficiency is thought to have very limited capacity for further improvement (Beadle & 

Long, 1985). Hence, further studies are needed especially on radiation use efficiency for 

improving yield in rice. 

 

1.2 Photosynthesis under changing environmental conditions 

Photosynthesis is the basic process for biomass production in plants. Many studies 

on the mechanisms, activity, and relationship of photosynthesis with biomass and yield 
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have been conducted, with both positive (Long et al., 2006; Zhu et al., 2010; Wu et al., 

2019; Yoon et al., 2020) and negative (Takai et al., 2013) conclusions about this 

relationship being reached. Photosynthetic activities are much affected by meteorological 

conditions. For instance, strong radiation accelerate photosynthesis under favorable 

temperature conditions (Choudhury, 1987; Yamori & Hikosaka, 2014), while net 

photosynthetic rate decreases under high-temperature conditions (Yin et al., 2010; Khan 

et al., 2013; Crafts-Brandner and Salvucci, 2002; Salvucci and Crafts-Brandner, 2004). 

The humidity of air affects the stomatal aperture and transpiration rate (Morison & 

Gifford, 1983; Monteith, 1995) and drought stress also suppresses photosynthetic 

activities (Chen et al., 2011; Carmo-Silva et al., 2012; Mutava et al., 2015). Recently, 

response of photosynthesis to fluctuating light has being intensively studied (Qu et al., 

2016; Taylor & Long, 2017; Vialet-Chabrand & Lawson, 2019; Shimadzu et al., 2019; 

Kimura et al., 2019). For example, the natural variations of photosynthetic induction 

responses have been reported in rice (Yamori et al., 2016; Adachi, Tanaka et al., 2019), 

soybean (Tanaka et al., 2019; Soleh et al. 2016), wheat (Salter et al., 2019), and cassava 

(De Souza et al., 2019). A majority of these studies are focused on photosynthetic 

activities in a single leaf under steady or simply fluctuating environmental conditions. 

However, field crops are grown as canopies under continuously and randomly changing 

meteorological conditions, and there have been less information about canopy 

photosynthetic capacities under field conditions. Under such situations, gas exchange is 

affected by various factors which is not considered in a majority of previous studies (e.g., 

mutual shading of leaves, aerodynamic resistance of canopies, wind velocity, plant types). 

Therefore, continuous measurement of canopy gas exchange with short intervals and 

evaluation of canopy gas exchange under various meteorological conditions is needed to 
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improve our understandings of biomass production process in field-grown rice. 

 

1.3 Evaluating canopy gas exchange 

Some methods to evaluate canopy photosynthesis have been developed. Models to 

estimate canopy photosynthetic rate based on single leaf photosynthetic rate and light 

irradiance have been established (Monsi & Saeki, 2005; Johnson & Thornley, 1984; 

Anten, 1999). The eddy covariance (Ohtaki, 1984; Alberto et al., 2014), assimilation 

chambers (Drake & Leadley, 1991; Katsura et al., 2006; Burkart et al., 2007; Song et al., 

2016), and satellite imagery (Sebrin et al., 2015) have been also utilized to evaluate the 

canopy photosynthetic activity. 

The thermal imaging technique is a powerful tool for evaluating canopy 

photosynthesis, because leaf transpiration is remarkably well correlated to its surface 

temperature (Gates, 1968; Jones, 2014). Additionally, recent devices of thermal imaging 

are compact enough to be handheld, so are very suitable for taking measurements in field 

conditions. Monteith & Unsworth (2013) established a model to evaluate heat balance of 

the canopy based on its surface temperature. Based on Monteith’s theory, many studies 

on canopy heat transfer have been conducted. Horie et al. (2006) estimated canopy 

diffusive conductance (gc) under field conditions and revealed that gc is correlated with 

leaf stomatal conductance, crop growth rate during the 2-week period before full heading, 

and final grain yield in rice. Recently, methods of continuous estimation of canopy 

transpiration rate using thermal imaging in soybean (Hou et al., 2019) and cotton (Jones 

et al., 2018) have been developed. However, the majority of these measurements have 

dealt with values at an instantaneous moment or with long time intervals between 

measurements. The temporal resolution of these existing techniques is not sufficient to 
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evaluate the non-steady state of photosynthesis. In the field, meteorological conditions 

including solar radiation, air temperature, and relative humidity are randomly changing. 

Consequently, canopy photosynthesis and transpiration are dramatically changing and in 

non-steady state in many cases. Therefore, for comprehensive understandings of canopy 

gas exchange under field conditions, continuous estimations of canopy gas exchange with 

short intervals are needed. To achieve this objective, we need to develop a method with 

high stability and time-resolution. 

 

1.4 The objective of the present study 

The objective of the present study was to evaluate the canopy gas exchange under 

fluctuating meteorological conditions for gaining better understanding of the process of 

biomass production in rice under field conditions. 

In Chapter 2, a stability of the heat balance model was improved by a modification 

based on an analysis of aerodynamic characteristics in rice canopies. The stability of the 

modified heat balance model was evaluated through the sensitivity analyses to the 

meteorological conditions. In Chapter 3, the diurnal and daily changes of canopy 

transpiration of field-grown rice varieties was monitored. Genotypic differences of 

cumulative canopy transpiration and a relationship between yield were also discussed. In 

Chapter 4, the required variables for estimating rice canopy transpiration were decreased 

to save labor costs for necessary measurements. A model to predict rice canopy 

transpiration rate only from meteorological data was established using the neural 

networks. For training and evaluation of this model, cumulated data throughout the 3-

years recordings of canopy transpiration rate by the modified heat balance model was 

used. Based on the developed model based on neural networks, the response of rice 
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canopy transpiration to combinations of various meteorological factors and its genotypic 

difference were evaluated. 
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Chapter 2 

 

Development of a method of stable estimation of rice canopy transpiration 

 

2.1 Introduction 

The stability of Monteith’s original heat balance model is an issue of concern when 

canopy transpiration rate (E) is estimated in short time intervals. The model estimation of 

E results in very high or even negative values when wind velocity is very low, while it is 

stable under breezy conditions. This is due to the assumption in Monteith’s model that the 

aerodynamic resistance strongly depends on the wind velocity. Because the wind velocity 

is quite unstable in field conditions, it is very difficult to apply Monteith’s original heat 

balance model to continuous measurements in short time intervals in the field. 

The aim of this study was to develop a method sufficient enough for estimation of 

rice canopy transpiration under field conditions. The heat balance model was modified 

based on the aerodynamic characteristics in rice canopies. After the modification, the 

stability of the original and modified heat balance model was compared. 

 

2.2 Theory 

The E can be calculated based on the energy balance model. In Monteith’s model, the 

energy balance of a crop canopy can be given as: 

𝑅𝑛 = 𝐻 + 𝜆𝐸 + 𝐺 … (1) 

where Rn is the net radiation flux density (W m-2), H is the sensible heat flux density (W 

m-2), λ is the latent heat of vaporization (2442 J g-1), E is the evapotranspiration rate (g m-

2 s-1), and G is the soil heat flux density (W m-2). When the rice canopy fully covers the 
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land surface, it can be assumed that G ≈ 0 and E nearly equals the canopy transpiration 

rate (Sakuratani & Horie, 1985). Then H can be shown as: 

𝐻 =
𝐶𝑝𝜌(𝑇𝑐−𝑇𝑎)

𝑟𝑎
 … (2) 

where Cp is the heat capacity of air (1.006 J g-1 °C-1), ρ is the air density (1.204 kg m-3), 

Tc is the canopy surface temperature (°C), Ta is the air temperature (°C), and ra is the 

aerodynamic resistance (s m-1). The ra is shown as: 

𝑟𝑎 =
𝑙𝑛{(𝑧−𝑑) 𝑧0⁄ }2

𝜅2𝑈
 … (3) 

where z is the altitude (m), d is the zero-plane displacement (0.7*canopy height, m), z0 is 

the ground roughness length (0.13*plant height, m), κ is the von Karman’s constant (0.4), 

and U is the wind velocity at altitude z (m s-1). In Eq. 2 and 3, all the terms can be 

measured or are already known. Therefore, E can be calculated by: 

𝐸 =
(𝑅𝑛−𝐻)

𝜆
 … (4) 

For calculating canopy diffusive resistance (s m-1), the following equation was used: 

𝜆𝐸 =
𝐶𝑝𝜌{𝑒

∗(𝑇𝑐)−𝑒𝑎}

𝛾(𝑟𝑎+𝑟𝑐)
 … (5) 

where e*(Tc) is the saturated vapor pressure at temperature Tc (hPa), ea is the vapor 

pressure of air (hPa), γ is the psychrometric constant (0.662 hPa °C-1), and rc is the canopy 

diffusive resistance. In Eq. 5, all the terms except for rc can be calculated or are already 

known. Therefore, from Eq. 5, rc can be determined by: 

𝑟𝑐 =
𝐶𝑝𝜌{𝑒

∗(𝑇𝑐)−𝑒𝑎}

𝛾𝜆𝐸
− 𝑟𝑎 … (6) 

A reciprocal of rc is the canopy diffusive conductance (gc, m s-1): 

𝑔𝑐 =
1

𝑟𝑐
 … (7) 

However, in Eq. 3, when U = 0, ra diverges, then H ≈ 0 and Rn ≈ λE. This means that 
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there is no heat exchange between the canopies and the atmosphere and is a major cause 

of errors in gc and E estimation. Hence, to apply Monteith’s model to gc and E estimation 

under field conditions, a modification is needed. 

