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Notations 

Symbols  

A  Cross-sectional area 

0A  Initial cross-sectional area at 0t =  

1B  Bottom width 

( ),l rC u u  Local celerity at a jump from lu  to ru  

F  Flux 

sF  Specific force 

Fr  Froude number 

g  Acceleration due to gravity 

H  Hamiltonian 

h  Water depth 

uph  Upstream water depth 

crih  Critical flow depth 

unih  Uniform flow depth 

M  Parameter controlling singular viscosity regularization 

n  Manning’s roughness 

P  Wetted perimeter 

1p  xu  as an argument of Hamiltonian 

p  An exponent of the friction law 

Q  Discharge 

fQ  The numerical flux of discharge 

inQ  Inflow discharge 



 vi 

LQ  A flux of discharge in the left-side cell 

outQ  Outflow discharge 

RQ  A flux of discharge in the right-side cell 

q  Lateral inflow discharge per unit width 

R  Hydraulic radius 

r  Source term 

criS  Slope at critical flow depth 

fS  Friction slope 

0S  Bed slope 

t  Time 

u  Unknown variable 

criu  Unknown variable for critical flow depth 

downu  Unknown variable for downstream water depth 

lu  u  at the left-hand side of a jump 

ru  u  at the right-hand side of a jump 

uniu  Unknown variable for uniform flow depth 

upu  Unknown variable for upstream water depth 

V  Cross-sectional averaged velocity 

x  Local curvilinear abscissa along the channel bed or Space coordinate 

z  Upward vertical axis 

bZ  Bed elevation 

  Momentum coefficient 

  Parameter to approximate singular diffusion 

  Water level 

  x  at the previous time stage 

( ), ,t x z =  Level-set function as a function of t , x , and z  



 vii 

̂  Interpolated   

  Singular viscosity term 

MjQ  The maximum increments of discharge within time steps 

  

Subscripts  

, ,k i j  Integers indexing discretized , ,t x z  

L  Left-side cell 

R  Right-side cell 

x  Partial derivative with respect to x   

z  Partial derivative with respect to z  

  

Prefix  

  Increment 

  

Spaces  

C  The space of continuous function 

BC  The space of all continuous function, including first derivatives 

1C  The space of all infinitely differentiable function 

1

BC  
The space of all bounded and continuous function, including first 

derivatives 

C
 The space of all infinitely differentiable function 

1L  Lebesgue space of all integrable functions 

L  Lebesgue spaces 

LSC  The space of lower semi-continuous functions 

 The set of real numbers 

USC  The space of upper semi-continuous functions 

1,1W  Sobolev space with the norm  
1,1

•  
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1,W 
 Sobolev space with the norm 

1,
•   

 The set of integers 

  

Abbreviations  

CDL Critical-depth line 

FOQL PDE First-order quasilinear partial differential equation 

GS Generalized solution 

GVFS Gradually varied flow solution 

HJ equation Hamilton-Jacobi equation 

L-env Lower semi-continuous envelope 

SFO ODE Scalar first-order ordinary differential equation 

sub-S Viscosity sub-solution 

super-S Viscosity super-solution 

SVR Singular viscosity regularization 

SWEs Shallow water equations 

U-env Upper semi-continuous envelope 

UDL Uniform-depth line 

VS Viscosity solution 
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Chapter 1 

 

 

1 Introduction 

 

1.1 Open channel flows 

Open channel flows are the flows having free surfaces that are subject to atmospheric 

pressure. The flow whose depth varies gradually and steadily along the length of the channel 

is called a gradually varied flow (GVF). In contrast, the abrupt change in curvature of the 

flow profiles is called a rapidly varied flow (RVF). GVF bases on the energy equation, and 

RVF bases on the momentum equation. The abrupt change in the flow profiles results in a 

discontinuous profile called the hydraulic jump or shock in RVF. The open channel flows 

include the flows in the rivers, canals, lakes, channels, and sewer systems if they have the 

free surface. 

The solutions of the open channel flows are determined to address a particular issue in 

hydrology, hydraulics, and engineering. Computational simulations are required, including 
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computer techniques, informatics, and numerical methods to obtain the solutions of the flows 

[1]. There are two types of computational simulations: non-physical-based models and 

physical-based models. Non-physical-based models are black-box type models, which 

require calibration of input parameters. On the other hand, physical-based models are 

numerical models based on mathematical aspects to describe the open channel flows by 

differential equations, and it requires either fewer parameters or no calibration. In 

mathematical and numerical modeling, the open channel flow is usually characterized by a 

1-dimensional (1D) model of shallow water equations (SWEs) or Saint-Venant equations, 

which is reasonably easy to solve compared to a multi-dimensional model. The SWEs in 

steady states comprehend RVF, including GVF. 

 

1.2 Research issues 

The essential requirement of the treatment of wet and dry beds is to keep water depth 

greater than zero to make SWEs achieve a stable numerical solution [2]. There is no problem 

with a wet bed; however, it remains a difficulty and an interest in treating a dry bed. The 

numerical computation may fail, and it introduces no physical negative water depth [3,4] 

when the initial water depth is precisely zero. The dry bed is defined by inputting a 

sufficiently small water depth in most numerical simulations such that the dry domain was 

treated as the wet bed [4]. Hence, the way to treat the dry bed arises when the initial water 

depth is exactly zero. The treatment of the dry bed in the open channel flows is the first issue. 
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Modeling open channel flows with discontinuities has been a great challenge to 

hydraulic researchers and engineers [4]. The second issue is a misunderstanding that a 

discontinuity of the kinematic wave develops because of the discontinuity of initial input data. 

In addition, the wave dissipates over time. Singh [5] stated that shock could occur in the 

kinematic wave model when there was an abrupt change in rainfall intensity, bed roughness, 

bed elevation, etc. The occurrence of the shock would dissipate as time went by. Nevertheless, 

the first-order quasilinear partial differential equations (FOQL PDEs), including the 

kinematic wave model, admit discontinuities from discontinuous initial input data and 

smooth input data. Furthermore, the generalized solutions (GSs) do not dissipate with time. 

 

Enormous efforts have been placed on initial-boundary value problems of the SWEs 

for the numerical solutions of unsteady flows to investigate surface water flows. The 1D 

SWEs are the hyperbolic system. One should notice that the hyperbolic system, in general, 

is a function with bounded variations, possibly with a countable number of discontinuities. 

In hydraulic design, open channel flow in a steady state is required. The SWEs become a 

scalar first-order ordinary differential equation (SFO ODE) when the unsteady terms are 

dropped. The SFO ODE with an initial condition known as the initial value problem has been 

studied. On the other hand, the SFO ODE with Dirichlet boundary condition known to be an 

ill-posed problem remains a little-discussed topic. In general, the ill-posed problem is a 

highly nontrivial matter to prove the existence, uniqueness, and stability. Hence, the last issue 

is how to describe characteristics of possibly GSs to Dirichlet problems of the SFO ODE. 
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1.3 Research objectives 

This thesis aims to provide mathematical and numerical modeling in locally 1D open 

channel flows to deal with the research issues. The thesis anticipates the model of full 

dynamics and the approximation of the SWEs, mathematical proof of the GSs, and the 

numerical modeling for approximating the solutions. The thesis proposes the following topics 

to achieve the research objectives: 

1) application of level-set methods to the kinematic wave equation in the open 

channel flows, 

2) numerical demonstrations of non-dissipative discontinuous kinematic waves in 

the open channel flows, 

3) a thorough description of one-dimensional steady open channel flows using the 

notion of discontinuous viscosity solution (VS). 

 

1.4 Structure of the thesis 

The organization of this thesis is as follows. 

In Chapter 1, the general idea of open channel flows, research issues, and research 

objectives are stated.  

In Chapter 2, literature reviews on related topics will be provided, including the 

applicability of SWEs to hydro-environmental problems, the applicability of the kinematic 

wave equation, treatment of dry bed, discontinuities of water surface profile, and VS 

involving hydraulic jump. 
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In Chapter 3, level-set methods applied to the kinematic wave equation governing open 

channel flows are discussed. The kinematic wave equation is regarded as a Hamilton-Jacobi 

equation (HJ equation). The computed zeros of the level-set function represent the water 

depths. However, the solutions develop overturning phenomena. Singular viscosity 

regularization (SVR) is implemented to reduce the effects of the overturning phenomena. 

Finally, a testing of abrupt water release from Chan Thnal Reservoir to its irrigation canal 

with varied bed slopes in the dry bed condition is simulated, serving as a practical 

demonstration.   

In Chapter 4, numerical examples of the non-dissipative discontinuous kinematic wave 

model in open channels are presented to clarify that a discontinuity can develop without 

dissipation under the smoothness of all input.  Unlike Chapter 3, the kinematic wave equation 

is considered a FOQL PDE and then a Cauchy problem. The GS to the Cauchy problem is 

described. Two cases of numerical examples for discontinuous initial data and smooth initial 

data are computed using the Godunov scheme. The non-dissipative discontinuous waves are 

analyzed for the case of smooth initial data. 

In Chapter 5, a study on a thorough description of one-dimensional steady open channel 

flows using the notion of VS is discussed. The chapter gives detail of problem formulation 

and mathematical analysis of 1D steady flows with the unique existence of GVFSs. Then, 

the notion of discontinuous VS is employed to prove the non-uniqueness of GSs. Finally, 

illustrative examples are demonstrated. 

To sum up, in Chapter 6, a summary and future works of this thesis are provided. 
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Chapter 2 

 

 

2 Literature review 

 

2.1 Applicability of SWEs to hydro-environmental problems 

Hydro-environmental problems are one of the fields that SWEs applicable to use to 

understand flow variables. A better understanding of flow variables enables decision-makers 

to control flow, minimize wasteful drained water at unnecessary periods, and protect strategic 

infrastructure and hydraulic structures. It would benefit for preserving agricultural areas, 

managing water resources, and ensuring water supply along with the canal system, which 

could avoid water issues between upstream and downstream [6].  

The SWEs have been seen in various forms of dimensions: (1D) rivers, channels, sewer 

system and (2D) seas, rivers, overland flows [7]. The open channel flows are related to 

hydraulic research and engineering fields in terms of flows in the rivers, canals, lakes, 

channels, and sediment transport in the 1D system [9–16]. Kesserwani and Liang [8] studied 
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the 1D SWEs using the second-order Runge–Kutta discontinuous Galerkin scheme 

considering wet and dry bed over the complex topography. Burguete et al. [9] proposed 

friction term discretization and limitation in 1D SWEs to some applications of a dam-break 

flow problem in a mountain river, unsteady flow with experimental data, tsunami propagating 

model, and surface irrigation flow. Cao et al. [10] presented dam-break flows and sediment 

transport mechanics over the mobile bed. A morphodynamical modeling system is typically 

concerned with a hydrodynamic component. It describes the flow dynamics and a sediment 

transport or morphological component for the bed evolution [11]. Kalita [12] studied a 

coupled morphodynamical flow model of SWEs and Exner equation using a TVD 

MacCormack scheme to simulate dynamic flow processes. The model tested different bed 

conditions, including bed aggradation, bed degradation, dam-break flow over the erodible 

bed, and movable bumps. It produced excellent results for wavefronts of water surface flow 

and sediment. The model of leaky barriers in the channel system has studied the impact and 

reduce flooding risk. The roles of the leaky obstacles are to decrease high flows and 

temporarily store water on the floodplain [13]. Lai et al. [14] conducted a study on the impacts 

of lake inflow and the Yangtze River on Poyang Lake level during two time periods: the 

rising and falling flood stages in May and October. To study the hydrodynamic processes of 

the lake, they integrated 1D SWEs and 2D SWEs. Tinti and Tonini [15] identified analytical 

solutions of SWEs and an amplification factor of the tsunami height. They indicated that the 

amplification specified the epicenter of tsunamic-inducing earthquake weather in the land or 

sea. Kobayashi and Takara [16] developed a distribution of rainfall-run-off/flood-inundation 

simulation model based on 1D SWEs for river routing and 2D SWEs for surface flow and 
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then cooperated with an economic risk assessment model. The model focused on the rainfall-

runoff processes and inland or dike-break inundation processes. 

