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ABSTRACT

Machine learning-based systems are rapidly implemented in broad areas. Notably,

predictive analytics has penetrated a variety of decision-making situations in the enter-

prise. Automated machine learning (AutoML) technologies have reduced the burden of

the modeling process, such as the feature (predictor) generation, which has further ac-

celerated this movement. However, while AutoML has its focus on maximizing a given

metric of prediction performance, selecting the evaluation metric and linking the learned

models to decision-making remain to be the work of human expert analysts. We cannot

discuss the goodness of a choice of evaluation metric on its own but need to consider

how it leads to the quality of subsequent decision-making. For further advancement

of machine learning towards automated decision-making support beyond prediction, we

propose directly modeling the utility of each action. This framework is related to offline

reinforcement learning or causal inference. Compared to typical application domains of

these approaches, real-world business decision-making problems often have (1) a vast

(combinatorial) action space and (2) scarce supervision. We examine the challenges

posed by these differences with real-world examples and discuss how to deal with them.

The first challenge is (1-1) computational complexity due to large combinatorial action

spaces. In sequential decision-making settings, the outcome is evaluated with a time

delay, and the utility of action in each time step should be evaluated with the action

at the next time step being optimized. When the action space is combinatorial, the

computational complexity of action optimization in each learning iteration would be

a barrier to taking the utility modeling approach. However, the dependency of each

dimension of action sometimes has a desirable property of locality. We discuss how to

utilize this property by designing the utility function and optimization procedure with a

realistic example of road infrastructure maintenance planning.

The second challenge is (2) the sample-efficiency. The outcome is often scarce, and

thus supervision might be weak in direct utility modeling. In predictive modeling, on the

other hand, expert analysts can isolate a prediction subproblem out of whole decision-

making so that the supervision would be rich. We investigate how we can incorporate

such intermediate supervision while our model directly predicts the outcome. One of

the simplest examples is the imbalanced classification with numerical labels. The final

prediction target is a binary label with class imbalanced, i.e., the positive label is scarce,

but we can utilize the numerical labels of how likely each instance was to be positive.

Finally, we discuss (1-2) the biased sampling problem out of vast action space. The

supervision of the outcome is only for the actual action that the past decision-makers

have taken, and other potential outcomes of counterfactual actions are missing in gen-

eral. Nonetheless, the model is expected to evaluate the utilities of all possible actions,

including rare actions such as prescribing strong medicine to healthy people. Since such

strong medicine tends to be prescribed to unhealthy patients, the prognosis for those

prescribed such treatment may be poor despite the effects of the medicine. Typical su-

pervised learning methods can be misled by such a spurious correlation. We reformulate

causal effect inference as a decision-making problem and extend it into larger action

spaces. We also apply it to a combinatorial (set-wise) recommendation problem.
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Chapter 1

Introduction

With the rise of Big Data technologies, various kinds of data are being observed,

stored, and analyzed for decision-making in governments and enterprises [Chen

and Zhang, 2014]. Machine learning-based modeling technology is at the core of

this. Among its diverse objectives, predicting future outcomes, called predictive

analytics, is one of its main approaches [Gandomi and Haider, 2015]. It has been

applied to predict equipment failures, advertisement clicks, product demand, and

others. While predictive analytics has an extensive range of applications and is

achieving a certain level of success, it requires special skills to handle. The lack

of human resources to handle it, called data scientists, has become a bottleneck.

Automated machine learning technology (AutoML) [Yao et al., 2018, He et al.,

2021] and neural architecture search (NAS) [Elsken et al., 2019] have reduced

the burden of data science so that experts in each application domain can easily

handle analytics.

However, designing an ML problem remains an essential human task, i.e.,

choosing the target variable, loss function, and evaluation metrics, which is not

a straightforward process. In order to properly choose an evaluation metric or

loss function, we need to look beyond the problem setting of prediction—how the

learned model is utilized. Fig. 1.1 shows a typical pipeline of analytics. Trained

models can only have an impact by improving the quality of decision-making.

Therefore, it is vital to align the loss and metric for training with utility, the

performance measure of decision.

◆ Predictive modeling have penetrated wide range of 
enterprise decision-making processes

◆ Energy, Retail, Maintenance, Marketing, etc.


◆ ML formulation problem (choosing , loss, and metric) 
requires knowledgeable analysts to handle carefully

◆ Which metric represents the true impact?

◆ How much does a 1% improvement  

in MSE lead to impact?

◆ For further automation and penetration,  

we have to look beyond prediction

◆ → Modeling w/ action and outcomes  
→ Reinforcement learning / Casual inference 

◆ RQ1: Why RL / CI for business DM is difficult?

◆ RQ2: How to solve them?

y

Predictive modeling that does not account for decision making has its limitations

4

Background

Business 
understanding &  

ML formulation

Modeling & 
prediction

Decision  
making ImpactData & feature 

engineering

Loss / Metric 
(e.g. MSE, XE)

Outcome 
/ Utility

Consistent?

Auto ML / Deep NN / NAS
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Figure 1.1: An overview of modeling and decision-making pipeline.

1



6

○ ●
● ○

○ ●
● ○

○ ●
● ○ ●

○

● ○ ○ ○
○ ○ ○
○ ○ ○
○ ○ ○

● ● ●
● ● ● ○
● ● ○ ○
● ○ ○ ○

…

○ ●
○ ● ●
○ ○ ○

○ ○ ●
○ ● ●

● ○ ○ ○

○ ○ ○ ○
● ● ○ ○
● ○ ○ ○

● ●
● ● ○ ○
● ● ○ ○
● ○ ○ ○

○ ●
● ○ ●

Action

State 2. Intermediate 
state

Outcome 
= Win!…

1-1. Next 
    action

[https://www.silhouette-ac.com/category.html?sw=%E6%A3%8B%E5%A3%AB&nq=&srt=dlrank 棋士｜シルエット イラストの無料ダウンロードサイト「シルエットAC」]

○ ●
○ ● ●
○ ○ ○

 Win?
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Log data Training Deploy

？？
1-2.  
Logging 
Policy

Figure 1.2: Overview of our problem setting of data-driven decision-making. The
challenges we will tackle in this thesis are highlighted.

For example, in movie box-office revenue forecasting, they sometimes do not

employ the mean squared error (MSE) for the prediction error. Still, the target

variable (revenue) is logarithmized in advance, or classification losses are em-

ployed even though the actual outcomes are real [Lash and Zhao, 2016]. This

means that the choice of evaluation metric and loss function is not self-evident

from the data alone. Taking the logarithm for the target variable may reflect that

mispredicting $10M as $11M is acceptable, but mispredicting $0.1M as $1.1M is

a serious problem for the decision-maker, even for the same $1M error. Further-

more, when the box-office forecast is utilized to make an investment decision, it is

crucial to know whether the sales will exceed the expenses, and an accurate real-

valued forecast may not be necessary. It is vital to formulate a necessary and

sufficient problem setting, and predicting a numerical value is generally more

complicated than classification and thus redundant.

Another example is the cost-sensitive classification [Elkan, 2001]. When the

positive class corresponds to rare phenomena such as accidents or diseases, a

trivial model that classifies all instances as negative achieves high accuracy but is

useless to decision-makers. This mismatch is because the cost of a false negative

(i.e., misclassifying a positive instance as negative) is typically much higher than

that of a false positive. A simple workaround is a two-phase approach. After

learning the data as it is, we can adjust the classification threshold so that even

slightly suspicious instances are classified as positive. However, this approach is

known to be suboptimal in general (i.e., when the model class is misspecified). On

the other hand, the cost-sensitive learning considers the costs of misclassification

in the training phase, which is shown to be preferable [Dmochowski et al., 2010].

We further discuss this class-imbalance problem in Chapter 3.

As discussed above, the predictive modeling approach may be suboptimal

for the subsequent decision, raising the need for careful formulation as an ML

problem by expert analysts. In this thesis, therefore, we consider the general

framework illustrated in Fig. 1.2, where we involve the action and utility into the

2



Application
domain

Business
decision-making

Robotics Game Political
decision-making

Example
applications

Marketing,
Maintenance,

Risk-management

Self-driving,
Humanoids

Atari,
Chess

Prohibiting
smoking,

Job training

Primary
approach

Predictive
modeling

(supervised)

Reinforcement
learning

(policy-based)

Reinforcement
learning

(value-based)

Causal
inference

Sample size
(of outcome)

Small
(offline)

Large
(sim-to-real)

Large
(self-play)

Small
(offline)

Action space Large
(combinatorial)

Medium
̶Large

Small
̶Medium

Small
(binary)

Table 1.1: Comparison of application domains.

Approach Predictive
modeling

Reinforcement learning Causal
inference

Supervision Rich
(any future states)

Scarce
(reward: maximization objective)

Scarce
(outcome)

Table 1.2: Comparison of approaches.

model. We assume historical decision-making data, including its outcome (or the

outcome can be calculated with the data as in the classification problem). Then

we train a utility model which evaluates each possible action (decision) under

a given situation (state) in terms of the outcome. We aim at building a useful

model in terms of utility, i.e., the goal is the decision-making performance when

following the model’s recommendation.

Reinforcement learning and bandit have been formulated for such decision-

making problems, and there has been active research in recent years on offline

settings [Levine et al., 2020]. Also, causal effect inference aims at estimating the

outcome of intervention [Rubin, 2005]. Nevertheless, direct utility modeling is

still challenging for real-world decision-making problems in governments or en-

terprises compared to predictive modeling in some aspects. Table 1.1 compares

various business decision-making applications that we are targeting with other

domains where reinforcement learning and causal inference are successfully ap-

plied. Reinforcement learning usually requires large sample sizes, which might

be fulfilled by simulation or self-play, and causal inference assumes a small action

space such as a binary one. On the other hand, real-world business decision-

making problems often have (1) a vast action space, such as a combinatorial

one, and (2) a limited sample size. We hypothesize that these are the sources

of difficulty for applying utility-level modeling to such business decision-making

problems.

Also, Table 1.2 compares predictive modeling and other approaches. While

reinforcement learning and causal inference assume the reward or outcome as

3
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         Approach 

Domain    

Predictive 
modeling 
(w/o action)

(Offline) RL /  
Casual inference 
(w/ action)

Robotics / 
Game / Political 
decision-making

Well-studied

Business 
decision-making

Well-studied 

1. Vast (combinatorial) 
action space

2. Scarce supervision  
(w/ intermediate states)

x

a y

y′ 

f
State/ 
feature

Future state

Action
Utility 
(reward / outcome)

Predictive 
modeling
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Figure 1.3: Predictive modeling can be seen as a subproblem of utility modeling.
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Figure 1.4: Direct modeling for utility. Each node represents a (possibly vectored)
variable, and the edges represent cause-effect relationships. x denotes a given
feature, a denotes an action chosen by past decision-makers, and y denotes the
outcome (utility). Shaded nodes denote the accessible variables in training. We
do not model each of the causal relations; instead, we directly model the evaluator
f .

their ultimate supervision, which are the very target of decision-making and is

often scarce, predictive modeling can be supervised by any future state of in-

terest. Therefore, expert analysts can carefully isolate a prediction problem out

of decision-making with uncertainty so that the supervision would be relatively

plentiful, as illustrated in Fig. 1.3. This might be the reason of success of predic-

tive modeling in the business domains.

Here, we have a choice between direct prediction and stepwise prediction of

each phenomenon. In this regard, we would like to refer to Vapnik’s principle in

the field of statistical machine learning [Vapnik, 2013]:

When solving a given problem, try to avoid solving a more general

problem as an intermediate step.

Following this principle, in this thesis, moving away from the problem setting

of modeling or predicting the data as it is, we consider the outer problem of

predicting the utility directly as illustrated in Fig. 1.4.

Fig. 1.5 summarizes the discussion so far. We aim at automated data-driven

support for decision-making by direct modeling of action and its utility. This

approach is challenging in terms of (1) vast (combinatorial) action spaces and
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Figure 1.5: Target of this thesis and challenges.

(2) scarce supervision with relatively affluent intermediate results. We discuss

these challenges and solutions with concrete example problems in the following

chapters.

First, we discuss (1-1) the computational challenge due to vast action spaces.

In sequential decision-making, the outcome may be evaluated with a time delay,

and the utility of action in each time step cannot be assessed directly but in the

long run. Thus, the utility of each action should be evaluated under the opti-

mal subsequent actions, which may include a computationally expensive action

optimization. We discuss this point in Chapter 2, taking up the infrastructure

maintenance planning as a concrete example.

In multi-component maintenance planning, opportunistic maintenance is of-

ten adopted. That is, simultaneous maintenance costs less than independent

maintenance for each deteriorated component due to setup costs. Suppose that

we divide a continuous infrastructure (such as a road surface) into sufficiently

short patches. Simultaneous maintenance for neighboring patches is economi-

cal due to the maintenance team’s traveling (or setup) costs. Each maintenance

action (a combination of patches maintained in a single time-step) is evaluated

by the action-value function (Q-function). This function evaluates the long-term

benefits of the action. Here, optimizing the Q-function with respect to the fu-

ture action, which requires heavy computation, is required not only in the actual

planning phase but also in the training phase of the Q-function. However, by

utilizing a locality in the cost-saving in this problem, we can realize linear-time

optimization, enabling Q-learning on the combinatorial action space.

Next, we discuss (2) the statistical difficulty of scarce outcomes. In real-

world problems, often more detailed label information is given than the final

outcome. For example, the real-valued box-office revenue is observed before being

classified as success or failure. If we consider the classification accuracy as the final

utility and train a classifier directly, ignoring the information of such intermediate
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Figure 1.6: An example data-generation structure of our scope (the Markov de-
cision process) that involves all the challenges we tackle in this thesis.

labels will lead to the loss of important label information and an increase in the

estimation variance. In Chapter 3, we discuss how to utilize these intermediate

labels, especially for the imbalanced classification problem, in which the positive

labels (succeeded movies) are rare, as a typical case.

Finally, we discuss (1-2) the statistical challenge due to vast action spaces.

When we train an evaluator f from observational data, in which actions are cho-

sen by past decision-makers instead of randomized trials, there is a risk of biased

estimation caused by the so-called spurious correlation. For example, since un-

healthy people have a greater probability of being prescribed medication, the

effectiveness of the treatment would be underestimated simply by comparing the

healthiness of those who are prescribed with those who are not. In Chapter 4, we

discuss debiased evaluation methods of the causal effect of an intervention. While

most of the existing causal effect inference methods assume a binary intervention,

i.e., whether to prescribe a certain kind of medication or not, many real-world

problems have larger action space, e.g., choosing a combination of medication.

We extend causal effect inference for such cases. Also, in Chapter 5, we discuss a

combinatorial item recommendation problem as a concrete example. We consider

recommendation as an intervention and extend it to the combinatorial recommen-

dation, in which multiple items are recommended to a user simultaneously, and

the responses to them are dependent.

To summarize the above, this thesis will address the following issues as chal-

lenges towards more principled analysis for decision-making through direct utility

modeling, as illustrated in Fig. 1.6.

1-1 Computational challenge due to vast action space: optimization in learning

iteration discussed with an example of infrastructure maintenance planning

(Chapter 2)

1-2 Statistical challenge due to vast action space: estimation bias caused by

6



sampling policy discussed for cases with large treatment space (Chapter 4)

and with an example of combinatorial item recommendation (Chapter 5)

2 Statistical challenge due to the scarce outcome: estimation variance caused

by summarized instances discussed with an example of imbalanced classifi-

cation with intermediate real-valued labels (Chapter 3)

We present solutions to each of these issues in the following chapters. These

investigations are only for limited situations that highlight each issue; though,

we hope to represent a direction towards utility modeling.
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Chapter 2

Reinforcement Learning for Maintenance

Planning

2.1 Introduction

We consider an infrastructure maintenance planning problem for the road surfaces

of highways; water, oil, and gas pipelines; and so on. At each discretized time

step, the maintenance decision-maker considers which components, or the small

patches of the road surface, should be maintained on the basis of the regularly

observed condition of each component. If a number of patches have almost deteri-

orated and are geospatially neighboring, simultaneous maintenance (as shown in

Fig. 2.1) is economical. In highway maintenance, for example, the traveling cost

of a maintenance team to the site and the setup costs associated with putting up

lane restrictions are incurred once for the simultaneous maintenance of a larger

section consisting of contiguous small patches. Similarly, in underground pipeline

maintenance, the cost of drilling vertically is incurred only once for the simulta-

neous maintenance of a larger section, while the cost of drilling horizontally is

incurred for each patch [Papadakis and Kleindorfer, 2005].

A huge maintenance cost is paid to keep the infrastructure in good condition

since its condition is critical in terms of safety, conformity, and the prevention of

economic loss caused by emergent corrective maintenance or availability loss. We

focus on reducing the total cost, i.e., the sum of the maintenance and condition

cost (risk) caused by a deteriorated infrastructure.

Maintenance planning for minimizing the total cost has been extensively inves-

tigated in prior work [Jardine and Tsang, 2005]. For multi-component systems,

i.e., those with multiple maintenance targets, the so-called economic dependency

of targets and group-based maintenance is often discussed [Dekker et al., 1997,

Nicolai and Dekker, 2008]. Infrastructure maintenance can also be regarded as

multi-component maintenance by considering small patches as components. In

This chapter is based on Akira Tanimoto, Combinatorial Q-learning for condition-based
infrastructure maintenance, IEEE Access, 2021. ©2021 IEEE. Reprinted, with permission.
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(c) Dynamic grouping by combinatorial action optimiza-
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Figure 2.1: Comparison of road maintenance policies. Performing maintenance
of longer sections that cover multiple deteriorated patches may cost less in the
long run. That is, when multiple components are maintained simultaneously,
overall maintenance costs are reduced since traveling costs of the maintenance
team and/or setup costs are saved; this is called economic dependency. Thus, a
fixed section-based maintenance policy (b) is preferable to an independent main-
tenance policy (a). The proposed dynamic grouping policy (c) is computationally
expensive but is more flexible than the two baselines thanks to its consideration
of the dependency of maintenance cost with the increased spatial resolution to
small patch levels.

road maintenance, for example, cost savings can be achieved by maintaining

larger sections instead of small patches [Nicolai and Dekker, 2008]. In [Papadakis

and Kleindorfer, 2005], a maintenance optimization technique for an infrastruc-

ture network was proposed. They formalized a special type of economic depen-

dency for an infrastructure network, namely, the network topology dependency

(NTD), and proposed an optimization method under the benefit of maintenance

for each component given. The NTD assumption reflects the locality of the

economic dependency in infrastructure maintenance; i.e., the cost reduction is

achieved only when the neighboring components are maintained simultaneously.

To consider complex economic dependency such as NTD, combinatorial opti-

mization is required, and the computational complexity is high. The proposed

optimization method in [Papadakis and Kleindorfer, 2005] exploits the submod-

ularity in NTD for computational efficiency. We also consider such locality in

economic dependency. That is, we can assume that simultaneous maintenance is

beneficial only when the maintenance target is spatially neighboring.

These maintenance optimization methods for multi-component systems are

mostly built on the basis of time-based maintenance (TBM), in which each com-

ponent has a predefined lifetime. Thus, the benefit of maintenance for each

component can be calculated, but the uncertainty in the deterioration process
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is not considered. On the other hand, recent developments in health condition

monitoring technologies have enabled the actual condition of each component of

an infrastructure to be observed in a timely manner. Examples of such technolo-

gies include image processing [Chambon and Moliard, 2011] and sensor networks

[Kim et al., 2007] for road surfaces, and fiber optic sensing for pipelines [Li et al.,

2004, Inaudi and Glisic, 2010]. These sensing technologies contribute to cost

savings since only deteriorated components are maintained regardless of their

age through a policy known as condition-based maintenance (CBM). Note that

CBM includes a wide range of maintenance concepts, which are characterized as

predictive maintenance aided by condition monitoring technologies.

These capabilities for health monitoring pose challenges to the subsequent

stages of the information processing pipeline, i.e., analyzing the data and mak-

ing a decision [Bousdekis et al., 2018]. In particular, optimization for multi-

component CBM is not straightforward due to the economic dependency and

the uncertainty in condition degradation. The optimization for this setting is

computationally more challenging than TBM when taking the uncertainty into

account. Studies for CBM of large-scale multi-component systems such as those

for infrastructures are limited. Existing work in this context [Tian and Liao,

2011, Nguyen et al., 2015, Van Horenbeek and Pintelon, 2013] for systems such

as those for heavy vehicles assumes simple economic dependency, i.e., constant

maintenance costs or cost reductions, regardless of the number of components or

which components are to be maintained. Since infrastructures are geospatially

distributed systems with large numbers of components, the locality of economic

dependency such as NTD should be considered.

A simple heuristic approach to avoid the whole combinatorial optimization

with respect to locality is to divide the whole infrastructure into larger local

sections in advance, which is called a fixed section-based maintenance policy

(illustrated in Fig. 2.1(b)). However, this simplified approach lacks flexibility in

optimization, which leads to limited performance.

To fully consider the local economic dependency and optimize large-scale

maintenance actions efficiently, we utilize two dynamic programming techniques

for temporal and spatial scalability. For temporal scalability, we implement the

direct modeling approach of a cost-benefit evaluator, that is, Q-learning [Watkins

and Dayan, 1992]. Q-learning aims to learn the total cost-benefit in the long run

under the observed conditions as the state-action value function (known as the

Q-function), Q(s, a). Once the Q-function is learned, the maintenance action can

be quickly evaluated without assessing the uncertain future degradation. For the

spatial scalability of the combinatorial optimization of actions, we propose an

approximated Q-function model and a linear-time optimization algorithm that

exploits the locality in the economic dependency. The scalable action optimiza-
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tion is also necessary for learning the Q-function, since the Q-learning requires the

optimal value minaQ(s, a) in each learning iteration. Although our Q-function

is simple, the dynamic grouping of neighboring maintenance targets (shown in

Fig. 2.1(c)) was significantly better than that of the fixed section-based approach.