To enable the continuous estimation of gc and E under field conditions, we assumed 

the existence of aerodynamic resistance under windless conditions (ra*). After the 

evening, the λE ≈ 0 because stomata are almost closed. In well-developed rice canopies, 

it can be assumed that G ≈ 0. Therefore, Eq. 1 in the evening can be written as follows: 

𝑅𝑛 = 𝐻 … (8) 

A part of the canopy was surrounded by silver sheet having approximately 1 m height 

to block the wind and heat transfer from the side of the canopy (Fig. 2.1a). The surrounded 

plants were heated with an infrared heater for a few minutes until the canopy reached 

thermal equilibrium (Fig. 2.1b). In equilibrium state, the sum of radiation from the heater 

(Rh) and Rn equaled to H. Averaged Rn during the heater experiment is used for the 

following calculation. The radiation by the heater is separately measured as a function of 

the distance (Fig. 2.1c). Based on this relationship, Rh is calculated from the distance of 

heater and rice canopy. Therefore, the heat balance of the rice canopy can be shown by: 

𝑅ℎ + 𝑅𝑛 = 𝐻 =
𝐶𝑝𝜌(𝑇𝑐−𝑇𝑎)

𝑟𝑎∗
 … (9) 

Consequently, the ra* can be given by: 

𝑟𝑎
∗ =

𝐶𝑝𝜌(𝑇𝑐−𝑇𝑎)

𝑅ℎ+𝑅𝑛
 … (10) 

When the net radiation is negligible, Ta can be assumed to be equal to Tc before being 

heated (Tc0). Therefore, the Eq. 10 can be converted to Eq. 11. 

𝑟𝑎
∗ =

𝐶𝑝𝜌(𝑇𝑐−𝑇𝑐0)

𝑅ℎ+𝑅𝑛
 … (11) 

The modified ra was then defined as the combined resistance of ra calculated by the 
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original heat balance model (ra’) and ra*. 

𝑟𝑎 =
1

1

𝑟𝑎′
+

1

𝑟𝑎
∗

 … (12) 

With this modification, the divergence of ra under windless conditions can be 

avoided because of the existence of ra* regardless of the wind velocity. 

 

 

 

  

(a) (b) 

(c) 

Fig. 2.1. (a) Schematic drawing for 

measuring aerodynamic resistance under 

no-wind conditions (ra*) based on the 

heat balance theory, (b) change of canopy 

temperature after heating with a heater in 

‘Koshihikari’ canopy, (c) the relationship 

between radiation (Rh) and distance from 

the heater. 
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2.3 Materials and Methods 

2.3.1. Plant materials 

The field experiments were conducted in the paddy field at the Graduate School of 

Agriculture, Kyoto University, Kyoto, Japan (35° 2ʹ N, 135° 47ʹ E, 65 m altitude). Seven 

rice genotypes were cultivated; ‘Koshihikari’, ‘Nipponbare’ (typical japonica cultivars 

having moderate photosynthetic activities), ‘Takanari’, ‘Habataki’ (high yielding indica 

cultivars having high photosynthetic activities), ‘Wanlun 422’ (a typical indica cultivar, 

WL), ‘Liaojing 5’ (an erect panicle type cultivar, LG) and ‘IL23’ (one of the recombinant 

inbred lines derived from a cross between ‘Wanlun 422’ and ‘Liaojing 5’, having low 

stomatal conductance; Tang et al., 2017; Oishi et al., 2015). The seeds were sown on April 

20, 2017, and the seedlings were transplanted on May 16, 2017. Planting density was 22.2 

plants m-2. For aerodynamic resistance under windless condition (ra*) measurement, 8 by 

6 plants were used. The amounts of fertilizer applied as basal-dressing were 60 kg N ha-

1, 47 kg P ha-1 and 56 kg K ha-1. Weeds, diseases, and insects were strictly controlled, and 

the field was fully irrigated throughout the entire growing season. Canopy height and leaf 

area were measured on July 15, 2017, with 3 replications. 

 

2.3.2 The ra* measurement 

The measurement of ra* of each rice genotype was conducted during the evening of 

July 19 with three replications at the paddy field. 3 × 3 plants were surrounded by a silver 

sheet and the surrounded plants were heated by infrared heater “Dantotsu” (Midori Shokai, 

Japan). The Rh was estimated based on the distance between the heater and the canopy, 

and the relationship shown in Fig. 1c. The canopy surface temperature was recorded by 

thermal imaging camera CPA-T620 (FLIR systems Inc., US) set approximately 1m away 
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from the canopy. The resolution of thermal image was 640 × 480 pixels, the spectral range 

was 7.5 ~ 14 μm and thermal sensitivity was 0.04 ˚C at 30 ˚C. The change of the canopy 

surface temperature during the heating was extracted using thermal imaging software 

FLIR tools + (FLIR systems Inc.). The emissivity of canopy was set as 1.0. During the 

measurement of ra*, upward and downward radiation were recorded by an albedo meter 

(PCR-3, Kipp & Zonen, Netherlands) and infrared radiometer (PRI-01, PREDE CO., Ltd., 

Japan). The Rn was calculated as the sum of subtraction of upward and downward 

radiation of long- and short-wave radiation. These instruments were set approximately 2 

m above the ground (1 m above the canopy), connected to a data logger (CR-1000, 

Campbell Scientific, Inc.), and the values were logged in 1 second intervals. From Rh, Rn, 

and canopy surface temperature, the ra* was calculated based on the theory above.  

 

2.3.3. Sensitivity analysis of the modified model 

To test the stability of the modified model to the wind velocity and other 

meteorological conditions, a sensitivity analysis was conducted. Parameters in the model 

were fixed as Ta = 30 °C, RH = 65 %, Rn = 700 W m-2, canopy height = 0.7 m and ra* = 

20 s m-1
, respectively. Wind velocity and canopy temperature depression (Tc-Ta) varied 

from 0 to 5 m s-1 and -2 to 0 °C, respectively, and gc was calculated based on both 

Monteith’s original model and the modified model for all the combinations of wind 

velocity and Tc-Ta. 

 

2.3.4. Statistical analysis 

The ra* was represented by the mean value of 3 replications. An analysis of variance 

(ANOVA) and Tukey HSD test was used to compare variance in ra*. The statistical 
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analyses were conducted using R (R Core Team, 2018). The sensitivity analysis was 

conducted using Python language (Van Rossum & Drake, 2009). 

 

2.4 Results 

Significant varietal differences of ra*
 were observed (Fig. 2.2a), with ra* ranging from 

9.50 to 35.40 s m-1 among the genotypes. The relationship between ra and wind velocity 

on July 20 for both the original and the modified model is shown in Fig. 2.2b. In the 

original model, ra ranged up to 154.15 s m-1 when wind was very weak (0.36 m s-1). On 

the other hand, ra modified by ra* ranged up to 8.95 s m-1
 under weak-wind conditions. 

The values of leaf area index (LAI) and canopy height (CH) in each cultivar is shown in 

Table 2.1. The value of ra* was significantly correlated to leaf area density, which is 

represented by the ratio of leaf area index to canopy height (Fig. 2.3). 

With this modification, our model was applicable to a wider set of weather conditions 

than the original model (Fig. 2.4). In the original model, gc estimation when wind velocity 

is under 3.0 m s-1 was unstable. This resulted in values of gc being extremely high or even 

negative in some cases (Fig. 2.4a). In contrast, our modified model was capable of stable 

gc estimation even when wind velocity is remarkably low (Fig. 2.4b). It should be noted 

that we recorded no negative values (black area) in our revised model. On the other hand, 

gc estimation when wind velocity is over 3.0 m s-1 did not differ significantly between the 

two models. 

 

2.5 Discussion 

Significant varietal differences of ra*
 among the seven genotypes were detected (Fig. 

2.2a). This difference can be attributed to canopy structure differences of each genotype. 
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(a) 

(b) 

Fig 2.2. (a) Varietal differences in aerodynamic resistance under windless conditions 

(ra*) measured by the method shown in Fig. 2.1. Error bars represent standard error 

and lowercases represent significant differences with p = 0.05 probability level by 

Tukey HSD test in 3 replications. (b) Plot of aerodynamic resistance to wind velocity 

in ‘Koshihikari’ calculated by both the original (ra’, gray dots) and the modified model 

(ra, black dots). 
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Fig 2.3. The relationship between leaf area density, a ratio of leaf area 

index to canopy height (LAI/CH), and ra*. Error bars represent the 

standard errors. 
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(b) 

Fig. 2.4. Heatmaps showing canopy diffusive conductance (gc) estimated by (a) 

Monteith’s original model and (b) our modified model for the combination of canopy 

temperature depression (Tc – Ta) and wind velocity. The weather conditions and plant 

morphology are set as; Ta = 30 °C, RH = 65 %, Rn = 700 W m-2, plant height = 0.7 m 

and ra* = 20 m s-1. 