 

2.2 Applicability of the kinematic wave equation 

The development of kinematic wave theory by Lighthill and Whitham [17] has been 

widely used in water resources [19–24] and traffic flows [24]. The theory applies to various 

water resources, specifically hydrological processes, overland flow, open channel flow, base 

flow, unsaturated flow, macropore flow, river hydraulics, movement glaciers, erosion, and 

sediment transport. Singh and de Lima [18] derived the analytical solutions of 1D kinematic 

wave approximation to visualize the overland flow moving downstream and a storm moving 

upstream of characteristics. Chen and Capart [19] proposed the kinematic wave model to 

simulate dam-break floods. The model gives advantages of low computational cost, real-time 

forecast, and limited data. Liu and Singh [20] focused on the overland flow on a hillslope 

using a 1D kinematic wave model. The overland flow was impacted by microtopography, 

slope length and gradient, and vegetative cover. Even though the solutions of overland flow 

may ideally be derived from SWEs, the kinematic wave approximation could produce very 

reliable results for overland flow and other hydrological models, and it is recognized for its 

fast and accurate solutions [21]. Kinematic wave theory is used to model the overland flow. 

Explicit finite difference approximations with the analytical method of characteristics are 

made to the kinematic wave model to account for the spatial and temporal distribution of the 

rainfall and variable boundary conditions [25].  Howes et al. [22] addressed two distribution 

models, 1D and 2D kinematic wave models, to simulate overland flow in two semiarid 
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shrubland watersheds in the Jornada Basin, New Mexico. 1D and 2D kinematic wave models 

were computed the flow volume of a fixed network and flow directions, respectively. Isidoro 

and de Lima [23] presented the solutions of the 1D linear kinematic wave equation to evaluate 

the discharge over the total drainage plane surface under the moving rainstorms. The results 

are compared among the analytical solutions, numerical solutions, and experimental 

solutions at the laboratory. Jin [24] described the dynamics traffic of lane-changing in the 

framework of the kinematic wave theory. Jin stated that lane-changing intensities highly 

depended on road geometry, location, on-ramp/off-ramp traffic, lane-changing time, vehicle 

speeds, and other traffic conditions.  

 

2.3 Treatment of dry bed 

Many papers have been discussed the wetting and drying conditions [2, 9, 27–29]. The 

initial water depth of the dry bed is specified as 10-5 (m) [3], 10-7 (m) [4], 10-8 (m) [29], or 

less than 10-8 (m) [8]. Kesserwani and Liang [8] analyzed the 1D SWEs using the second-

order Runge–Kutta discontinuous Galerkin scheme considering wet and dry bed over the 

complex topography. Han and Warnecke [26] determined the Riemann solutions to the SWEs 

with the dry bed problem. They focused on two cases of dry bed problems. One was the case 

that the water propagated to the left or right dry bed. The second was the dry bed appeared 

because of the flow motions. Bunya et al. [2] assessed the piecewise linear Runge–Kutta 

discontinuous Galerkin approximation to the SWEs for wetting and drying treatment. In 

addition, a little positivity of water depth is applied in the numerical flux computation to 

prevent instability due to excessive drying. Alias et al. [27] presented the open channel flows 
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using a 1D well-balanced finite volume Godunov-type scheme involving wetting and drying 

phenomena. Hernandez-Duenas and Beljadid [3] proposed a semi-discrete central-upwind 

scheme for shallow-water flows. They discussed the analytical solutions to numerical 

solutions and laboratory results in the cases of wetting and drying. Ern et al. [28] analyzed 

the performance of the 1D and 2D SWEs and introduced a flux modification technique and 

slope modification technique to deal with wetting and drying fronts. All these papers 

considered a sufficiently small positive value of the initial water depth as the dry bed 

condition. 

 

2.4 Discontinuities of water surface profile  

Discontinuities of surface water flows, namely hydraulic jumps or shocks, are formed 

whenever there are rapid changes of supercritical flows to subcritical flows. Hydraulic jumps 

are a challenging topic for hydraulic and environmental engineering due to their complicated 

nature, unsteady and high-level turbulence, and air entrainment.  

Hydraulic jumps are common phenomena that have been generally found in natural 

and artificial open channel flows [30]. Various studies of hydraulic jumps have been 

conducted to approximate and understand their flow phenomena. Chow [31] computed the 

water surface profiles for the subcritical flow starting from the downstream end and the 

supercritical flow starting from the upstream end to determine the jump location. The jump 

is formed at a location where the specific forces on the left and right of the jump are 

equivalent [32]. Carrillo et al. [33] conducted experiments to observe the characteristics of 

the air-water flow of five submerged hydraulic jumps generated downstream of rectangular 
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falling jets. Harada and Li [34] modeled the hydraulic jumps using the bubbly two-phase 

flow method, which applied the Reynolds-averaged Navier–Stokes equations. The model 

investigated air entrainment, turbulent shear stress, and interaction between flow structures 

and the bottom shear stress in the jump to understand the air-water flow better. 

  

2.5 VS involving hydraulic jump 

The HJ equation is known to engineers and physicists as a partial differential equation 

(PDE) which arises in the study of mechanics, yielding solutions of a system of ordinary 

differential equations. It is also known through its relation to control theory, differential 

games, or other optimization [35]. Due to the highly nonlinear form of the equation, classical 

solutions (smooth) cannot be expected to exist [36]. Thus, the notion of VSs gains attention. 

This section attempts to briefly introduce the VSs of first-order PDE and review some 

aspects of the solutions. The notion of VS to first order fully nonlinear equations was 

primarily introduced by Crandall and Lions [37], in which the notion has been widely 

accepted as the correct notion of GSs. The VS is a general classical concept of solution to 

PDE. It has been realized that the VS is a natural solution that has contributed to many 

applications of PDE, including first-order equations in dynamic programming (the Hamilton-

Jacobi-Bellman equation), differential games (the Hamilton-Jacobi-Issacs equation), front 

evolution problems, and the ones in stochastic optimal control. 

The VS has two types: continuous and discontinuous VS. The continuous VS is applied 

to the problems of the continuous value function. The primary significance of the continuous 

VS is that it permits solely continuous functions to be solutions of fully nonlinear differential 

https://en.wikipedia.org/wiki/Differential_game
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equations, in which it provides general existence and uniqueness theorem [38]. The 

discontinuous VS has attracted attention with two motivations. The first motivation is that 

many optimal control problems may be discontinuous value functions. The second one is that 

VSs are considered stable with respect to certain relaxed semi-limits, which we call weak 

limits in the viscosity sense [39]. The weak limits are semi-continuous sub-solution or super-

solution [40, 41]. 

In Crandall and Lions [37], the paper mainly focused on viscosity with continuous 

solutions. In control theory and the differential game theory, the applications of those theories 

do not have continuous solutions [42]. Especially in open channel flow, the discontinuities 

of water surface profiles are unavoidable phenomena. Thus, a deep understanding of 

discontinuous VSs of HJ equations is encouraged to study. 

Other literature on discontinuous VSs has appeared in optimal control problems, 

differential game theory [43,44]. Also see several different notions of discontinuous solutions 

of HJ equations have been proposed in [45–50] to prove existence, comparison, and 

uniqueness results under various assumptions. In many cases, the difficulty of finding the 

analytical solution of uncertain differential equations yields proving an existence and 

uniqueness theorem of solution for differential equations under Lipschitz condition [50]. Ishii 

[52,53] was the first author to start systematically studying discontinuities both in the 

solutions and in the equations and his extension of “Perron’s method” in the framework of 

VSs, which provides general existence results under very weak assumptions on the equations 

[43]. In Ishii’s paper [52], the definition of possibly discontinuous viscosity sub- and super-

solution is based on the concept of semi-continuous envelopes of the functions. The classical 

semi-continuous VSs were introduced. The Perron method was applied to show the existence 
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of possible classical semi-continuous solutions. The classical semi-continuous solutions are 

suitable for applications. The definition of classical semi-continuous solutions is a two-side 

notion with two differential inequalities. However, the uniqueness of such solutions remained 

uncertain since, in general, the classical comparison results for semi-continuous viscosity 

sub- and super-solutions do not imply the uniqueness of VSs. The essential limits to define 

semi-continuous envelopes were used instead in  [53]. The use of the essential limits excluded 

some unnatural and artificial examples of admissible VSs (p.27 in [38]). Existence results of 

VSs were obtained from Lions [35]. The existence results for the classical first-order HJ 

equations have been proved in [54]. Barles and Perthame [45] were the first to introduce the 

stability and uniqueness of GSs with optimal control problems. Barron and Jensen stated that 

a paper by H.Frankowska [55] appeared, containing a related result. Her result is that a locally 

Lipschitz function is a VS of HJ equation with convex Hamiltonian if it is a GS in the sense 

of non-smooth analysis is a sub-solution in the stronger sense. Her proof does not apply to 

unbounded semi-continuous data [46]. 
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Chapter 3 

 

 

3 Application of level-set methods to the kinematic wave 

equation in open channel flows [56] 

 

3.1 Introduction 

Assessment of surface water flows is essential in understanding hydrodynamic 

phenomena such as flash floods, surge propagation, inundation resulting from dam breaks, 

tsunami, and flows resulting from the operation of hydraulic structures [57]. Those 

hydrodynamic phenomena influence humans, the environment, and economics [58]. For 

instance, the sudden release of water stored in a reservoir, namely dam breaks, could lead to 

severe environmental issues, risks to human life, and economic damage [59]. The more 

vulnerable areas at risk due to such flooding caused by dam breaks are the downstream dry 

bed terrains occupied by humans, infrastructures, industries, and agricultural lands. The 
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frequency of extreme precipitation events and floods is expected to increase due to global 

climate change [60]. Flood simulation outputs play pivotal roles in flood risk management 

[61]. Disaster risk reduction is better achieved if a socio-hydrological approach is well-linked 

with hydrodynamic modeling [62].  

The surface water flows have been well comprehended in the context of the SWEs 

when the vertical scale is much smaller than the horizontal scale [9,27]. The 1D SWEs are 

hyperbolic systems that are routinely used to model the open channel system under the 

assumption of hydrostatic pressure [63–65]. The equation may induce the formation of 

hydraulic discontinuities, namely hydraulic jumps [30,66]. The SWEs have satisfactions in 

terms of simplicity and ease for physical interpretation [67]. Numerical solutions to the SWEs 

can reproduce the open system such as rivers, lakes, artificial channels, floodplains, and 

coastal areas [68], provided that errors resulting from truncation and round-off are 

appropriately managed as well as stability [69]. Up-to-date numerical schemes for SWEs can 

accurately approximate the solution to figure out the flow variables of the system in time and 

space [69–71]. They consist of two conservation laws: mass and momentum in analogy to 

the Navier-Stokes equations for incompressible fluids. The SWEs have been applied to 

various fields, such as coastal, environmental, and water resources engineering. Coastal 

engineering deals with tsunami wave propagation and tide currents. Liu et al. [72] compared 

linear and nonlinear SWEs describing tsunami-wave propagation over the China Sea. Zhu et 

al. [73] estimated tidal currents and residual currents using the SWEs to analyze their 

generation mechanisms. Akbar and Aliabadi [74] used hybrid finite element and finite 

volume techniques to solve two-dimensional (2D) SWEs for dealing with hurricane-induced 

storm surge flow problems. The SWEs have been consistently used in flood propagation, 
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flood inundation modeling, and river flooding in the field of water resources engineering and 

pollution transport problems in environmental engineering. Cozzolino et al. [75] considered 

simplifying the complete SWEs called the Local Inertia Approximation, which is derived by 

neglecting the advective term in the momentum equation. This model is generally applied to 

simulate slow flooding propagation at moving wetting-drying areas on even and uneven beds. 

A set of equations was derived from 1D SWEs to simulate 2D flood inundation [76]. Audusse 

and Bristeau [77] computed the transport of a passive pollutant with the SWEs using a finite 

volume kinetic method. Kuriqi and Ardıçlıoğlu [78] investigated the hydraulic regime of the 

Loire River in France using HEC-RAS, which is a widely adopted simulation software based 

on the 1D SWEs. Ardıçlıoğlu and Kuriqi [79] applied HEC-RAS to discuss the channel 

roughness of a natural river in six different flow regimes. 

The complexity of the SWEs is attributed to the model dynamics of water with all 

aspects, including local acceleration term, convection acceleration term, pressure force term, 

gravity force term, and friction force term. There are two major approximations for the 1D 

SWEs. The first approximation method is diffusion wave approximation, in which the local 

acceleration term and convection acceleration term are not considered. The second one only 

considers the gravity force term and friction force term as force terms, resulting in the 

kinematic wave equation. The model is introduced initially and described explicitly in [17]. 