In addition to the performance, our proposed method also provides an inter-

pretation of the solution. Since maintenance decision-makers are often responsible

for safety, the interpretability of an optimized solution matters. In our param-

eterized Q-function, the maintenance benefits for each component and cost are

separated. Thus, the estimated benefit and condition for each component can

be shown in the same figure, which enables the decision-makers to assess the

cost-benefit tradeoff. A detailed discussion is provided in Section 2.5.

In our experiments, we compare our dynamic grouping approach with the

fixed section-based approach, since the independent maintenance policy shown

in Fig. 2.1(a) is included in the fixed section-based maintenance policy where

the section length (window width) is set to one. The optimized maintenance

history provides an intuitive explanation of the advantage of determining groups

dynamically.

For the geospatial structure of the maintenance targets, we focus on one-

dimensional (1-D) cases such as highways and pipelines, which is the simplest

way to demonstrate the advantage of our approach. In addition, most parts of a

highway, for example, are 1-D. For the highway network, it would be effective to

combine a fixed section-based policy and dynamic grouping for intersections and

branching parts, and the remaining parts, respectively.

2.2 Related Work

Condition-based infrastructure maintenance planning at scale has yet to be fully

investigated. We introduce some related work and clarify the differences from

our setting.

2.2.1 Multi-component maintenance planning

One of the most related areas is multi-component maintenance planning. In

[Nicolai and Dekker, 2008], various types of component dependency, including

economic dependency, are reviewed. NTD [Papadakis and Kleindorfer, 2005] is

related the most to our local economic dependency, in particular. However, TBM

is assumed, in which the maintenance benefit is given or is easily calculated with-

out uncertainty since the aging process is deterministic. That is, we have to

estimate the benefit of maintenance, which is assumed to be independent and ex-

plicitly given in [Papadakis and Kleindorfer, 2005]. To the best of our knowledge,

condition-based multi-component maintenance at scale is a novel setting.
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2.2.2 Condition-based maintenance planning

Both TBM and CBM aim at proactive maintenance to extend the lifetime of the

entire system or to reduce accidents, downtime, and emergency maintenance costs

due to unexpected failures [Peng et al., 2010]. While TBM policies tend to be too

conservative with failures, resulting in high maintenance costs, CBM policies are

more economical because health monitoring enables unnecessary maintenance to

be controlled [Peng et al., 2010]. In the problem of maintenance planning based

on CBM, it is basically assumed that the condition is measured regularly at a

sufficient frequency or even continuously, except in a few studies that include

the optimization of inspection policies in the problem setting [Andriotis and Pa-

pakonstantinou, 2021], and methods for prognosis and decision-making based on

the measured current condition and historical data are discussed [Bousdekis et al.,

2018]. Research on CBM-based maintenance planning can be broadly divided into

two types of policies. The model-based approach, which optimizes after prognosis

with respect to the condition, is reviewed in Section 2.2.3, and the model-free (re-

inforcement learning) approach, which optimizes decision policies without explicit

modeling of the deterioration process, is reviewed in Section 2.2.4.

2.2.3 Model-based predictive control for maintenance planning

While we adopt a model-free approach, Q-learning, model-based approaches

have also been studied. In a model-based approach, the transition model st =

M(st−1,a) is first estimated, and then, on the basis of the estimated model, the

action optimization and future prediction to a prediction horizon are iteratively

performed. Since this approach is computationally complex, existing work [Tian

and Liao, 2011, Nguyen et al., 2015, Van Horenbeek and Pintelon, 2013] assumes

simple economic dependencies. In railway infrastructure maintenance, applying

the model-predictive control (MPC) is discussed [Su et al., 2019, 2017, Verbert

et al., 2017], which is computationally expensive and does not scale to a massive

number of components. In MPC, the future degradation up to the prediction

horizon is predicted by using the estimated transition model, and then the main-

tenance action of not only the current but also the future maintenance plan up

to the planning horizon is jointly optimized in each time step. In addition, the

uncertainty of the model estimation should be considered in this approach. In

[Su et al., 2019, 2017], the chance-constrained optimization approach is proposed.

They impose a constraint to be satisfied with high probability with respect to

the model uncertainty. To evaluate the constraint, they have to make multi-

ple predictions (called “scenarios”) with parameters sampled from the posterior

probability of the transition model. Even though we only consider unconstrained

optimization of the expected total cost, such uncertainty evaluation is generally
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necessary in model-based optimization as long as the cost (risk) evaluation has

nonlinearity with respect to the condition. On the other hand, our method has

an advantage in that the evaluation of uncertainty is included in the training of

the model, i.e., the objective function of the optimization is modeled directly, so

that the evaluation of uncertainty, such as based on scenario sampling, is not nec-

essary during training or testing. We further discuss this point in Section 2.4.1.

In other areas related to maintenance, rebalancing in bike-sharing is considered

a maintenance task in that the bike inventory in each 2-D distributed station

is maintained to be sufficiently stocked [Liu et al., 2016]. In [Liu et al., 2016],

combinatorial optimization is based on predicted values for such a problem; how-

ever, stations are clustered in advance. The advantage of our approach is that

maintenance groups are determined dynamically, i.e., combinatorial optimization

is performed at every time step.

2.2.4 (Deep) Reinforcement learning for maintenance planning

The application of model-free reinforcement learning (RL) to maintenance has

been explored recently. Examples include on-policy RL (e.g., SARSA algorithm

[Singh and Sutton, 1996, Sutton and Barto, 2018]) proposed for a petroleum in-

dustry production system [Aissani et al., 2009], for opportunistic maintenance of

a fleet of military trucks [Barde et al., 2019], for minimizing the forced outage

in gas turbine maintenance [Compare et al., 2018], for minimizing the average

inventory level and the average number of backorders by optimizing produc-

tion/maintenance policy in manufacturing [Xanthopoulos et al., 2017], and for

minimizing the maintenance cost and downtime in manufacturing [Kuhnle et al.,

2019].

In addition, especially since the successes of the deep Q-network (DQN) [Mnih

et al., 2013], applying off-policy (deep) reinforcement learning has been actively

studied. The method corresponding to an off-policy configuration is superior in

that it can utilize historical data of past maintenance by human experts to im-

plement an optimized decision-making policy that is different from the policy in

the past history immediately after offline training. DQN applications to mainte-

nance include road pavement maintenance [Yao et al., 2020], bridge maintenance

[Wei et al., 2020b], and general multi-component condition-based maintenance

[Zhang and Si, 2020]. In [Zhang and Si, 2020], stochastic and economic depen-

dencies among multiple components are taken into account by DQN. DQN takes

the same approach as ours in terms of Q-learning, and while its model is flexible

enough to fully capture these dependencies, it is too complex to scale with respect

to the number of components. The number of components assumed in [Zhang

and Si, 2020] is around ten, while we assume up to thousands or more. DQN

utilizes a multi-head neural network that outputs Q-values for each combination
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of actions (thus, it has 2n heads for the number of components n), while we have

too many components (n = 1000 or more) to apply this approach in terms of sta-

tistical and computational complexity. Although DQN was successfully applied

to bridge maintenance in [Wei et al., 2020b], in which a large number of com-

ponents (k = 263) are encoded as independent Q values (thus the network only

has k × |A| heads, where A denotes the candidate maintenance actions for each

component), it would be suboptimal when the action is optimized independently

for each component (as in [Wei et al., 2020b]) and when the true Q value (e.g.,

the maintenance cost) has high dependency among actions for each component,

as in our setting presented in Section 2.3.3.

One possible approach for maintaining the combinatorial optimization of com-

ponents is the actor-critic (AC) algorithm as in [Liu et al., 2020], in which an

actor-network that outputs an approximately optimal combinatorial action, as

well as a critic network (single-head Q-network) with the action as its input, are

trained. Although AC provides an approximated solution for the action optimiza-

tion after training, training an actor is another big issue in terms of computa-

tion, and thus its scalability with respect to the number of components is limited.

Also, these approaches face difficulties in terms of interpretability. Our approach

combines a simple Q-function with dynamic programming-based optimization to

resolve the scalability and interpretability issues.

Another important possibility in applying RL to maintenance is the inte-

grated planning of the inspection policy. Andriotis and Papakonstantinou [2021]

formulated maintenance decision-making as a partially observable Markov de-

cision process (POMDP) and proposed evaluating the value of inspection, i.e.,

observing latent states (conditions). Although we assume regular inspection with

sufficient frequency, which leads to the Markov decision process (MDP) without

unobserved conditions, this would be an important direction for future research.

2.3 Problem Setting

2.3.1 Problem description

The problem can be described as optimizing which components (small patches

of a 1-D structured infrastructure) to be maintained for minimizing the sum of

the maintenance and condition cost (or risk) caused by deteriorated components

in the long run based on the current observed condition of each component. The

condition cost is a predefined non-decreasing function of the condition (degree of

deterioration). The deterioration speed varies in every small patch, and thus it is

inefficient to maintain by large sections, as in Fig. 2.1(b). This implies the need to

divide the whole infrastructure into small patches in sufficient spatial resolution,

which leads to a large number of components as a whole. Then, each component
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is a small patch, and the cost of sending a maintenance team and setting up (trav-

eling/setup cost) is relatively higher than the cost of maintaining each component

(working cost), which indicates the efficiency of the dynamic group-based main-

tenance in Fig. 2.1(c) compared to the independent maintenance in Fig. 2.1(a).

Traveling cost is assumed to occur once for neighboring components maintained

simultaneously at the same time step and the working cost is proportional to the

number of components maintained. The consideration of traveling cost incurs

the economic dependency, i.e., the total cost of maintenance cannot be written

as the summation of independent maintenance costs for each component.

We address these problems, namely, minimizing the economically dependent

maintenance cost and the condition cost in the long run. For the other points,

we make the following simplifying assumptions.

• Complete maintenance by replacement: the condition is fully recovered

after maintenance.

• Stochastic independence: each component deteriorates independently from

other components.

• Regular (real-time) inspection: the latest condition is always observed for

each component.

2.3.2 Markov decision process

Our problem is sequential maintenance decision-making aimed at long-term cost

minimization under imperfect knowledge of condition degradation, which can

be modeled as a reinforcement learning problem. The Markov decision pro-

cess (MDP) is a formalism of reinforcement learning to describe a discrete-time

decision-making process with a stochastic environment. At each time step t, the

decision-maker observes the state st (the condition of each component) and de-

cides on an action at (which components to perform maintenance). At the same

time, the decision-maker receives a reward (cost) R(st, at), which consists of the

condition cost and the maintenance cost. The state (condition) transits to the

next state st stochastically according to an (unknown) conditional probability

p(st+1|st, at) depending on the current state st and the action at.

Formally, MDP consists of the following five parts.

• S is a set of states of the environment.

• A is a set of actions that can be taken as a result of decision-making.

• p(st+1|st, at) is the state transition probability that means the action at ∈ A
in the state st ∈ S will lead to the next state st+1 ∈ S.
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• R(st, at) is the immediate reward function (for maximization problem) or

cost function (for minimization problem) of the action at in the state st.

• β ∈ [0, 1] is the discount parameter of future rewards.

The aim is to optimize a (deterministic) policy π that maximizes (or mini-

mizes) the discounted total reward (cost) in the long run, i.e.,

arg max
π

E
π(at|st),p(st+1|st,at)

[
T∑
t′=1

βt
′
R (st′ , π(at′ |st′))

]
.

The state is what determines the reward (cost) along with the action, i.e., the con-

dition of the components. Here, an important assumption in MDP is the Markov

property for the transition, i.e., the next state only depends on the current state

(condition) and the action p(st+1|s1, a1, . . . , st, at) = p(st+1|st, at). We assume

that the state (condition) is the representative of the entire past information for

both the future states and rewards.

2.3.3 Problem formulation

We determine when and which maintenance targets (small patches of road or

pipeline) should be maintained to minimize the cumulative cost including future

maintenance cost and condition cost. We assume the current cost is given explic-

itly as the cost function Cost(s,a), where s = {si}i, si ∈ R is the state (condition)

and a = {ai}i, ai ∈ {0, 1} is the action taken at each time step (ai = 1 represents

that the maintenance is performed for the i-th patch).

The final goal is as follows. At each time step t, given the observed states (or

the condition) st ∈ Rn, where n is the number of maintenance targets, we deter-

mine which targets are to be maintained to minimize the expected (discounted)

total cost in the long run with regard to future actions assumed to be optimized.

Thus, the optimal action for the time step t is

a∗
t = arg min

a∈Γ(t)⊆{0,1}n

{
Cost(st,a) (2.1)

+ min
{at′}

t+H
t+1

t+H∑
t′=t+1

βt
′−t E

st′ |st,at,...,at′−1

[Cost(st′ ,at′)]

}
,

where β ∈ [0, 1] is the discount parameter, H ∈ N∪{∞} is the prediction horizon,

and Γ(t) is the feasible set of actions. at,i is the maintenance action for the i-th

target at t. In the following sections, we assume Γ(t) = {0, 1}n.

The cost function can be separated into maintenance (action) cost and con-
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Figure 2.2: Maintenance cost assumed in 1-D target environment.

dition (state) cost; namely,

Cost(s,a) = Ca(a) + Cs(s).

The local economic dependency in the action cost is formalized as

Ca(a) := a1(cw + ct) +
n∑
i=2

ai{cw + (1− ai−1)ct}, (2.2)

where ct and cw are given constants that represent the traveling costs occurring

once for neighboring patches maintained simultaneously and the working costs

for each patch, respectively. Fig. 2.2 illustrates the calculation of the action cost.

The interaction term −aiai−1ct represents the local economic dependency, which

comes from the traveling cost savings, i.e., the traveling cost is incurred only

once for the contiguous section maintained at the same time. Although only

the dependency of one-neighboring components is modeled in (2.2), the length

of the locality considered can easily be extended, i.e., the maintenance cost is

assumed to be decomposed as Ca(a) =
∑

i fi(ai−k, . . . , ai), where {fi} is a set

of (possibly nonlinear) functions and k denotes the width of locality considered.

The benefit of simultaneous maintenance is considered to have such locality (k ≪
n), which is the key assumption that we exploit to achieve the computationally

efficient algorithm described in Section 2.4. By assuming this locality, we can

exploit the dynamic programming by memorizing the optimal subtotal action

costs not for each full combination of sub-actions (a1, . . . , ai−1) ∈ {0, 1}i−1 but

only for each combination of local actions (ai−k, . . . , ai−1) ∈ {0, 1}k to compute

the optimal subtotal action costs for the 1, . . . , i-th components, which results

in the computational complexity of O(n2k). In this chapter, we assume k = 1

for simplicity. Other global nonlinearity in the maintenance cost Ca is ignored,

such as the workload capacity in each time step [Nicolai and Dekker, 2008], which

might matter when the resources are not sufficient.

For the state (condition) cost function, we assume the independence of each

component. The dependent state cost setting has also been studied as a stochastic
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dependency in [Van Horenbeek and Pintelon, 2013], although here we focus on

economic dependency. For the state cost of each component, it is reasonable to

assume a non-decreasing function. In our experiment, we set the following hinge

cost:

Cs(s) := cs

n∑
i

(si − α)+, (2.3)

where (x)+ := max{x, 0}, cs, and α are given constants.

In addition, we assume a sufficient amount of training data D of the mainte-

nance history under an unknown policy given instead of an accurate prediction

of the condition degradation or the benefit of maintenance for each component.

That is, we assume an off-policy setting; we do not experiment in the real en-

vironment to learn the objective in (2.1), but rather learn it from a recorded

dataset.

2.4 Dynamic Group-based Maintenance by Combinatorial

Q-learning

The general framework we adopted for this problem is the fitted Q-iteration

[Riedmiller, 2005] described in Algorithm 1. The difference from the original

work is the combinatorial optimization in the loop mina′ Q(st,a
′) and the model

of the Q-function tailored for our problem setting.

Fitted Q-learning is an off-policy Q-learning method; namely, only training

data generated from an unknown policy are needed for training, while on-policy

learning updates its parameters through experiments in a real environment. In

mission-critical systems such as infrastructure maintenance, online updates are

not feasible, and the maintenance history by human experts is often available and

utilized. The future value mina′ Qθ(st+1,a
′) is not differentiable with respect to

θ due to the discrete optimization in a. Thus, in fitted-Q learning, the derivative

is taken only for the current value, and the future value is fixed in each iteration.

2.4.1 Q-learning

Let the optimal state-action value function Q be the objective function of the

total cost in the long run (2.1) and let Q̃ be the terms that exclude Cs(st), which

is not involved in the optimization of the current action a, i.e.,

a∗
t = arg min

a
Q(st,a)

= arg min
a

Q(st,a)− Cs(st)

= arg min
a

Q̃(st,a).
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Algorithm 1 Fitted-Q for maintenance optimization

Input: D = {(st, at, rt, st+1)}t , β, Ca(·), Cs(·)
Output: Trained Q-function parameter θ
1: Initialize θ.
2: k ← 0
3: while Convergence is not met do
4: Get (st,at, st+1) from D in random order.
5: Calculate the empirical target y with minimizing Qθ by Algorithm 2:

y ← Ca(at) + βCs(st+1) + βmin
a′

Qθ(st+1,a
′)

6: Lθ′ := 1
2(y −Qθ′(st,at))2

7: γk ← (2 + k)−1/2

8: θ ← θ − γk dLθ′
dθ′ |θ′=θ

9: k ← k + 1
10: end while
11: return θ

Then, we have an optimal substructure:

Q̃(st,at) = Ca(at) + β E
st+1|at,st

[
Cs(st+1) + min

at+1

Q̃(st+1,at+1)

]
. (2.4)

The first term represents the cost of maintenance at time t and the rest represent

the benefit of maintenance, i.e., if we perform maintenance at time t, the condition

cost at time t+ 1 (the second term), the need for maintenance and the condition

costs afterwards (the third term) will decrease.

Our adopted fitted-Q learning [Riedmiller, 2005] minimizes the empirical in-

consistency between both sides of Eq. (2.4) in terms of MSE (called the mean-

squared Bellman error), which is the objective function Lθ in Algorithm 1. This

consequently enables (approximate) minimization of (2.1) through minimizing

the learned Q-function Qθ as a proxy. Although there is no rigorous guarantee

that the estimated Q function using the Bellman error will converge to the true Q

function (except in special cases [Watkins and Dayan, 1992]), empirical evidence

shows success in many fields [Arulkumaran et al., 2017].

Note that the Q-learning approach also handles the uncertainty in future

condition degradation. In the model-based approach described in Section 2.2.3,

a state transition model M̂(st,at) is trained to predict the future state ŝt+1,

and the uncertainty in the future state ŝt+1 has to be considered for unbiased

estimation of the expectations in (2.4) due to the nonlinearity in Cs and min Q̃.

That is, even if the state prediction ŝt+1 is an unbiased estimator of the expected

future state E [st+1], a simple plug-in estimation Cs(ŝt+1) is biased for the term

E [Cs(st+1)] when Cs is nonlinear. This is why the model-based approach needs

to take uncertainty into account explicitly. In contrast, our q function is trained

to approximate the expectation terms directly, and thus we can simply minimize

Qθ as an empirical estimate of (2.4).

19



2.4.2 Q-function approximation by cost and component-wise benefit

decomposition

We approximate the Q̃ function (2.4) with a parametric model Qθ. For Qθ, we

approximately assume the component-wise independence for these benefit terms

in (2.4) (as assumed in [Papadakis and Kleindorfer, 2005]), which enables the

fast optimization. The second term is component-wise independent under the

component-wise transition (i.e., st+1,i = Mi(st,i, at,i)), that is, the second term

can be decomposed into the sum of functions of at,i as
∑

i E [Cs(Mi(st,i, at,i))].

Therefore, the approximation of component-wise independence corresponds to

ignoring the dependencies in the third term. This approximation is accurate

when β is sufficiently small∗. When β is not small enough, the future rewards

are taken into account and approximated to be independent for each component.

There would be some planning ability lost through this approximation, e.g., clus-

tering the degraded components left not maintained close together so that they

can be maintained together in the future. On the other hand, it does not lose

opportunistic planning ability in the sense of maintaining components that are

likely to deteriorate in the near future.

After summing up terms that are not involved in optimizing a as a constant,

we have the following parametric Q-function that represents the cost-benefit

tradeoff of maintenance:

Qθ(st,at) := Ca(at) +

n∑
i

(1− at,i)q(st,i;θ) + θ0, (2.5)

where the component-wise function q represents the benefit for performing main-

tenance of each component, i.e., the cost of not performing maintenance. We will

discuss the specific design of the component-wise benefit q in Section 2.4.4.

This component-wise separation of Q function also contributes to the inter-

pretability in optimization. In this formulation, the value q(si) can be interpreted

as the priority of performing maintenance on the i-th component. The detailed

discussion is in Section 2.6.2.

Here, the constant θ0 in (2.5) represents a baseline cost. It does not directly

affect the optimization; nonetheless, it contributes to the learning phase. Consid-

ering that the Qθ function approximates the expected total cost in the long run

(2.4), there may remain other terms besides the maintenance cost and benefit

(the cost of not performing maintenance). That is the future cost that remains

even when the maintenance is performed. Let us consider an extreme case where

the condition cost Cs is so high or the maintenance operation is so imperfect that

∗When that is not the case (e.g., β = 0.99), we can derive a variant of (2.4) by using a function
Q̃(st,at, . . . ,at+H), and the component-wise dependent term would be sufficiently small (by the
factor of βH), after which the computational complexity would be 2H times higher.
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it is optimal to perform maintenance for almost all components in every time

step. Since the immediate maintenance cost is the same in both Qθ and (2.4),

the remaining terms in (2.4) would be the (expected) future condition and main-

tenance costs and those in (2.5) would be the benefit q and the constant term θ0.

Without the constant term (θ0 = 0), we need to express all the future costs by

the benefit terms of the few components that are not maintained, which causes

over-estimation of the maintenance benefit. In other words, θ0 is the constant

that summarizes terms that are not involved in the current action optimization

with respect to the cost-benefit tradeoff.