(a) 
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‘Takanari’, which had the highest ra*
 among the seven genotypes, has a larger leaf area, 

has a larger leaf are and lower plant height (Table 2.1). It is supposed that leaves are dense 

in these canopies and the gas transfer between the canopy and the atmosphere seems to 

be relatively difficult in ‘Takanari’. Consequently, the resistance of heat transfer from 

canopies to the atmosphere is suspected to become higher. On the other hand, the cultivars 

‘Koshihikari’, ‘Wanlun 422’ and ‘Liaojing 5’ had a lower ra*. These three cultivars 

appeared to have canopy structures in which the gas transfer between the canopy and the 

atmosphere is relatively easy; ‘Koshihikari’ exhibited larger plant height while ‘Wanlun 

422’ had a smaller leaf area (Table 2.1). Erect panicle type genotypes such as ‘Liaojing 5’ 

are reported to have relatively dense leaf distribution in the lower layers of canopies 

(Hirooka et al., 2018), which may have led to the lower ra* values recorded. 

Because the value of ra* may be affected by free convection and boundary layer 

conductance, it can change frequently under field conditions. However, canopy 

temperature depression in ra* measurements is approximately 3 °C, which is close to one 

in the paddy field. Therefore, the value of ra* in the measurement condition and in the 

field conditions does not seem to have much difference. Hence the impacts of ra* change 

on the ra in the modified model is considered negligible. 

In the original model, ra diverged from what was expected, especially when wind 

velocity was under 3.0 m s-1. In particular when wind velocity was lower than 1.0 m s-1, 

gc values were sometimes negative. The original model was only applicable to gc 

estimation when wind velocity is relatively high. However, such conditions occurred 

infrequently under field conditions (Fig. 2.5), suggesting that the original model works 

well in only limited scenarios. By introducing ra*, the divergence of ra was successfully 

avoided even under calm and light air conditions (Fig. 2.2b). This led to the stable 
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estimation of gc (see Chapter 3). Our modified model therefore enabled a continuous and 

stable estimation of canopy gas exchange of rice under field conditions. 

 

  

Fig. 2.5. A histogram of wind velocity from July 18 to 25, 2017. Values are normalized. 
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Chapter 3 

 

Continuous estimation of rice canopy transpiration based on the modified heat 

balance model 

 

3.1 Introduction 

As mentioned in Chapter 1, canopy gas exchange is an important trait for yield 

formation in the cultivating field in rice. However, to the best knowledge of us, there is 

little information about diurnal and daily changes of rice canopy transpiration under field 

conditions. In Chapter 2, the stability of Monteith’s heat balance model to the change of 

wind velocity was improved by the introduction of the concept of ra*. Thanks to this 

modification, our newly modified model may be applicable for the continuous estimation 

of rice canopy transpiration under field conditions. 

In this part, we conducted an estimation of rice canopy transpiration with short 

intervals. The diurnal change of gc and E, the daily change of cumulative transpiration, 

and its genotypic difference was evaluated. The relationship between estimated E and 

final grain yield within 7 rice genotypes was also discussed. 

 

3.2 Materials and Methods 

3.2.1 Plant materials and growth analysis 

The location of the field and plant materials was same as Chapter 2 (see 2.3.1). Two 

different types of experimental plots were established for the present study. For yield 

measurements, a plot of 10 by 13 plants was used with three replications. For canopy 

temperature measurement, 10 by 10 plants were used with two replications. These two 
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plots were established in the same field and arranged in a randomized blocked design. 

The amounts of fertilizer applied as basal-dressing were 60 kg N ha-1, 47 kg P ha-1 and 56 

kg K ha-1. Weeds, diseases, and insects were strictly controlled, and the field was fully 

irrigated throughout the entire growing season. 

Canopy height was measured for each genotype in the field on July 15, 2017. At the 

plant maturity stage, 10 plants were chosen, and the grain yield was measured with 3 

replications. The grain yield was adjusted to 14% moisture. 

 

3.2.2 Canopy temperature and meteorological data 

Canopy surface temperature (Tc) was recorded by infrared thermal imaging camera 

(InfReC S30, Nippon Avionics Co., ltd., Japan). The camera was set 16 m away from the 

paddy field and 7 m above the ground level; the angle of elevation was 24º. The resolution 

of thermal image was 160 × 120 pixels, the spectral range was 8-13 μm, and thermal 

sensitivity was less than 0.2 °C at 30 °C. The thermal images of each genotype were 

recorded every second, from July 18 to July 25, 2017. All the plots were covered by the 

single thermal image and Tc was calculated for each genotype with thermal image 

processing software NS 9500 (Nippon Avionics Co., ltd.) with two areas in each plot. Tc 

was corrected using reference temperatures. The temperature reference board was set near 

the experimental field. White felt was attached on a 60 × 40 cm wooden board. The 

surface temperature of the reference board was simultaneously recorded by thermometer 

(TR-52i, T&D Corporation, Japan) and thermal imaging camera. The subtraction of the 

temperature data on the reference board obtained by these two instruments was used to 

correct the temperature drift of the thermal imaging camera. It was assumed that canopy 

surface emissivity was compensated by this temperature correction. 
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Micro meteorological data at the paddy field was measured using a meteorological 

data acquisition system. Air temperature and relative humidity was recorded by a 

temperature and relative humidity probe (CS215, Campbell Scientific, Inc., US) with 

aspirated radiation shield, wind velocity by an ultrasonic anemometer (1590-PK-020, Gill 

instruments, Ltd., UK) and upward and downward radiation by an albedo meter (PCR-3, 

Kipp & Zonen, Netherlands) and infrared radiometer (PRI-01, PREDE CO., Ltd., Japan). 

Net radiation was calculated as the sum of subtraction of upward and downward radiation 

of long- and short-wave radiation. These instruments were set approximately 2 m above 

the ground (1 m above the canopy), connected to a data logger (CR-1000, Campbell 

Scientific, Inc.) and the values were logged in 1 second intervals, from July 18 to July 25, 

2017. Based on these data and the value of ra* in Chapter 2, gc and E was estimated. 

 

3.2.3 Statistical analysis 

The gc, E, and yield were represented by the mean value of 4, 4 and 3 replications, 

respectively. The gc and E was estimated in two areas in each plot. ANOVA was conducted 

to compare daily cumulative values of E. A Pearson correlation coefficient was calculated 

between hourly cumulative E and final grain yield. All these statistical analyses were 

conducted using R. The calculation of gc and E was conducted using Python language. 

 

3.3 Results 

Typical diurnal changes in Rn and relative humidity (RH) were observed on July 20, 

2017 (Fig. 3.1a). The calculated gc and E in ‘Koshihikari’ and ‘Takanari’ showed a similar 

diurnal pattern to Rn (Fig. 3.1 b and c). The time resolution of the calculation is 1s, and 

over 99.9% of the total data of gc ranged from 0 to 0.1 (m s-1), which is similar to that  
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(a) (b) 

(c) (d) 

Fig. 3.1. Diurnal changes in (a) net radiation flux density (Rn) and relative humidity 

(RH), (b) canopy conductance (gc), (c) canopy transpiration rate (E) and (d) wind 

velocity on July 20, 2017, in ‘Koshihikari’ and ‘Takanari’ calculated by the modified 

heat balanced model. 
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found in a previous study for gc in rice varieties (Horie et al., 2006). 

The daily cumulative Rn and cumulative E (kg m-2 d-1) of the seven genotypes was 

calculated from July 18 to 25, 2017 (Fig. 3.2). In all the 7 genotypes, the changes of daily 

cumulative E corresponded to that of Rn. On July 20, 2017, when cumulative Rn was the 

highest, cumulative E ranged from 10.29 kg m-2 d-1 for ‘Takanari’ to 7.92 kg m-2 d-1 for 

‘Nipponbare’. On July 25, cumulative E ranged from 3.26 kg m-2 d-1 of LG to 2.33 kg m-

2 d-1 of ‘IL23’. Significant varietal differences of cumulative E were detected by one-way 

ANOVA on each day. 

The final grain yield ranged from 8.17 t ha-1 for ‘Takanari’ to 5.51 t ha-1 for 

Nipponbare (Table 3.1). Table 3.2 shows the moving correlation coefficients (r) between 

hourly cumulative E and final grain yield. The r ranged from 0.9664 at 15:00, July 21 to 

-0.4089 at 17:00, July 25. There were positive correlations between E and grain yield 

mainly from July 18 to 22, 9:00 to 16:00. After July 23, however, significant correlations 

were detected in only a few cases. 