In the kinematic wave equation, several terms in the equation of motion, such as local 

acceleration term, convective acceleration term, and pressure force term, are assumed to be 

insignificant; hence, the equation of motion is simply expressed that the bed slope is 

equivalent to friction slope [80]. The kinematic wave equation has been employed in many 

hydraulic processes of subsurface flow, surface flow, sediment transport, solute transport, 

javascript:;
javascript:;
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and glacier hydrology. Singh [81] presented the history of the kinematic wave theory and its 

applications in water resources. Singh [5] discussed the general concept of the kinematic 

wave for overland flows, such as mathematical formulation and validity of the idea. The 

mixed runoff generation model and 2D kinematic wave model were introduced for overland 

flow routing in the upper Kongjiapo basin in the Qin River [82]. Huang et al. [83] combined 

rainfall-runoff and snowmelt modules derived from the kinematic wave equation and the 

energy budget method, respectively, to estimate the surface water resources in the semiarid 

area of Heilongjiang Province, China. Yomoto and Islam [84] used the kinematic wave 

equation for calculating the flood runoff discharge from the inclined upland field in 

Hiroshima Prefecture, Japan, concluding that the application of the kinematic wave equation 

with Manning’s roughness produced better results than the other resistance law of Darcy and 

laminar. 

In mathematical viewpoints, an initially dry bed for simulation of surface water flows 

using the kinematic wave equation is a challenging issue involving the deformation of the 

domain. Most conventional flow models assume sufficiently small positive water depths in 

the domain for a well-posed hyperbolic problem to avoid failure in producing solutions. The 

level-set method is robust in relaxing requirements for functional regularities of unknowns 

in nonlinear partial differential equations of the first order. The technique is one way to track 

the motion of propagating fronts or surfaces, which are considered zero level-set of higher 

level-set functions [85]. Initially introduced for curvature flows by Osher and Sethian [86], 

the overview of the level-set method to solve HJ equations has been described in the review 

paper by [87]. The technique has been seen in various fields such as image segmentation [88], 

computed tomography [89], and geometry optimization [90]. Li et al. [91] successfully 
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applied the level-set method to solving image segmentation, which faced intense 

inhomogeneity in real-world images. In structural engineering, the level-set method is used 

for structural optimization to minimize the structural load while satisfying the constraint [92]. 

Sethian and Smereka [93] tracked fluid interfaces. Duan et al. [94] proposed the variational 

level-set function to optimize the shape-topology in the Navier-Stokes problem by 

maintaining the smooth evolution without re-initialization and topology change. Yue et al. 

[95] presented a numerical method to simulate free-surface flows by solving the 3D 

incompressible Navier-Stokes equation with the level-set method. However, the kinematic 

wave equation has not yet been tackled with the level-set approach in the literature. 

This study aims to clarify the advantages and limitations of the kinematic wave 

equation as the HJ equation. The level-set method is firstly applied to the continuity equation 

of 1D open channel flows, resulting in a nonlinear level-set equation of first order in a 2D 

space governing a level-set function whose zeros represent the water depths. Before 

analyzing surface water flows, the Eikonal equation is considered a primitive but vital 

example to comprehend the general idea of the level-set method. The Eikonal equation is often 

used to delineate the first-arrival time problems, and it has various practical applications, 

including computational geometry, computer vision, material science, etc. [11]. Transmit times 

for 3D seismic waves can be computed numerically from the Eikonal equation using the finite 

difference method [96]. However, the calculation of expanding wavefronts requires the notion 

of characteristics [97]. Therefore, we numerically compute the level-set function for the 

kinematic wave equation with a characteristic method. The numerical solutions are verified 

with the analytical solutions of relevant dam-break problems. The weak analytical solutions 
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of the dam-break problems are obtained from theoretical celerity, which becomes the speed 

of propagating shock front on a dry bed. However, it turns out that the issues related to 

overturning phenomena appear. In order to control the development of overturning, singular 

viscosity regularization (SVR) is employed [98]. Then, the computational results with and 

without SVR are compared with the weak analytical solution representing the time evolution 

of the shock front propagating downstream, optimizing a parameter of SVR. Finally, the 

study of abrupt water release from Chan Thnal Reservoir, Kampong Speu Province, 

Cambodia, into its irrigation canal system with the initially dry bed is simulated as a practical 

demonstrative example.  

 

3.2 Methodology 

Mathematical models for surface water flows involve nonlinear partial differential 

equations. In this section, the kinematic wave equation is derived from the SWEs, and the 

level-set method is briefed with the Eikonal equation. The kinematic wave equation and the 

Eikonal equation are regarded as HJ equation. In the larger type of equation, both equations 

and SWEs are the first-order quasilinear differential equations. The kinematic wave equation 

is solved by the level-set method with the assistance of SVR. Inclusion relations and 

dependency among those concepts are delineated in Figure 3.1. 
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Figure 3.1. Inclusion relations and dependency among the concepts in the methods. 

 

3.2.1 Governing equation of open channel flows 

The SWEs consist of the continuity equation and momentum equation, representing 

the laws of mass conservation and momentum conservation, respectively. In 1D surface 

water flows of hydrostatic pressure distribution, the SWEs are written as 

Quasilinear differential equations of first 

order 

Hamiltonian-Jacobi equations 

Eikonal 

equation 

Kinematic wave equation 

Shallow water equations (SWEs) 

Modelling open channel flows 

Level-set method 

Singular viscosity 

regularization (SVR) 
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 (3.1) 

where t  is the time (s), ( ),A A x z=  is the cross-sectional area (m2), Q  is the discharge 

(m3/s), x  is the local curvilinear abscissa along the channel bed (m),   is the momentum 

coefficient,   is the water level (m), q  is the lateral inflow discharge per unit length (m2/s), 

g  is the acceleration due to gravity (m/s2), and fS  is the friction slope which is given by the 

Manning’s formula 

2

2 4 3f

n Q Q
S

A R
=  (3.2) 

where n  is Manning’s roughness coefficient, and R  is the hydraulic radius (m). 

 

3.2.2 Kinematic wave approximation 

There are approximation techniques for the SWEs. The momentum equation of (3.1) is 

approximated in these approximation techniques, while the continuity equation of (3.1) 

remains in the original form. Considering the term gA
x




 in the momentum equation can be 

divided into two terms as 

( )0
0

h
bZ h A

gA gA gA gAS g h z dz
x x x x z

     
− = − − = − − 

     
 , (3.3) 

where h  is the water depth (m), bZ  is the bed elevation (m), z  is the upward vertical axis 

(m), and 0S  is the bed slope.  
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The momentum equation can be understood in the conservative form as  

( )
2

0
0

h

f

Q Q A
g h z dz gAS gAS

t x A z

   
+ + − = − 

   
  (3.4) 

  

where each term denotes (a) the local acceleration, (b) the convection acceleration, (c) the 

pressure, (d) the gravity, and (e) the friction terms. The kinematic wave approximation 

consists only of the gravity and friction terms. The diffusion wave approximation considers 

the pressure, gravity, and friction terms. The non-inertia wave approximation is based on the 

local acceleration term in addition to the diffusion wave approximation. The gravity wave 

approximation includes the local acceleration, the convective acceleration, and the pressure 

terms. The quasi-steady dynamic wave equation employs all the terms of SWEs except the 

local acceleration term. The original form of SWEs is referred to as dynamic wave 

approximation.  

The kinematic wave approximations are generally applied to open channel flow 

simulations in rivers, canal systems, or overland flow resulting in less theoretical and 

computational complexity. The kinematic wave approximation assumes local equilibrium of 

momentum, negligible pressure gradient, and 0 fS S=  , to reduce (3.1) to 

( )

2 3 1 2

0

1

AVA
q

t x

V R S
n


+ =  


 =


 (3.5) 

where V is the cross-sectional averaged velocity (m/s). When a dry bed takes place, the cross-

sectional averaged velocity V  simply vanishes. 

(a) (b) (c) (d) (e) 



 24 

3.2.3 Analytical solution of the kinematic wave equation   

Analysis of the kinematic wave equation stems from regarding the system (3.5) as a 

quasilinear differential equation of first order expressed as 

( )F uu
r

t x


+ =

 
 (3.6) 

where u is a generic unknown variable, F is the flux which is a nonlinear function of u , and 

r  is a source term. For a piecewise continuous GS having a jump from lu  to ru , the local 

celerity is given by 

( )
( ) ( )

,
l r

l r

l r

F u F u
C u u

u u

−
=

−
 (3.7) 

provided that ( ) ( ) ( ),l l r rF u C u u F u    [99]. In the continuous case, the celerity 

approaches to 

( )
( )

,
F u

C u u
u


=


, (3.8) 

which is known as the Kleitz-Seddon law in the context of the kinematic wave equation. The 

analytical solutions will be employed to verify the level-set method with SVR appropriately 

working. 

3.2.4 Level-set method 

The level-set method firmly relies on the HJ equation, which often appears in 

variational calculus. The conservative form (3.6) is formally rewritten as the HJ equation 

(3.9) 
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( ), , , 0x

u
H t x u u

t


+ =


 (3.9) 

where H  is the Hamiltonian. The notion of VS is commonly applied to HJ equations. The 

level-set function ( ), ,t x z =  is a function of t, x, and another secondary independent 

variable z, such that its zeros represent u ( )( ), , 0t x u = . The governing equation of   is the 

level-set equation 

, , , 0x

z

H t x z
t z

 



  
− − = 

   
 (3.10) 

which must be treated in the viscosity sense, as it is formally derived from 0t z tu + =  and 

0x z xu + =  [98]. 

 

3.2.5 Example of the level-set method applied to Eikonal equation 

A primitive but essential application of the level-set method is to the Eikonal equation. 

The unsteady form of the Eikonal equation is  

1
u u

t x

 
+ =

 
 (3.11) 

whose Hamiltonian H  is 

( ) ( )1 1 1, , , 1H t x u p H p p= = −  (3.12) 

where 1p  is xu  as an argument of Hamiltonian and the corresponding level-set equation is 
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0z

zt x z

  



  
− + =
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. (3.13) 

The level-set function (3.13) with the initial and boundary condition ( )0, ,x z z =  and 

( ), 1,t z z  =  is numerically computed in the t-x-z-domain ( ) ( ) ( )0,6 1,1 2,2 −  − , using an 

upwind differencing discretization scheme in the x-z-space and the fourth-order Runge-Kutta 

method in time t. With meshes of 0.1t = , 0.1x = , and 0.1z = , the computed results at 

t =  0, 1, 2, and 3 are presented in Figure 3.2, where the zeros are highlighted with different 

colors for different times. As the solution u to the Eikonal equation (3.11) represents the 

minimum first exit time from the domain, there is a steady-state 

1u x= − , (3.14) 

which is achieved within a finite time. The computational results well reproduce the solution, 

as can be seen from the transient state at t = 1 followed by the identical values at t = 2 and 3. 

However, the case of the kinematic wave equation is not straightforward due to the vanishing 

Hamiltonian for dry beds. 

 

3.2.6 Derivation of level-set equation for the kinematic wave equation 

For the sake of simplicity, the unit width of an open channel having a very broad 

rectangular cross-section without any lateral flow is considered in the kinematic wave 

equation (3.5), implying that  R h= , u h= , ( ) ( )1 2 5 3

0F u S n u= , and 

( ) ( )1 2 2 3

05 3F u S n u = , where h is the water depth.  
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Figure 3.2. Numerical solutions to the level-set equation for the Eikonal equation. 

 

The bed slope 0S and the Manning’s roughness n are assumed piecewise constant. Then, 

the Hamiltonian H becomes 

( )
1 2

2 30
1 1

5
, , ,

3

S
H t x u p u p

n
=  (3.15) 

and then the level-set equation becomes 

1 2
2 305

0
3

S
z

t n x

  
+ =

 
 (3.16) 

which governs   almost everywhere in the t-x-z-domain ( )
3

0, . The initial condition is 

imposed as 
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( )0, ,x z z =  (3.17) 

to represent the initial dry bed. Then, assuming dam-break or sudden operation of a hydraulic 

structure at the upstream end, the boundary condition 

( ) up,0,t z z h = −  (3.18) 

is imposed to specify the upstream water depth as 
uph . Although u  is a function of bounded 

variation (BV function) allowing discontinuities, the level-set function  is possibly 

continuous in the domain but not up to the boundary. Since there is no term of z , (3.16) is 

solved as an advection equation in the t-x-domain ( )
2

0, . 