2.4.3 Q-function optimization by dynamic programming

Our approximated Q-function can be optimized with respect to the action in

linear time by means of dynamic programming. This is because the locality of

economic dependency enables the optimal action of a patch to depend only on

the optimal action of the neighbors; i.e., it has an optimal substructure property,

as shown below.

First, we define the partial value function vi(a) as

v1(at,1) := at,1(cw + ct) + (1− at,1)q(st,1)

and for i = 2, . . . , n,

vi(at,i) := min
at,1,...,at,i−1

{
at,1(cw + ct) +

i∑
i′=2

at,i′{cw + (1− at,i′−1)ct}

+
i∑

i′=1

(1− at,i′)q(st,i′)
}
.

Note that, the minimization of vn(at,n) is equivalent to that of the whole Q-

function.

min
at,n

vn(at,n) + θ0 = min
at,1,...,at,n

Qθ(at, st)

The partial value vi(at,i) depends on the combination of actions {at,i}i only

through the neighboring partial values {vi−1(at,i−1)}at,i−1 ; namely,

vi(at,i = 0) = min
at,i−1

{vi−1(at,i−1 = 0) + q(st,i),

vi−1(at,i−1 = 1) + q(st,i)},

vi(at,i = 1) = min
at,i−1

{vi−1(at,i−1 = 0) + ct + cw,

vi−1(at,i−1 = 1) + cw}.
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Algorithm 2 Dynamic programming for optimizing a

Input: st,θ
Output: a∗

t = arg min
a′∈{0,1}n

Qθ(st,a
′)

1: % forward step
2: v1(at,1 = 0)← q(st,1;θ)
3: v1(at,1 = 1)← cw + ct
4: for i = 2, ..., n do
5: vi(at,i = 0) ← mina′∈{0,1} vi−1(at,i−1 = a′) + q(st,i;θ)
6: at,i−1(at,i = 0)← arg min

a′∈{0,1}
vi−1(at,i−1 = a′) + q(st,i;θ)

7: vi(at,i = 1) ← mina′∈{0,1} vi−1(at,i−1 = a′) + (1− a′)ct + cw
8: at,i−1(at,i = 1)← arg min

a′∈{0,1}
vi−1(at,i−1 = a′) + (1− a′)ct + cw

9: end for
10: % backward step
11: a∗t,n ← arg min

a′∈{0,1}
vn(at,n = a′)

12: for i = n− 1, ..., 1 do
13: a∗t,i ← at,i(at,i+1 = a∗t,i+1)
14: end for
15: return a∗

t =
(
a∗t,i

)
i

This property means that we only have to calculate the partial values {vi(at,i =

1), vi(at,i = 0)}i∈[n] to obtain the optimal action a∗
t , which takes only linear time

with respect to the number of components n. The detailed algorithm is described

in Algorithm 2.

2.4.4 Modeling qi: the maintenance priority of i-th target

The component-wise value qi = q(st,i;θ) in (2.5) represents the priority (or the

benefit) of performing maintenance for the i-th component. In this section, we

design the hypothesis space of the function q specifically using domain knowledge

of desirable properties as a benefit function.

First, the benefit of maintenance should be non-negative, i.e., q(st,i) ≥ 0

should hold. Since the state cost Cs(st) is non-decreasing in st,i and the con-

dition does not improve (at least without maintenance), q(st,i) should also be

non-decreasing. Considering these properties, we utilize the following parame-

terization for q, which is an extension of the softplus (smoothed ReLU) function

[Zheng et al., 2015]:

q(st,i;θ) :=
θ3
θ1

log (1 + exp(θ1(st,i − θ2))). (2.6)

The parameter θ1 controls the smoothness. Since we adopt non-linear parame-

terization for q, convergence is not guaranteed [Getoor and Taskar, 2007]. Thus,

we try several initial parameters for θ.
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Here, we explain how to design the q function given the condition cost Cs

in (2.3). Since the third term in (2.4) is greater than 0, the q function should

be greater than the expected condition cost in the next time step, i.e., q(st,i) ≥
β E [Cs(st+1,i)|st,i] should hold. Furthermore, the benefit asymptotes to zero

when the condition is good, i.e., limst,i→−∞ q(st,i) = 0, and asymptotes to the

condition cost in the next time step (t + 1) plus a constant that represents the

(averaged) maintenance cost in t + 1 since it must be maintained in t + 1, i.e.,

limst,i→∞ q(st,i) − E [Cs(st+1,i)|st,i] = Const. Our adopted softplus function re-

flects these properties under the definition of Cs in (2.3).

2.5 Experiment

We investigated the effectiveness of this approach with experiments in a simulated

environment.

2.5.1 Setup

Since degradation proceeds at an accelerated rate, a log-linear model is often

assumed [Srivastava and Mondal, 2016, Zhou et al., 2011, Famurewa et al., 2015]:

st = eβt+α = eβ · st−1. This represents that the degraded condition itself causes

further degradation. Also, we consider a stochastic degradation model with het-

eroscedastic noise, i.e., the degradation rate depends on its location (component)

i. The heteroscedasticity of road pavement, for example, is caused by the dif-

ference in traffic conditions, material properties, construction quality, and other

geometric conditions [Adlinge and Gupta, 2013, Hong and Wang, 2003]. This dif-

ference in the degradation rate is the very reason CBM, in which the component

to be maintained is determined in accordance with its degradation condition, is

superior to TBM, which assumes a pre-determined lifetime. We also take into

account the skewness of the degradation rate distribution [Peng and Tseng, 2013],

i.e., several components show very fast degradation rates and need frequent main-

tenance. To reproduce these conditions, we use the following transition models

{Mi} for each component (position) i as the environment:

Mi(st,i, at,i) =

1.1st,i + ϵ∆i (at,i = 0)

1.0 (at,i = 1),
(2.7)

ϵ ∼ exp(N (0, 1)),

where ∆i is the characteristic excess degradation rate for the i-th target, which

is generated from the log-normal distribution ∆
(base)
i ∼ exp(N (0, 1.3)) followed

by the application of a Gaussian filter (std = 2) for smoothness. We fixed the
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Figure 2.3: Generated position-specific average degradation rates. Degradation
phenomena often have this kind of local and skewed distribution.

Time step t

Co
n

d
it

io
n

s t,
i

Figure 2.4: Condition and maintenance history of specific target generated from
(2.7) and the fixed section-based CBM policy (2.8). Condition degrades gradually,
then returns to a good condition when maintenance is performed.

average degradation rates {∆i} once after sampling; thus the average frequency

of maintenance needed for the i-th component is constant for the entire training

and test periods. The resulting degradation rates {∆i} are shown in Fig. 2.3 and

the condition history for a specific component is shown in Fig. 2.4.

For the cost function, we used the state cost function Ca in (2.3) with the

parameters α = 50, cs = 1 and the action cost function Cs in (2.2) with the

parameters cw = 2, ct = 10.

2.5.2 Training and testing settings

We set the number of targets n = 1000 and the training and testing periods

Ttrain = {0, . . . , 1000}, Ttest = {1001, . . . , 2000}, respectively. To generate the

training data, we adopted the fixed section-based policy in (2.8) with the pa-

rameters w = 10, θt = 45. The random values ∆i and ϵt,i are the same for all

policies tested, i.e., CBM with various parameters and the proposed policy. We
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Table 2.1: Initial parameters tested

θ0 (Baseline cost) {0.1, 1}
θ1 (Smoothness) {0.05, 0.1, 0.2, 0.5, 1, 2}
θ2 (Threshold) {20, 25, 30, 35, 40, 45, 50}
θ3 (Slope) {0.1, 0.3, 1, 2}

set the discount parameter β = 0.9, since a too-large discount parameter causes

divergence. After training, we fixed the estimated Q-function during the test

phase and ran a simulation. The test evaluation was done by the total cost in

the entire test period Ttest.

We tested the initial parameters of the Cartesian product of the candidate

shown in Table 2.1 and selected the best parameter that minimizes the training

objective
∑

t∈Ttrain Lθ. These initial parameters were selected considering the

environment to ensure that we had a good parameter near one of the initial

parameters. Let us consider a greedy policy as a baseline that considers only the

action cost and condition cost in the next step, i.e., one that ignores the third

term in (2.4). Further suppose that the expectation and the cost function Cs in

the second term can be approximately exchangeable, i.e.,

E
st+1|at,st

[Cs(st+1)] ≃ Cs(E [st+1|at, st])

=
∑
i

(1− ai)Cs(1.1st,i).

Then, (2.4) can be expressed by our model with the parameters θ0 = 0, θ1 →
∞, θ2 = α/1.1 ≃ 45, and θ3 = 1.1βcs ≃ 1.0. The optimal Q function should

be larger than this greedy Q function. The third term in (2.4) may include the

baseline cost θ0 > 0. Due to the convexity of Cs, the second term will gradually

increase near the threshold st,i = 45, i.e., the smoothness should be introduced as

θ <∞. Also, considering the future cost (the third term in (2.4)), the threshold

might be smaller: θ2 < 45. The condition may not exceed the threshold θ2

so many times because the maintenance is performed preventively, and there

are seldom instances in a region such as s > 50, where the slope parameter θ3

alone is dominant, so the optimal slope θ3 depends on the interaction with other

parameters. Although we chose the candidate initial parameters taking these

properties into account, it may be possible to choose them using a black-box

optimization such as the Bayesian optimization [Snoek et al., 2012, Shahriari

et al., 2015].
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Figure 2.5: State history {st,i}t,i under fixed section-based CBM policy (in
Fig. 2.1(b) and Eq. (2.8)). Dark regions are degraded and thus need mainte-
nance.

2.5.3 Baseline method: fixed section-based CBM

As the baseline method, we examined the fixed section-based CBM approach

(Fig. 2.1(b)). With the parameter of window width w, the targets are split into

intervals in advance, and the action is taken for all targets in the section if the

most degraded target in it is greater than the threshold θt:

πCBM(at,i = 1|st) =


1

(
max
j∈Ai

{st,j}j ≥ θt
)

0 (otherwise),

(2.8)

where Ai = {j | ⌊j/w⌋ = ⌊i/w⌋} is the set of components in the same sec-

tion as the i-th component. The resulting condition history with parameters

(w = 10, θt = 50) is shown in Fig. 2.5, which is also used for generating training

data. Performance under this policy was sensitive to the parameters as shown in

Fig. 2.6. These parameters have to be appropriately optimized using the training

data, which is another issue. To simplify the discussion, we used the optimal pa-

rameters selected by the test performance and demonstrate that our method with

learned parameters still outperforms the baseline with the optimal parameters.

2.6 Results and Discussion

2.6.1 Discussion on performance

The proposed method outperformed the baseline approach even when the best

parameters (w, θt) in the test period were chosen for the baseline, as shown in

Table 2.2.
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Figure 2.6: Performance of fixed section-based CBM with various parameters.
The performance is strongly dependent on the parameters, the window width
w and the threshold θt, and the means to optimize them beforehand is not
straightforward. Nonetheless, as a baseline method, we can assume these pa-
rameters are optimized appropriately using the training data; thus we compare
our method with the baseline method under the best parameters in the test pe-
riod (w = 7, θt = 45).

Table 2.2: Performance comparison. We ran simulations for each policy and
evaluated the test performance in Ttest. For the proposed method, we learned
the Q-function with data in Ttrain and fixed the Q-function in the test phase. For
the baseline (section-based CBM), we studied several parameters (as in Fig. 2.6)
and showed the best performance in the test period.

Section-based CBM
with best parameters Proposed method

Total cost 4.76× 105 4.31× 105

A possible explanation of the performance of dynamic grouping is illustrated

in Fig. 2.7. Rapidly degrading targets (i ∈ [40, 45]) are frequently maintained

with negligible expense by selecting sections that cover such targets alternately

(indicated by red lines in Fig. 2.7(b)). This alternate selection of sections cannot

be achieved in the fixed section-based approach, and we consider this is a key

benefit of the flexibility of dynamic grouping.

2.6.2 Interpretability in optimization

The advantage of the separability approximation of the state cost function, i.e.,

Cs(st) =
∑

i qi(st,i), is not only the computational efficiency but also the in-

terpretability in optimization. Black-box optimization is difficult to accept for

maintenance decision-makers in the field since they are responsible for the safety

or have motivation for factors other than minimizing the explicitly defined cost

function with observed data. As shown in Fig. 2.8, q(st,i) can be interpreted as

the maintenance priority of the i-th target. We can plot it in the same graph as

observed physical quantities, which maintainers are familiar with.

27



Time step t

Po
si

ti
o

n
 (t

ar
g

et
)

i

(a) Part of state history under the proposed policy

Time step t

Po
si

ti
o

n
 (t

ar
g

et
)

i

(b) Framed section in (a) extracted

Figure 2.7: Condition history under dynamic grouping policy with learned pa-
rameters (a). The better performance of our approach (in Table 2.2) possibly
comes from the exploitation of the local economic dependency and the variety of
degradation rates. Rapidly degrading targets (extracted in (b)) are maintained
frequently with a small number of groups by selecting groups alternately (indi-
cated by red lines).

2.7 Conclusion

In this chapter, we presented a condition-based infrastructure maintenance plan-

ning problem as a sequential and combinatorial optimization problem. This prob-

lem setting requires large-scale combinatorial optimization for the combination

of current and future actions of each component, considering the uncertainty of

the future conditions. To achieve the dynamic grouping of small components of

large infrastructures, we introduced the local economic dependency assumption

for maintenance cost. We proposed a number of approximations, namely, the Q-

learning approach for temporal scalability and uncertainty and a parameterized

Q-function and dynamic programming for spatially scalable optimization of the

Q-function, which exploits the locality in economic dependency.

We investigated the performance in a simulated environment. The resulting

condition history showed the advantage of dynamic grouping; that is, rapidly

degrading targets could be maintained frequently by selecting alternate sections

with a small extra expense only in working cost. The proposed method is not only

has a superior performance but is also interpretable, which we feel is important for
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Position (target) i

Condition, priority, and recommended maintenance

Figure 2.8: Possible user interface of the maintenance recommendation system
showing the current condition, current state cost, the estimated priority of main-
tenance, and recommended maintenance groups. q(st,i) can be interpreted as the
maintenance priority of the i-th target, and we can plot it with observed physical
quantities to explain the reason for the recommendation.

maintenance decision-makers to accept the recommended action. This is achieved

by separating the objective function of action optimization (Q-function) into the

action cost and sum of maintenance priority for each component, which can

be indicated in the same figure as the observed condition of each component.

Comparing the cost and maintenance priority enables the maintenance planner

to make a reasonable decision.

There are a number of remaining issues or limitations with our method, as

well as possible extensions. In real applications, historical data is sometimes

limited. Since the transition of each target at a single time step is summarized

into one sample in our approach, our method may not be sample-efficient. Thus,

in those cases, we have to consider incorporating a model-based approach, as in

[Gu et al., 2016], in which the transition for each target is learned as a predic-

tion model M̂(si, ai). Also, in our experiment, we assumed that the condition

observations are noise-free, but in the maintenance field, they often have severe

noise or outliers. Therefore, estimating the true condition st, or calculating qi

from many observations (e.g., a CNN-like model qi(st−τ :t,i−k:i+k)), is an impor-

tant possible extension. In addition, we focused on 1-D infrastructures. Other

possible applications of the dynamic grouping approach include whole network

settings such as NTD and two-dimensionally distributed targets such as machine

maintenance and inventory management of vending machines, ATMs, and so on.
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Chapter 3

Incorporating Intermediate Labels for

Sample-efficient Imbalanced Direct

Classification

3.1 Introduction

Class imbalance is often a major problem in real-world data analysis [Japkowicz

and Stephen, 2002, Haixiang et al., 2017], since the class of interest (i.e., the pos-

itive class) often corresponds to rare events, such as disasters, accidents, diseases

[Haixiang et al., 2017], abnormalities [Fuqua and Razzaghi, 2020], or conversions

in advertisement recommendation tasks [Lee et al., 2012]. In such cases, the per-

formance will be limited by the size of the positive training sample. However,

among such real-world imbalanced problems, there are cases where “near-miss”

instances, i.e., negative but nearly-positive instances, are relatively plentiful.

In flood prediction [Cloke and Pappenberger, 2009], for example, actual floods

are rare, while there are relatively many near-miss cases where the water level

approached the height of the riverbank. Also, in condition-based maintenance,

the condition of each piece of equipment is monitored regularly, and the main-

tenance is carried out to keep the condition not to reach an alarm-level [Lee

et al., 2006]. While actual accidents are rare, there are many near-miss incidents

where the condition approaches the alarm-level [van der Schaaf, 1995, Li and

Nilkitsaranont, 2009]. Furthermore, sales forecast for new products such as songs

[Herremans et al., 2014] or books [Chang and Lai, 2005] are difficult due to the

skewness of the sales distribution [Hendricks and Sorensen, 2009]. If one needs

only to know whether the sales exceed a threshold, such as a break-even point

for deciding to publish, the task would be a classification task. While hit books

are rare, we often have plentiful records of near-miss hit books whose sales are

slightly below the break-even point.

This chapter is based on Akira Tanimoto, So Yamada, Takashi Takenouchi, Masashi
Sugiyama, and Hisashi Kashima, Improving imbalanced classification using near-miss instances,
submitted to Expert Systems with Applications.
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(a) Data generation model (for the train-
ing phase).

(b) Prediction model (for the inference
phase).

Figure 3.1: Our assumed graphical models for training and inference. Gray nodes
represent observed variables at each phase. (a) Our assumed data generation
model. x ∈ Rd is a feature vector, z ∈ R is a numerical mediator variable
that represents “positivity,” I is an indicator function, θ is a threshold, and
y := I(z ≥ θ) is the binary label. (b) Our employed prediction model. z typically
represents a future condition; thus it is not available in the test phase, and need
not be predicted. The only prediction target y is whether or not the condition
z exceeds a given threshold. Thus, we do not predict z; rather, we predict y
directly.

Exploiting such near-miss data is a well-known heuristic in the field of acci-

dent prevention. Heinrich et al. (1980), Jones et al. (1999), and Barach and

Small (2000) argued the importance of collecting data not only regarding actual

accidents but also regarding near-miss incidents and suggested to take measures

to prevent them. To the best of our knowledge, exploiting near-miss data has

not yet been sufficiently investigated in machine learning literature. We there-

fore show that this lesson in accident prevention applies to machine learning, i.e.,

even when the number of true positive cases is quite limited, the accuracy can

be improved by obtaining additional information to identify the near-miss cases.

Such additional information we assume is “positivity” z ∈ R given in the

training phase as in Fig. 3.1(a). The label y is defined by whether or not z exceeds

a given threshold θ. Fig. 3.2 shows synthetic examples. Positivity z represents,

for example, the future water level in flood prediction, the future condition of

equipment in condition-based maintenance, or the sales of the new book. Note

that, since z typically denotes some future condition, z is not available in the

inference phase.

Since the final goal is to predict the binary label y, a naive approach is to

throw away z and train a classifier only from (x, y) pairs.

Imbalanced classification using binary labels has been actively studied [Haix-

iang et al., 2017, Leevy et al., 2018].

In particular, when the number of positive data is small, cost-sensitive learn-

ing [Elkan, 2001] is often used to cancel the estimation bias due to the class

imbalance, in which misclassification costs for false positives and false negatives
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(a) p(z|x) = N (µ(ϕ∗(x)), ψ). (b) p(z|x) = N (µ, ψ(ϕ∗(x))).

Figure 3.2: Toy examples for the setting illustrated in Fig. 3.1(a). ϕ∗(x) = w∗⊤x
is the true scoring function. (a) Toy data generated by a generalized linear model
that we used in our experiments. (b) Another data with heteroscedastic noise,
showing how regression- and rank-based approaches may fail.

are unequal. While it converges asymptotically to the Bayes optimal solution,

estimation variance is high, as we theoretically prove in Section 3.4 and experi-

mentally demonstrate in Section 3.5.3.

Many methods have been proposed in this context, including those based on

under- and oversampling with synthetic data generation [Chawla et al., 2002, He

et al., 2008, Barua et al., 2012, Wei et al., 2020a] and hybrid/ensemble methods

[Seiffert et al., 2009, Chawla et al., 2003, Kim and Sohn, 2020]. We also make

comparisons with representative ones of these in Section 3.5.4.

A tempting approach for avoiding high estimation variance is regression, i.e.,

estimating the generative model ϕ in Fig. 3.1(a). While here we never confront

the imbalance issue, naive regression methods cannot convey information other

than the conditional mean E[z|x], and fail when the noise level is not constant,

as illustrated in Fig. 3.2(b). Further discussion of this approach and the relation

of z and p(y|x) is provided in Section 3.3.2.

We therefore take a direct modeling approach, as in Fig. 3.1(b), and exploit

z as side-information to alleviate the estimation variance. Then, provided that

the near-miss positive instances are relatively plentiful with respect to the real

positives, we can increase the effective positive rate by regarding the near-miss

positive instances as being partly positive. This makes it possible for our method

to enjoy reduced estimation variance, as is proved in Section 3.4.2, in exchange

for additional bias, as in Section 3.4.3. Experimental results given in Section

3.5.4 indicate the effectiveness of our approach.

Our main contributions are three-fold. First, we propose a new learning

algorithm to exploit the positivity z, which is model-agnostic, i.e., it can be

incorporated into many off-the-shelf implementations of classifiers. Second, we

derive a non-asymptotic bound, which shows the mechanism that our method

can reduce the estimation variance via increasing the effective size of the positive
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sample with the help of near-miss instances, in exchange for additional bias. The

bound of the additional bias also gives a characterization of effective positivity

information. Lastly, our extensive experiments illustrate the effectiveness of our

method compared to the conventional classification methods and the regression-

and rank-based approaches.