 

3.4 Discussion 

According to Horie et al. (2006), the range of gc seems to be reasonable from 0 to 

0.1 m s-1. Most of the gc values estimated by our modified model on July 20 are in this 

range (Fig. 3.1b), supporting the validity of our model. A clear diurnal pattern of change 

in gc and E corresponding to Rn was observed (Fig. 3.1b and c). The gc and E of ‘Takanari’ 

was higher than that of ‘Koshihikari’, particularly in the mornings. In the morning, gc 

showed remarkably high values while Rn was low (Fig. 3.1b). This seems to be due to the 

morning dews on leaf surface, which leads to the underestimation of the leaf temperature. 

In Fig 3.1b and c, gc and E of ‘Koshihikari’ shows negative values around 8:00. It is 
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Fig. 3.2. The daily changes of net radiation (Rn) and cumulative transpiration from 

July 18 to July 25, 2017. The bars represent the Rn, and each line represents the 

cumulative transpiration in each genotype. The markers *, **, and *** represent the 

significant genotypic difference with 0.05, 0.01, and 0.001 probability level by one-

way analysis of variance (ANOVA), respectively. 
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thought that the light intensity at leaf surface suddenly increased by the direct irradiation 

around 8:00, although torn recorded by the sensor steadily increased. Additionally, it is 

reported that stomatal opening of ‘Koshihikari’ response to fluctuating light is slower 

compared to ‘Takanari’ (Adachi, Tanaka et al., 2019; Taniyoshi et al., 2020). These factors 

seem cause the jump up of the leaf temperature of ‘Koshihikari’, which led to the error of 

gc and E estimations. 

In previous studies, ‘Takanari’ is reported to have a high photosynthetic capacity 

(Takai et al., 2010; Takai et al., 2013; Adachi, Yamamoto et al., 2019; Horie et al., 2006). 

We succeeded in monitoring superior transpiration capacity in ‘Takanari’ continuously 

and stably at the canopy level. In addition, we found that the transpiration rate in ‘Takanari’ 

decreases in the afternoon, at which point the difference with the transpiration rate of 

‘Koshihikari’ becomes unclear (Fig. 3.1c). Transpiration in ‘Takanari’ may be limited by 

water availability under greater vapor pressure deficit conditions. Horie et al. (2006) 

estimated rice gc using the thermal imaging and shading method, where varietal 

differences of gc were also detected. However, gc was estimated only under clear weather 

conditions, and only momentarily (Horie et al., 2006). Hou et al. (2019) estimated the 

diurnal change of transpiration rate in soybean using thermal imaging in 2 hours intervals. 

Our study, however, succeeded in estimating rice E in 1 second intervals by introducing 

the concept of ra*. Jones et al. (2018) developed a method to estimate gc and E of cotton 

canopy in short intervals with a green hemispherical reference, but they did not examine 

any genotypic differences. Using our method, Monteith’s original model can be modified 

based on the direct measurement of ra* in each genotype. To our knowledge, this study is 

the first one which has enabled high-resolution, continuous and stable estimation of rice 

canopy diffusive conductance and transpiration rate, and the detection of the genotypic 
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difference of E under field conditions.  

Based on the modified model, daily cumulative E in each genotype was calculated. 

Daily cumulative E changed depending on the value of Rn. Varietal differences of daily 

cumulative E were detected on each day (Fig. 3.2). Throughout the measurement period, 

daily cumulative E was consistently higher in ‘Takanari’, WL and ‘Habataki’, and 

consistently lower in ‘Koshihikari’, ‘Nipponbare’ and ‘IL23’, regardless of the value of 

daily cumulative Rn. This tendency coincides with photosynthetic capacity reported in 

previous studies (Takai et al., 2010; Hirasawa et al., 2010), which supports the validity of 

the model. 

It is reported that 60 days after transplanting, daily cumulative E ranges from 2 to 

10 kg m-2 d-1 with a micro lysimeter measurement (Adachi et al., 1995; Yan & Oue, 2011), 

which is comparable to the daily cumulative E estimated by the modified model in our 

study. This match also supports the validity of our model. Significant correlations 

between hourly cumulative E and final grain yields were detected, mainly from July 18 

to 21, 9:00 to 16:00 (Table 3.2). In particular, the ‘Takanari’, ‘Habataki’, and WL varieties 

had consistently higher transpiration rates and final grain yields (Fig. 3.2 and Table 3.1). 

This implies that E in the daytime before the heading stage is important for yield 

formation in rice. This corresponds to a previous study which reported a significant 

correlation between gc estimated under clear weather conditions and final grain yield 

(Horie et al., 2006). However, after July 22, this relationship broke down. It is thought 

that E values seemed nearly maximum under clear weather condition before July 22, 

which led to the high correlation with final grain yield, while the difference of E in 7 

genotypes rarely was observed after July 23 because of the low radiation. The relationship 

between photosynthetic capacity and grain yield has been well discussed in rice (Shimono 
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et al., 2009; Chang et al., 2016; Luo et al., 2020). The positive relationships observed in 

the present study support the validity of E estimated by our method.  
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Chapter 4 

 

Prediction of rice canopy transpiration rate by neural networks and an evaluation 

of its response to various meteorological conditions 

 

4.1 Introduction 

In Chapter 2, a method for estimating rice canopy transpiration with high stability 

and time-resolution was developed, and its applicability under field conditions was shown 

in Chapter 3. However, this technique still requires many labor costs for its utilization, 

mainly in measurements of Tc and ra*. Besides, the fluctuation of the estimated values 

cannot be negligible because the heat balance theory stands on the steady state, while 

canopies of field-grown rice are under non-steady environments. 

To estimate E, meteorological data are also required in many cases. Unlike canopy 

surface and reference temperatures, meteorological data are relatively easy to access. 

After setting up the weather station, the meteorological data are recorded automatically. 

Micrometeorological conditions strongly affect canopy transpiration (Jones, 2014). For 

instance, favorable temperature and strong radiation accelerate photosynthesis in general 

(Choudhury, 1987; Yamori & Hikosaka, 2014), which leads to stomatal opening and 

greater transpiration. Further, air humidity affects stomatal aperture and transpiration rate 

(Morison & Gifford, 1983; Monteith, 1995). Under field conditions, however, 

meteorological factors changing with high complexity, which makes it difficult to explain 

relationships between meteorological conditions and canopy gas exchange clearly. 

Neural network is a mathematical model in which the structure of human brain is 

imitated and a powerful tool to explain non-linear relationships. Recently, many studies 
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have been conducted to utilize neural networks in the field of plant science. For instance, 

neural networks have been used for the prediction of biomass (Ma et al., 2019; Jin et al., 

2020), final yield (Das et al., 2020; Haghverdi et al., 2018; Nevavuori et al., 2019), 

transpiration (Nam et al., 2019; Fan et al., 2021), and detection of crop diseases 

(Mujahidin et al., 2021) in previous studies. A study to substitute a process-based model 

for the prediction of rice grain yield using a neural network has also been conducted 

(Yamamoto, 2019). However, to the best of our knowledge, no studies have been 

conducted to apply the neural network for predicting E in rice under field conditions. In 

general, numerous datasets are required for training and establishing an accurate model 

using a neural network. We developed a method to estimate E in rice under field 

conditions with a high time resolution, as mentioned above. This technique enabled the 

acquisition of a large-scale dataset of meteorological conditions and E in two cultivars 

with different gas exchange characteristics, ‘Koshihikari’ and ‘Takanari’. Therefore, the 

numerous datasets of these two factors in ‘Koshihikari’ and ‘Takanari’ may be applied to 

establish a model to predict E based on meteorological data, without the measurement of 

canopy surface temperature and the settings of some references.  

Sensitivity analysis is a technique to be used to evaluate the contribution of each 

parameter to the output of the model (Hamby, 1994). The response of the predicted value 

of E to the change in the input meteorological data can be tested by sensitivity analysis. 

To date, the gas exchange activity and genotypic differences in rice under steady or simple 

environmental conditions have been reported in many studies (Qu et al., 2016; Ikawa et 

al., 2017; Yamori et al., 2020). Many previous studies have reported that the saturated 

photosynthetic rate in a single leaf was greater in ‘Takanari’ than in japonica cultivars, 

including ‘Koshihikari’ (Hirasawa et al., 2010; Adachi, Yamamoto et al., 2019; Takai et 
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al., 2010; Taylaran et al., 2011). However, little information has been published regarding 

gas exchange and its genotypic differences under various combinations of meteorological 

conditions. Acquiring this information is important to gain a better understanding of gas 

exchange, growth processes, and genotypic differences under field conditions in rice. 

By introducing neural network and sensitivity analysis, a part of E estimation 

process, canopy-related parameters and heat balance equations, can be substituted by a 

neural network structure. It is thought that this substitution enables to cancel the 

fluctuation of E unique to the heat balance equations, and to connect meteorological data 

and E directly. This means that feature extractions of the response of canopy gas exchange 

to the change of meteorological conditions may be possible and that its genotypic 

differences can be evaluated. 