  

3.2.7 The computational method with SVR 

The domain is discretized into meshes of equal size t  by x  by z , to compute the 

approximate values of  . The notation , ,k i j  represents the approximated ( ), ,k t i x j z     for

, ,k i j . The characteristic method analogous to solving a Bellman equation in dynamic 

programming is employed [100]. The piecewise linear interpolation is applied to the x-direction 

as 

( ) ( ), , , 1, , ,
ˆ , , k i j k i j k i j

x i x
k t x j z

x
   +

− 
  = + −


 (3.19) 

where ̂  is the interpolated  , and ( )1i x x i x   +  . Then, the level-set equation (3.16) is 

approximately solved as 
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i x
k t j z

x


     + +

− 
=   = + −


 (3.20) 

where 

( )
1 2

2 305

3

S
i x j z t

n
 =  −   . (3.21) 

Overturning happens when the upper part of  a solution moves faster than the lower 

part  [98]. In a practical implementation of (3.20), the overturning may develop due to 

violation of the minimum principle ( ), , 0z t x z   for 0t  , and adding a singular viscosity 

term   to (3.16) serves as regularization. The level-set equation with SVR is 

1 2
2 305

3

S
z

t n x

 


 
+ =

 
. (3.22) 

The singular viscosity term , ,k i j  at the discretized stage is given as 

( )

, , 1 , , , , , , 1

, , , ,

tanh tanh
k i j k i j k i j k i j

k i j k i j

z z
M

z

   
 

 

+ −− −   
−   

    = 


 
(3.23) 

where 

( )
2 2

, 1, , 1, , , 1 , , 1

, , 2 2

k i j k i j k i j k i j

k i j x z

   


+ − + −− −   
 = +   

    
 (3.24) 

with parameters M  to be optimized and 1/ z =  , as recommended in the paper [98]. 

The zeros of the computed level-set function at each time stage k t , which are 

represented by  ( ), , ,k i j j z   or  ( ), ,, k i ji x  , solve 
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i x

x


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− 
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
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with ( ), , 1k i ji x i x   +   or 

( ) , ,

, , , , 1 , , 0
k i j

k i j k i j k i j

j z

z


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− 
+ − =


 (3.26) 

with ( ), , 1k i jj z j z   +  , respectively, for each i  and j . 

 

3.3 Results 

3.3.1 Dam-break problems with and without SVR 

The level-set method for the kinematic wave equation is now applied to the dam-break 

problems with the dry bed initial condition. Without loss of generality, 
1 2

0 1S n =  is assumed, 

and the local celerity of dam-break flows over the dry bed becomes ( ), 0C u
2 3u=  (m/s) in the 

model. Numerical experiments for the level-set equation are performed over the subset 

(  (  ( )0,100 0,500 0,12   of ( )
3

0, , with meshes of 0.01t =  (s), 1x =  (m), and 

0.5z =  (m). The boundary 0x =  is considered as the position of a dam, separating 

upstream and downstream areas. At the initial time, the downstream site is set to be a dry 

bed. Setting a boundary condition to specify a water depth 
uph  at 0x =  formulates a dam-

break problem for the kinematic wave equation. Firstly, the dam-break problem for 
uph  = 2 

(m) is numerically solved by the level-set method without SVR. Figure 3.3 compares the 

computed zeros of the level-set function (circular dots, noSVR) with the exact positions of 
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the shock fronts obtained from the analytical solution (dash lines, Exact). The different colors 

show the time stages every 10 (s) as the shock front propagates downstream. The computed 

zeros constitute the upstream water surface 
uph  = 2 (m) and the propagating shock front for 

each t. However, the overturning phenomena occur, which cause unwanted shock front 

motion. Hence, SVR is introduced with an optimized 0.01M =  in Table 3.1. The results are 

similarly depicted in Figure 3.4 where the triangular dots indicate the zeros of level-set 

function with SVR (SVR). The overturning remains in the zeros of level-set function with 

SVR; however, they better approximate the analytical solution with reasonable reproduction 

of celerity.  

The results of upstream water surface 5 and 10 (m) are shown in Figure 3.5 and Figure 

3.6, respectively. Similar results and interpretations like upstream water surface 
uph  = 2 (m) 

can be applied to different cases of upstream water surface 1-10 (m) with different values 

optimized M  in Table 3.1.  

Table 3.1. The optimal coefficient M for upstream water depth from 1-10 (m). 

 

 

 

 

 

 

 

uph (m) M 

1 0.0001 

2 0.01 

3 0.04 

4 0.05 

5 0.08 

6 0.15 

7 0.25 

8 0.3 

9 0.4 

10 0.5 
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Figure 3.3. Zeros of the computed level-set function without SVR (noSVR) for the dam-break 

problems over the dry bed in comparison with the exact positions of the shock front 

(Exact) for the case uph =2 (m). The different colors show the time stages every 10 

(s) for total computation period of 100 (s). 
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Figure 3.4. Zeros of the computed level-set function with SVR (SVR) for the dam-break 

problems over the dry bed in comparison with the exact positions of the shock 

front (Exact) for the case uph =2 (m). The different colors show the time stages 

every 10 (s) for total computation period of 100 (s). 
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Figure 3.5. Zeros of the computed level-set function without SVR (upper) and with SVR 

(lower) for the dam-break problems over the dry bed in comparison with the exact 

positions of the shock front (Exact) for the case uph =5 (m). 
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Figure 3.6. Zeros of the computed level-set function without SVR (upper) and with SVR 

(lower) for the dam-break problems over the dry bed in comparison with the exact 

positions of the shock front (Exact) for the case uph =10 (m). 
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3.3.2 Optimal values of coefficient M 

Coefficient M and   are two parameters required to be specified when SVR is included 

in the level-set method. According to Tsai et al.  [98],   was set to be 1 z ; however, M was 

stated to be a sufficiently large value. In such a case, the coefficient M has not well defined 

in the paper. Thus, this study examines the optimal values of the coefficient M by 

implementing different cases of boundary conditions: uph  = 1, 2,…, 10. The subset and 

meshes where numerical experiments are performed are the same as in subsection 3.3.1. For 

each case of uph , different values of M in the range ( )0,1  are specified to produce the 

corresponding zeros of the level-set function with SVR. For each value of M, the minimum 

distance between the zeros of the level-set function and the exact solution is calculated to 

obtain the optimal value of the coefficient M. The optimized results of the coefficient M for 

the different cases of uph  from 1-10 (m) are summarized in Table 3.1 and Figure 3.7. The 

higher upstream water depth is, the greater the coefficient M is needed. The relation is 

approximated by the quadratic function of up2 up0.0063 0.0134 0.0098M h h= − +  with 

2 0.99R = .  

To visualize the difference between the cases with and without the optimized SVR, the 

error in each case is determined by the maximum distance between the zeros of the level-set 

function and the exact positions of shock fronts, as illustrated in Figure 3.8. The green dots 

and the red dots represent the errors in the cases without and with the optimized SVR, 

respectively. Figure 3.8 implicates that the effect of SVR is so significant that it bounds the 

error without depending on uph . 
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Figure 3.7. The optimal coefficient M for different cases of upstream water depth from 1-10 

(m). 

 

Figure 3.8. The errors in the zeros of the level-set functions without SVR (green dots) and with 

the optimized SVR (red dots). 
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3.3.3 A practical demonstrative example of Chan Thnal Reservoir to an 

irrigational canal system 

Chan Thnal Reservoir is located in Kampong Speu Province of Cambodia, having a 

maximum capacity of 3 million cubic meters. It collects rainwater from a catchment area of 

268 km2, supplying the stored water to the irrigation canal system from the main gate at the 

coordinates 11°34'13"N and 104°31'26"E [101]. As one of the central lowlands of Cambodia, 

the average annual rainfall in Kampong Speu Province is about 1400 mm [102]. Tropical 

Monsoon climate usually shows the characters of a unimodal rainfall intensity curve with a 

specific long dry spell [103], and the catchment area and the command area of Chan Thnal 

Reservoir are not an exception. The reservoir is operated both in the rainy seasons (May to 

October) for 1000 ha of the agricultural zone and in the dry seasons (November to April) for 

115 ha, often encountering the problem of abrupt water release to an initially dry bed of the 

irrigation canal system. Such operation may aim to increase water efficiency in agriculture 

and enhance the flood retention function of the reservoir [104]. The map of Cambodia, 

Kampong Speu Province, and the study site of Chan Thnal Reservoir and the irrigation canal 

are shown in Figure 3.9. The main canal of the system, having a total length of 7320 m is 

modeled as an open channel with varied bed slopes, which are approximately 1/112, 1/547, 

1/628, 1/499, and 1/2079 for the five reaches divided by the points 610 m, 2070 m, 3670 m, 

and 5060 m distant from the reservoir. A constant Manning’s roughness 0.03n =  ( 1 3m s− ) is 

applied to the model since the canal is an earthen type with vegetation [31].  
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Figure 3.9. Map of Cambodia, Kampong Speu Province, and satellite image of Chan Thnal 

Reservoir and its irrigational canal (blue line) (Google Earth image taken on 

January 12th, 2014, accessed on June 02nd, 2021). 

The ability of the level-set method with SVR applied to the kinematic wave equation 

is demonstrated in the practical problem of abrupt water release from Chan Thnal Reservoir 

into an initially dry bed of the main canal. The level-set equation is numerically solved for 

the dam-break problem for uph  = 2 over the subset (  (  ( )0,3600 0,7320 1,3  −  of  ( )
3

0, , 

with meshes of 0.1t =  (s), 10x =  (m), and 0.1z = , considering the varied bed slopes. 

As we have observed in the primitive test cases, strong overturning occurs as the fronts 

propagate downstream when M  is small. If M is large, then artificial diffusion takes place 
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so that the upper parts of the fronts tend to move slower than the lower parts. With an 

optimized value of 0.003M = , surface water flows are computed and delineated in Figure 

3.10. The computed zeros of the level-set function are plotted every 100 (s) with different 

colors for the computational period of 3600 (s). It is seen that the fronts propagate 

downstream; however, the surface water flows do not change with the bed slopes. 

 

 

 

Figure 3.10. Zeros of the computed level-set function with SVR over the dry bed of irrigation 

canal of Chan Thnal Reservoir for uph =2. The different colors show the time stages 

every 100 (s) for total computation period of 3600 (s). 
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3.4 Discussion 

The standpoint regarding the kinematic wave equation as the HJ equation has been almost 

untracked. Still, the model development and the numerical experiments conducted here have 

revealed their advantages and limitations. 

The kinematic wave equation remains hyperbolic even if the water depth becomes zero 

and does not involve any well-posedness issue when dealing with the initially dry bed 

problems. At the same time, the dam-break problems imply discontinuities in the water 

depths. The level-set method is powerful in relaxing requirements for functional regularities 

of unknowns in nonlinear partial differential equations of the first order, including HJ 

equations. Inhomogeneous slight overturning phenomena can be seen in the propagating 

shock front, mainly in the midstream of the irrigation canal, implicating that the constant 

coefficient M was not optimal. The Froude numbers achieved after the arrival of the shock 

front were 1.1272, 0.5069, 0.4779, 0.5343, and 0.2672 for the five reaches divided by the 

points 610 m, 2070 m, 3670 m, and 5060 m distant from Chan Thnal Reservoir, respectively, 

implying that there was a hydraulic jump in terms of the SWEs at the point 610 m from the 

reservoir. This incapability of detecting hydraulic jumps is one of the limitations of the level-

set method for the kinematic wave equation. While, in contrast to most of the available 

software tools using either the 1-D SWEs with some artificial viscosity or the diffusion wave 

approximation, the method results to be free from spurious diffusive deformation of water 

surfaces. As demonstrated in the practical example with  10x =  (m) and  0.1z = , the use 

of relatively coarse mesh admits the method's efficiency despite the fact that the computation 
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is implemented in the 2-D space. When the bed slopes vary, the surface water flows remain 

constant at 2. This may possibly result from the assumption of 
1 2

0 1S n = . Thus, the 

computational method does not work successfully in the practical demonstrative example of 

the Chan Thnal irrigation canal with varied bed slopes. Another treatment is needed for the 

case. 

The critical point of applying the level-set method to the kinematic wave equation is 

the requirement of SVR. The applications of the level-set method to the kinematic wave 

equation with and without SVR have been compared and verified with analytical solutions 

of dam-break problems. These results clearly indicated the importance of SVR in improving 

the numerical solutions. 

 

3.5 Conclusions 

This chapter discussed the applicability of the level-set method to the kinematic wave 

equation for the reproduction of propagating discontinuous water surface caused by dam-break 

over an initially dry bed on the downstream side. Unlike the Eikonal equation, overturning is 

intrinsic to the kinematic wave equation whose Hamiltonian vanishes on the dry bed. The 

introduction of SVR was effective for relocating the zeros of the level-set function close to the 

correct positions of the shock front. However, that effect was sensitive to the coefficient M, 

which was optimized to produce a better numerical solution of the level-set function for each 

case of upstream water depth. The relation between upstream water depth and coefficient M 

is approximated by the quadratic function of up2 up0.0063 0.0134 0.0098M h h= − +  with 
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2 0.99R = . The maximum distance between the zeros of the level-set function and the exact 

positions of shock fronts was used for determining the error. An essential outcome of this study 

is to implicate that SVR can uniformly suppress the overturning phenomena, which might 

linearly grow as the upstream water depth is increased. Finally, the practical application 

understandably shows that the level-set method with SVR applied to the kinematic wave 

equation is versatile for dry beds. However, its application over the varied bed slopes has not 

successfully tackled. 