3.2 Problem Setting

We want to learn a scoring function (decision function) g : X → R that defines

a plug-in binary classifier ŷ = I(g(x) ≥ 0), where X ⊂ Rd is the feature space

and I is the indicator function. Given a task-specific threshold θ we learn from

the data set S = {d1, d2, . . . , dN}, where N is the sample size, and dn = (xn, zn)

consists of a feature vector xn ∈ X and a mediator variable zn ∈ R, which we

refer to as positivity. Note that the positivity zn is accessible only in the training

phase, and we cannot use zn in the test phase. A class label is determined as

yn := I(zn ≥ θ).

Without loss of generality, we hereafter assume θ = 0 (i.e., let zn − θ be the new

zn).

Positivity zn is considered related to a “probabilistic label (soft-label)” pn =

p(y = 1|xn); however, pn itself is not given, which represents the difference from

existing soft-label studies [Nguyen et al., 2011b, 2014, Peng et al., 2014]. A

detailed discussion of this is given in Section 3.3.2.

For the evaluation, we adopt a cost-sensitive metric called the weighted accu-

racy (WA) [Cohen et al., 2006]:

WAN (g) :=
1

N

N∑
n

{
C+I(zn ≥ 0 ∧ g(xn) ≥ 0)

+ C−I(zn < 0 ∧ g(xn) < 0)
}
,

where C+ and C− are task-specific constants for the positive class and the neg-

ative class, respectively, as introduced in the cost-sensitive learning framework

[Elkan, 2001, Ling and Sheng, 2010, Vasile et al., 2017], and ∧ represents the

logical AND. Since we consider the imbalanced case, the accuracy for the rare

positive class is usually emphasized, i.e., C− < C+. We also consider a special

case of WA, letting C+ = N/2N+ and C− = N/2N−, where N+ :=
∑N

n I(zn ≥ 0)

and N− :=
∑N

n I(zn < 0), as balanced accuracy (BA). Here, (1−BA) is the bal-

anced error rate (BER), which is often adopted in imbalanced problems [Chen

and Wasikowski, 2008]. We evaluated the performance of a classifier with respect
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to BA in our experiments:

BAN (g) :=
1

N

N∑
n

{
N

2N+
I(zn ≥ 0 ∧ g(xn) ≥ 0)

+
N

2N−
I(zn < 0 ∧ g(xn) < 0)

}
.

(3.1)

3.3 Learning with Positivity

In this section, we propose a proxy loss, a generalization of the cost-sensitive

learning to the case in which positivity is obtained, and compare it with another

approach, i.e., the generative modeling.

3.3.1 Proposed loss function

A naive approach for this problem is the cost-sensitive learning which minimizes

the convex relaxation of (const.−WAN ) [Dmochowski et al., 2010], i.e., its em-

pirical risk is

L̂(g) =
1

N

N∑
n

{
C+ynℓ(g(xn)) + C−(1− yn)ℓ(−g(xn))

}
,

where ℓ(g) is the instance-wise loss such as the hinge loss or the negative log-

likelihood. As we prove in Section 3.4, however, the estimation variance is high,

and thus the performance would be poor under the limited size of the positive

training sample. To overcome this limitation, we propose the following proxy loss

that treats near-miss instances as being partly positive:

L̂T (g) :=
1

N

N∑
n

{CT,+σ(zn/T )ℓ(g(xn)) + CT,−σ(−zn/T )ℓ(−g(xn))} , (3.2)

where σ(a) := 1/(1 + exp(−a)) is the sigmoid function, T is a hyperparameter

called temperature, CT,+ := C+
N+

NT,+
and CT,− := C−

N−
NT,−

are rebalanced cost

parameters, and NT,+ :=
∑N

n σ(zn/T ). We refer to σ(z/T ) as the soft-label.

Considering that the soft-label goes to the original hard label in the limit of

T → 0, i.e, limT→0 σ(z/T ) = y (except for z = 0), our loss function includes the

cost-sensitive learning as the limit of T → 0.

Our loss function (3.2) can be implemented as instance weighting; namely,

we duplicate the whole training set for positive and negative parts with weights

CT,+σ(zn/T ) and CT,−σ(−zn/T ), respectively. Then we can train any off-the-

shelf base learner A with duplicated instances and weights. The detailed algo-

rithm for the setting of BER minimization is described in Algorithm 3.

One benefit of introducing the soft-label is increasing the effective positive
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Algorithm 3 Learning with positivity

Input: D = {(xn, zn)}n, θ, T , a base learner A
Output: Trained model M
1: for i = 1 to N do
2: sn ← 1

1+exp (− zn−θ
T )

3: end for
4: pT,+ ←

∑N
i sn
N

5: D′ ←
{(

xn, y = 1,weight = sn
pT,+

)}
n
∪
{(

xn, y = 0,weight = 1−sn
1−pT,+

)}
n

6: M ← A(D′)
7: return M

sample size, i.e., N+ < NT,+ for some proper T > 0, as is described in Section

3.4. By increasing the effective positive sample size NT,+ and rebalancing the

effective total costs of each class, we can reduce the imbalance of cost parameters

CT,+ and CT,−, which results in the reduction of the estimation variance as we

prove theoretically in Section 3.4.2.

3.3.2 Comparison with the generative modeling approach

In this section, we explain the relationship between the positivity z and the

conditional probability p(y|x) and clarify the reason why the naive generative

modeling approach is not always suitable.

In a similar and well-studied setting called learning on probabilistic labels, the

conditional probability pn := p(y = 1|xn) or its estimation is given as the label

for each instance. The probabilistic labels are typically attained by averaging

crowd-sourced labels over annotators. For this setting, regression-based [Nguyen

et al., 2011a, Peng et al., 2014] and rank-based methods [Nguyen et al., 2011b,a,

Xue and Hauskrecht, 2016, 2017] are proposed.

In our setting, the conditional probability is not directly given, but can be

expressed as p(y = 1|x) =
∫
I(z ≥ 0)p(z|x)dz. Thus, it might be tempting to

model p̂(z|x) and then plug-in as

p̂(y = 1|x) =

∫
I(z ≥ 0)p̂(z|x)dz. (3.3)

Then, since the positivity z is a continuous variable, one need never confront the

imbalance issue.

However, this indirect modeling of z is not always suitable. For example,

regression methods with homoscedastic noise (i.e., Var[z|x] is assumed constant)

fail if the assumption is not satisfied, as with the distribution illustrated in

Fig. 3.2(b). In this case, these methods tend to learn a constant model p̂(z|x) = c

and the plug-in classification model in (3.3) also ends up in a constant model

p̂(y = 1|x) = c′, while the true conditional probability p(y = 1|x) is not con-
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stant in x. Modeling conditional variance is not always sufficient, either, due to

higher moments of p(z|x). We are particularly interested here in the tails of dis-

tributions, and, therefore, the higher moments are often dominant for evaluating

p(z ≥ 0|x). This is why the direct modeling approach is superior in terms of ver-

satility for distributions. The experimental results in Section 3.5.4 also support

the versatility of the proposed method.

3.3.3 Choice of the soft labeling function σ and the noise robustness

Here we make a note on the noise in the training data and the choice of the soft

labeling function σ. Addressing noise is considered important in the imbalanced

classification field [Napiera la et al., 2010, Sáez et al., 2015, Natarajan et al., 2017].

Generally speaking, our approach is considered to be relatively robust to noise.

That is, when the true positivity z = 0.1 is observed as zobs = −0.1 as a result

of noise on z, the binary label y changes abruptly from 0 to 1, while the soft

label σ(z/T ) in the proposed method only changes from 0.48 to 0.52 under the

temperature T = 1. Here, even when the noise is added in the input x, if the

degree of noise is small, and if we further assume that the conditional probability

p(y = 1|x) is continuous (e.g., in the sense of Lipschitz) in x, it can be regarded

as equivalent to a small noise on z.

On the other hand, for the case of severe noise, e.g., a completely negative in-

stance z = −10 is sometimes observed as completely positive zobs = 10, the noise

robustness of our proposed method is only comparable to that of the conventional

cost-sensitive learning. One possible solution for such cases is to incorporate a

label smoothing technique in the learning from the binary label setting [Natara-

jan et al., 2017, Szegedy et al., 2016], in which the label is smoothed from {0, 1}
to (e.g.) {0.05, 0.95}. Our approach can incorporate this by, e.g., setting the soft

labeling function as σ̃(z/T ) = 0.9σ(z/T ) + 0.05. The optimal labeling scheme

depends on the joint distribution p(x, z). It is desirable to reduce the variance

analyzed in Section 3.4.2 while minimizing the increase in bias analyzed in Sec-

tion 3.4.3. This direction, i.e., improving the soft labeling function to increase

noise robustness, is a promising future work.

3.3.4 Comparison with synthetic oversampling methods

Our proposed method extends the cost-sensitive learning, which is called the

algorithm-level approach in the imbalanced classification field [Krawczyk, 2016].

Another well-studied direction is the data-level approach, i.e., synthetic oversam-

pling of positive instances. This direction was pioneered by the synthetic minority

over-sampling technique (SMOTE) [Chawla et al., 2002] and has been actively

studied [Fernández et al., 2018].

36



While simple over-sampling of positive instances is equivalent to the cost-

sensitive learning at the level of its loss function, SMOTE and its variants are

clearly distinguished in that they utilize additional inductive biases. For example,

SMOTE treats interpolations of neighboring positive instances as positive, which

may reflect the convexity of the support of conditional distribution p(x|y = 1) or

the cluster assumption [Chapelle et al., 2006]. Also, Ali-Gombe and Elyan [2019]

proposed generating positive instances by training a generative adversarial net-

work (GAN) for image data. GANs can incorporate with unlabeled instances for

generating realistic images, which highlights a new approach of semi-supervised

learning for imbalanced classification. It has been suggested that GANs can

utilize some kind of inductive bias common to images [Zhao et al., 2018].

While data augmentation methods have been repeatedly shown to be promis-

ing, careful consideration should be given as to whether the inductive biases

behind them are still valid in our problem setting. A significant difference may

come from the direction of causality. Our typical setting is prediction, i.e., the

input feature x causes the outcome y with positivity z observed as a mediator

variable as in Fig. 3.1. This is called a causal setting, as opposed to an anti-causal

setting, where the label y causes the feature or image x. Schölkopf et al. [2012]

have revealed that incorporating the cluster assumption by semi-supervised learn-

ing can be helpful only in anti-causal settings. In causal settings, the marginal

distribution of the feature p(x) contains no information about the conditional

distribution p(y|x). In fact, our experimental results in Section 3.5.4 also show

that SMOTE only achieves comparable or inferior performance for cost-sensitive

learning.

The inductive bias we are utilizing is in a different direction from this data

augmentation approach in the input space. As we analyze in Section 3.4.3, we

assume that the larger positivity values indicate the larger possibility of being

positive, which reflects a kind of continuity assumption of the conditional distri-

bution in the positivity space. Therefore, our approach may not only be effective

for the settings where SMOTE and its variant are not effective but may also

incorporate with them. Investigating the key success factor of these synthetic

oversampling methods and extend them to prediction or regression problems is a

promising direction as discussed in Krawczyk [2016].

3.4 Theoretical Analysis

In this section, we describe the performance of the proposed method, which

includes the conventional cost-sensitive learning method as a special case.
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3.4.1 Setup

We analyze the excess risk, i.e., the difference in the expected risks of estimated

and optimal models, using the population version of the proposed loss (3.2)

LT (g) = E
x,z

[
CT,+σ(z/T )ℓ(g(x)) + CT,−σ(−z/T )ℓ(−g(x))

]
(3.4)

and the cost-sensitive one

L(g) = E
x,y

[
C+yℓ(g(x)) + C−(1− y)ℓ(−g(x))

]
. (3.5)

When ℓ is the hinge loss or the negative log-likelihood, (3.5) can be seen as a

tight convex upper bound of (const.−WA) [Dmochowski et al., 2010], and thus

good performance is expected asymptotically. Although, when the size of the

positive sample is small and its weight C+ is set large, the estimation variance is

high. Our proposed loss (3.4) treats near-miss instances as being partly positive

through soft-labeling function σ, and relaxes the imbalance between the class

weights, resulting in reduced estimation variance, as we prove in this section.

The excess risk with respect to the cost-sensitive loss (3.5) can be decomposed

as

E
S

[L(ĝ)− L(g∗)] =E
S

[L(ĝ)− LT (ĝ)]︸ ︷︷ ︸
bias 1

+E
S

[LT (ĝ)]−min
g∈G

LT (g)︸ ︷︷ ︸
variance

+ min
g∈G

LT (g)− LT (g∗)︸ ︷︷ ︸
≤0 by definition

+LT (g∗)− L(g∗)︸ ︷︷ ︸
bias 2

,
(3.6)

where S is the training set, ĝ := arg min
g∈G

L̂T (g) is the empirical proxy loss min-

imizer, which depends on S, and g∗ := arg min
g∈G

L(g) is the optimal model in

assumed model class G.

Although the proposed method is model-agnostic, we add some technical as-

sumptions here for theoretical analysis.

Assumption 1. G is a bounded linear class; namely, G = {g : g(x;w) =

w⊤x, ∥w∥2 ≤ B}.

Assumption 2. The support of p(x) is bounded; namely, p(∥x∥2 ≤ X) = 1.

Assumption 3. ℓ is 1-Lipschitz and satisfies maxa,a′∈[−BX,BX] |ℓ(a)−ℓ(a′)| ≤ c.

In addition, we replace the cost parameter settings with the population ver-

sions:

CT,+ = C+
p+
pT,+

and CT,− = C−
p−
pT,−

, (3.7)
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where p+ and p− are the expected positive and negative rates, pT,+ and pT,− are

the expected effective rates of positive and negative, namely, pT,+ = Ez [σ(z/T )]

and pT,− = Ez [σ(−z/T )]. This is because the expectation ES [N+/NT,+] may not

exist. Similarly, when we discuss the BER minimization setting in cost-sensitive

learning, we set the cost parameters as

C+ =
1

2p+
and C− =

1

2p−
. (3.8)

3.4.2 Variance reduction

Let us first evaluate the excess risk for our proxy loss, which is denoted as variance

in (3.6).

Theorem 3.4.1 (Proxy loss minimization bound). Let ŵ be a minimizer of the

empirical proxy loss L̂T (3.2) with cost parameters (3.7) and w∗
T be a minimizer

of the expected proxy loss LT . Suppose that G, p(x) and ℓ satisfy Assumptions

1–3. The excess risk for LT will then be bounded as follows:

E
S

[LT (ŵT )− LT (w∗
T )] ≤ 2BX√

N

√
C2
+

p2+
pT,+

+ C2
−
p2−
pT,−

.

This is given by element-wise upper bounding of the Rademacher complexity,

i.e.,

R(ℓ ◦A) :=R({(ℓ1(a1), . . . , ℓN (aN )) : a ∈ A ⊂ RN})

≤R({(ρ1a1, . . . , ρNaN ) : a ∈ A})),

where a := (a1, . . . , aN ) and ρn is the Lipschitz constant of ℓn. The detailed proof

is given in the appendix. This element-wise evaluation of the Lipschitz constants

is the key for a tighter bound since our loss function consists of a small number of

element-wise losses that have a large Lipschitz constant CT,+ and a large number

of one with a small Lipschitz constant CT,−.

For the BER minimization setting (3.8), the bound is rewritten as follows.

Corollary 3.4.1.1 (Balanced loss minimization bound). Under the same con-

dition with Theorem 3.4.1, the excess risk for LT with the parameters (3.8) is

bounded as

E
S

[LT (ŵ)− LT (w∗
T )] ≤ BX√

N

√
1

pT,+
+

1

pT,−
. (3.9)

So long as the effective positive rate is much smaller than the effective neg-

ative rate, namely, pT,+ ≪ pT,−, the term 1/pT,+ is dominant in (3.9). This is

why reducing the imbalance between pT,+ and pT,− has a critical impact on the
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variance reduction. From the definition of the soft-label σ(z/T ), we observe

lim
T→0

pT,+ → p+ and lim
T→∞

pT,+ →
1

2
.

Therefore, by using proper T > 0, we can increase the effective positive rate pT,+,

and can attain variance reduction.

Corollary 3.4.1.1 is also useful to predict the limitation of conventional cost-

sensitive learning. Let us assume that T → 0 (then NpT,+ → Np+ ≃ N+),

the model complexity B = 1, and the size of the feature space X =
√
d (each

dimension is normalized). Since p+ ≪ p− holds, the r.h.s. of (3.9) would be

simplified as follows:

r.h.s. of (3.9) ≃

√
d

N+
. (3.10)

Therefore, when the size of the positive sample is smaller than the feature di-

mension (N+ < d), the variance term would be larger than 1, which is no longer

meaningful as an upper bound of the BER. Assuming the bound is tight enough,

this implies that there is plenty of room for performance improvement by tuning

T when N+ < d holds, and also experimental results in Section 3.5.3 agree to

this. That is, the conventional cost-sensitive method significantly underperforms

the proposed method when N+ < d.

3.4.3 Bias bound

We next give an upper bound of the bias terms in (3.6). To simplify the notation,

we introduce a random variable η that depends on the soft label σ(z/T ) as

p(η|z) := mathrmBernoulli(σ(z/T )).

The random variable η can be seen as “a potential label that might have been

under the given z,” and p(η = y) = 1 when T → 0. By using η, we can bound

the bias as follows:

Proposition 3.4.2 (Bound of the bias of the proxy loss). Suppose that G, p(x),

and ℓ satisfy Assumptions 1–3. The bias terms in (3.6) in the BER minimization

setting (3.8) is upper-bounded as

(bias 1 + bias 2) ≤ c
{

TV (p(x|η = 1), p(x|y = 1))

+ TV (p(x|η = 0), p(x|y = 0))
}
,

where TV(p(x), q(x)) := 1
2

∫
|p(x)− q(x)| dx is the total variation distance.

If we set T > 0, the bias might increase, which is bounded using the TV
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distances, and which depends on the joint distribution p(x, z) and the tempera-

ture T . Differently from the distance between the conditional label probabilities

TV(p(y|x), p(η|x)), these TV distance terms do not necessarily increase as do

pT,+ = p(η = 1). Thus, in the range of reasonably small T , and provided that a

reasonable z is given such that σ(z/T ) is highly correlated to p(y = 1|x), the pro-

posed method attains reasonable variance reduction in exchange for additional

bias. Conversely, if z has no additional information to y, that is, for example, z

is determined by y as z = 2y − 1, the TV distance terms immediately increase

when T > 0, and we cannot attain significant variance reduction. Note that the

soft-label itself need not necessarily be a good estimator of p(y = 1|x), which is

a difference from the probabilistic label pn = p(y = 1|xn).

3.4.4 Connection to the learning using privileged information (LUPI)

Learning using privileged information (LUPI) is a general problem setting that

aims to utilize additional information like z. Privileged information was first pro-

posed in Vapnik and Vashist [2009], in which it was assumed that additional fea-

tures were provided for each training instance and that the features were strongly

related to the label but not available in the test phase. They argued that a faster

learning rate could be obtained by using privileged information to estimate the

slack variables in the SVM. Generalized distillation (GD) [Lopez-Paz et al., 2016]

enables model-agnostic learning with privileged information using a similar pro-

cedure to the distillation [Hinton et al., 2015]. The basic procedure of GD is

to first learn a “teacher model” gt(z) from the privileged features z ∈ Rm and

the original labels, and then learn a “student model” with the original features

x ∈ Rd and soft-labels given by the teacher model using the following proxy loss∗:

L̂GD
T (g) =

1

N

N∑
n

{σ(gt(zn)/T )ℓ(g(xn)) + σ(−gt(zn)/T )ℓ(−g(xn))} .

While those methods are aimed at fast learning rates in terms of the sample

size, we utilize soft-labels given by a similar procedure for lessening the imbal-

ance. To the best of our knowledge, this is the first work that utilizes privileged

information for imbalanced classification problems. Without cost rebalancing in

(3.7), GD cannot attain the variance reduction analyzed in Section 3.4.2. The

key advantage of privileged information in the application to the class-imbalanced

problems comes from the reduction of the instance-wise Lipschitz constants by

rebalanced costs, which highlights a new aspect of LUPI.

∗In the original paper, they used a mixed label of the true label y and the teacher label
σ(gt/T ), by means of a so-called imitation parameter λ. We do not need λ since positivity z
includes the whole information of y.
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3.5 Experiments

In this section, on the basis of extensive experiments on synthetic and real

datasets, we demonstrate the characteristics and the performance of the pro-

posed method.

3.5.1 Setup

Here we describe experimental settings briefly.

Datasets

Since our method (as do regression and rank-based methods) requires positivity z,

we used datasets originally designed for use in regression problems. Each dataset

has a numerical target attribute, which we regarded as positivity z, and we set

the task-specific threshold θ such that the top-100p+% would be positive.

Evaluation

We used balanced accuracy (BA) for the performance evaluation, as explained in

Section 3.2. For the regression-based methods, we applied the original threshold

to the prediction to evaluate BA, i.e., ŷ = I(ẑ ≥ 0). For the rank-based method,

we set θ such that the top 100p+% predicted scores would be positive.

In the experiments in Section 3.5.3 and Section 3.5.4, we evaluated BA using

nested cross-validation [Varma and Simon, 2006]. The outer cross-validation

loop was 5-fold, and the inner one for hyperparameter selection was 2-fold. For

the Gaussian process (GP), we applied the maximum likelihood estimation for

hyperparameter selection to avoid heavy computation. In both training and test

data, the ratio of positive and negative sample was maintained, i.e., stratified

sampling was performed. We repeated this process four times, changing the split

of the outer loop (thus, there were 20 results for the test data).

3.5.2 Performance variation in temperature T

First, we investigated the effect of introducing a soft-label using the hyperpa-

rameter T . Since a soft-label with a small T goes to a hard label y, the change

in metrics for various T values demonstrates the benefit of utilizing positivity

information. We used the toy data in Fig. 3.2(a) and logistic regression with l2

and l1 regularizers. The regularization strength was fixed to 1.0.