In the present study, we first developed a model to predict E using 

micrometeorological data and a neural network. The E values under various 

meteorological conditions were simulated using sensitivity analysis. Based on the results 

of this analysis, the genotypic difference in the response of predicted E to the 

meteorological conditions between ‘Koshihikari’ and ‘Takanari’ was evaluated. 

 

4.2 Materials and Methods 

4.2.1 Plant materials 

In 2017, 2018, and 2019, ‘Koshihikari’ and ‘Takanari’ were cultivated in paddy 

fields at the Graduate School of Agriculture, Kyoto University, Kyoto, Japan (35° 2ʹ N, 

135° 47ʹ E, 65 m altitude). The seeds were sown on April 20, 2017, April 23, 2018, and 

April 19, 2019, and the seedlings were transplanted on May 16, 2017, May 18, 2018, and 

May 17, 2019, respectively. The planting density was 22.2 plants·m-2. The amount of 



34 

fertilizer applied as basal dressing was 60 kg N·ha-1, 47 kg P·ha-1, and 56 kg K·ha-1 in all 

three years. In 2018 and 2019, 40 kg N·ha-1, 31 kg P·ha-1, and 37 kg K·ha-1 were 

additionally applied as top-dressing at the beginning of July. Weeds, diseases, and insects 

were strictly controlled, and the field was fully irrigated throughout the growing season. 

 

4.2.2 Estimation of E by the heat balance model 

Micrometeorological data at the paddy field were measured using a meteorological 

data acquisition system from July 18 to 25 over three years. In 2017, micrometeorological 

data were recorded using the method described in Chapter 2 and 3. In 2018 and 2019, air 

temperature (Ta), relative humidity (RH), and wind velocity were recorded using a 

composite meteorological sensor (WS500, EKO Instruments, Japan). Solar radiation was 

recorded using a pyranometer (MS802, EKO Instruments, Japan). In 2018, the upward 

and downward radiation was collected using an albedo meter (PCR-3, Kipp & Zonen, 

Netherlands) and infrared radiometer (PRI-01, PREDE CO., Ltd., Japan). All sensors 

were connected to a data logger (GL840, GRAPHTEC Co., Japan). The net radiation (Rn) 

in 2017 and 2018 was calculated as the sum when the upward and downward radiation of 

long- and short-wave radiations are subtracted. The Rn in 2019 was estimated based on 

the relationship between solar radiation and net radiation recorded from July 10 to 25, 

2018 (Fig. 4.1). In all three years, the canopy surface temperature was recorded using the 

method described in Chapter 3, and the value of ra* was represented by the value shown 

in Chapter 2. Canopy height was recorded before and after the estimation period, and 

canopy height on each day was estimated under the assumption that canopy height 

increased linearly during this period. From these data, E was estimated from 6:00:00 to 

18:00:00 in 1-second intervals. 
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Fig. 4.1. The relationship between solar radiation and net radiation based (Rn) on the 

micrometeorological data acquired from July 10 to 25, 2018. 
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Fig. 4.2. Schematic of the process used to predict canopy transpiration rate in 

‘Koshihikari’ and ‘Takanari’ by the neural networks. 
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4.2.3 Dataset, model establishment, and prediction 

A schematic of this process is displayed in Fig. 4.2. Data on meteorological conditions 

and E from July 18 to 25 in 2017, 2018, and 2019 were used. The meteorological data 

included time, Ta, RH, and Rn. All parameters were normalized, ranging from 0 

(representing 6:00:00) to 1 (representing 18:00:00) for time, 0 (representing 20 °C) to 1 

(representing 40 °C) for Ta, 0 (representing 0%) to 1 (representing 100%) for RH, and 0 

(representing -50 W m-2) to 1 (representing 1450 W m-2) for Rn. The real value acquired 

using the method described above was used for E. After this preprocessing, the datasets, 

except those collected on July 22, 2017, July 21, 2018, and July 24, 2019, were used for 

model establishment. The model was established using a PC-based deep learning tool 

(Neural Network Console, Sony Co., Japan). The input variables were time, Ta, RH, and 

Rn, while the output variables were E. The model structure was determined by an 

automatic optimization method, ‘Structure Search’, included in the Neural Network 

Console. The model structure was established based on the ‘Koshihikari’ dataset. Based 

on the established model structure, E on July 22, 2017, July 21, 2018, and July 24, 2019, 

was predicted for ‘Koshihikari’ and ‘Takanari’, respectively. In the prediction, training 

and validation were independently conducted for the two cultivars. The predicted value 

of E is called ENN. 

 

4.2.4 Analysis 

After the prediction, diurnal change patterns of E and ENN were compared, and the 

coefficient of determination (R2) and root mean squared error (RMSE) were calculated. 

The ENN under virtual meteorological conditions was simulated based on the established 

model. In the simulation datasets, two of the four input variables were sequentially 
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changed, and the other two variables were fixed in three patterns (Table 4.1). From these 

datasets, ENN under virtual meteorological conditions was predicted for ‘Koshihikari’ and 

‘Takanari’. After the prediction, the simulated ENN values for the two cultivars were 

compared. All calculations and analyses were conducted in the Python language. 

 

4.3 Results 

4.3.1 Meteorological condition 

The daytime mean Ta, mean RH, and cumulative Rn from July 18 to 25 in 2017, 2018, 

and 2019 are shown in Fig. 4.3. The mean Ta ranged from 25.43 °C on July 19, 2019, to 

33.48 °C on July 18, 2018. The mean RH ranged from 53.21% on July 24, 2018, to 

93.55% on July 22, 2019. The cumulative Rn ranged from 1.90 MJ·m-2·d-1 on July 22, 

2019, to 17.97 MJ·m-2·d-1 on July 24, 2018. Generally, the meteorological conditions in 

2018 were hot and dry, while in 2019, it was cool and humid. The year 2017 had various 

weather conditions: hot and dry, cool and humid, and an intermediate condition. 

 

4.3.2 Prediction of E by neural network 

The structure of the established model is illustrated in Fig. 4.4. The ENN values were 

well predicted using neural networks on July 22, 2017, and July 21, 2018, for both 

‘Koshihikari’ (R2 = 0.7598, RMSE = 0.0597 in 2017 and R2 = 0.8079, RMSE = 0.0752, 

in 2018; Fig. 4.5) and ‘Takanari’ (R2 = 0.8537, RMSE = 0.0392, in 2017 and R2 = 0.8431, 

RMSE = 0.0538 in 2018, Fig. 4.5). However, the ENN value on July 24, 2019, did not 

work well for ‘Koshihikari’ (R2 = 0.2003, RMSE = 0.0967, Fig. 4.5). The ENN of ‘Takanari’ 

on July 24, 2019, was better predicted than that of ‘Koshihikari’, but not in 2017 and 2018 

(R2 = 0.7147, RMSE = 0.0554, Fig. 4.5). 
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Fig. 4.3. Daily cumulative net radiation (Rn, top), mean air temperature (Ta, middle), 

relative humidity of the air (RH, bottom) from July 18 to 25 in 2017, 2018, and 2019. 

The green, red, and blue lines represent the values in 2017, 2018, and 2019, 

respectively. 
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Fig. 4.4. The structure of the model for predicting canopy transpiration rate. Each 

component can be explained by: Fully connected, Fully Connected Layer; Abs, 

Absolute Value; Dropout, Dropout Layer; SELU, Scaled Exponential Linear Unit; 

PReLU, Parametric Reflected Linear Unit; and SquaredError, Output Layer 

minimizing the squared error. The numbers next to the Fully Connected Layers 

represent the size of outshapes. 
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Figure 4.6 shows the scatterplots of time and RH in three years for the measured E 

in the separated nine panels for, Ta under 26.6, from 26.6 to 33.3, or over 33.3 ℃ and Rn 

under 300, from 300 to 600, or over 600 W m-2. The colors of the datasets represent the 

ratio of E in ‘Takanari’ (ETaka) to ‘Koshihikari’ (EKoshi) based on the values estimated by 

the heat balance model. Of the datasets, 61.15% were included in the Rn panels under 300 

W m-2 (panels a, b, and c). A total of 15.12% of the datasets were included in the panel of 

Ta under 26.6 °C and Rn under 300 W m-2 (panel a), and most were plotted on the area of 

RH over 75% from 6:00 to 18:00. In panel a, E in ‘Takanari’ was higher than that in 

‘Koshihikari’, mainly from 9:00 to 10:30, but lower at the other timepoint. A total of 

39.32% of the datasets were included in the panel of Ta from 26.6 to 33.3 ℃ and Rn 

under 300 W m-2 (panel b), and most were plotted on the area of RH over 50% from 6:00 

to 18:00. In panel b, E in ‘Takanari’ was higher than that in ‘Koshihikari’, mainly from 

9:00 to 15:00, and lower at the other timepoint. A total of 6.71% of the datasets were 

included in the panel of Ta from over 33.3 °C and Rn under 300 W m-2 (panel c), and most 

were plotted on the area of RH approximately under 65% from 12:00 to 18:00. In panel 

c, E in ‘Takanari’ was generally lower than that in ‘Koshihikari’. Most of the other 

datasets were included in four panels: the panels of Rn from 300 to 600 W m-2 or over 600 

W m-2 and Ta from 26.6 °C to 33.3 °C or over 33.3 °C (panels e, f, h, and i). A total of 

14.27% of the datasets were included in the panel of Ta from 26.6 °C to 33.3 °C and Rn 

from 300 to 600 W m-2 (panel e), and most were plotted on the area of RH over 50% from 

7:00 to 17:00. In panel e, E in ‘Takanari’ was generally higher than that in ‘Koshihikari’. 