The level-set method for the full SWEs over standard digital elevation mesh shall be 

tackled in the follow-up study to develop methodologies for better understanding the practical 

hydrodynamic phenomena. Future works shall also deal with technical issues such as the 

treatment of the irregular channel topography, roughness, lateral flows, and then channel 

junctions. 
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Chapter 4 

 

 

4 Numerical demonstrations of non-dissipative 

discontinuous kinematic waves in open channel flows 

 

4.1 Introduction 

The governing equations of one-dimensional (1D) open channel flows include the local 

acceleration term, the convective acceleration term, the pressure term, the gravity force term, 

and the friction force term, constituting a complicated nonlinear hyperbolic system. Lighthill 

and Whitham [17] originally introduced the kinematic wave model under the assumption of 

balanced gravity and friction forces. It has been widely applied in open channel hydraulics 

and surface hydrology for a long time. 

Astonishingly, there persists a misunderstanding among engineers regarding the 

kinematic wave model’s fundamental properties, as shown in the recent review paper of 
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Singh [5], stating as follows. “Shock is defined as a discontinuity in the continuum of flow 

and is transient. In other words, it develops and dissipates. A shock can occur where there is 

a sudden step rise in rainfall intensity, a sudden change in bed roughness, bed elevation, etc. 

An analogy with traffic flow is instructive in that traffic jam, which is analogous to a shock, 

occurs where there is a reduction of lanes on the highway, stop sign, traffic light, accident, 

but over time it dissipates”. 

This study clarifies that a discontinuity can develop without dissipation even under the 

smoothness of all input in the kinematic wave model. This phenomenon reflects physical 

processes such as hydraulic jumps and surges. The propagation of discontinuities, which 

occurs even from smooth initial data, has been stated in the papers [30,105–109]. Such a 

phenomenon is intrinsic to FOQL PDEs, including the kinematic wave model, the Kynch’s 

sedimentation model [110], the compressible Euler equations [111], and the traffic flow 

models [112–114]. Jin et al. [113] proposed a model of the capacity drop occurring at an 

operational bottleneck in the framework of the kinematic wave model. The capacity-drop 

phenomenon of active bottlenecks refers to ‘‘maximum flow rates decrease when queues 

form”. Kinematic wave theories are well-known theories to analyze and simulate the 

processes of queue formation, propagation, and dissipation via shock and rarefaction waves. 

Jin [114] studied the merging traffic flow using continuous kinematic wave models. 

The kinematic wave model is a first-order quasilinear equation in traffic science and 

engineering due to its simple mathematical structure and ability to capture realistic traffic 

networks and shock waves [115]. Under their high efficiency, the kinematic wave is still 

commonly used in hydrology for flow routing [116]. Conversely, treatment of the kinematic 

wave model not as a FOQL PDE but a Hamilton-Jacobi type leads to inconsistency as in 
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Chapter 3 or Mean et al.  [56]. Those properties are well-known among mathematicians since 

Oleĭnik [117] established the theory of FOQL PDEs in 1D domains, considering GSs in the 

space of measurable and bounded functions. Kružkov [118] in 1970 refined the theory in the 

space of functions of bounded variations (BV functions) in multi-dimensional domains, 

introducing the notion of the weak entropy solution. Shao et al. [119] proved the unique 

existence of global BV solutions to Cauchy problems for FOQL PDEs with damping if the 

initial data is non-smooth. Wang [120] demonstrated the unique existence of global BV 

solutions to Cauchy problems for homogeneous FOQL PDEs if the initial data is BV. In 

contrast to these intuitively reasonable results, the development of discontinuities under the 

smoothness of all input is not apparent. Jeffrey [121], Jeffrey [122], and Jeffrey and Donato 

[123] studied discontinuities in the solutions to Cauchy problems for FOQL PDEs of more 

than one dependent variable with smooth initial data. Coclite et al. [124] considered traffic 

flows, defined on a road network with junctions, as BV functions. Chen [125] analyzed the 

formation of shock waves in two-dimensional steady supersonic flows passing around 

smooth concave walls. This study considers possibly discontinuous measurable and bounded 

solutions to the kinematic wave model, which governs the wetted cross-sectional area as a 

scalar dependent variable. We firstly revisit the fundamental mathematical result and then 

opt for a numerical approach. Numerical examples are computed with the Godunov scheme 

[126]. The Godunov scheme can capture discontinuities in GSs of FOQL PDEs, such as the 

traffic flow model of Bretti et al. [127]. More details of discretizing FOQL PDEs developing 

discontinuities from smooth initial data can be found in Fjordholm and Mishra [128]. 
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4.2 Kinematic wave model as a FOQL PDE 

The kinematic wave model is a FOQL PDE governing the unknown wetted cross-

sectional area ( ),A A t x= , written as 

( , )
( , , )

A Q x A
q t x A

t x

 
+ =

 
 (4.1) 

where Q  is the discharge given by 

0

1
( )

( )

pQ AR S x
n x

=  (4.2) 

where n and p are the roughness coefficient and the exponent of the friction law, respectively, 

0S  ( 0 ) is the channel bed slope, and R  is the hydraulic radius depending on x  and A . 

We consider the Cauchy problem of (4.1) with (4.2) in  

( ) , 0 ,G t x t x=    −     (4.3) 

under the initial condition 

( ) 00, ( )A x A x=  (4.4) 

where 0 ( )A x  is the specified initial value at x . Let 
1( )L G  and ( )L G

 be the Lebesgue 

spaces consisting of all measurable functions and all bounded functions in G , respectively. 

The space of all infinitely differentiable functions in G  is denoted by ( )C G
. A bounded 

measurable function 
1( , ) ( ) ( )A A t x L G L G=    such that 
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0d d (0, ) ( )d 0
G

f f
A Q fq x t f x A x x

t x



−

  
+ + + = 

  
   (4.5) 

for any ( )f C G  having a bounded support is referred to as the GS of the Cauchy problem. 

A spatial flow domain is set as (0, )X  to prescribe the source term as a distribution 

in out( , ) d ( ,0) ( ) ( , ) ( )f t x q x f t Q t f t X Q t


−
= −  (4.6) 

where inQ  is the inflow discharge specified at the upstream end 0x = , and outQ  is the 

outflow discharge at the downstream end x X=  given by 

out ( ) lim ( , ( , )) lim ( , ( , ))
x Xx X

Q t Q x A t x Q x A t x
− →

= = . (4.7) 

The unknown ( , )A A t x=  vanishes outside (0, )X .  

The possibly non-smooth functions q , 0A , etc. are mollified as q
, 0A

, etc., 

respectively, by taking convolution with a mollifier   of radius  . A well-known concrete 

example of a mollifier of radius 1 is 

2

1
exp if 1

( ) 1

0 if 1

k 
  



  
 −    = −  




 (4.8) 

where k  is the constant such that ( )d 1   =  [129]. Then, the mollified Cauchy problem 

fulfills all the regularity assumptions made in Section 2 and Section 4 of Oleĭnik [117], to 

have a GS 
1( , ) ( ) ( )A A t x L G L G  =    such that 
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( )

0

, d d

(0, ) ( )d 0

G

f f
A Q x A fq x t

t x

f x A x x

  




−

  
+ + 

  

+ =





 (4.9) 

for any ( )f C G  having a bounded support. By the completeness of 
1( )L G  and ( )L G

, 

there exists a unique GS of the original Cauchy problem. 

 

4.3 Godunov scheme 

The Godunov scheme is a conservative numerical scheme to approximate the solution 

of partial differential equations. The conservative scheme leads to a correct propagation 

speed computation for shock waves or bores. The original Godunov upwind method is first-

order accurate in space and time. The Godunov method is one of the more precise methods 

within the family of first-order schemes, which has the slightest truncation error for linear 

problems [130]. Two outstanding features of the Godunov method are (i) the use of the 

conservative form of the equations to produce a relation between integral averages of 

conserved variables and intercell fluxes and (ii) the use of wave propagation information, 

upwinding scheme, into the discretization scheme to compute intercell fluxes and thus 

produce a numerical scheme [105]. Hence, properties derived from the exact local solution 

of the Euler equations are introduced in the discretization [131]. The Godunov schemes have 

been successfully applied in engineering (river flows) [132] and traffic flow models [133].  
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Here, the Godunov scheme is applied to (4.1) on the spatial flow domain (0, )X , divided 

into cells of equal length x , to update the cell values of the discretized unknown A  in a 

constant time increment t , chosen to achieve the stability condition. The scheme defines 

the numerical flux fQ  between adjacent two cells as 

( )

( )
f

if  and 

if  and 

if  and 0

if  and 0

0 otherwise

L L R L R

R L R L R

L L R L

R L R R

Q A A Q Q

Q A A Q Q

Q Q A A Q A

Q A A Q A

 


 


=    
    



 (4.10) 

where the subscripts L  and R  represent the values in the left-side cell and the right-side 

cell, respectively. The last case of (4.10) stems from ( )1, (0) 0Q x Q− = . Then, the cell value 

( )nA  at n -th time step is updated as 

( 1) ( )

f

n n t
A A Q

x

+ 
= − 


 (4.11) 

where fQ  is the difference between the two fluxes fQ  associated with the cell. 

 

4.4 Numerical demonstrations and discussion 

Two numerical examples, referred to as Case 1 and Case 2, are presented. Case 1 deals 

with the practical problem of abrupt water release from Chan Thnal Reservoir into an initially 

dry bed of the 7320 (m) long irrigation canal discussed in Chapter 3 [56]. Case 2 deals with 

a hypothetical problem under the smoothness of all input. In both cases, the friction law is 
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prescribed as 0.03n =  (m-1/3s) and 2 3p = , and the initial condition is specified as the very 

shallow water of 
6

0 10A −=  (m2) in (0, )X . 

 

4.4.1 Case 1 

The spatial flow domain (0, )X  is set as (0,7320) , and the bed slopes are piecewise 

constant in the five reaches as defined in Chapter 3. However, the irrigation canal’s cross-

sectional shape, which was considered very broad rectangular in Chapter 3, is now assumed 

to be trapezoidal with a side slope of 1:1 and a bottom width  1 10B =  (m). Therefore, the 

water depth h  and the cross-sectional area A  are converted to each other with smooth 

relationships 
2

1 0.5A B h h= +  and 2

1 12h B A B= + − . The mesh sizes are set as 10x =  (m) 

and 0.1t = (s). The inflow discharge at the upstream end 0x =  is in 80Q =  (m3/s) for 

0 3600t  (s) and then abruptly turns into in 0Q =  for 3600 t . Figure 4.1 shows the 

hydrographs of discharges inQ , computed fQ  at the four changing points of the bed slopes, 

and outQ  for 0 21600t  (s). The wavefront remains abrupt, while the tail decays as 

propagating downstream. Figure 4.2 depicts the temporally evolving profiles of the cross-

sectional areas over the spatial flow domain of the varied bed slopes. The hydrographs of the 

cross-sectional areas at the changing points of bed slopes are shown in Figure 4.3. The cross-

sectional areas in Figure 4.2 and Figure 4.3 are converted to water depths in Figure 4.4 and 

Figure 4.5, respectively. Unlike the level-set method in Chapter 3, the approach with the 
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FOQL PDE in this chapter successfully reproduces the surface water flows over the varied 

bed slopes with correct mass conservation. 

 

Figure 4.1. Hydrographs of discharges at different locations in the spatial flow domain for 

Case 1 with abrupt changes in the bed slope and the inflow discharge. 

 

Figure 4.2. Variations of cross-sectional areas at different times in the spatial flow domain 

for Case 1 with abrupt changes in the bed slope. 
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Figure 4.3. Hydrographs of cross-sectional areas at different locations in the spatial flow 

domain for Case 1 with abrupt changes in the bed slope. 

 

Figure 4.4. Variations of water depths at different times in the spatial flow domain for Case 

1 with abrupt changes in the bed slope. 
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Figure 4.5. Hydrographs of water depths at different locations in the spatial flow domain for 

Case 1 with abrupt changes in the bed slope. 

 

4.4.2 Case 2 

The hypothetical problem of Case 2 assumes 2000X =  (m), with the mesh sizes 

2x =  (m) and 0.4t = (s). The bed slopes are prescribed as ( )0S x  = ( )3 cos 1000
10

x− −  so that 

the bed elevation becomes a smooth concave function of x . The smooth inflow discharge at 

the upstream end 0x =  is specified as ( )in 0.04 ( 600) 600Q t k= −   (m3/s) using the 

example of a mollifier where 2.2523k = . Figure 4.6 shows the hydrographs of discharges 

at inQ , computed fQ  at 500x = (m), 1000x = (m), 1500x = (m), and outQ  for 0 6000t 

(s). The shock wave develops and it is clearly visible from one position to another. 