Results with respect to BA are shown in Fig. 3.3. The best T is neither

zero nor infinity, which indicates the variance reduction in small T and the bias

increase in large T . The difference between the best performance and the per-

formance in T → 0 illustrates the benefit of introducing the soft-label. Also,
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Figure 3.3: Performance in various T on toy data in Fig. 3.2(a). As shown,
there exist here some moderate temperatures that perform better than T → 0 or
T →∞.

Figure 3.4: Performance of the proposed method and conventional cost-sensitive
classification with respect to BA for the GPU kernel performance dataset under
highly imbalanced conditions. Positive rate p+ :=

∑
I(z ≥ 0)/N ranged from

2× 10−5 to 1× 10−2. Error bars indicate standard error.

T →∞ means treating near-miss and far-miss, i.e., the other negative instances

equally, which induces a large bias as analyzed in Section 3.4.3 and degrades the

performance. This illustrates the importance of treating only near-miss instances

as being partly positive.

3.5.3 Comparison with conventional classification under highly im-

balanced conditions

To demonstrate the benefit of our method under highly imbalanced conditions,

we compared it with conventional cost-sensitive learning for various positive rates

p+ (and thus N+). The base learner was a logistic regression model with the L2

regularizer.

We used the GPU kernel performance dataset [Nugteren and Codreanu, 2015,

Ballester-Ripoll et al., 2017], which is a large-scale dataset with real-valued tar-
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get attributes. It had 14 features of GPU kernel parameters and four target

attributes of elapsed times in milliseconds for four independent runs under the

same parameters, and the number of instances was 241.6k. We transformed the

problem for elapsed time regression into a classification for finding good param-

eters, i.e., we used the average speed z = 4∑
yi

, where {yi}1:4 are the original

elapsed times.

The results given in Fig. 3.4 show that the conventional cost-sensitive logistic

regression worsened when highly imbalanced, while the proposed method worked

well. The performance gap is particularly large when p+ ≤ 5×10−5, which means

the size of the positive training sample N+ ≤ 10 < d. This is in good agreement

with the theoretical prediction in (3.10). The results with respect to AUC in the

same setting and the results in fixed p+ and various N are also shown in the

appendix, which presents similar trends.

3.5.4 Comparison with various baseline methods and datasets

We are also able to demonstrate the versatility of our proposed method for

various datasets. Positive rate p+ was fixed to 5% since the sample sizes are

not so large in most of the datasets we prepared. We compared the proposed

method with three base learners (logistic regression with L1 and L2 regularizers,

and SVM with an RBF kernel) and baseline methods, namely, the conventional

cost-sensitive classification, oversampling-based classification (SMOTE) [Chawla

et al., 2002], undersampling ensemble classification (RUSBoost) [Seiffert et al.,

2009], regression-based methods (ridge, lasso, and GP with an RBF kernel), and

Rank-SVM (with a linear kernel, as proposed in Xue and Hauskrecht [2016]).

Table 3.1 and Table 3.2 show the overall results with respect to BA and ROC-

AUC, respectively. Also, Fig. 3.5 summarizes the comparison between our pro-

posed method and existing classification and regression-based approaches. Our

approach outperformed or was at least comparable to the regression and the

rank-based baselines for properly chosen base learners, while regression-based

approaches failed for some data including Diabetes and Puma32H. The student

performance dataset had a quite limited number of instances for its dimensions,

which may be a reason why the regression-based baseline worked better.

To investigate the performance on high-dimensional and large-scale data, we

also employed the GPU dataset used in Section 3.5.3 with an expanded binary

feature set of up to second-order interaction terms of the original features. The

resulting number of features was 335. Due to the large data size (N = 241, 600),

we compared methods excluding the kernel-based and pairwise ranking-based

methods. The performance comparison under various positive rate is shown in

Table 3.3. The resulting performance illustrates that our proposed method out-

performs baseline methods in a highly imbalanced setting (p+ = 0.005%) and is
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(a) Proposed “soft” method vs. conventional “hard” cost-sensitive classification

(b) Proposed method vs. regression- and rank-based methods

Figure 3.5: Pairwise accuracy comparison between existing approaches and ours.
The Y -axes indicate the differences in BA and AUC between the best performance
of the proposed methods (with three base learners) and that of the baseline
methods (cost-sensitive classification, regression-based and rank-based methods
with seven base learners in total). Error bars indicate standard errors. Our soft-
classification approach outperforms or at least compares favorably in most of the
datasets and metrics, while existing approaches (cost-sensitive hard classification,
regression- and rank-based methods) significantly underperform in some datasets
or metrics.

Table 3.3: Balanced accuracy comparison in the large-scale dataset (GPU kernel
performance). The best method is in bold, and the second place is italic and
underlined.

Dataset Cost-sensitive classification SMOTE RUSBoost Regression-based Proposed
LR (l1) LR (l2) LR (l1) LR (l2) Lasso Ridge LR (l1) LR (l2)

GPU-interaction-0.1% 0.961 0.959 0.958 0.959 0.969 0.500 0.500 0.951 0.951
GPU-interaction-0.005% 0.894 0.878 0.887 0.898 0.968 0.505 0.505 0.986 0.986

comparable in a mildly imbalanced setting (p+ = 0.1%, which means the positive

sample size of N+ = 242, equivalent to the dimension in terms of order). When

the positive rate is 0.1%, the positive sample size would be N+ = 241, which is

about the same as the dimensions. Thus, it is thought that the variance was not

dominant when the linear model with a regularizer was used, and the difference

from the cost-sensitive learning did not appear. It is again confirmed that the

proposed method performs as well as the cost-sensitive learning when the esti-

mated variance is not dominant and improves on the cost-sensitive learning when
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the sample size of positive examples is small, and the estimated variance becomes

dominant.

3.6 Summary

In this chapter, we have introduced a novel problem setting, imbalanced clas-

sification with positivity, and proposed a versatile method for dealing with it,

which highlighted the usefulness of the positivity information. The key advan-

tage of our method is exploiting near-miss positive instances, which are specified

by positivity, to lessen the class imbalance.

We have investigated the loss theoretically for the proposed method and for

conventional cost-sensitive learning in consideration of the degree of imbalance,

and have shown that our method lessens the imbalance with the help of near-miss

positive instances. Extensive experiments have illustrated that our method out-

performs the conventional cost-sensitive classification under highly imbalanced

conditions and is more versatile than are existing regression or rank-based ap-

proaches.
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Chapter 4

Causality-aware Utility Modeling

4.1 Introduction

Predicting individualized causal effects is an essential issue in many domains for

decision-making. For example, a doctor considers which medication would be the

most effective for a patient, a teacher finds which problems are most effective for

helping students learn, and a retail store manager considers which assortment of

items would improve the overall store sales. To support such decision-making,

we advocate providing a prediction of which actions will lead to better outcomes.

Recent efforts in causal inference and counterfactual machine learning have

focused on making predictions of the potential outcomes that correspond to each

action for each individual target on the basis of observational data. Observa-

tional data consists of features of targets, past actions actually taken, and their

outcomes. We have no direct access to the past decision-makers’ policies, i.e.,

the mechanism of how to choose an action under a given target feature. Un-

like in normal prediction problems, pursuing high-accuracy predictions only with

respect to the historical data carries the risk of incorrect estimates due to the

sampling bias in the past policies. This bias may cause spurious correlation [Si-

mon, 1954, Pearl, 2009], which might mislead the decision-making. For those

cases where real-world experiments such as randomized controlled trials (RCTs)

or multi-armed bandit are infeasible or too expensive, causal inference methods

provide debiased estimation of potential outcomes from observational data.

While most of the existing approaches assume limited action spaces such as a

binary one, as in conditional average treatment effect (CATE) estimation, there

are many real-world situations where the number of options is large. For example,

doctors need to consider which combination of medicines will best suit a patient.

For such cases, it is difficult to apply existing methods (as in [Shalit et al.,

2017, Yoon et al., 2018, Schwab et al., 2018, Lopez et al., 2020]) for two rea-

This chapter is based on Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, and Hisashi
Kashima, Regret minimization for causal inference on large treatment space, in International
Conference on Artificial Intelligence and Statistics (AISTATS), 2021.
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sons. One is the issue of sample-efficiency for large action spaces. Since the

sample sizes for each action would be limited, building models for each action (or

using a multi-head neural network), which existing methods adopt, is not sample-

efficient. The other reason is the gap between the decision-making performance

and the regression accuracy of the potential outcome. Even if we manage to

achieve the same level of regression accuracy as when the action space is limited,

the same decision-making performance is no longer guaranteed in a large action

space, as we demonstrate in Section 4.4. This is because, in a nutshell, the over-

estimated potential outcome of only a single action may mislead the decision,

even though it has only a small impact on the mean regression accuracy over all

actions.

To achieve informative causal inference for decision-making in a large action

space, we propose solutions for the above two issues. For the sample-efficiency, we

propose extracting representations not only from features but also from actions.

We extend two existing representation-based causal effect inference methods, re-

spectively, to balance the representation distribution to be similar to that in the

randomized trials.

For the gap between the decision performance and the regression accuracy, we

prove that we can further improve the decision performance by minimizing the

classification error of whether or not each action is relatively good for each target,

in addition to the regression error (MSE). Unlike the recommendation problems

in which ranking losses can be used, we cannot directly observe whether the action

is relatively good or not since only one action and its outcome is observed for each

target. We therefore propose a proxy loss that compares the observed outcome

to the estimated conditional average performance of the past decision-makers,

which is estimated by regular supervised learning.

In summary, our proposed method minimizes both the classification error and

the MSE by using debiased representations of both the features and the actions.

We demonstrate the effectiveness of our method through extensive experiments

with synthetic and semi-synthetic datasets.

4.2 Problem Setting

In this section, we formulate our problem and define a decision-focused perfor-

mance metric. Our aim is to build a predictive model to inform decision-making.

Given a feature vector x ∈ X ⊂ Rd, the learned predictive model f is expected

to correctly predict which action a ∈ A(x) leads to a better outcome y ∈ Y ⊂ R,

where A(x) is a feasible subset of a finite action space A given x. We here-

after assume that the feasible action space does not depend on the feature, i.e.,

A(x) = A, for simplicity. A typical case of large action spaces is when an action
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x a Ya y

a = 0 a = 1

x1 0 1 – 1

x2 1 – 3 3

x3 1 – 2 2

x4 0 2 – 2

x a Ya y
a0 0 1
a1 0 1 0 1
a2 0 1 0 1 0 1 0 1

x1 (0, 0, 1) – 1 – – – – – – 1
x2 (0, 1, 0) – – 3 – – – – – 3
x3 (0, 0, 0) 4 – – – – – – – 4
x4 (1, 0, 1) – – – – – 6 – – 6

Figure 4.1: An example data table for our causal inference on a combinatorial
action space. Dashes indicate missing entries. Only factual outcomes are observed
(when a = a′, ya′ is observed) and the counterfactual records {ya}a̸=a′ are missing.
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(c) Low ERu
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Figure 4.2: Example scatter plots of true vs. predicted potential outcomes for a
target (fixed x) for different models. Each point corresponds to an action. ERu

µ

corresponds to the rate of instances in the shaded areas. Assuming that the
predicted best action â∗ := arg max

a
f(x, a) is adopted, minimizing the difference

between its outcome yâ∗ and the true optimal outcome ya∗ (regret) is our aim
(see the definition in Section 4.4).

consists of multiple causes, i.e., A = {0, 1}m (combinatorial action space).

With an unknown policy of past decision-makers µ(a|x), which is a condi-

tional distribution called propensity, we assume there exists a joint distribution

p(x, a, y1, . . . , y|A|) = p(x)µ(a|x)p(y1, . . . , y|A||x), where y1, . . . , y|A| are the po-

tential outcomes corresponding to each action. The observed (factual) outcome

y is the one corresponding to the observed action a, i.e., a training instance is the

triplet (xn, an, yan), where n denotes the instance index, and the other (counter-

factual) potential outcomes are regarded as missing, as shown in Fig. 4.1.

We make the following assumptions on the distributions of the observational

data.

• (y1, . . . , y|A|) ⊥ a|x (unconfoundedness)

• ∀a ∈ A and ∀x, 0 < µ(a|x) < 1 (overlap)

These are commonly required to identify causal effects [Imbens and Wooldridge,

2009, Pearl, 2009].
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4.3 Regret Minimization Network: Debiased Potential Outcome

Regression and Classification

For this problem of estimating the action evaluation model, we propose our re-

gret minimization network (RMNet), which consists of two parts: 1) a decision-

focused risk to reduce the gap between the decision-making performance and the

regression accuracy, and 2) representation balancing methods for debiased and

sample-efficient learning.

4.3.1 Decision-focused risk

Most of the existing causal effect inference methods aim at minimizing the MSE

of the treatment effect (a.k.a. the precision in the estimation of heterogeneous

effect (PEHE) [Hill, 2011]) in the binary treatment setting. In multiple treatment

settings, a typical performance measure is the MSE averaged uniformly over all

the actions [Schwab et al., 2018, Yoon et al., 2018]:

MSEu(f) := E
x

[
1

|A|
∑
a∈A

E
ya|x

[(ya − f(x, a))2]

]
. (4.1)

We refer to MSEu as MSE, or specifically the uniform MSE, in this chapter.

On the other hand, there is a gap between the decision performance and the

regression accuracy (MSEu). Specifically, we do not necessarily have to accurately

estimate the outcomes of candidate actions, but it is enough to identify better

actions among others to achieve a higher decision-making performance. This is

analogous to the personalized ranking approach in recommender systems [Rendle

et al., 2009], in which pairwise comparison of the item preference for each target

user is considered.

The pairwise ranking approach [Joachims, 2002, Burges et al., 2005] measures

the consistency between the actual and predicted orders by means of the error

rate of pairwise comparison as

ERrank(f) = E
i,j

[I(yi ≥ yj ⊕ f(xi) ≥ f(xj))] ,

where ⊕ denotes the logical XOR. However, we cannot apply a regular pairwise

loss, since we typically only have the outcome for one action observed among the

feasible actions. Instead, we propose minimizing the following comparison loss to

the average performance of the past decision-makers as the personalized baseline

for the target (x):

ERu
µ(f) := E

x

[
1

|A|
∑
a∈A

I(ya ≥ ȳ ⊕ f(x, a) ≥ ȳ)

]
, (4.2)
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where ȳ = Ea∼µ(a|x) [Ya|x] is the average performance of the past decision-makers

under x. As shown in Fig. 4.2, minimizing ERu
µ leads to better models in terms

of decision performance. The MSE is the same in Fig. 4.2(a) and Fig. 4.2(b),

and thus MSE cannot be used to determine which of these prediction models is

better. Minimizing ERu
µ enables us to correctly choose the model in Fig. 4.2(a)

with a high decision performance (small regret).

Replacing the expected value ȳ with its estimation g(x) and the 0-1 loss with

cross entropy, we get the following risk:

ẼR
u

g (f) :=E
x

[
− 1

|A|
∑
a∈A
{s log v + (1− s) log(1− v)}

]
, (4.3)

where s := I(y−g(x) ≥ 0) and v := σ(f(x, a)−g(x)), and g(x) ≃ Ea∼µ(a|x) [Ya|x]

is the estimated average performance of the past decision-makers. We first fit g

with the standard supervised learning procedure from {(xn, yn)} and then plug

it into (4.3).

Not only the classification error but also the regression error (MSE) matters

to the decision-making performance. This is because even with high classification

accuracy, decisions might be misleading if only one misclassified action a is pre-

dicted as the best (ŷa is the highest among others {ŷa′}a′) but is actually quite

bad (ya is quite low), as in Fig. 4.2(c).

Therefore, we propose minimizing a combination of both the regression and

classification risks, i.e., the geometric mean of them:

Lu(f ; g) =

√
ẼR

u

g (f) ·MSEu(f). (4.4)

The reason we chose the geometric mean will be explained theoretically in Sec-

tion 4.4. Intuitively, it is sufficient to make one of these losses small, e.g., if the

classification loss is zero, good decisions can be made even if the MSE is large. As

shown in Fig. 4.2(a), a model that achieves ERu
µ = 0 (thus the geometric mean is

also zero) can at least outperform the past decision-makers on average (yâ∗ ≥ ȳ)

no matter how large the MSEu is.

4.3.2 Debiased and sample-efficient learning

While accessible observational data taken from p(x, a) is biased by the propensity

µ(a|x), our target expected risk Lu(f ; g) is averaged over all actions uniformly,

i.e., pu(x, a) = p(x)pu(a), where pu(a) = Unif(A) is the discrete uniform distri-

bution. In this section, therefore, we construct two debiasing methods for the

sampling bias that performs domain adaptation from p(x, a) to pu(x, a) as ex-

tensions of two existing approaches. Also, we propose network architectures that

extract representations from both the feature and the action for better general-
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ization in a large action space.

There are two major approaches for debiased learning in individual-level

causal inference. One is a density estimation-based method called inverse prob-

ability weighting using propensity score (IPW) [Austin, 2011], in which each

instance is weighted by the inverse propensity 1/µ(an|xn). Since the expected

risk matches that of the RCT, a good performance can be expected asymptoti-

cally under accurate estimation of µ or when it is recorded as in logged bandit

problems. However, in observational studies where the propensity has to be es-

timated and plugged in, its efficacy would easily decrease [Kang et al., 2007]. It

becomes further difficult when it comes to a large treatment space. Zou et al.

[2020] proposed assuming an intrinsic low-dimensional structure for combinatorial

treatment assignments (bundle treatments) a ∈ {0, 1}p and estimating weights

on the latent space. While in this study we examine a general case of large

treatment spaces without additional assumptions, it may be necessary to intro-

duce such assumptions to consider such a huge treatment space of combinatorial

interventions.

The other approach is representation balancing [Shalit et al., 2017, Johansson

et al., 2016, Lopez et al., 2020], in which a representation extractor of the feature

ϕx is trained to eliminate the effect of confounding as well as to preserve the

relation to the outcome. Shalit et al. [2017], Johansson et al. [2016] proposed

regularizing the conditional probabilities of representations {p(ϕx|a)}a to be sim-

ilar to each other by means of the integral probability metric (IPM) regularizer

[Müller, 1997, Sriperumbudur et al., 2012] (as in Fig. 4.3(a)) for limited action

spaces such as the binary space A = {0, 1}. Lopez et al. [2020] proposed regu-

larizing the representation ϕx to be independent from the action a by means of

the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005, 2008]

for real-valued action space A ⊂ R. We extend this approach to large treatment

spaces.

To deal with a large treatment space, we propose performing representa-

tion extraction from the treatment a as well as the feature x. RMNet-IPM

(Fig. 4.3(b)) extracts the joint representation ϕx,a from x and a, which is regu-

larized to be distributionally similar to that of the RCTs pu(ϕx,a). That is, IPM

measures the discrepancy between the distributions

p(ϕx,a) :=

∫ ∑
a′

p(ϕx,a|x′, a′)µ(a′|x′)p(x′)dx′,

pu(ϕx,a) :=

∫ ∑
a′

p(ϕx,a|x′, a′)pu(a′)p(x′)dx′,

where p(ϕx,a|x′, a′) = δ(ϕx,a−ϕ(x′, a′)). IPM is defined for a pair of distributions
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ϕ
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ϕxx

a HSIC (p(ϕx), p(a))

̂y

̂ya

Lreg(y, ̂y)

L(y, ̂ya; ̂y)

ϕxx

a HSIC (p(ϕx), p(ϕa))

̂y

̂ya

Lreg(y, ̂y)
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(c) RMNet-HSIC (proposed)

Figure 4.3: Network structures of counterfactual regression for CATE [Shalit
et al., 2017, Schwab et al., 2018] and our proposed methods. A broken line
indicates no backpropagation.

(p1, p2) over S and a function family G as

IPMG (p1, p2) = sup
g∈G

∣∣∣∣∫
S
g(s) (p1(s)− p2(s)) ds

∣∣∣∣ .
We adopt the set of 1-Lipschitz functions as G (as in [Shalit et al., 2017]), after

which IPM is equivalent to the Wasserstein distance. Specifically, we use an en-

tropy relaxation of the exact Wasserstein distance, called Sinkhorn distance [Cu-

turi, 2013], to ensure compatibility with the gradient-based optimization. This

discrepancy upper-bounds the gap between our target risk (4.4), which is aver-

aged over the uniform distribution with respect to action pu(x, a) = p(x)pu(a),

and the one of observational distribution p(x, a). Theoretical analysis for this

point can be found in Appendix B.1.2.

Note that minimizing the discrepancy between p(ϕx,a) and pu(ϕx,a) and pre-

serving the causal relation are not necessarily incompatible. In this sense, our

approach, which directly regularizes the representation distribution p(ϕx,a) to

be similar to that taken from RCTs pu(ϕx,a), provides a weaker and sufficient
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condition for this domain adaptation problem. We discuss this point in Ap-

pendix B.1.3.

RMNet-HSIC (Fig. 4.3(c)) extracts each representation ϕx and ϕa from x

and a separately, and they are regularized to be independent from each other

by minimizing HSIC(p(ϕx), p(ϕa)). HSIC can be defined as a special case of the

(squared) maximum mean discrepancy (MMD), which is an instance of the IPM

with the class of norm-1 reproducing kernel Hilbert space (RKHS) functions, as

follows:

HSIC(p(ϕx), p(ϕa)) = MMD2(p(ϕx, ϕa), p(ϕx)p(ϕa)).

This means the joint distribution is being separated, i.e., p(ϕx, ϕa) = p(ϕx)p(ϕa),

but it does not mean the consistency with the RCTs pu(ϕx,a) = p(ϕx)pu(ϕa).

To compensate p(ϕa), we weight the loss according to the estimated marginal

probability of the actions β = 1/p̂(a).

The resulting objective is

min
f

1

N

∑
n

L(f(xn, an), yn; g(xn), βn) + α ·Dbal ({ϕ(xn, an)}n) + R(f), (4.5)

where L is the empirical instance-wise version of (4.4), Dbal is the balancing

regularizer (IPM or HSIC), and R is a regularizer. The resulting learning flow is

shown in Algorithm 4.