A total of 6.67% of the datasets were included in the panel of Ta over 33.3 °C and Rn from 

300 to 600 W m-2 (panel f), and most were plotted on the area of RH approximately under  
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Fig. 4.6. The scatterplots of meteorological data and varietal difference in the canopy 

transpiration rate between ‘Koshihikari’ and ‘Takanari’ over 3 years. The time and 

relative humidity (RH) are presented on the x and y axis, respectively. The color of the 

data points represents the ratio of E in ‘Takanari’ to ‘Koshihikari’ estimated by the heat 

balance model. All data for the scatterplots of time and RH over 3 years were separated 

into 9 groups: Ta under 26.6, from 26.6 to 33.3, and over 33.3 ℃ x Rn under 300, from 

300 to 600, and over 600 W·m-2. 
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65% from 10:00 to 17:00. In panel f, E in ‘Takanari’ was generally lower than that in 

‘Koshihikari’. A total of 9.33% of the datasets were included in the panel of Ta from 26.6 

to 33.3 ℃ and Rn over 600 W m-2 (panel h), and most were plotted on the area of RH 

from 50 to 75% from 9:00 to 15:00. In panel h, E in ‘Takanari’ was generally higher than 

that in ‘Koshihikari’. A total of 8.25% of the datasets were included in the panel of Ta 

over 33.3 °C and Rn over 600 W m-2 (panel i), and most were plotted on the area of RH 

under 65% from 10:00 to 15:00. In panel i, E in ‘Takanari’ was generally lower than that 

in ‘Koshihikari’. In the other plots, only a few datasets were included in the panel of Ta 

under 26.6 ℃ and Rn from 300 to 600 W m-2 (panel d), and no datasets were included in 

the panel of Ta under 26.6 ℃ and Rn over 600 W m-2 (panel g).  

Figure 4.7 shows the scatterplots by Ta and Rn over three years for the measured E 

in the separated nine panels for, the time before 10:00, from 10:00 to 14:00, or after 

14:00 °C and RH under 52.5%, from 52.5% to 77.5%, or over 77.5 %. The colors of the 

datasets represent the ratio of E in ‘Takanari’ to ‘Koshihikari’ based on the values 

estimated by the heat balance model. The datasets were included in all panels, except 

panel a: the time before 10:00 and RH under 52.5%. A total of 6.62% of the datasets were 

included in the panel for time from 10:00 to 14:00 and RH under 52.5% (panel b), and 

most were plotted on the area of Ta around 35 °C and Rn under 900 W m-2. In panel b, E 

in ‘Takanari’ was generally lower than that in ‘Koshihikari’. Of the datasets, 10.19% were 

included in the panel of time after 14:00 and RH under 52.5% (panel c), and most were 

plotted on the area of Ta around 35 °C and Rn under 700 W m-2. In panel c, E in ‘Takanari’ 

was generally lower than that in ‘Koshihikari’. A total of 14.23% of the datasets were 

included in the panel for time before 10:00 and RH from 52.5% to 77.5% (panel d), and  
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Fig. 4.7. Scatterplots of meteorological data and varietal difference in the canopy 

transpiration rate between ‘Koshihikari’ and ‘Takanari’ over 3 years. Air temperature 

(Ta) and net radiation (Rn) are presented on the x and y axis, respectively. The color of 

the data points represents the ratio of E in ‘Takanari’ to ‘Koshihikari’ estimated by the 

heat balance model. All data were separated into 9 groups: the time before 10:00, from 

10:00 to 14:00, and after 14:00 x RH under 52.5%, from 52.5 to 77.5%, and over 

77.5%. The value above represents the percentage of included data relative to all 

meteorological data. 
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most were plotted on the area of Ta from 25 to 33 °C and Rn under 700 W m-2. In panel d, 

E in ‘Takanari’ was lower than that in ‘Koshihikari’ mainly under two conditions: when 

Ta was around 30 °C and Rn was weaker than 700 W m-2, and when Ta was around 25 °C. 

Of the datasets, 19.84% were included in the panel for time from 10:00 to 14:00 and RH 

from 52.5% to 77.5 % (panel e), and most were plotted on the area of Ta from 28 to 33 °C 

and Rn under 900 W m-2. In panel e, E in ‘Takanari’ was generally higher than that in 

‘Koshihikari’ when Ta was lower than 32 °C, but lower when Ta was higher than 32 °C. 

Of the datasets, 13.83% were included in the panel for time after 14:00 and RH from 

52.5% to 77.5% (panel f), and most were plotted on the area of Ta from 30 to 35 °C and 

Rn under 700 W m-2. In panel f, E in ‘Takanari’ was generally higher than that in 

‘Koshihikari’ when Rn was stronger than 300 W m-2 and Ta was lower than 33 °C. A total 

of 19.37% of the datasets were included in the panel for time before 10:00 and RH over 

77.5% (panel g), and most were plotted on the area of Ta under 30 °C and Rn under 700 

W m-2. In panel g, E in ‘Takanari’ was generally higher than that in ‘Koshihikari’ when 

Rn was over 100 W m-2. Of the datasets, 6.98% were included in the panel of time from 

10:00 to 14:00 and RH over 77.5% (panel h), and most were plotted on the area of Ta 

from 25 to 30 °C and Rn under 400 W m-2. In panel h, E in ‘Takanari’ was generally higher 

than that in ‘Koshihikari’. Of the datasets, 8.92% were included in the panel of time from 

after 14:00 and RH over 77.5% (panel i), and most were plotted on the area of Ta from 25 

to 30 °C and Rn under 300 W m-2. In panel i, E in ‘Takanari’ was generally higher than in 

‘Koshihikari’ when Rn was over 100 W m-2. 

The ratio of the simulated ENN in ‘Takanari’ to ‘Koshihikari’ under various 

meteorological conditions is shown in Figs. 4.8 and 4.9. The settings of the 

meteorological conditions in Figs. 4.8 and 4.9 were same with the classifications of Figs. 
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4.6 and 4.7, respectively. These two heatmaps were drawn only in the part where the 

meteorological data were observed in Figs. 4.6 and 4.7. In Fig. 4.8, time and RH ranged 

from 6:00 to 18:00 and 30 to 100 %, respectively. The other two input variables, Ta and 

Rn, were fixed at 25, 30, or 35 °C, and 150, 450, and 750 W m-2, respectively. These nine 

panel patterns are shown. When Ta was fixed at 25 ℃, the ENN of ‘Takanari’ was superior 

to that of ‘Koshihikari’ mainly from 9:00 to 15:00 and RH under 90% (panel a). When Ta 

was fixed at 30 °C, the ENN in ‘Takanari’ was superior to that in ‘Koshihikari’, mainly 

from 50% to 75% RH (panels b, e, and h). However, when Ta was fixed at 35 °C, the ENN 

in ‘Takanari’ was generally lower than that in ‘Koshihikari’ (panels c, f, and i). In Fig. 4.9, 

Ta and Rn ranged from 20 to 40 °C and -50 to 1075 W m-2, respectively. The other two 

input variables, time and RH, were fixed at 9:00, 12:00, and 15:00, and 40, 65, or 90%, 

respectively. These nine panel patterns are shown. The ENN in ‘Takanari’ was superior to 

that in ‘Koshihikari’, mainly under the conditions of Ta from 25 to 30 °C and Rn under 

1000 W m-2. 

 

4.4 Discussion 

The ENN values were found to fit the values of E estimated based on the modified 

heat balance model in 2017 and 2018, but not in 2019, especially in ‘Koshihikari’ (Fig. 

4.5). On July 24, 2019, Ta was remarkably low. As a result, RH was high compared to the 

other two days. However, the value of Rn was as large as that of the other two days. Under 

such situations, the stomatal conductance in ‘Koshihikari’ was low, and the estimation of 

canopy transpiration rate based on the heat balance model became unstable, leading to 

unexpected values on July 24 (black points in Fig. 4.5). Therefore, improvement is 

necessary for the heat balance model under such meteorological conditions. 
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According to the ENN simulation, ENN in ‘Takanari’ was generally higher than that 

in ‘Koshihikari’, mainly when Ta ranged from 25 to 30 °C and Rn was below 700 W m-2 

(Figs. 4.8 and 4.9), which is comparable with the tendency of E in ‘Koshihikari’ and 

‘Takanari’ displayed in Figs. 4.6 and 4.7. Such conditions are frequently and mainly 

observed in the morning. In the morning, solar radiation is gradually increasing, which 

means that plants are usually in a photosynthetic induction state. According to previous 

studies, the photosynthetic induction response to fluctuating light is faster in ‘Takanari’ 

than in ‘Koshihikari’, and this difference is mainly attributed to the difference in the 

temporal changes of stomatal conductance in the two cultivars (Adachi, Tanaka et al., 

2019; Ohkubo et al., 2020; Taniyoshi et al., 2020). Our results are comparable with the 

reported characteristics of photosynthetic activity in these two cultivars.  