Furthermore, with a possible analogy to the study of Chen [125], Figure 4.6 exhibits 
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oscillations, including abrupt decreases in the discharges appearing in the tails as the shock 

wave propagates downstream, passing through the point of the steepest bed slope. 

 The maximum increments of discharges within 25j time steps, denoted by MjQ , are 

depicted in Figure 4.7 for j = 1, 3, and 5. For all j time steps, MjQ  increases with the 

position. It indicates that the maximum increments between the discharge at a next time step 

is getting larger than the current time step when MjQ  is moving downstream. Consequently, 

Figure 4.6 and Figure 4.7 indicate the formation of a shock wave having an abrupt wavefront 

without any dissipation. 

 

 

Figure 4.6. Hydrographs of discharges at different locations in the spatial flow domain for 

Case 2 under the smoothness of all input data. 



 57 

 

Figure 4.7. Maximum increments MjQ  of discharges within 25j time steps for j = 1, 3, and 

5 at each point of the spatial flow domain in Case 2. 

 

4.5 Conclusions 

The fundamental properties of FOQL PDEs implicate the existence of non-dissipating 

discontinuous kinematic waves. The numerical examples presented in this chapter support 

the hypothesis that such discontinuities in kinematic waves develop from the discontinuities 

of input data or even under the smoothness of all input. The numerical demonstration of Chan 

Thnal irrigation canal (Case 1) representing the discontinuities of all input is successfully 

computed the solutions of the surface water flows when the bed slopes vary. The hypothetical 

problem (Case 2) delineates that the non-dissipative discontinuous kinematic waves emerge 

under the smoothness of all input. Abrupt arrivals of flash floods are reported mostly in arid 

regions where concave topographies are typical [134], making a real-world manifestation of 
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the phenomena presented here. However, rigorous mathematical analysis is still necessary to 

prove that the numerically obtained abrupt changes are valid evidence of the discontinuities. 
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Chapter 5 

 

 

5 A thorough description of one-dimensional steady open 

channel flows using the notion of discontinuous 

viscosity solution 

 

5.1 Introduction 

Open channel flows in dominantly 1D channels are of practical importance in civil 

engineering applications. The governing equations of 1D open channel flows are derived 

from the SWEs, constituting a hyperbolic system of first-order PDEs to represent the 

conservation laws of mass and momentum in fluid mechanics. The SWEs imply that a 

discontinuity of water depths, referred to as a hydraulic jump or shock, may occur under the 

Rankine–Hugoniot condition. 
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Tremendous efforts have been devoted to initial-boundary value problems of the SWEs 

in bounded domains, primarily for the numerical solution of unsteady states. Toro and 

Garcia-Navarro [105] thoroughly reviewed Godunov-type methods applied to SWEs, 

mentioning the critical points such as the jump conditions and the presence of source terms. 

As far as numerical methods for 1D problems are concerned, careful considerations on 

moving fronts [135] and on balancing source terms and flux gradients [67] have resulted in 

significant advances [63]. However, there remain mathematical fundamentals involving the 

1D SWEs, and several recent papers highlighted the approximation of the 1D SWEs. 

Cheutouf and Smaoui [136] discussed the well-posedness in diffusion wave approximation 

of the 1D SWEs. Mean et al. [56], which has been described in Chapter 3, explored the 

applicability of the level-set methods to kinematic wave approximation of the 1D SWEs. 

Sukhtayev et al. [137] investigated water surface profiles, which may be non-smooth or 

discontinuous, in the framework of a generalized Sturm-Liouville problem reduced from the 

stability problem of the 1D SWEs. 

 More emphasis should be placed on analyzing 1D open channel flows in steady states, 

as the hydraulic design of rivers, irrigation canals, and sewer systems often based on them 

with the possible inclusion of control devices such as gates and weirs to regulate the water 

flows. Simply dropping the unsteady terms of the 1D SWEs results in the SFO ODE on which 

we should focus in this chapter. A significant difficulty is determining 1D steady open 

channel flows in a domain bounded by two water level control devices involving a Dirichlet 

problem of the SFO ODE constraining water depths at the two boundary points. Such a two-

point boundary value problem is mathematically ill-posed unless admitting a discontinuity in 

the water depths. 
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Adding a virtual unsteady term to the SFO ODE might be a viable approach, as it 

constitutes a FOQL PDE representing a scalar conservation law. There are several 

mathematical notions to deal with non-smooth or discontinuous solutions of FOQL PDEs. 

Oleĭnik [117] established GSs of FOQL PDEs as the limit functions of the solutions to 

parabolic PDEs, namely, using the method of vanishing viscosity. Kružkov [118] refined that 

notion of GS in the space of functions of bounded variation (BV). Jerez and Arciga [138] 

called such a GS as the BV entropy weak solution, which is required to achieve the 

uniqueness of a physically reasonable solution to a FOQL PDE representing a scalar 

conservation law. Glaubitz [139] developed a shock-capturing procedure for the stable 

numerical approximation of BV entropy weak solutions to FOQL PDEs. Functions of BV 

are also appropriate for different applications, such as value functions of optimal control 

problems [100] and total variation flows [140]. However, it is challenging to clarify whether 

such a BV entropy solution exists globally in time and converges to a steady-state as time 

goes by or not. 

An option comprehending SFO ODEs and FOQL PDEs is to regard them as equations 

of Hamilton-Jacobi type (HJ equations). In the 1980s, Crandall and Lions [37] introduced 

the notion of VS for HJ equations, considering both steady Dirichlet problems and unsteady 

Cauchy problems. A VS is obtained not only via the method of vanishing viscosity but also 

the finite difference method [141], via Perron’s method [52], and as the value function of the 

associated optimal control problem [142]. Barles [54] proved existence for those two 

problems of HJ equations, whose VSs are possibly discontinuous. Barles and Perthame [45] 

focused on possibly discontinuous VSs of the Dirichlet problems associated with 

deterministic optimal stopping time problems, which can be approached via the method of 
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vanishing viscosity [143]. However, as revisited in the 1990s [44,144], well-posed Dirichlet 

problems of HJ equations require certain structural assumptions on the Hamiltonian functions, 

such as proper dependence on the unknown variable. In such well-structured cases, the link 

between VSs of HJ equations and BV entropy solutions of FOQL PDEs representing scalar 

conservation laws has been known [145]. On the other hand, the HJ equation accommodated 

to the SFO ODE for the 1D steady open channel flows has an essentially improper 

Hamiltonian function, where relaxation as in Unami and Mohawesh [146] is not applicable. 

Therefore, we cannot expect a comparison principle to guarantee the uniqueness and stability 

of a VS. However, we have the advantage of already knowing several types of 1D steady 

open channel flows, which can be seen in the standard textbooks of open channel hydraulics 

[32,147].  

In this chapter, we use the notion of VS to describe the characteristics of the 1D steady 

open channel flows as the solutions to Dirichlet problems of SFO ODEs, even though the 

method of vanishing viscosity does not work due to the structure of the Hamiltonian function 

hindering the solution of a relevant two-point boundary value problem of a second-order 

ODE [148]. It is shown that the discontinuous VSs to the Dirichlet problems satisfy the 

entropy condition, with which the BV entropy weak solutions accompany, and are GSs in the 

Oleĭnik [117]’s sense. VSs to some Dirichlet problems are indeed not unique, and a concrete 

illustrative example is presented. 

 

5.2 Preliminaries 

We consider open channel flows subject to the following physical assumptions A1-A5. 
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A1.The channel is prismatic, having a straight alignment and a constant cross-sectional shape.  

A2. The channel bed slope 0 tanS =  is so small that the approximations sin tan  = =  

and cos 1 =  are acceptable. 

A3. The pressure distribution is hydrostatic.  

A4. The velocity distribution in a channel cross-section is uniform. 

A5. The friction force is the same as in uniform flows, and it is represented as the friction 

slope. 

 

5.2.1 Conventional governing equations of 1D open channel flows 

The conservation laws of mass and momentum under the assumption of A1-A5 are 

summarized as the 1D SWEs without the lateral inflow discharge per unit width q  

 

( )0

0

s f

QA

F gA S SQt x

    
+ =      −      

 (5.1) 

where sF  is the specific force given by 

( )
2

0
d

h

s

Q A
F g h z z

A z


= + −

  (5.2) 

and the friction slope is 

2

2 2
( )f f p

n Q Q
S S h

A R
= =  (5.3) 
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where h  is the water depth, ( )A A h=  is the wetted cross-sectional area, Q  is the discharge, 

R A P=  is the hydraulic radius with the wetted perimeter ( )P P h= , n  is the roughness 

coefficient, z  is the upward vertical axis, and p  is the exponent as in the uniform flow 

formula.  

The 1D SWEs (5.1) in steady states indicate that the discharge Q  is constant and that  

( ) ( )
2

0
0

d d
d

d d

h
s

f

F Q A
g h z z gA S S

x x A z

 
= + − = − 

 
  (5.4) 

which is formally rewritten as a non-conservative form 

( )
2

02

d

d
f

A Q h
gA gA S S

h A x

 
− = − 
 

. (5.5) 

A water depth unih  achieving ( )uni 0fS h S=  is referred to as the uniform flow depth. The 

commonly used governing equation of 1D steady open channel flows obtained from (5.5) as 

0

2

d

d 1

fS Sh

x Fr

−
=

−
 (5.6) 

where Fr  is the Froude number defined by 

2

3

A Q
Fr

h gA


=


. (5.7) 

A water depth crih  achieving ( )cri 1Fr h =  is referred to as the critical flow depth. It is 

known that the water depths h  gradually varying along the channel satisfy the SFO ODE 

(5.6), which does not explain the occurrence of a hydraulic jump. 
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The Froude number can distinguish the flow types as 

• Subcritical flow when 1Fr   

• Critical flow when 1Fr =  

• Supercritical flow when 1Fr  . 

The equation (5.6) describes the variation of the flow depth with respect to space 

coordinate, known as the longitude of the channel. It is used to characterize the water surface 

profiles of the open channel flows. However, it does not explain the occurrence of a hydraulic 

jump. 

 

In the open channel flows, a channel transition may involve changing the channel 

geometry, which is the change of the channel width or the channel bottom slope [31]. The 

bottom slope is classified by critical water depth ( crih ) and normal water depth ( unih ) into 

five categories: mild, steep, critical, horizontal, and adverse. The bottom slope is called mild 

if the uniform flow is subcritical ( uni crih h ), steep if the uniform flow is supercritical 

( uni crih h ), critical if the uniform flow is critical ( uni crih h= ), horizontal if the slope is zero, 

and adverse if the slope is negative. Various kinds of bottom slopes produce different water 

surface profiles. Another critical factor to characterize the water surface profiles is where the 

water surface is located, referring to regions. The regions of the water surface profiles are 

notified based on the location of the critical-depth line (CDL) and uniform-depth line (UDL), 

which are critical water depth ( crih ) and normal water depth ( unih ), respectively. The region 

above both lines is referred to as Zone 1 uni cri( )h h h   or cri uni( )h h h  ; between both 
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lines is Zone 2 uni cri( )h h h   or cri uni( )h h h  ; the one between the lower line and the 

channel bottom is designated as Zone 3 uni cri( )h h h   or cri uni( )h h h  , as shown in 

Figure 5.1. 

 

Figure 5.1. Zones of the water surface profiles. 