4.4 Relation Between Prediction Accuracy and Decision-making

Performance

In this section, we analyze our decision-focused performance metric. This anal-

ysis demonstrates the difficulty of maximizing the decision performance only by

minimizing the regression error when the action space is large. At the same time,

however, it is shown that we can further minimize the upper-bound of the regret

by minimizing a classification error, which justifies our proposed loss (4.4) in

Section 4.3.1.

Here we define the decision performance of a model f as the simple average

of the potential outcomes for the top-k predicted actions by f . We call that per-

formance metric the mean cumulative gain (mCG), and also define its difference
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Algorithm 4 Regret minimization network

Input: Observational data D = {(xn, an, yn)}n, a hyperparameter α
Output: Trained network parameter W
1: Train g by an arbitrary supervised learning method with D′ = {(xn, yn)}n,

e.g.:
g = arg min

g′

∑
(yn − g′(xn))2

2: if Method is RMNet-HSIC then
3: Set weight βn = 1/p̂(an) for each instance, where p̂(an) is the count

p̂(an) := |{n∈D|a=an}|
|D|

4: else
5: Set βn = 1 for all n
6: end if
7: while Convergence is not met do
8: Sample mini-batch {n1, . . . , nb} ⊂ {1, . . . , N}
9: Calculate the gradient of the supervised loss L in (4.5):

g1 = ∇W 1
b

∑
L(f(xni , ani ;W ), yni ; g(xni), βni)

10: Calculate the gradient of the representation balancing regularizer:
g2 = ∇WDbal({ϕ(xni , ani ;W )})

11: Obtain step size η with an optimizer (e.g., Adam [Kingma and Ba, 2015])
12: W ← [W − η(g1 + αg2)]
13: end while
14: return W

from the oracle’s performance (regret):

mCGk(f) :=
1

k
E
x

 ∑
a:rank(f(x,a))≤k

ya

 , (4.6)

Regretk(f) :=
1

k
E
x

 ∑
a:rank(ya)≤k

ya

−mCGk(f), (4.7)

where rank(·) is the rank among all the feasible actions, i.e., rank(f(x, a)) =

rank(f(x, a); {f(x, a′)}a′) := |{a′ | f(x, a′) ≥ f(x, a), a′ ∈ A}|. Here, for binary

outcome cases, (1−mCGk=1(f)) is known as the policy risk [Shalit et al., 2017].

Since the first term in (4.7) is constant with respect to f , the mCG and the regret

are two sides of the same coin as the performance metrics of a model.

The relation between the regret and the regression and classification accu-

racies is the following (full proof and analysis on the tightness can be found in

Appendix B.1.1).

Proposition 4.4.1. The regret in (4.7) will be bounded with uniform MSE in

(4.1) as

Regretk(f) ≤ |A|
k

√
ERu

k(f) ·MSEu(f), (4.8)
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where ERu
k(f) is the top-k classification error rate, i.e.,

ERu
k(f) :=

E
x

[
1

|A|
∑
a∈A

I ((rank(ya) ≤ k)⊕ (rank(f(x, a)) ≤ k))

]
.

Proof Sketch. Let s(x, a) := I(rank(ya) ≤ k) − I(rank(f(x, a)) ≤ k) denote the

classification error. Then, we have

k · Regretk(f) = |A| E
x,a∼pu(x,a)

[s(x, a)ya]

≤ |A| E
x,a∼pu(x,a)

[s(x, a)(ya − f(x, a))] (4.9)

≤ |A|
√

E
x,a∼pu(x,a)

[s(x, a)2] E
x,a∼pu(x,a)

[(ya − f(x, a))2] (4.10)

= |A|
√

ERu
k(f) ·MSEu(f).

Equation (4.9) is from the definition of s(x, a) and (4.10) is from the Cauchy-

Schwarz inequality. By dividing both sides by k, we get the proposition.

Since ERu
k(f) ≤ 1 for any f , we see that only minimizing the uniform MSE

as in existing causal inference methods leads to minimizing the regret. However,

if |A|/k is large, the bound would be loose, and only unrealistically small MSEu

provides a meaningful guarantee for the regret.

At the same time, we see that the bound can be further improved by mini-

mizing the uniform top-k classification error rate ERu
k(f) simultaneously, which

leads to our proposed method. Let k′ be the past decision-makers’ average per-

formance, i.e., ya∗
k′+1
≤ Ea∼µ(a|x)[ya|x] ≤ ya∗

k′
. Then, the proposed method can be

interpreted as minimizing the upper-bound of Regretk′ . While training a model

for a particular k is an interesting direction, the proposed method is not so sen-

sitive to the difference between the decision-making performance of the data k′

and the actual k to be evaluated, as we will see in Section 4.5. Another interest-

ing direction is optimizing k or the decision-making policy. The mCGk can be

interpreted as the expected performance (reward) of the following plug-in policy

that takes an action uniformly at random from the predicted top-k actions:

πfk (a|x) :=


1

k
if rank(f(x, a); {f(x, a′)}a′) ≤ k

0 otherwise,

Therefore, choosing k means choosing a policy. If we choose k greater than 1,

the oracle’s performance (the first term in (4.7)) would be smaller, but the upper

bound of the regret (4.8) would be larger. Thus there may exist an optimal k > 1
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that maximizes the overall performance of the decision-making.

4.5 Experiments

We investigated the effectiveness of our method through numerical experiments

on synthetic and semi-synthetic datasets. We newly designed both datasets for

the problem setting with a large action space.

4.5.1 Setup

Baseline methods

We compared our proposed method (RMNet) with ridge linear regression (OLS),

random forests [Breiman, 2001] (RF), k-nearest neighbor (kNN), Bayesian addi-

tive regression trees (BART) [Hill, 2011], naive deep neural network (S-DNN),

naive DNN with multi-head architecture for each action (M-DNN) (a.k.a. TAR-

NET [Shalit et al., 2017]), RankNet [Burges et al., 2005], and a straightforward

extension of the existing action-wise representation balancing method (counter-

factual regression network (CFRNet)) [Shalit et al., 2017]. We also made an

ablation study to clarify the contributions of each component. The strength of

representation balancing regularizer α in CFRNet and the proposed method was

selected from [0.1, 0.3, 1.0, 3.0, 10.0]. Other specifications of the DNN parameters

can be found in Appendix B.2.1.

Evaluation

We used the normalized mean gain (NMG) as the main metric, defined as

NMG :=

∑
x yâ∗(x)∑
x ya∗(x)

,

where â∗ and a∗ are the predicted and true best actions for each x, respectively.

The NMG is proportional to the mean CG (k = 1) (4.6). We can see NMG ≤ 1.

Since we have standardized the outcome, the chance rate is NMG = 0. In addition

to NMG, we have also evaluated with respect to MSEu and ERu
k=1. The validation

and the model selection were based on the NMG. For those cases where the

complete validation dataset to compute NMG is not accessible, an alternative

validation strategy needs to be considered, e.g., imputing missing values by 1-

NN or BART (as in [Hassanpour and Greiner, 2019]) or constructing a special

method (such as the counterfactual cross-validation in [Saito and Yasui, 2020]).
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Figure 4.4: Data generation models for synthetic data experiment. Shaded vari-
ables denote the accessible variables in training. Non-shaded variables are latent
one-dimensional representations of x and a.

Infrastructure

All the experiments were run on a machine with 28 CPUs (Intel(R) Xeon(R)

CPU E5-2680 v4 @ 2.40GHz), 250GB memory, and 8 GPUs.

4.5.2 Experiment on synthetic data

Dataset

We prepared four biased datasets with sampling bias in total to examine the

robustness of the proposed and baseline methods. For a detailed description of

the generation process, see Appendix B.2.1. The feature space and the action

space are fixed to R5 and {0, 1}5, respectively. The true causal models are set as

follows. Three settings (called Quadratic) have a relation ya(x) = a2Υ − 2xΥ + ε,

where aΥ = w⊤
a a and xΥ = w⊤

x x are the one-dimensional representations of a

and x, respectively, and where wa, wx ∼ N(0, 1/5)5. The last setting (called

Bilinear) has a bilinear relation y = x⊤Wa + ε, where W ∼ N(0, 1/25)5×5. For

training, only one action and the corresponding outcome for each x are sampled

as p(a|x) ∝ exp(10 |xΣ − aΣ|), where xΣ and aΣ are additional representations of

x and a. The three settings for the quadratic patterns correspond to the relation

between ·Σ and ·Υ as illustrated in Fig. 4.4(a)–(c), i.e., xΣ = xΥ (=: x∆) in

Setups A and C, and aΣ = aΥ (=: a∆) in Setups B and C. These relations of

variables were designed to reproduce spurious correlations, which mislead the

decision-making as follows. In Setup A, aΣ would have dependence on y through

its dependence on x∆ despite aΣ itself having no causal relation to y. In the

same manner, in Setup B, xΣ would have a dependence on y through a∆, and

the causal effect of a∆ may appear discounted. Setup C has both effects. The

sample sizes for x were 1,000 for training, 100 for validation, and 200 for testing.
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Table 4.1: Synthetic results on NMG (larger is better and the maximum is one)
and its standard error in ten data generations. Best and second-best methods
are in bold.

Method Quadratic-A Quadratic-B Quadratic-C Bilinear

OLS 0.35 ± 0.13 0.74 ± 0.10 0.73 ± 0.12 0.02 ± 0.02

RF 0.71 ± 0.08 0.24 ± 0.02 0.91 ± 0.04 0.67 ± 0.03

kNN 0.58 ± 0.05 0.33 ± 0.04 0.53 ± 0.07 0.59 ± 0.03

BART 0.53 ± 0.12 0.91 ± 0.05 0.99 ± 0.00 0.14 ± 0.07

M-DNN 0.46 ± 0.09 0.42 ± 0.12 0.57 ± 0.12 −0.01 ± 0.04

S-DNN 0.63 ± 0.08 0.43 ± 0.07 0.60 ± 0.08 0.58 ± 0.09

CFRNet 0.46 ± 0.08 0.43 ± 0.12 0.63 ± 0.13 −0.01 ± 0.04

RankNet 0.62 ± 0.09 0.70 ± 0.05 0.68 ± 0.08 0.74 ± 0.04

RMNet-IPM 0.86 ± 0.04 0.84 ± 0.03 0.82 ± 0.05 0.77 ± 0.04

RMNet-HSIC 0.90 ± 0.02 0.88 ± 0.05 0.86 ± 0.07 0.14 ± 0.03

Table 4.2: Semi-synthetic results on NMG with the standard error in ten different
samplings of the training data. The MSEu and ERu

k=1 are also shown. Best and
second-best methods are in bold.

Normalized mean gain MSEu ERu
k=1

|A| 8 16 32 64 8 16 32 64 8 16 32 64
Method

OLS −0.04 ± 0.15 −0.08 ± 0.20 −0.10 ± 0.13 −0.01 ± 0.10 1.12 1.89 1.70 5.86 0.221 0.116 0.061 0.031
RF 0.24 ± 0.08 0.33 ± 0.07 0.33 ± 0.05 0.38 ± 0.05 1.03 0.87 0.93 1.07 0.214 0.114 0.059 0.030
kNN 0.35 ± 0.04 0.39 ± 0.04 0.33 ± 0.04 0.39 ± 0.02 0.59 0.64 0.64 0.63 0.211 0.113 0.059 0.030
BART −0.05 ± 0.13 0.13 ± 0.13 0.13 ± 0.10 0.04 ± 0.09 1.06 1.05 1.15 1.63 0.222 0.116 0.060 0.031
M-DNN 0.40 ± 0.05 0.48 ± 0.06 0.30 ± 0.07 0.37 ± 0.05 0.78 0.83 0.82 0.84 0.211 0.113 0.059 0.030
S-DNN 0.28 ± 0.09 0.25 ± 0.10 0.32 ± 0.07 0.45 ± 0.05 0.75 0.64 0.74 0.74 0.212 0.114 0.059 0.029
CFRNet 0.50 ± 0.06 0.39 ± 0.14 0.39 ± 0.10 0.35 ± 0.05 0.78 0.80 0.87 0.86 0.210 0.113 0.058 0.030
RankNet 0.35 ± 0.07 0.29 ± 0.09 0.38 ± 0.06 0.45 ± 0.05 6.08 10.13 8.47 2.42 0.210 0.113 0.058 0.029

RMNet-IPM 0.68 ± 0.01 0.61 ± 0.05 0.61 ± 0.04 0.51 ± 0.06 0.76 0.81 0.85 0.75 0.204 0.109 0.055 0.029
RMNet-HSIC 0.59 ± 0.04 0.57 ± 0.06 0.55 ± 0.06 0.69 ± 0.06 0.48 0.66 0.61 0.39 0.207 0.109 0.056 0.028

Results

The results listed in Table 4.1 show that our proposed method achieved the best

or comparable performance under all settings, while the other methods varied in

performance across settings. We analyze the reason for the poor performance of

RMNet-HSIC in Bilinear in the ablation study in Section 4.5.4.

4.5.3 Experiment on semi-synthetic data

Dataset (GPU kernel performance)

We used the SGEMM GPU kernel performance dataset [Nugteren and Codreanu,

2015, Ballester-Ripoll et al., 2019], which has 14 feature attributes of GPU kernel

parameters and four target attributes of elapsed times in milliseconds for four

independent runs of each combination of parameters. We used the inverse of

the mean elapsed times as the outcome, resulting in 241.6k instances in total.

By treating some of the feature attributes as action dimensions, we obtained

a complete dataset, which has all the entries (potential outcomes) in Fig. 4.1

observed. Then we composed our semi-synthetic dataset by biased subsampling

of only one action a and the corresponding potential outcome ya for each x. The

details of this preprocess can be found in Appendix B.2.1.
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The sampling policy in the training data was

p(a|x, y) ∝ exp(−10|y − [x⊤, a⊤]⊤w|),

where w is sampled from N (0, 1)d+m. This policy reproduces a spurious corre-

lation; that is, a random projection of the feature and the action [x⊤, a⊤]⊤w is

likely to have a little causal relation with y but does have a strong correlation

due to the sampling policy. This policy also depends on y, which violates the

unconfoundedness assumption. However, the dataset we used has a low noise

level, i.e., y ≃ g(x, a) for some function g, and thus the violation is limited, i.e.,

p(a|x, y) ≃ p(a|x, g(x)).

We split the feature set {xn}n into 80% for training, 5% for validation, and

15% for testing. Then, for the training set, only one action a and the correspond-

ing outcome y was taken for each x. The resulting training sample size for each

setting of m is listed in Table B.2 in Appendix B.2.1. We repeated the training

and evaluation process ten times for different splits and samplings of a.

Results

The results listed in Table 4.2 show that our proposed methods outperformed

the others in NMG in all cases. The decision performance (NMG) was more

consistent with ER than MSE, indicating that ER, as well as MSE, needs to be

considered. The performance of multi-head DNNs (M-DNN and CFRNet) de-

creased in larger action spaces, while single-head DNNs (S-DNN and the proposed

methods) maintained their performance. This demonstrates the importance of

sample efficiency by extracting the representation of both the feature and the

action.

4.5.4 Ablation study

We examined the effect of each component of the proposed method, i.e., the

balancing regularizer (Dbal), each component of the risk (MSE and ER), and the

representation extraction from the action (ϕa) and the reweighting with respect

to the marginal distribution of the action (β) for RMNet-HSIC. Table 4.3 shows

the results.

The effectiveness of Dbal was verified in the setting of |A| = 32. Also, the effec-

tiveness of ER was significant in the Bilinear setting. Extracting representation

from the action (ϕa) was quite effective in Semi-synthetic settings. The reweight-

ing (β) was also effective in the Semi-synthetic settings, while it decreased the

performance in the Bilinear setting. A possible reason is the estimation variance

induced by plugging the estimated marginal distribution of the action p̂(a) into
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Table 4.3: Ablation study of the proposed methods (indicated by (†)) on semi-
synthetic dataset. Dbal indicates the type of balancing regularizer. MSE and
ER are the used loss. ϕa indicates whether or not the representation is also
extracted from the action, i.e., if ϕa is not checked, identity function is used for
ϕa (i.e., ϕa = a). β indicates the reweighting with 1/p̂(a), which is needed only
in the HSIC-based methods (as explained in Section 4.3.2). Best and second-best
methods are in bold.

Normalized mean gain
Synthetic Semi-synthetic

Dbal MSE ER ϕa β Bilinear |A| = 32 |A| = 64

† IPM ✓ ✓ ✓ — 0.77 ± 0.04 0.61 ± 0.04 0.51 ± 0.06

IPM ✓ ✓ — 0.73 ± 0.03 0.61 ± 0.05 0.58 ± 0.05

IPM ✓ ✓ — 0.55 ± 0.10 0.55 ± 0.05 0.49 ± 0.05

None ✓ ✓ ✓ 0.72 ± 0.03 0.39 ± 0.07 0.49 ± 0.06

†HSIC ✓ ✓ ✓ ✓ 0.14 ± 0.03 0.55 ± 0.06 0.69 ± 0.06

HSIC ✓ ✓ ✓ 0.11 ± 0.02 0.56 ± 0.07 0.72 ± 0.02

HSIC ✓ ✓ ✓ 0.16 ± 0.05 0.59 ± 0.05 0.68 ± 0.06

HSIC ✓ ✓ ✓ 0.04 ± 0.03 0.31 ± 0.08 0.23 ± 0.09

HSIC ✓ ✓ ✓ 0.51 ± 0.07 0.38 ± 0.07 0.49 ± 0.06

HSIC ✓ ✓ 0.63 ± 0.05 0.29 ± 0.07 0.22 ± 0.09

weights as its inverse, which is the same issue as the inverse propensity score

weighting approach.

4.6 Summary

In this chapter, we have investigated causal inference on a large action space with

a focus on decision-making performance. We analyzed the decision-making per-

formance brought about by a model through a simple prediction-based decision-

making policy. We showed that the bound with only the regression accuracy

(MSE) gets looser as the action space gets large, which demonstrates the diffi-

culty of utilizing causal inference in decision-making in a large action space. At

the same time, however, our bound indicates that minimizing not only the regres-

sion loss but also the classification loss leads to better performance. From this

viewpoint, our proposed methods minimize both the MSE and the classification

loss of whether or not the outcome is better than the average performance of the

past decision-makers. Specifically, we adopt the cross-entropy with a teacher la-

bel indicating whether an observed outcome is better than the estimated average

decision performance of the past decision-makers under a given feature. For the

sample efficiency in a large treatment space, we proposed extracting representa-

tions from both the feature and the action. To generalize in the distribution of

RCTs, we proposed two balancing regularizers that encourage the representation

distribution to be similar to that of RCTs as extensions of existing approaches.

Experiments on synthetic and semi-synthetic datasets, which were designed to

have misleading spurious correlations, demonstrated the superior performance of

the proposed methods with respect to the decision performance.
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Chapter 5

Causality-aware Modeling for Set-wise

Recommendation

5.1 Introduction

Recently, the importance of selecting the combinations of items, i.e., the set-wise

(exact-k, slate, combinatorial) modeling, has received attention in the recommen-

dation context [Gong et al., 2019, Wang et al., 2019a, Ie et al., 2019, Jiang et al.,

2019]. The set-wise modeling aims to overcome the limitation with the greedy

top-k recommendations [Cremonesi et al., 2010], such as the lack of diversity in

the recommended items [Ziegler et al., 2005, Wang et al., 2018]. For example,

recommending multiple TVs at the same time is unlikely to result in the purchase

conversion of both, while recommending a TV and a DVD player may increase

the probability that both will be purchased. The former is called the substitute

relation and the latter is called the complementary relation [Kök et al., 2008]. We

consider learning the set-wise model that captures such relationships to evaluate

the whole set of items to recommend.

Here we should note the difference between causation and association. Just

because some items are often purchased at the same time does not necessarily

mean that the probability of being purchased increases if they are recommended

at the same time [Manchanda et al., 1999, Kök et al., 2008]. We want to rec-

ommend a set of items that results in a larger expected total outcome (e.g.,

purchase conversion) through recommending simultaneously. That is, we have

to consider the prediction under interventions (a.k.a. actions or treatments) by

a recommender system, which is known as the causal effect inference problem

[Rubin, 2005]. As shown in Fig. 5.1, the conditional average treatment effect

estimation (CATE) in causal inference as well as the recommendation problems

can be viewed as learning from biasedly missing dataset (missing not completely

at random) [Rubin, 2005, Little and Rubin, 2019].

This chapter is based on Akira Tanimoto, Tomoya Sakai, Takashi Takenouchi, and Hisashi
Kashima, Causal combinatorial factorization machines for set-wise recommendation, in Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2021.
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x a Ya y

a = 0 a = 1

x1 0 1 – 1

x2 1 – 3 3

x3 1 – 2 2

x4 0 2 – 2

x a Ya y
a0 0 1
a1 0 1 0 1
a2 0 1 0 1 0 1 0 1

x1 (0,0,1) – 1 – – – – – – 1
x2 (0,1,0) – – 3 – – – – – 3
x3 (0,0,0) 4 – – – – – – – 4
x4 (1,0,1) – – – – – 6 – – 6

(a) CATE estima-
tion

Item 1 Item 2 Item 3 Item 4

User 1 1 4

User 2 2 3

User 3 4 2

User 4 5 2

(b) Top-k recommenda-
tion

a {Item 1, 
Item 2}

{Item 1, 
Item 3}

{Item 1, 
Item 4}

{Item 2, 
Item 3}

{Item 2, 
Item 4}

{Item 3, 
Item 4} 

i Item 
1 2 1 3 1 4 2 3 2 4 3 4

User 1 1 4
User 2 2 3
User 3 4 2
User 4 5 2

(c) Set-wise recommendation

Figure 5.1: Example data tables for existing and our problem settings. Potential
outcome prediction for CATE estimation and matrix completion for recommen-
dation are both missing value completion under biased observations (missing not
completely at random). The set-wise recommendation can model the dependence
among items, e.g., a customer purchase only an item out of recommended items
in the same category.