‘Takanari’ showed a remarkably lower ENN when Ta was higher than 33 °C, compared to 

‘Koshihikari’ (Figs. 4.8 and 4.9); this finding was comparable to the tendency of E in 

‘Koshihikari’ and ‘Takanari’ displayed in Figs. 4.6 and 4.7. This tendency might be 

mainly attributed to the sensitivity of the stomata to meteorological changes. In general, 

RH tends to be low under high-temperature conditions. A previous study reported that the 

stomatal conductance decreased more in ‘Takanari’ than in ‘Nipponbare’, a typical 

japonica cultivar, to drought stress (Ohsumi et al., 2008). Thus, the stomata in ‘Takanari’ 

are thought to be more sensitive to dry conditions than ‘Koshihikari’. These stomatal 

characteristics in ‘Takanari’ may have led to lower transpiration under such conditions, 

which was also observed in Chapter 3. 

Many previous studies have reported that the saturated photosynthetic rate in a 

single leaf is greater in ‘Takanari’ than in ‘Koshihikari’ (Hirasawa et al., 2010; Takai et 

al., 2010; Adachi, Yamamoto et al., 2019; Taylaran et al., 2011). However, as mentioned 
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above, the genotypic variation observed in canopy transpiration between ‘Koshihikari’ 

and ‘Takanari’ depends on the meteorological conditions, both by the heat balance model 

and the neural network. In particular, the E in ‘Koshihikari’ was higher than that in 

‘Takanari’ when Ta was over 33 °C and RH was under 52.5% (Fig. 4.6 and 4.7). In 

addition to the stomatal characteristics mentioned above, the canopy structure of the two 

cultivars may have caused this inconsistency. It was revealed that the leaf area distribution 

in ‘Takanari’ is denser than that in ‘Koshihikari’ while ra under windless conditions in 

‘Takanari’ is higher than that in ‘Koshihikari’ (Chapter 3). Such findings indicate that 

‘Takanari’ has a canopy structure that tends to prevent gas diffusion compared to 

‘Koshihikari’, which can partly mitigate the single leaf gas exchange of ‘Takanari’. 
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Chapter 5 

 

General Discussion 

 

5.1 Effects of the introduction of ra* on the performance of the heat balance model 

The aim of this study was to evaluate the canopy gas exchange under fluctuating 

meteorological conditions in field-grown rice. In the field, meteorological conditions are 

rapidly changing and affecting canopy gas exchange. Besides, canopy gas exchange is 

affected by plant factors such as canopy structure and mutual shading of leaves. Therefore, 

continuous monitoring was demanded for understanding realistic nature of canopy gas 

exchange. However, methods to evaluate canopy gas exchange under field conditions 

with sufficient stability and time resolutions was not established. 

In Chapter 2, ra*, the aerodynamic resistance under windless conditions, was 

directly measured and used for the modification of the heat balance model. A significant 

difference was detected among 7 genotypes. This difference may be attributed to canopy 

structure. The value of ra* was correlated to leaf area density, which is represented by the 

ratio of leaf area index to canopy height. It is thought that the gas diffusion to the 

atmosphere is less likely to occur in a rice canopy with high leaf area density.  

The serious problem in the original heat balance model was that it is unstable under 

low wind velocity, even though such a situation is frequently observed in field conditions. 

As a result of modification based on ra*, the stability of the heat balance model to low 

wind velocity was remarkably improved. This means that the newly modified model in 

the present study is more applicable for continuous use in the field conditions compared 

to previous ones. 
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The technical difficulties in the measurements of ra* remains as a major concern. 

Because the value of ra* seems to be affected by canopy structures, additional 

measurements of ra* are needed in different growth stages. However, in a canopy with 

lower leaf area and/or plant height, it is difficult to evaluate ra*. After heading stage, the 

heat transfer from the air to a canopy is too complex for our measurement protocol 

because of the existence of panicles. As discussed later, the seasonal expansion is a prime 

task for the modified model. To achieve this objective, the improvement of the method 

for measuring ra* is necessary. 

 

5.2 Evaluation of canopy transpiration by the modified heat balance model 

In Chapter 3, rice canopy transpiration in 7 genotypes was continuously estimated 

in 1-second intervals for 8 days. Because of the improvement of stability in the heat 

balance model, the estimation was successfully conducted. Continuous estimation with 

high time-resolution enabled evaluation of characteristics of canopy gas exchange in field 

grown rice. The E in ‘Takanari’ was remarkably higher than ‘Koshihikari’ in the morning, 

while comparable with ‘Koshihikari’ in the afternoon. This result implied that great 

photosynthetic capacity of a single leaf in ‘Takanari’ can be mitigated in canopies under 

hot or dry conditions. The significant correlations between hourly cumulative 

transpiration and final grain yield were detected, especially for transpiration from 9:00 to 

12:00 on sunny days in the period of 1 week before heading. The amount of daily 

cumulative transpiration amount in high-yielding cultivars was higher than the other 

cultivars throughout the measurement. This result suggested that the continuous 

advantages of canopy gas exchange in the morning is important for yield formation in 

field-grown rice. On the other hand, the relationship between canopy transpiration and 
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biomass production was not directly discussed in this study. With this relationship cleared, 

far better understandings about rice canopy biomass production under fluctuating 

meteorological conditions may be gained. 

In the field, the meteorological condition changes every seconds. Therefore, the 

heat balance equations may not precisely hold, and canopy surface temperature is in non-

steady state. For the precise analysis of canopy heat balance, the transient heat balance 

should be taken account. However, establishing such model is limited by the spatial non-

uniformity of wind velocity, accuracy of sensor devices and so on. Hence, we assumed 

the semi-steady state in terms of heat balance under changing weather conditions. As we 

discussed in Chapter 3, the value of gc and E calculated by our modified model seems to 

be valid. Establishing more precise model considering transient heat balance should be 

conducted in the future studies. 

A limitation of our study is that our method is not applicable after the heading stage. 

For example, it is reported that panicle temperature is higher than leaf temperature under 

sunny conditions in wheat (Ayaneh et al., 2002). Therefore, calculating leaf temperature 

from thermal images is difficult. Because biomass productivity after the heading stage 

affects yield and grain filling (Nagata et al., 2001; Ookawa et al., 2003; Takai et al., 2006), 

the development a method for estimating canopy transpiration after heading is also 

needed. For gaining better understandings of biomass production and yield formation in 

rice, further research for a seasonal expansion of our method is necessary. 

 

5.3 Effects of the utilization of neural networks for evaluating rice canopy 

transpiration 

In Chapter 4, the model to predict canopy transpiration rate only from 
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meteorological data was established based on the neural network for ‘Koshihikari’ and 

‘Takanari’ grown under conventional management. The prediction accuracy was thought 

to be good enough when the estimation by the modified heat balance model was 

successfully conducted. It is notable that the accuracy of this prediction model was 

attributed to the size of datasets, which was provided by the newly modified heat balance 

model. 

There are two important point for this model by the neural network. One is that it 

enables us to omit the measurement of ra and Tc for E estimation/prediction. Although the 

measurement of ra under field conditions has been attempted in many previous studies 

(Horie et al., 2006; Yasutake et al., 2006; Liu et al., 2007; Jones et al., 2018; Hou et al., 

2019), many of them had problems in their labor and instrumental costs, stabilities, and 

time resolutions. The measurements of Tc are associated with remarkable costs and 

require a great deal of time. Further, their accuracy is markedly affected by the 

meteorological conditions, especially by wind velocity. Our model using the neural 

network showed good performance for the prediction of ENN without these parameters. 

Another point is that our model revealed genotypic characteristics in responses of canopy 

transpiration to meteorological conditions. These characteristics have been masked 

mainly because of the instability and difficulties in estimations/measurements of canopy 

transpiration. It is thought that noises in the estimated values of E were successfully 

removed, which realized a monitoring of short-time fluctuations of canopy transpiration 

with practical accuracies. Therefore, our model is an option for estimating rice canopy 

transpiration in field environments using only meteorological data. 