 

5.2.2 Spaces of functions 

Henceforth, we utilize several spaces of functions of a generic independent variable .a  

Functions are collectively denoted by ( )v v a= . Let   be an open a -domain in . The 

space ( )BC   consisting of all bounded and continuous functions on   is complete with 

respect to the uniform norm sup ( )
a

v v a




= . The space ( )C   consisting of all bounded and 

uniformly continuous functions on   is a closed subspace of ( )BC  . The space ( )1C   

consists of all continuous functions whose first derivatives are also continuous on  . The 

space 
1 ( )BC   consists of all bounded and continuous functions whose first derivatives are 

also bounded and continuous on   and is complete with respect to the norm 

Zone 3

Zone 2

Zone 1

UDL or CDL

CDL or UDL
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( )1 max , d d
BC

v v v a
 

= . The spaces of upper and lower semi-continuous functions 

defined on   are denoted by ( )USC   and ( )LSC  , respectively. The space 
1( )L   is the 

Lebesgue space of all integrable functions v  on  , equipped with the norm 

1 d
L

v v


=  . (5.8) 

The space 
1,1( )W   is the Sobolev space, which is the completion of ( )1C   with 

respect to the norm 

1

1
1,1

d

dL
L

v
v v

a
= + . (5.9) 

The space 
1, ( )W 

 is the Sobolev space, which is the completion of ( )1C  with 

respect to the norm 

1,

d
max esssup ( ) ,esssup ( )

da a

v
v v a a

a
 

 
=  

 
. (5.10) 

 

5.2.3  The notion of discontinuous VS 

In this study, we regard (5.5) as an HJ equation 

d
, 0
d

u
H u

x

 
= 

 
 (5.11) 
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where H  is the Hamiltonian function, in a bounded open x -domain  . The definition of 

VS here is adapted the discontinuous viscosity from [41]. The upper semi-continuous 

envelope (U-env) ( )*u x  of a function ( )u x  is defined as 

*( ) limsup ( )
y x

u x u y
→

= . (5.12) 

The lower semi-continuous envelope (L-env) ( )*u x  of a function ( )u x  is defined as 

*( ) liminf ( )
y x

u x u y
→

= . (5.13) 

There is a trivial comparison principle 

*

*( ) ( ) ( )u x u x u x   (5.14) 

at any x . The U-env ( )*( )u x USC   is called a viscosity sub-solution (sub-S) of (5.11) 

if, for any weight ( )1w C  , 

* d ( )
( ), 0

d

w x
H u x

x

 
 

 
 (5.15) 

holds at any point x  where 
*u w−  achieves a local maximum. The L-env ( )*( )u x LSC   

is called a viscosity super-solution (super-S) of (5.11) if, for any weight ( )1w C  , 

*

d ( )
( ), 0

d

w x
H u x

x

 
 

 
 (5.16) 

holds at any point x  where *u w−  achieves a local minimum. When the U-env 
*u  and the 

L-env  *u  of a function ( )u x  are a sub-S and a super-S, respectively,  ( )u x  is called a VS of 

(5.11) in  . 
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5.3 Problem formulation and mathematical analysis 

5.3.1 Statement of problems 

Firstly, we transform the unknown variable, the water depth h , as 

logu h=  (5.17) 

so that the range of the unknown u  becomes . The uniform flow depth and the critical 

flow depth are transformed as uni unilogu h=  and cri crilogu h=  , respectively. The flux ( )u  

is the negative specific force 

( )
2

0
( ) d

h

s

Q A
u F g h z z

A z



= − = − − −

  (5.18) 

and it is assumed that 
1,( ) ( )u W  , u  is strictly monotone decreasing, and thus 

( ) 0uu u   (5.19) 

almost everywhere. The source term ( )u  is the external force 

( )0( ) fu gA S S = −  (5.20) 

which is assumed to be in 
1, ( )W 

. 

We pose the following three problems considering different senses of solutions. 

 

Problem 1. Find a gradually varied flow solution (GVFS) 
1( ) ( )Bu x C   of 

( )2

0

d d d
, ( ) ( ) ( ) 1 ( ) 0
d d d

u

u f

u u u
H u u u Fr u e S S u

x x x
 

 
= + = − + − = 

 
 (5.21) 
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in ( ) ( )0, 0,X X = =  or ( ) ( ),0 ,0X X = = −  with a free endpoint X , satisfying the 

Dirichlet boundary condition 

up down(0) , ( )u u u X u= =  (5.22) 

where upu  and downu  are specified boundary values. 

 

Problem 2. Find a VS 
1( ) ( ) ( )u x L L     of (5.21) in ( )0, X=  with a specified 

downstream endpoint X , satisfying the Dirichlet boundary condition 

* *

* up * down(0) (0) (0) , ( ) ( ) ( )u u u u u X u X u X u= = = = = =  (5.23) 

where upu  and downu  are specified boundary values. 

 

Problem 3. Find a GS 
1( ) ( ) ( )u x L L    , where ( )0, X= , such that 

up down
0

d
( ) ( ) d (0) ( ) ( ) ( ) 0

d

X f
u u f x f u f X u

x
   
 

− + − = 
 

  (5.24) 

for any 
1,1( )f W  . 

 

5.3.2 Unique existence of GVFSs 

Firstly, we clarify the unique existence of the conventional GVFSs as solutions to 

Problem 1. 

Theorem 1. Let ( )up down,u u = . If the closed interval   does not contain any uniu  and if 

( )u u  is continuous in  , then there exists unique ( ) ( )x u C   such that 
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up up

2

0

( ) 1 d
( ) d d

( ) d

u u
u

u u
f

u Fr h
x u u u

u S S u





−
= − =

−  . (5.25) 

Proof. As ( ) 0u  , (5.21) can be rewritten as ( ) ( )2

0d d 1u

fx u e Fr S S= − −  and then 

2

0

d 1

d f

x Fr

h S S

−
=

−
 (5.26) 

whose right-hand side is Lipschitz continuous with respect to x  with any Lipschitz constant. 

Then, the unique existence of ( ) ( )x u C   such that (5.25) is a direct consequence of the 

well-known result for initial value problems of ODEs (Theorem 1.1.1 of [148]).  

□ 

Remark 1. In ( ) ( )0, 0,X X = =  or ( ) ( ),0 ,0X X = = − , there exist unique monotone 

GVFS ( )1( ) Bu x C   solving Problem 1 with down( )X x u=  determined by (5.25), if the 

closed interval 
up down,u u    does not contain any uniu  or criu  and if ( )u u  is continuous in 

( )up down, .u u  There is a comparison principle that the solution ( )u x  is bounded as  

( ) ( )up down up downmin , ( ) max ,u u u x u u  . (5.27) 

Remark 2. The uniform flow ( )1

uni( ) Bu x u C=    solves Problem 1 with the boundary 

value specified as up down uniu u u= = . 
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5.3.3 Properties of VSs 

Next, properties of VSs, which are possibly non-smooth or discontinuous, are explored. 

It is observed that there are continuous VSs. 

Remark 3. A GVFS ( )1( ) Bu x C   solving Problem 1 is a VS solving Problem 2. 

Remark 4. Suppose cri uniu u= , that 
cri

lim ( )uu
u u

u
→

exists and is finite for either sign, and 

uni

lim ( ) 0u
u u

u
→

  for the sign. Then, 

down cri

down uni

down uni

2 down

0 down

lim ( )
1 d

lim
d lim ( )
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u u

u u
f u

u u

u
Fr h

S S u u











→

→

→

−
= −

−
 (5.28) 

for the sign becomes finite, allowing cri( )x u  in (5.25) to converge to a finite   . Let 

GV ( )u x  denote such a GVFS approaching to cri uniu u=  at  . With another boundary X   

such that 0 X  and X  ,  

 )

 

 
( 

GV

uni

uni

GV

( ) in 0,
if 0

in ,
( )

in ,
if 0

( ) in ,0

u x

u X
u x

u X

u x















= 






 (5.29) 

becomes a VS in ( )BC  . 

Discontinuities in VSs, which are indeed GSs, are characterized in the following 

theorems. 
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Theorem 2. Let ( )u x  be a VS solving Problem 2. Suppose 
*

*( ) ( )u u   at a point     

and that ( )u u  is continuous at 
*( )u   and *( )u  . For the sub-S ( )*( )u x USC   and the 

super-S ( )*( )u x LSC  ,  

*

*( ( )) 0, ( ( )) 0u uu u      (5.30) 

and ( ) ( )( ) 0, ,B Bu x C C X   , implying up( ) 0u u   and down( ) 0u u  . 

Proof. Let w  be any weight in ( )1C  . If 
*( ) 0u u   and 

*u w−  achieves a local maximum 

at  , then 
*

*( ) ( )u u  . This contradicts the comparison principle (5.14). If *( ) 0u u   and 

*u w−  achieves a local minimum at  , then 
*

*( ) ( )u u  . This contradicts the comparison 

principle (5.14). Therefore, (5.30) holds. The assumption (5.19) implies that u  is monotone 

decreasing, and thus there can be at most one point   achieving (5.30). With Remark 1 and 

Remark 4, it is concluded that ( ) ( )( ) 0, ,B Bu x C C X   , up( ) 0u u   and down( ) 0u u  . 

□ 

 

Theorem 3. Let ( )u x  be a VS solving Problem 2. Suppose that ( )u u  is continuous except 

at the points of non-smoothness mentioned in Remark 4 and Theorem 2, if any. Then, ( )u x  

is a GS satisfying (5.24) for any weight 
1,1( )f W  , and 

*

*( ( )) ( ( ))u u   =  (5.31) 

if there is any discontinuity at    such that 
*

*( ) ( )u u  . 
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Proof. Because of ( ) ( )( ) 0, ,B Bu x C C X   , 
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(5.32) 

 

for any weight 
1,1( )f W  . Taking a particular weight 

1,1( )f W   as 

0
lim max 0,1

x
f





+→

 − 
= − 

 
 (5.33) 

results in (5.31). Then, (5.32) turns out (5.24). 

□ 

5.3.4 Non-uniqueness of GSs 

Lastly, we show that there is a case where GSs are not unique, using auxiliary functions 

stemming from two different functions 1( )u x  and 2 ( )u x  with their mollification. A mollifier 

( )J x  is defined on  as 
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( ) 0 if , ( )d 1J x x J x x =  =  (5.34) 

and a function ( )u x  defined on  is mollified as 

* ( ) ( )du J u J x y u y y

 = = − . (5.35) 

If ( )u x  is defined only on a closed interval  ,a bx x , then it is extended as 

( )
( ) if 

( ) if 

a a

b b

u x x x
u x

u x x x


= 


. (5.36) 

Assume that ( )u u  and ( )u u  are continuous in the set 

 1 2( ) or ( ),U u u u x u u x x= = =    (5.37) 

as well as in the set  ( ) ( )1 2 1 2min ( ), ( ) ,max ( ), ( ) \
x x

u x u x u x u x U
 

 
 

. Then, auxiliary functions of 

x  are defined as 
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and 
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The following lemma is the core involving the uniqueness of a GS. 

Lemma 1. Assume that both of 

lim ( ) lim ( ) 0
y x y x

y y
− +→ →
    (5.42) 

and 

d ( ) d ( )
lim ( ) lim ( ) 0

d dy x y x
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 (5.43) 

hold for any x  such that lim ( ) lim ( ) 0
y x y x

y y
− +→ →
   . Then the linear SFO ODE 

d

d

f
f F

x
  =  +  (5.44) 

has a solution 
1,1( )f W   for any 

1 ( )BF C   when   is taken small enough. 

Proof. If lim ( ) lim ( ) 0
y x y x

y y
− +→ →
    for any x , then there exists a constant c  such that 

0c    for any x  when   is taken small enough. Then, an initial value problem of 

(5.44) with the initial condition (0) 0f =  has a solution 
1 1,1( ) ( )Bf C W    . With the 

assumption of the lemma, there exists a point   in the  -neighborhood of x  such that 
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( ) 0  =  and ( )d d ( ) 0x     −   when   is taken small enough. Then, solving 

0f F + =  and applying the L’Hôpital’s rule to ( )f F  +   yields 

F
f



= −


 (5.45) 

and 

dd

d d d
dd

d

F
F

f x x

x

x







 


 −

=
 

 − 
 

 (5.46) 

at such a  . If 0   in  )0, rx  and ( ) 0rx = , then an initial value problem of (5.44) with 

the initial condition ( ) ( ) ( )r r rf x F x x= −   has a solution 
1 (0, )B rf C x . If 0   in 

( ,lx X  and ( ) 0lx = , then an initial value problem of (5.44) with the initial condition 

( ) ( ) ( )l l lf x F x x= −   has a solution 
1 ( , )B lf C x X . If 0   in ( ),l rx x   and 

( ) ( ) 0l rx x  = = , then two initial value problems of (5.44) with the initial conditions 

( ) ( ) ( )l l lf x F x x= −   and ( ) ( ) ( )r r rf x F x x= −   have respective solutions lf f=  and 

rf f=  in 
1 ( , )B l rC x x . Then, 

1 ( , )r l B l rf f f C x x = −   solves 

d

d

f
f

x






= 


 (5.47) 

in ( ),l rx x  with the Neumann boundary condition d d 0f x =  at lx x=  and rx x= , 

implying that d d 0f x =  and then 0f =  in ( ),l rx x . That identical 



 78 

1 ( , )l r B l rf f f C x x= =   solves (5.44) with the Dirichlet boundary condition consisting of 

( ) ( ) ( )l l lf x F x x= −   and ( ) ( ) ( )r r rf x F x x= −  . The procedure above completes the 

construction of a solution 
1 1,1( ) ( )Bf C W     of (5.44). 

□ 

 

A necessary condition so that GSs are not unique is stated as follows. 