Recently, in the context of the top-k recommendation, several methods have

been proposed that address the missing entries not completely at random using

debiasing techniques in causal inference [Schnabel et al., 2016, Wang et al., 2019b].

As shown in Fig. 5.1(c), a dataset for the set-wise recommendation would be

severely sparse, and thus it is quite important to take care not to overfit for

biased training data. We therefore consider the problem of debiased inference for

the set-wise recommendation.

Our approach is training a set-wise evaluation (rate/click prediction) model

for the recommendation in a debiased manner. Considering that the final goal is

to choose the action that is expected to maximize the outcome, a straightforward

approach is learning a policy that outputs the recommended set (as in [Gong et al.,

2019, Wang et al., 2019a, Ie et al., 2019, Jiang et al., 2019]) instead of making

a prediction of outcomes. Even so, it is reasonable to make a prediction of the

outcome when the predicted value itself is needed. In assortment optimization

in retail stores, for example, store owners should also determine the ordering

quantity on the basis of the demand forecast [Kök et al., 2008]. In such cases, the

prediction of the outcome itself is essential for the decision-makers. We discuss

how to optimize the set of items to recommend using a prediction model in

Section 5.4.3.

5.2 Problem Setting

Our goal is to build an outcome (rate/click) prediction model under the feature

x (typically the customer ID) and the action a (the set of recommended items)

from biased data. Our training set is S = {(xn, an, yn)}Nn=1 ∼ p(y|a, x)µ(a|x)p(x),

where x ∈ X is the feature of a user (typically the one-hot encoding of the user

ID), a ∈ A ⊂ {0, 1}|I| is the action (the recommended set) in a combinatorial

action space A with the candidate set of items I, µ(a|x) is the propensity (the
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policy of the past decision-makers or logging policy), and yn = (yn,t)t∈an =

(yn,t1 , . . . , yn,t|an|) ∈ R|a| is the outcome vector that consists of outcomes for each

recommended items. Then, we train a model f(x, a) to predict the outcomes

(yt)t∈a.

The overall outcome of a set-wise recommendation a for a user can be eval-

uated by the summation of the rates of the recommended items, i.e., ya =∑
t∈a yn,t. In that case, the difference from the simple outcome prediction on

a combinatorial action space [Zou et al., 2020] is that we observe not only the

overall outcome ya ∈ R but all the rates for each recommended item {ys,t}t.
The challenge in this chapter is how to obtain an outcome prediction model f

sample-efficiently from observational data collected by a biased and possibly un-

known policy (propensity) µ(a|x). Formally, we pursue the prediction accuracy

on unbiased distribution:

Lu(f) := E
p(ya|x)pu(a)p(x)

[ℓ(ya, f(x, a))], (5.1)

where ya denotes the potential outcome (rate or click; each entry of Fig. 5.1(c)),

pu(a) = Unif(A) is the discrete uniform distribution on the action space A, and ℓ

is the instance-wise loss. To evaluate (5.1) unbiasedly, we use unbiased datasets

for testing. In addition to the prediction accuracy, we also evaluate the value of

recommendation, i.e., the estimated average clicks when we optimize the item set

to recommend with the model. We will discuss this metric in Section 5.5.2.

5.3 Related Work

5.3.1 Treatment effect estimation

The goal of conditional average treatment effect (CATE) estimation is to estimate

the causal effect τ for each individual specified by the feature x. CATE is defined

as τ(x) = E[y(1) − y(0)|x], where y(1), y(0) ∈ Y ⊂ R are the potential outcomes

for each action, namely, if we take an action a = 1, then we observe y(1), and

if a = 0, we observe y(0). The challenges here are the missing values and the

selection bias, i.e., true τ is never observed but either y(0) or y(1) is observed,

and the logging policy µ(a|x) is not constant (biased) in x. A typical approach is

to train a potential outcome prediction model f : X × {0, 1} → Y and estimate

CATE by τ̂(x) = f(x, a = 1) − f(x, a = 0). A typical performance measure is

the expected precision in estimation of heterogeneous effect (PEHE) [Hill, 2011]

ϵPEHE(τ) := Ex[(τ(x) − τ̂(x))2], or the MSE on the joint distribution with the

uniform policy.

A well-known workaround called the inverse probability of treatment weight-

ing using the propensity score (IPW) [Austin, 2011] aims to debias by means of
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instance weighting using the propensity µ(a|x) as

LIPW(f) := E
x,a

[
1

2µ(a|x)
(ya(x)− f(x, a))2

]
.

Since the expected IPW risk matches the expected risk on the randomized con-

trolled trials (RCTs), a good performance can be expected asymptotically. When

the true propensity is not recorded, however, we have to estimate the propensity

score and plug-in with finite sample size, and then its performance might degrade

[Kang et al., 2007]. A recent trend to improve non-asymptotic performance is

using a representation balancing regularizer [Shalit et al., 2017, Johansson et al.,

2016], which encourages matching the conditional probability of feature represen-

tations p(ϕ(x)|a) among actions. They utilize an adversarial domain adaptation

technique, i.e., training a feature extractor ϕ to deceive a treatment discrimina-

tor g(x) and construct hypotheses {ha}a on the extracted feature representation

z = ϕ(x) for each action. We utilize the causal inference approach for a large

action space discussed in Chapter 4 since our action space is vast, as illustrated

in Fig. 5.1(c). We extract representations from both the features and the actions

as z = ϕ(x, a) and regularize the representation distribution to be similar to that

extracted from randomized actions zu = ϕ(x, au).

5.3.2 Modeling for recommendation

In real-world recommendation systems, the sampling distribution for items is not

uniform because popular items tend to be frequently recommended, among other

reasons. In order to reduce such sample selection bias, treatment effects have

been actively considered recently. Schnabel et al. [2016] proposed a simple ap-

proach of utilizing propensity scores to weigh the error of the matrix factorization

method. A similar but different approach in [Bonner and Vasile, 2018] aims at de-

biasing by means of multi-task learning of a large (biased) observational dataset

and a small randomized dataset. At the same time, the importance of selecting

the combinations of items, i.e., set-wise modeling, has also received attention re-

cently in the recommendation context [Gong et al., 2019, Wang et al., 2019a, Ie

et al., 2019, Jiang et al., 2019]. Gong et al. [2019] considered the exact-k recom-

mendation problem, in which the task is to select k items to show to users in a

limited area of a screen. In [Gong et al., 2019], the item interaction is expressed

as a graph, and then a neural network with an attention mechanism learns a

policy for selecting items one by one. While these methods [Gong et al., 2019, Ie

et al., 2019, Jiang et al., 2019] focus on generating the recommended set of items

in a computationally efficient manner, the selection bias is not considered, and

there is a risk of performance decay under strong selection biases in real-world

problems. Therefore, we investigate the debiased modeling of the evaluator for
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Customer

Recommended items

Figure 5.2: Combinatorial FM structure

set-wise modeling utilizing recent techniques in causal inference.

5.4 Causal Combinatorial Factorization Machines for Set-wise

Recommendation

5.4.1 Model: combinatorial factorization machines

In recommendation tasks, the outcome, which we aim to maximize, would typi-

cally be the sum of the rates of recommended items to users. However, we can

observe not only the sum but also the rates for each item. Therefore, we use

the rates for each item as the supervision, with consideration of the other items

recommended to (or rated by) each customer user. That is, our data consists of

D = {yn, xn, ain, a¬in }Nn=1,

where n is the sample index, xn and ain are the one-hot encoded user ID and the

target item ID associated with the rate yn, respectively, and a¬in = (0, 1, 1, 0, . . .)

is the other items recommended to the user at the same time where 1s corre-

spond to the IDs of other recommended items. The final set-wise outcome for

a user identified by x′ is the summation of the outcomes of recommended items∑
n:xn=x′

yn and the corresponding action is denoted as a = ain + a¬in .

Factorization machines [Rendle, 2010] enable us to learn the matrix factor-

ization model by means of SGD with one-hot encoding of the user IDs and the

item IDs. We extend the factorization machines to take the second-order inter-

actions between the recommended items into account for the set-wise modeling.

Specifically, we include the second-order interaction term of the target item and

the other recommended items (or other items rated by the same user), as

f(x, a) :=w0 +
∑
j

wuj xj +
∑
j

waj a
i
j +

∑
j,j′

⟨zuij , ziuj′ ⟩xjaij′ +
∑
j,j′

⟨ziaj , zaij′ ⟩aija¬ij′ ,

(5.2)
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where w0, w
u, wa, zui, ziu, zia, and zai are the model parameters. The resulting

network structure is shown in Fig. 5.2. Let 1j be the one-hot encoding of an

integer j. When one recommends the t-th item to the s-th user, and at the same

time the other item set recommended is T ′, the prediction (5.2) is written as

f

(
x = 1s, a =

(
1t,
∑
t′∈T ′

1t′

))
= w0 + wus + wat + ⟨zuis , ziut ⟩+

〈
ziat ,

∑
t′∈T ′

zait′

〉
.

The final term handles the interaction between the target item t and other

recommended items T ′, which represents the substitution or complementary re-

lation between recommended items. A positive inner product value ⟨ziaj , zaij′ ⟩ > 0

represents that the j-th target item is a complementary relation with respect to

the j′-th item, and the rate would be higher when recommended with the j′-th

item. Since the interaction is considered to be invariant to the permutation of

other recommended items, we utilize the sum-pooling as proposed in deep sets

for permutation-invariant functions [Zaheer et al., 2017].

5.4.2 Debiased loss with causal inference techniques

To train our model (5.2) in a debiased manner from the biased observational

data, we introduce two debiasing techniques, namely, the weighting technique

proposed in the top-k recommendation and the representation balancing tech-

nique proposed in causal inference for large treatment spaces.

Although the representation balancing approach in Chapter 4 is scalable to a

vast set-wise action space in both statistically and computationally, a limitation

is that the balanced representation of inputs cannot capture the difference in

the output distributions (i.e., when p(y) ̸= pu(y)) as shown in [Johansson et al.,

2019, Zhao et al., 2019]. Especially in recommendation datasets with explicit

feedbacks, the rate prior shift is often observed because the users are likely to rate

their favorite items among others. This difference is exactly what previous IPW-

based methods for recommendation address (called naive-Bayes IPW) [Schnabel

et al., 2016, Wang et al., 2019b]. Therefore, we combine this weighting with the

representation balancing approach.

Let us define the integral probability metric (the representation balancing

regularizer) as

DIPM(p1, p2) := sup
g∈G

∣∣∣∣∫
Z
g(z)(p1(z)− p2(z))dz

∣∣∣∣ (5.3)

with a function class G. We utilize the 1-Lipschitz function class for G as in

[Shalit et al., 2017, Tanimoto et al., 2021b], after which DIPM would be the

Wasserstein distance Dwass. With any weighting function β(z), assuming that
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the representation extractor z = ϕ(x, a) is invertible and 1
B ℓ(z) is in the function

class G for some B > 0 with respect to z, our target loss on the randomized

distribution (5.1) can be bounded as

Lu(f) ≤ L(f ;β) +B ·DIPM (p(z)β(z), pu(z)) ,

where L(f ;β) is the weighted loss on the observational data. This bound justifies

minimizing the empirical estimate of r.h.s. as a proxy of unobservable unbiased

loss Lu(f). The proof is given by just replacing the source distribution p(z) in the

non-weighted version of the bound in Chapter 4 with the weighted distribution

p(z)β(z). Note that, the weighted distribution must satisfy
∫
p(z)β(z)dz = 1,

otherwise a constant critic g(z) = c for c > 0 gives a non-zero IPM value and the

supremum in (5.3) does not exist when G is the 1-Lipschitz function class.

For the weights β, we can utilize the information obtained in each problem

setting. Assuming that there exists the true rating function y = h∗(z), the naive-

Bayes weighting can be reproduced as

β(z) :=
Epu(z)[h∗(z)]
Ep(z)[h∗(z)]

=
pu(y)

p(y)
=: β(y). (5.4)

Thus, when we have no access to the true propensity µ but have access to the

rate prior shift pu(y)/p(y) as assumed in [Schnabel et al., 2016, Wang et al.,

2019b], we can utilize this weighting. If we have access to the true propensity, we

can utilize it as β(z = ϕ(x, a)) = pu(a)/µ(a|x), after which DIPM would be zero,

which recovers the full IPW method.

Our resulting objective function is

min
f

1

N

N∑
n=1

βnℓ(f(xn, an), yn) + R(f) + α · D̂wass

(
{zn, zun, βn}Nn=1

)
, (5.5)

where βn = β(yn) = pu(yn)
/
p(yn) if available, ℓ(y′, y) is the instance-wise loss,

namely the weighted MSE or cross-entropy for rate and click prediction, respec-

tively, R is a regularizer, zn = ϕ(xn, an), zun = ϕ(xn, a
u
n), aun is random actions

sampled from Unif(A), α ≥ 0 is the regularization strength, D̂wass is the balanc-

ing regularizer with weights, as

D̂wass({zn, zun, βn}Nn=1) := sup
g∈G

∣∣∣∣∣ 1∑N
n=1 βn

N∑
n=1

βng(zn)− 1

N

N∑
n=1

g(zun)

∣∣∣∣∣ , (5.6)

where G is the 1-Lipschitz function class.
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Algorithm 5 Combinatorial Factorization Machines

Input: D = {xn, an, yn}Nn=1, where an = (ain, a
¬i
n )

Output: trained network parameter W
1: Calculate instance weights {βn}n by, e.g., (5.4), with the training and the

validation sets
2: while Convergence is not met do
3: Sample mini-batch {n1, . . . , nb} ⊂ {1, . . . , N}
4: Calculate the gradient of the supervised loss:

g1 = ∇W 1
b

∑b
i L(ϕ(xni , ani ;W ), yni)

5: Sample uniformly random action
{au1 , . . . , aub } ∼ Ab.

6: Calculate the gradient of the critic with β in (5.6):
g2 = ∇W D̂wass({ϕ(xni , ani ;W )}, {ϕ(xni , a

u
i ;W )}; {βni})

7: Obtain step size η with an optimizer, e.g., Adam [Kingma and Ba, 2015]
8: W ← [W − η(g1 + αg2)]
9: end while

10: return W

5.4.3 Optimizing the item set to recommend using a model

We here explain how to obtain a set-wise recommendation from our prediction

model. Recall that k is the number of items that we present to customers from |I|
candidate items. One approach to finding a promising set-wise recommendation

is that we first prepare |A| = |I|Ck candidates of set-wise recommendation and

then choose the one that achieves the highest estimated outcome. Specifically, for

a customer whose feature vector is x, we prepare a set of item-set vectors {aj}|I|Ck

j=1

with |a| = k and then choose the combination by argmaxj f̂(x, aj), where f̂ is the

learned predictor. This approach is accurate, but it is intractable when |I|Ck is

large. When the number of item-sets is large, one can adopt a greedy approach to

a set-wise recommendation. That is, we iteratively select one item to construct a

set-wise recommendation. Initialize the selected item-set vector a′ with zero vec-

tor. For a customer x, we select an item by j′ = argmaxj f̂
(
x, (ai = 1j , a

¬i = a′)
)
.

Let a′′ be the vector of current selected item-set as a′′ = a′ + 1j′ . We again select

an item by j′′ = argmaxj f̂
(
x, (ai = 1j , a

¬i = a′′)
)
. We repeat the above proce-

dure until the number of selected items becomes k. Since |I|Ck increase quickly

even for a small k, this greedy approach is effective in terms of computation.

5.5 Experiments

We investigated the effectiveness of our method through experiments using three

real-world datasets. Two of them were originally for the top-k recommendation.

The other one was recorded in a way that follows the set-wise recommendation,

where multiple items were shown simultaneously to a user.
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5.5.1 Sequential display setting

Datasets

As in [Schnabel et al., 2016], we first evaluated on two real-world datasets with

explicit feedbacks, Yahoo! R3 [Marlin et al., 2007] and Coat [Schnabel et al.,

2016], to compare with existing causal-aware top-k recommendation methods

[Schnabel et al., 2016, Wang et al., 2019b]. Yahoo! R3 had 15,300 user IDs

and 1,000 song IDs, and Coat had 290 user IDs and 300 item IDs, both of which

contain missing not at random (MNAR) data for training and missing completely

at random (MCAR) data for testing. For the combi-FM-based methods, we used

the set of rated items for each user as a in each of the training and the testing

datasets without overlap, i.e., a in the test data did not contain the rated items

in the training. We cannot completely reproduce the situation in which a user

examines each item and rates it sequentially due to the lack of the order of items

that the user rated, though the set of rated items contains the set of previously

exposed items to the user, which can be captured by our set-wise modeling.

Baseline methods

We compared our proposed method with several existing methods and straight-

forward combinations of our model and existing training methods, namely, factor-

ization machines (FM) [Rendle, 2010], FM with IPW with weights estimated by

naive Bayes (FM-IPWnb), combinatorial FM (5.2) without IPM regularization

nor IPW (Combi-FM), Combi-FM with naive-Bayes IPW (Combi-FM-IPWnb),

Combi-FM with the Wasserstein with weights by naive-Bayes IPW (Combi-FM-

Wass) and existing matrix factorization (MF) and its causal-aware extensions

based on naive-Bayes IPW reported in [Wang et al., 2019b]. For the FM-based

methods, we used the width of 10 for the representation ϕ. For the combi-CFR

(proposed), α in (5.5) was fixed to 0.5.

Results

Table 5.1 lists the overall results. The proposed method outperformed all other

methods with respect to MSE in the Yahoo! R3 dataset. In contrast, an existing

method (MF-DR-JL) performed best in the Coat dataset. The Coat dataset is

relatively small, which might be why the SGD-based methods (FM-based and

Combi-FM-based) did not achieve a good performance. In Yahoo! R3 dataset,

in contrast, the Combi-FM model worked well, which implies that the set of

items rated by the user affected the user’s rating to the target item and our

model effectively extracted that information. Combi-FM-based methods suffered

from their model complexity and might overfit the biased observational training
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Table 5.1: Test MAE and MSE on Yahoo and Coat datasets. (*) reported in
[Wang et al., 2019b]. The top methods for each metric are in bold and the
second places are italicized and underlined.

YAHOO COAT
Method MAE MSE MAE MSE

MF (*) 1.154 1.891 0.920 1.257
MF-IPS (*) 0.810 0.989 0.860 1.093
MF-DR-JL (*) 0.747 0.966 0.778 0.990

FM 0.803 1.170 1.187 2.534
FM-IPWnb 0.736 1.031 1.148 2.398

Combi-FM 0.959 1.259 0.930 1.290
Combi-FM-IPWnb 0.821 1.050 0.945 1.281
Combi-FM-Wass (proposed) 0.781 0.958 0.966 1.287

data (e.g., vanilla Combi-FM performed worse than FM); however, with a proper

regularization, as proposed (IPW and the Wasserstein-based), the generalization

improved. This indicates that the combination of set-wise modeling and debiased

training is important.

5.5.2 Simultaneous display setting

We investigated a CTR prediction for situations in which more realistic set-wise

recommendations are made. A customer sees three items simultaneously in an

impression, and clicks for each item are recorded. Here, we evaluated not only

the accuracy of the predictions but also the value of the recommendations made.

Dataset

We used Open Bandit Dataset (OBD) [Saito et al., 2020] taken from a fashion e-

commerce platform, ZOZOTOWN. This dataset was constructed for evaluating

bandit algorithms offline and for evaluating offline policy evaluation methods.

OBD contains two datasets taken with two (recorded) logging policies µ, namely,

a random policy and a biased policy (Bernoulli Thompson sampling, BTS). We

used the dataset with BTS for training and validation, and used the dataset with

the random policy for testing. Half of the BTS dataset was used for validation.

OBD contains three “campaigns”, namely, “men’s”, “women’s”, and “all”. We

used only the dataset of the “all” campaign. The size of the candidate set of items

was |I| = 80, and the size of the action space would be |A| = 80C3 = 82, 160.

We preprocessed datasets as follows. OBD is anonymized, i.e., the customer

ID is deleted; thus, we constructed pseudo-user ID (PUID) from four hashed

customer features. Only records tied to PUIDs that appeared in both training

and test datasets were used, after which we had 397 unique PUIDs in total.

The original data was not intended for the set-wise recommendation, and the
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three items displayed at the same impression were divided into three (mostly

consecutive) records; thus, we processed to combine them. Consecutive records

with the same pseudo-user ID and with different display positions were treated

as an impression. After these processes, we had 2, 549, 288 combined records in

the BTS training/validation set and had 293, 871 records in the random test set.

Baseline methods

We compared FM and our Combi-FM models with three losses, namely, the

naive loss, weighted loss with the true propensity score, and the Wasserstein

regularized loss without weights (βn = 1). The regularization strength of the

balancing regularizer was chosen from {0.1, 0.3, 1., 3.} by validation.

Evaluation

We evaluated our method and baselines with two metrics. The first one is a

conventional ranking-based metric for imbalanced classification, average precision

(AP), which is the area under the precision-recall curve. While AP (or AUC,

discounted cumulative gain, etc.) is a popular metric in recommendation and

information retrieval, these global ranking-based metrics do not fit well with the

recommendation problem on e-commerce platforms. A platform needs to choose

an recommendation action for a customer rather than choosing a customer to

recommend, and therefore it is preferable to use metrics based on local ranking

of candidate actions for each customer. For this reason, the other metric we

evaluated was the value of the policy with predictions V (πf ), i.e., the expected

clicks when determining the action using the model:

V (πf ) = Eπf ,p(x) [ya] = Eµ(a|x),p(x)
[
πf (a|x)

µ(a|x)
ya

]
, (5.7)

where πf is a plug-in policy distribution with a model f , which is defined below, µ

is the propensity (logging policy) of the dataset, and ya is the summation of clicks

for each item shown at the same time. we use a policy of randomly performing

an action from among the top k%-predicted actions for evaluation:

πkf (a|x) =

 k
100

(
rank(f̃(x, a); {f̃(x, a′)}a′∈|A|) ≤

|A|k
100

)
0 (otherwise),

(5.8)

where rank(v;V ) denotes the ranking of a value v among a set of values V ,

f̃(x, a) =
∑

t∈Ta f(x, (ai = 1t, a
¬i =

∑
t′∈Ta\t 1t′)) is the total predicted clicks,

and where Ta is the set of recommended items. Since the expectation in (5.7) is

taken over the same distribution with the dataset, we can empirically estimate

(5.7) with the test set, which is known as the inverse propensity score estimate
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Table 5.2: Test policy value V
(
πk=1%
f

)
and average precision (AP) on the ZOZO

dataset. The top methods for each metric are in bold. Mean and standard
deviation under three runs with different training/validation splits are reported.