The sensitivity analysis of the model based on the neural network revealed a varietal 

difference in the response of canopy transpiration to the combinations of various 
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meteorological factors. The important suggestion was that the advantages in canopy 

transpiration was shown in different meteorological conditions between ‘Koshihikari’ and 

‘Takanari’. This difference might be attributed to the characteristics of stomata in the two 

cultivars (Ohsumi et al., 2008; Adachi, Tanaka et al., 2019; Taniyoshi et al., 2020). The 

genotypic difference of physiological responses to meteorological conditions in two 

cultivars having contrastive photosynthetic characteristics was detected based on the 

predicted values of ENN. 

Our model, which is based on the neural network, has limitations. Briefly, this model 

is specific to two cultivars, ‘Koshihikari’ and ‘Takanari’, cultivated in Kyoto, Japan. 

Applications of our model to other cultivars, locations, cultivating systems are extremely 

limited. One option to overcome this limitation is to collect data on E for other cultivars 

and environments using the modified heat balance model. The versatility of this model 

may be improved by inputting newly collected data. However, collecting a comparable 

size of new data is a time-consuming task. To reduce labor costs for collecting new 

training data, fine-tuning may be useful. In fine-tuning, all the layers of the pre-trained 

model, besides the last layer, are essentially copied, and the last layer is replaced by a new 

layer that has weights for the new targets. Previous studies have reported that the same 

level of prediction performance as full training can be achieved with a reduced size of the 

dataset (Cetinic et al., 2018; Tajbakhsh et al., 2016; Howard & Ruder, 2018). Therefore, 

this technique may be useful for the genotypic, seasonal, and regional expansion of the 

model established in the present study. 

 

5.4 Future perspectives of this study 

The new methods shown in the present study may be useful for evaluating canopy 
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growth process and reactions of canopy gas exchange under various meteorological 

conditions in rice. Because our methods are now applicable only for field-grown rice, 

applications to other crop species (e.g., soybean, maize, wheat, and cotton) needs to be 

studied. To achieve this objective, the differences of canopy structure will be a 

challenging task. The further studies on methods for measuring ra* and Tc must be 

conducted. 

Nowadays, the climate change is a big concern for global societies. Under changing 

environments, field crops may show unknown growth. Our methods may be useful for 

evaluating crop growth in the future because they can investigate the relationships 

between rice canopy transpiration and combinations of meteorological factors in detail. 

For example, the global warming is steadily ongoing. Compared to 1850-1900 level, the 

average temperature of the world has risen 1.0 ℃ in 2014 and is expected to rise 1.5 ℃ 

in 2040 and, at maximum, 2.0 ℃ in 2060 (Masson-Delmotte et al., 2018). The effects of 

global warming on the production and yield of field crops remain unclear. According to 

Liu et al. (2019), probability of extreme low yield will increase in the scenario of 1.5 ℃ 

and 2.0 ℃ global warming. Raune et al. (2018) reported that the production of maize and 

rice will decrease 0-5 % in the global warming of 1.5 ℃, while Chen et al. (2018) reported 

that rice yield will slightly increase in the same scenario. To deal with uncertainties by 

the environmental changes, it will be necessary not only to investigate and predict final 

yield but also to monitor and evaluate growth and yield formation process in field-grown 

crops. The modified heat balance model in the present study may be useful because it can 

monitor the real-time dynamics of canopy transpiration under field conditions. 

The combination of the methods in the present study and experimental treatments 

such as heat stress, drought stress, and CO2 elevation are also worth evaluating. 
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Estimating canopy transpiration under such treatments by the modified heat balance 

model and imputing the data to the neural network may provide us better understandings 

and simulations of the growth of field crops under changing environments. 

 

5.5 Conclusion 

Modification of the heat balance model by the introduction of ra* improved its 

robustness. The modified model enabled estimations of rice canopy transpiration with 

high time-resolution under field conditions. By the large amount of data obtained by the 

modified heat balance model, the model to predict rice canopy transpiration using only 

meteorological data was established based on the neural network. The methods developed 

in the present study will be useful for evaluating production process and its genotypic 

differences in rice canopies under field conditions. 
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Summary 

Photosynthesis is the basic factor of the biomass production in field crops. In the 

field, crops are grown as canopy under fluctuating environmental conditions. To clarify 

the relationships between photosynthetic activity and biomass production under field 

conditions, measurements of canopy gas exchanges are needed. We have limited 

information about canopy photosynthetic activity and its genotypic differences because 

the conventional methods for measuring canopy photosynthesis because they require 

huge systems and many laborious costs. The objective of the present study was to evaluate 

the canopy gas exchange under fluctuating meteorological conditions for gaining better 

understandings of the process of biomass production under field conditions. 

Canopy transpiration rate (E) can be estimated by dividing the vapor pressure deficit 

by the sum of the aerodynamic resistance (ra) and the canopy diffusive conductance (rc). 

In the heat balance model, it is assumed that the energy absorption is equaled to the sum 

of sensible heat flux and latent heat flux. The E and rc can be estimated based on the 

meteorological data and parameters related to a canopy. However, it was difficult to apply 

the conventional heat balance model for estimating E and rc under field conditions 

because ra was assumed to be in inverse proportion to the wind velocity. Therefore, ra 

under windless conditions (ra*) was measured and used for the modification of the heat 

balance model to repress the divergence of ra. In 2017, 7 genotypes including ‘Koshihikari’ 

and ‘Takanari’ was cultivated in the field. During the nighttime, a part of the canopy was 

surrounded by the silver sheet, and the heat was extracted from the infrared heater. Based 

on the subtraction of canopy surface temperature, ra* was calculated. The ra* was ranged 

from 9.50 s m-1 of ‘Koshihikari’ to 35.40 s m-1 of ‘Takanari’, and significant genotypic 

difference was detected. Besides, ra* was significantly correlated to leaf area density, a 
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ratio of leaf area index to canopy height. Based on the measured values of ra*, the heat 

balance model was modified. For modified and non-modified heat balance model, a 

sensitivity analysis to wind velocity and canopy temperature depression was conducted. 

As a result, the estimation of gc was successfully conducted under wider range of 

conditions in the modified heat balance model, compared to the non-modified one. This 

result implied that the robust method for evaluating canopy gas exchange was established 

by the introduction of the concept of ra* to the heat balance model. 

Next, gc and E were estimated under field conditions using the modified heat balance 

model. From July 18 to 25, 2017, meteorological data and canopy surface temperature 

(Tc) in the 7 genotypes were recorded in 1-second intervals and substituted for the 

modified heat balance model. As a result, gc and E was successfully estimated with high 

stability and short time intervals. The diurnal change patterns of gc and E were 

corresponding to the pattern of net radiation (Rn) and relative humidity. The daily 

cumulative transpiration was ranged from 2.33 to 10.29 kg m-2 d-1, and its daily change 

pattern was corresponding to the pattern of daily cumulative Rn. Significant genotypic 

difference in the daily cumulative transpiration among the 7 genotypes was detected on 

all of the day for measurements. Hourly cumulative transpiration was significantly 

correlated to the final grain yield mainly from 9:00 to 12:00 on sunny days. Consequently, 

it is thought that the modified heat balance model in the present study enabled quantitative 

evaluation of rice canopy transpiration and its relationship between yield under field 

conditions. 

The modified heat balance model has robustness against fluctuating meteorological 

conditions, especially against wind velocity. This enabled to collect large size of time-

series data on E under field conditions. Based on the large size of datasets, the model to 
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predict E from only meteorological data was established using the neural network. The 

canopy characteristics and the modified heat balance model were substituted by the 

established model for the feature extraction of genotypic characteristics in the response 

of canopy transpiration to the meteorological conditions. From July 18 to 25, in 2018 and 

2019, E was estimated using the modified heat balance model. Approximately 2,000,000 

points of datasets in ‘Koshihikari’ and ‘Takanari’ were acquired throughout the 3-years 

measurements including 2017. Approximately 870,000 points of datasets in ‘Koshihikari’ 

were used for model establishment. After the model structure was decided, approximately 

260,000 points of datasets in ‘Koshihikari’ and ‘Takanari’ were predicted. The predicted 

values were called ENN. The prediction accuracy was represented by R2 = 0.76 ~ 0.85 on 

sunny days. Therefore, it was thought that substitution of parameters representing canopy 

characteristics, Tc and ra, and modified heat balance model can be substituted by neural 

network. The response of canopy transpiration to the meteorological conditions in 

‘Koshihikari’ and ‘Takanari’ was evaluated by a sensitivity analysis. As a result, it was 

revealed that ENN in ‘Takanari’ was higher than ‘Koshihikari’ under the conditions of air 

temperature from 25 to 30 ℃ and Rn under 700 W m-2, while ENN in ‘Koshihikari’ was 

higher under the conditions of air temperature around 35 ℃. Therefore, it was thought 

that ‘Koshihikari’ and ‘Takanari’ has advantages of canopy gas exchange under different 

conditions, which seemed to be affected by their stomatal characteristics. 

The method in the present study can be used for the quantitative evaluation of rice 

canopy gas exchange and its relationships between yield, and meteorological conditions. 

Genotypic and seasonal expansions of this model may be useful for the effective 

evaluations of phenotypes related to grain yield under field conditions. 
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