Theorem 4. Suppose that there are two GSs 1( )u x  and 2 ( )u x  satisfying (5.24) for any 

1,1( )f W  . If 1( )u x  and 2 ( )u x  are different in the sense that there exists 
1 ( )BF C   such 

that ( )1 2
0

d 0
X

F u u x−  ,  then there exists x  such that lim ( ) lim ( ) 0
y x y x

y y
− +→ →
    and 

either  (5.42) or (5.43), or both, does not hold. 

 

Proof. If the assertion is false, then Lemma 1 holds. Then, 

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

1 2 1 2
0 0

1 2
0

1 2
0

1 2
0

d
d d

d

d
d

d

d
d

d

d
d

d

X X

X

X

X

f
F u u x f u u x

x

f
f u u x

x

f
f u u x

x

f
f u u x

x

 

 

 

 
− =  − − 

 

 
=  − −  − − 

 

 
+  − − 

 

 
=  − −  − − 

 

 







 (5.48) 

because of (5.36), (5.40), and (5.24). Let 1 2u u u = − , 1 2u u u   = − , 1 2( ) ( )u u   = − , 

and 1 2( ) ( )u u     = − . From the inequalities 
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( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 11

1 2 1 2 1 2
0 0 0

1 2 1 2
0

1 2

d
d d d

d

d
( ) ( ) d

d

X X X

X

L LL

f
F u u x u u x f u u x

x

f
u u u u x

x

f u u

 





 

−   − − +  − −

  − − −

+  − −

  

  
(5.49) 

 

( ) ( )( )
( )

( )

( )( )

( )

1 2 1 2
0 0

0

0

d

d d
( ) ( ) d d

dd

d

d

d
d

d

X X

X

X

f
u u

f x
u u u u x x

fx
u

x

u u f F x

f
x

x



 












 



 

 
  −  

 − − −   
 +   − 
 

  −  +

 
+  − 

 

 





 

(5.50) 

and 

( )

( ) ( )

1 2

0 0

1 2

1 1
0

2 2
0

1 1 2 2
0 0

d d
( ) ( )d

d dd d
d

( ) ( )

d
( ) ( ) d

d

d
( ) ( ) d

d

( ) ( ) d ( ) ( ) d

X X

X

X

X X

f f
u uf

x xx x
x

u f u f

f
u u f x

x

f
u u f x

x

f u u x f u u x

 



 

 

 

 
 

 

 

 

   

 
−    −       − + 

 
− 

 


 
− − 

 

+ − − −

 





 

, 
(5.51) 

it is concluded that ( )1 2
0

d
X

F u u x−  approaches to zero for any 
1 ( )BF C   as passing the 

limit 0 +→ , contradicting the hypothesis of 1 2u u . 

□ 
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5.4 Illustrative examples 

Numerical approximations to the solutions of (5.26) for several different cases illustrate 

characteristics of the 1D steady open channel flows. The acceleration due to gravity, the 

roughness coefficient, and the exponent are fixed as 9.80665g = , 0.01n = , and 2 3p = , 

respectively. Firstly, we consider rectangular cross-sectional channels with different slopes 

to revisit the conventional classification of flows in open channel hydraulics. Then, we 

address the non-uniqueness of solutions in a modified circular cross-sectional channel. 

 

5.4.1 Unique solutions in rectangular cross-sectional channels 

The constant width of the rectangular cross-sectional channels is set as 0.6A h  = . 

The discharge is given as 0.01Q = . Then, the value of the critical flow depth is in the range 

cri0.0304830 0.0304831h  . There is a single uniform flow depth unih  if the bed slope 0S  

is positive, whereas a real unih  does not exist if 0 0S  . The value of the bed slope 0 criS S=  

achieving uni crih h=  is in the range cri1 139.991 1 139.990S  . Channels with 0 criS S , 

0 criS S= , 0 cri0 S S  , 0 0S = , and 0 0S   are referred to as the steep slope channel, the 

critical slope channel, the mild slope channel, the horizontal slope channel, and the adverse 

slope channel, respectively. Figure 5.2- Figure 5.6 show the computed water surface profiles 

of the GVFSs for different slopes, with appropriate Galilean transformations, for the channels 

of 0 cri2S S= , 0 criS S= , 0 cri 2,S S= 0 0S = , and 0 criS S= − . According to the conventional 

classification of flows in open channel hydraulics, the GVFSs as per Remark 1 are labeled 
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as S1, S2, etc. The GVFSs as per Remark 2 are the uniform flow depths (lines in blue color) 

appearing in the steep, the critical, and the mild slope channels. In the critical slope channel, 

Remark 4 is indeed the case. As per Theorem 3, a hydraulic jump between two different 

GVFSs across the critical flow depth occurs if and only if an appropriate Galilean 

transformation is applied to one of the GVFSs so that the specific forces sF = −  

(represented as different colors) coincide at a point  . 

 

 

Figure 5.2. GVFSs in rectangular cross-sectional channels of steep slope channel. 
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Figure 5.3. GVFSs in rectangular cross-sectional channels of mild slope channel. 

 

 

Figure 5.4. GVFSs in rectangular cross-sectional channels of critical slope channel. 
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Figure 5.5. GVFSs in rectangular cross-sectional channels of horizontal slope channel. 

 

 

 

Figure 5.6. GVFSs in rectangular cross-sectional channels of adverse slope channel. 
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5.4.2 Non-unique solutions in a modified circular cross-sectional channel 

There are non-unique VSs of a Dirichlet problem, and thus GSs, in the channel having 

a modified circular cross-section whose shape is shown in the top-left of Figure 5.7; the top 

part of the circle with a diameter 0.10 above criz z=  is replaced with the symmetric two 

chords. The discharge Q , the bed slope 0S , and the height criz  of the chords’ feet are set so 

that there is a single uniform depth unih  achieving uni cri crih h z= =  under the fixed conditions 

of the other parameters. The resulting values are estimated as 0.00955282 0.00955283Q  , 

01 57.1774 1 57.1773S  , and cri0.0938181 0.0938182z  . Note that there can be two 

uniform depths in general in a circular cross-sectional channel. 

The Dirichlet problem consists of the governing equation (5.21) in the viscosity sense, 

the specified downstream endpoint 10X = , and the Dirichlet boundary condition (5.23) with 

the specified boundary values up log 0.08u =  and down uni criu u u= = . As up( ) 0u u   and 

down( ) 0u u = , a VS can exist according to Theorem 2. Indeed, there is an S3-like GVFS 

below uni criu u=  satisfying the upstream boundary condition. There is an infinite number of 

VSs in ( )BC   above or at uni criu u=  satisfying the downstream boundary condition as 

mentioned in Remark 4 with non-smoothness at arbitrary   . Therefore, there is an 

infinite number of VSs of the Dirichlet problem, having a discontinuity across uni criu u=  at 

an arbitrary point in a certain range in  . Here, as plotted in the top-right of Figure 5.7, we 

choose two VSs 1( )u x  (thick lines) and 2 ( )u x  (thin lines) having discontinuities at 1 4x = =  

and at 2 7x = = , respectively. The non-smooth points of 1( )u x  and 2 ( )u x  in the ( )BC   
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parts are close to 5.90x =  and 8.02x = , respectively. The auxiliary functions   (in red 

color),   (in green color), and  d dx x − =  −  (in blue color), are plotted in the 

bottom-right of Figure 5.7. Spurious oscillations in x −  around the non-smooth points 

of the VSs are due to numerical differentiation of  . The points x  such that 

lim ( ) lim ( ) 0
y x y x

y y
− +→ →
    are 1 4x = =  and 2 7x = = . At each of those points x , both of 

(5.42) and (5.43) are violated, and thus the assertion of Theorem 4 is confirmed. 

Lastly, we address the stability of the VSs. The S3-like GVFS below uni criu u=  with 

the upstream boundary condition up log 0.08u =  satisfies a downstream boundary condition 

down log Xu h= , where cri0.0924501 0.0924640Xh z   . Therefore, the Dirichlet boundary 

problem changing downu  from criu  to criu −  with sufficiently small positive constant   

does not have any solution, implying the instability of the VSs of the original Dirichlet 

problem. 
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Figure 5.7. Non-unique VSs of the Dirichlet problem in the modified circular cross-sectional 

channel with the auxiliary functions. 
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env and the L-env of a VS belong to ( )USC   and ( )LSC  , respectively, but the VS is 

identical with a GS in the space 
1( ) ( )L L   . The non-uniqueness of GSs and thus of 

VSs involving discontinuities depends on the regularity of the Hamiltonian function, 

determined by the channel’s cross-sectional shape. The necessary condition of non-

uniqueness is described in terms of the auxiliary functions. The illustrative examples include 

the unique solutions in the rectangular cross-sectional and non-unique solutions in the 

modified circular cross-sectional channel. The implication of non-uniqueness shall be 

researched for further understanding of 1D open channel flows. 
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Chapter 6 

 

 

6 Summation 

 

6.1 Conclusions 

This thesis described the mathematical and numerical modeling of open channel flows 

locally 1D, addressing dry bed and discontinuities of water surface profiles. The results from 

each chapter can be summarized as follows. 

In Chapter 3, level-set methods applying to the kinematic wave equation governing 

surface water flows have been discussed. The methods deal with the critical issues arising 

from the governing nonlinear equations in surface water hydrodynamic included 

discontinuities in water surface levels and treatment of dry beds or zero water depths. The 

development of overturning has been regulated with SVR, whose effect is to improve the 

zeros of the level-set function moving closer to the exact solutions of the shock fronts in dam-

break problems. The method has been primarily verified with the explicitly known exact 
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positions of primitive dam-break problems, optimizing a parameter of SVR. Then, the 

computation of the sudden water release from Chan Thnal Reservoir, Kampong Speu 

Province, Cambodia, into its irrigation canal system with the initially dry bed has been 

simulated as a practical demonstrative example. The proposed method produces the results 

with free spurious diffusive deformation of water surfaces even if a relatively coarse 

computational mesh is used. However, the model induced a non-realistic flow propagation 

downstream. It restricted the flow to remain constant as upstream water depth due to the 

treatment of the kinematic wave equation as the Hamilton-Jacobi type. To deal with this 

problem, we considered another method to yield more realistic flow profiles of the dry bed 

in Chapter 4.  

In Chapter 4, the kinematic wave model under the assumption of balanced gravity and 

friction forces has been applied in open channel hydraulics and surface hydrology. There 

persists a misunderstanding that a discontinuity of a kinematic wave occurs due to a 

discontinuity of input and then dissipates. The study of this chapter has clarified that a 

discontinuity can develop without dissipation under the smoothness of all input and has 

provided the numerical solutions of the kinematic wave equation over the dry bed with the 

varied bed slopes that the case was not successfully treated in Chapter 3. The FOQL PDEs 

theory shows that Cauchy problems for the kinematic wave model have unique measurable 

and bounded solutions, which are possibly discontinuous. Numerical examples of Case 1 

dealing with the practical problem of Chan Thnal Reservoir’s irrigational canal system with 

non-smooth initial data and Case 2 addressing the hypothetical problem with smooth initial 

data have been demonstrated to visualize the fundamental properties of the discontinuous 

kinematic waves and the non-dissipative shock waves. Both numerical examples have been 
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computed with the initial dry bed. Nevertheless, the model is limited to input precisely zero 

initial condition. Instead, we used a sufficiently small initial condition considered the dry bed 

case in most literature. 

In Chapter 5, it determines water surface profiles of steady open channel flows in a 

one-dimensional bounded domain Ω, which is one of the well-trodden topics in conventional 

hydraulic engineering. The advantages of using the notion of VS to thoroughly describe the 

characteristics of possibly GSs to Dirichlet problems of scalar first-order quasilinear ordinary 

differential equations, which are of mathematical interest, have been proven in mathematical 

aspects. Those VSs are the GSs in the space 
1( ) ( )L L   . The GSs to some Dirichlet 

problems are not always unique, and a necessary condition for the non-uniqueness has been 

derived. A concrete example illustrates the non-uniqueness of discontinuous VSs in a 

modified circular cross-sectional shape channel. The significant results of this chapter could 

provide a better understanding of the ill-posed problem for the scalar first-order quasilinear 

ordinary differential equations with Dirichlet boundary conditions.  

 

6.2 Future works 

In the future, the mathematical and numerical modeling will be proved and improved 

to apply in various hydro-environmental problems with the GSs over the dry bed. The follow-

up studies are summarized below 

• The level-set method for the kinematic wave equation with the dry bed case shall be 

improved to produce a more realistic flow propagation downstream. Then, we shall 
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extend the technique to the full dynamics SWEs to treat more irregular topography, 

roughness, lateral flows, and channel junctions. 

• The rigorous mathematical analysis shall be proven in a future study to provide 

concrete evidence of the discontinuities.   

• Further studies on the implication of non-uniqueness shall be researched for 1D open 

channel flows.  
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