ZOZOTOWN
Method Policy value (k=1%) (×10−2) AP (×10−3)

FM 1.18 ± 0.05 4.05 ± 0.06
FM-IPW 0.93 ± 0.02 4.64 ± 0.09
FM-Wass 1.23 ± 0.07 3.81 ± 0.16

Combi-FM 1.18 ± 0.05 4.05 ± 0.06
Combi-FM-IPW (proposed) 1.47 ± 0.02 4.51 ± 0.08
Combi-FM-Wass (proposed) 1.43 ± 0.09 4.58 ± 0.42

[Bottou et al., 2013]. This metric (with the plug-in policy (5.8)) is similar to

the cumulative gain, where the outcomes of the top-k best-predicted items are

counted, but the difference is that the ranking takes place for all candidate ac-

tions for each customer. To avoid heavy computation of {f(x, a′)}a′∈|A| for each

customer, we subsampled A′ ⊂ A of cardinality 1, 000 to evaluate πk=1%
f .

Here, it is difficult in terms of off-line evaluation to evaluate only with respect

to the best-predicted action as described in Section 5.4.3. This is because it is

very rare that a single action that is chosen among the |I|Ck candidates matches

exactly the recorded action, and the estimation variance of the metric would be

too large. Therefore we adopted a stochastic policy rather than the deterministic

policy of performing the best-predicted action.

Results

As shown in Table. 5.2, our proposed Combinatorial FM model with debiasing

techniques achieved the best performances in policy value and comparable perfor-

mances in AP. Notably, Combi-FM-Wass (without weights β) performed almost

the best in both scores despite not using propensity score information. The

chance rate that calculated from the click rate was V (Unif(A)) = 1.05 × 10−2.

Thus the proposed method achieved approximately 1.4 times as many clicks as

random, even though the action was not optimized but randomly chosen from

the top 1% predicted actions.

5.6 Summary

In this chapter, we have proposed an extended FM model and debiased learning

method for the set-wise recommendation. Our model is based on the factorization

machines and extended to take into account the second-order interactions between

recommended items. We utilize weighting and the representation balancing reg-

ularizer to alleviate the bias in observations and to achieve better performance.
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Experiments on real-world recommendation datasets demonstrated the superior

performance of the proposed methods, especially for large-scale datasets.
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Chapter 6

Conclusion and Future Directions

6.1 Conclusion

In this thesis, we aimed at more automated modeling for data-driven decision

making, started with the machine learning formulation problem, and explored

the idea of utility-level modeling, its challenges, and approaches. That is, we

have to consider the utility of the decision based on the trained model to fully

automate the modeling procedure, including the choice of performance metric

and loss function. In Chapter 1, we discussed three challenges when transforming

predictive modeling into direct utility modeling:

1-1 Computationally expensive optimization during training with respect to the

next action in sequential decision-making problems

1-2 Sample selection bias due to the past decision-makers’ policy (propensity)

2 How to incorporate with intermediate results (states) for sample-efficiency

In the following chapters, we discussed approaches for solving each of these chal-

lenges.

In Chapter 2, we discussed the first challenge. When the decision-making is

sequential, the outcome can only be evaluated in the long run, and thus the imme-

diate utility of action in a time step would be a prediction of the outcome under

the conditions of subsequent actions optimized. Even when the state transition

phenomenon is independent, the optimization objective is often dependent among

components of the whole target. An example we take was the maintenance opti-

mization of infrastructure. Although the deterioration processes of each patch of

infrastructure are independent of each other, when it comes to the maintenance

action, simultaneous maintenance is economical, which leads to combinatorial

optimization of maintenance action. For this problem, we exploited a locality in

dependency and designed a decomposed Q-function for efficient optimization by

dynamic programming.
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In Chapter 3, we discussed (2) the statistical challenge of the scarce out-

come, i.e., how to incorporate with intermediate states. This information is not

associated with inputs nor output of the utility model to train; thus, how to

incorporate this information is not straightforward. Therefore, we discussed the

framework of learning using privileged information (LUPI), enabling us to uti-

lize the intermediate information as a part of supervision (privileged information;

PI). We examined this idea under a typical situation, i.e., imbalanced classifica-

tion with numerical labels, and revealed the benefit of utilizing PI theoretically

and experimentally. Our theoretical analysis revealed that our proposed method

reduces the estimation variance by identifying “near-miss” instances that allevi-

ate the class imbalance. Experiments have shown the versatile performance of

our method for various datasets and metrics compared to other approaches, i.e.,

direct classification without PI, indirect regression, and rank-based modeling of

intermediate results. This versatility implies the possibility of integrating these

approaches, i.e., direct modeling and predictive modeling of each phenomenon,

by modeling directly but utilizing intermediate results as PI. On the other hand,

utilizing a predictive model for intermediate state by sampling counterfactual

intermediate results is a more popular approach in reinforcement learning [Moer-

land et al., 2020]. How this differs from the LUPI framework and which approach

is appropriate in which cases are matters for future research.

In Chapter 4, we discussed (1-2) the statistical challenge of vast action spaces,

i.e., the sampling bias due to the past decision-makers’ policy. We have shown

that extending the causal inference approach to large action spaces is effective

for this problem, i.e., we suppose the potential outcomes of all possible actions,

including counterfactual ones, and train a model aiming accuracy over all the po-

tential outcomes. We revealed that the performance of decision-making (regret)

is (not directly evaluated but) bounded using two types of accuracies, namely,

the regression accuracy (MSE) and a kind of classification accuracy of whether

the action is relatively good or not. This is the first work linking the accuracy in

causal inference to the decision-making performance to the best of our knowledge.

To generalize the large action space, we proposed a single-head architecture and

debiased training with representation balancing both feature and action.

In Chapter 5, we extended our causal inference method to combinatorial (set-

wise) recommendation problem. To take into account the dependency of recom-

mended items such as substitutional or complementary relationships, we extended

the factorization machines to input the simultaneously recommended items other

than the prediction target. We integrated the representation balancing method

introduced in Chapter 4 with the instance weighting approach, which overcomes

the weakness of representation balancing for the rate (outcome) prior shift. While

the set-wise model tends to overfit the biased training data due to its complexity,
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our debiased objective alleviates the overfit and achieves favorable performances.

In summary, in order to eliminate the manual formalization in predictive

analytics, we extended the utility-level modeling to a wide range of previously

challenging areas to handle with reinforcement learning. They are (1) the do-

mains where the action space is vast and thus computationally or statistically

challenging, and (2) ones where the outcome is scarce and thus the intermediate

information is essential. Since many decision-making problems can be expressed

as optimization of the utility function, our utility modeling is a promising direc-

tion towards automating data-driven decision-making.

6.2 Future Directions

Finally, we discuss possible future directions towards automated data-driven

decision-making. First, while we focused on the LUPI framework for the sample-

efficiency, a model-agnostic and thus versatile approach, incorporating model

knowledge is another possible approach, such as the Markov property utilized in

model-based reinforcement learning. Investigating which of these approaches is

promising in what situations or integrating them is an exciting direction.

Second, we have focused on the utility modeling part and assumed a greedy

plug-in policy for the decision-making. However, the policy also has room for

improvement, or even is essential to consider, in some situations. When the

action optimization is computationally hard with no desirable properties such as

locality to exploit, a possible remedy is modeling the policy and sample from it

instead of optimization, which is known as the actor-critic algorithm [Konda and

Tsitsiklis, 2000]. Also, the greedy policy might be vulnerable under the existence

of rare state-action pairs (i.e., the propensity is nearly zero µ(a|x) ≃ 0, which is

usually excluded by the strong ignorability assumption in causal inference). For

such situations, inducing the policy to avoid such rare actions by incorporating

imitation learning [Hussein et al., 2017] or estimating utility conservatively out-

of-distribution [Kumar et al., 2020] are possible approaches.

Combining online settings is the final direction. We have focused on the offline

setting in this thesis since the experiment in real situations is often expensive or

even infeasible due to political issues. However, offline modeling requires strong

assumptions such as ignorability and might converge slowly compared to online

methods. For example, when some information utilized by past decision-makers

is not recorded (e.g., patient’s complexion), then the conditional independency

a ̸⊥ (ya)a | x) and thus the strong ignorability is no longer satisfied, and the

training can be misled. Also, offline evaluation of the trained model for model

selection or deployment decision has the same issue. Although there are a number

of causal inference methods developed for this situation, all of them have other
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assumptions to the best of our knowledge. To make matters worse, it is not

possible to determine from data alone whether these conditions are met or not.

Therefore, an analyst with a good understanding of these conditions should be

involved in offline-only settings.

We hope that further investigation will be made in these directions and that

modeling technology will automate decision-making everywhere in society.
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Appendix A

Appendix to Chapter 3

A.1 Proofs

A.1.1 Proof of Theorem 3.4.1

First, we prepare a lemma to upper bound using the Lipschitz constant of the

instance-wise loss function. In the contraction lemma of the Rademacher com-

plexity [Shalev-Shwartz and Ben-David, 2014], the Lipschitz constant with re-

spect to the scoring function value is constant for all instances. However, in the

case of cost-sensitive loss, the Lipschitz constant is large (C+) only for a small

number of instances (positive), and it is small (C−) for most of the instances

(negative). Therefore, to get a tighter upper bound, it is preferable to evaluate

the Lipschitz constant, instance by instance.

Lemma A.1.1 (Element-wise contraction). For each n ∈ [N ], let ℓn : R→ R be a

ρn-Lipschitz function; namely, for all α, β ∈ R we have |ℓn(α)−ℓn(β)| ≤ ρn|α−β|.
Then, the Rademacher complexity R of the losses is bounded as

R({ℓn(an)}) ≤ R({ρnan}).

Proof. First, we set an upper bound for an instance, n = 1. Let p(ϵn = 1) = 1/2

and p(ϵn = −1) = 1/2 for all n ∈ [N ]. Then, the Rademacher complexity is
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bounded as

E
ϵ

[
sup
{an}

{∑
ϵnℓn(an)

}]

=
1

2
E

ϵ2,...,ϵN

[
sup
{an}

{
ρ1ℓ(a1) +

N∑
n=2

ϵnℓn(an)

}
+ sup

{an}

{
−ρ1ℓ(a1) +

N∑
n=2

ϵnℓn(an)

}]

=
1

2
E

ϵ2,...,ϵN

[
sup

{an},{a′n}

{
ρ1(ℓ(a1)− ℓ(a′1)) +

N∑
n=2

ϵnℓn(an) +

N∑
n=2

ϵnℓn(a′n)

}]

≤1

2
E

ϵ2,...,ϵN

[
sup

{an},{a′n}

{
ρ1|a1 − a′1|+

N∑
n=2

ϵnℓn(an) +

N∑
n=2

ϵnℓn(a′n)

}]

=
1

2
E

ϵ2,...,ϵN

[
sup

{an},{a′n}

{
ρ1(a1 − a′1) +

N∑
n=2

ϵnℓn(an) +
N∑
n=2

ϵnℓn(a′n)

}]

= E
ϵ1,...,ϵN

[
sup
{an}

{
ϵ1ρ1a1 +

N∑
n=2

ϵnℓn(an)

}]
.

The inequality comes from the definition of the Lipschitz function. By applying

this repeatedly for all instances, we get the lemma.

Next, we provide the proof of the theorem. Let g = w⊤x be the deci-

sion function value. Then ℓ(y, g(x)) is mn-Lipschitz w.r.t. g, where mn :=

max
{
C+

p+
pT,+

σ(z/T ), C−
p−
pT,−

σ(−z/T )
}
. Then, we have

E
S

[LT (ŵ)]− inf
w:∥w∥2≤B

LT (w)

≤ 2E
S
E
ϵ

[
sup

w:∥w∥2≤B

{
1

N

∑
ϵnℓ(w, xn, yn)

}]

≤ 2 E
S,ϵ

[
1

N
sup

∥w∥2≤1

∑
n

ϵnmnw
⊤x

]
(Lemma A.1.1)

= 2 E
S,ϵ

[
B

N

∥∥∥∥∥∑
n

ϵnmnxn

∥∥∥∥∥
2

]

≤ 2E
S

B
N

√√√√√E
ϵ

∥∥∥∥∥
N∑
n

ϵnmnxn

∥∥∥∥∥
2

2


 (Jensen’s ineq.)

≤ 2BX

N

√√√√E
S

[
N∑
n

m2
n

]
. (Jensen’s ineq.)

The first inequality comes form Theorem 26.3 in Shalev-Shwartz and Ben-David

[2014].

Since s2n ≤ sn, max(a, b) ≤ a + b for a, b > 0, and ES [
∑N

n sn] = NpT,+, the
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r.h.s. is bounded as follows:

r.h.s. ≤ 2BX√
N

√
C2
+

p2+
pT,+

+ C2
−
p2−
pT,−

,

which concludes the proof.

A.1.2 Proof of Proposition 3.4.2

The additional bias can be rewritten as

(bias1 + bias2) = E
x

[
∆+ E

S
[ℓ(g∗(x))− ℓ(ĝ(x))]

+ ∆− E
S

[ℓ(−g∗(x))− ℓ(−ĝ(x))]
]
,

(A.1)

where ∆+ and ∆− are the differences in weighted labels defined as ∆+ :=

Ez|x [CT,+σ(z/T )− C+I(z ≥ 0)] and ∆− := Ez|x [CT,−σ(−z/T )− C−I(z < 0)].

From Hölder’s inequality, we have

r.h.s. of (A.1) ≤E
x

[|∆+|] max
x:p(x)>0

∣∣∣∣ES [ℓ(g∗(x))− ℓ(ĝ(x))]

∣∣∣∣
+ E

x
[|∆−|] max

x:p(x)>0

∣∣∣∣ES [ℓ(−g∗(x))− ℓ(−ĝ(x))]

∣∣∣∣
≤c
(
E
x

[|∆+|] + E
x

[|∆−|]
)
. (A.2)

On the other hand, from the definition of η, we have

p(η = 1) = E
z

[σ(z/T )] = pT,+,

p(η = 1|x) = E
z|x

[σ(z/T )] ,

and thus

1

2pT,+
E
z|x

[σ(z/T )] p(x) =
1

2

p(η = 1|x)p(x)

p(η = 1)
=

1

2
p(x|η = 1).

Samely, we have

1

2p+
E
z|x

[I(z ≥ 0)] p(x) =
1

2
p(x|y = 1).

Therefore, in the BER minimization setting, i.e., C+ = 1/2p+ and CT,+ =
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1/2pT,+,

E
x

[|∆+|] =

∫ ∣∣∣∣Ez|x
[

1

2pT,+
σ(z/T )− 1

2p+
I(z ≥ 0)

]∣∣∣∣ p(x)dx

=
1

2

∫
|p(x|η = 1)− p(x|y = 1)|dx

=TV (p(x|η = 1), p(x|y = 1)) .

Samely, we have

E
x

[|∆−|] =

∫ ∣∣∣∣Ez|x
[

1

2pT,−
σ(−z/T )− 1

2p−
I(z ≤ 0)

]∣∣∣∣ p(x)dx

=
1

2

∫
|p(x|η = 0)− p(x|y = 0)|dx

=TV (p(x|η = 0), p(x|y = 0)) .

By substituting Ex [|∆+|] and Ex [|∆−|] in (A.2), we get the proposition.

A.2 Experimental Details

A.2.1 Computing infrastructure

All the experiments were run on a machine with eight CPUs (Intel Xeon E7-8850

2.0GHz, ten cores) and 1.0TB RAM.

A.2.2 Data preprocesses

We here describe the preprocesses for real datasets. First, we describe the com-

mon preprocesses for all datasets and then describe preprocesses for each dataset.

Common preprocesses

We applied the following preprocesses for all the datasets.

• The standardization, i.e., scaling and shifting so as to E[x] = 0 and Var[x] =

1 for each feature, was applied.

• The binary expansion was applied to categorical features, i.e., a categorical

feature that has k categories are expanded into k − 1 binary features. The

first category in the alphabetical order was not expanded.

• For datasets that has multiple files (wine quality and student datasets) are

concatenated, and a categorical feature that represents the source files was

added.
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• Instances that have missing features were deleted.

Toy

The toy data shown in Fig. 3.2(a), which we used also in the experiments, was

generated as follows. The coefficients w and the features x are drawn from 100-

dimensional standard normal distribution, and then, positivity z is drawn as

z ∼ N (5 exp(w⊤x/15), 2).

Air quality

For the target attribute (CO(GT)), the value −200 means missing and thus re-

moved. Categorical features named Date and Time was removed. In addition, a

feature named NMHC(GT) was removed since there exist many missing entries.

Year prediction MSD

We sampled 10k instances at random.

A.2.3 Baseline methods and hyperparameter ranges

The methods compared include conventional classification methods, regression-

based methods, and a rank-based method, as listed below. We also describe here

the hyperparameter ranges considered.

Hyperparameter ranges

The considered hyperparameter configurations are the following:

• The regularization strength was ranged from 10−2 to 102.

• T of our proposed method ranged from 10−3 to 102.

• γ of an RBF kernel exp(γ∥x− x′∥2) ranged from 10−2 to 102.

• For the GP, the hyperparameter optimizer was restarted five times.

• For the SMOTE-based methods, the number of neighboring points used to

synthesize over-sampled points was optimized from [3, 5, 8].

• For the RUSBoost, the number of estimators was optimized from [20, 30, 50],

random state ranged 0–2.
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Models with our proposed method

As our method is model-agnostic, we performed experiments on different types

of base classification learners. We adopted three models: logistic regression (LR)

with L1 and L2 regularizers each, and a support vector machine (SVM) with an

RBF kernel. The methods in this setting were as follows:

• proposed (base learner: LR (regularization: L1))

• proposed (base learner: LR (regularization: L2))

• proposed (base learner: SVM (kernel: radial basis function))

Conventional classification methods

These models use only the binary label y ∈ {0, 1}, not the numerical mediator

z ∈ R. We adopted the same models as those for the proposed method, namely

LR with L1 and L2 regularizers each and SVM for the cost-sensitive classification

and SMOTE. In a manner similar to that with the proposed method, the sample

weights were rebalanced in the cost-sensitive classification. In other words, we

learned from the data set D = {d1, d2, . . . , dN}, where dn = (xn, yn) consists of

a feature vector and a class label. This setting was normal classification. The

models compared in this setting were as follows:

• LR (regularization: L1)

• LR (regularization: L2)

• SVM (kernel: radial basis function)

Also, we compared the RUSBoost, which utilize the boosting method as the base

learner.

Regression-based methods

These methods learn and predict z ∈ R and then apply the threshold to the

prediction. We adopted Lasso regression, Ridge regression, and a Gaussian

process with an RBF kernel. In other words, we learned from the data set

D = {d1, d2, . . . , dN}, where dn = (xn, zn) consists of a feature vector and a

target variable. This setting was normal regression. The models compared in

this setting were as follows:

• Lasso regression

• Ridge regression

• Gaussian process (kernel: radial basis function)
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Rank-based method

This model is based on a pair-wise ranking method in which the rank information

is extracted from z. It learned a ranking function r(·). In {(xi,xj) | zi > zj},
the model was optimized to satisfy the pair-wise rank constraints: r(xi) > r(xj)

or r(xi) − r(xj) = 0, that is w⊤(xi − xj) = 0. In general, the linear SVM with

slack variables is commonly used for the pair-wise ranking method because of its

computational-efficiency. The model employed in this setting was as follows:

• Rank-SVM (kernel: linear)
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Appendix B

Appendix to Chapter 4

B.1 Proofs and Additional Analyses

B.1.1 Proof of Proposition 4.4.1

Proposition B.1.1. The expected regret will be bounded with uniform MSE in

(4.1) as

Regretk(f) ≤ |A|
k

√
ERu

k(f) ·MSEu(f),

where ERu
k(f) is the top-k classification error rate, i.e.,

ERu
k(f) :=E

x

[
1

|A|
∑
a∈A

I ((rank(ya) ≤ k)⊕ (rank(f(x, a)) ≤ k))

]
,

where ⊕ denotes the logical XOR.

Proof. We denote the true and the predicted i-th best action by a∗i and â∗i ,

respectively; i.e., rank(ya∗i ) = rank(f(x, â∗i )) = i. For all k ∈ [|A|], the target-

wise regret can be bounded as follows:

k · Regretk(x) :=
∑
i≤k

(
ya∗i − yâ∗i

)
≤
∑
i≤k

(
ya∗i − yâ∗i

)
+
∑
i≤k

(
fâ∗i − fa∗i

)
(B.1)

=
∑
i≤k

{(
ya∗i − fa∗i

)
−
(
yâ∗i − fâ∗i

)}
=
∑
a

{
(I(rank(ya) ≤ k)− I(rank(fa) ≤ k))(ya − fa)

}
,

where fa = f(x, a). Inequality (B.1) is from the definition of â∗i ; i.e.,
∑

i≤k fâ∗i
is the summation of the top-k fas out of {fa}a∈A, which must be larger than or

equal to the summation of k fas that are not necessarily top-k,
∑

i≤k fa∗i . Let us
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define a classification error s and the regression error e as

s(x, a) := I(rank(ya) ≤ k)− I(rank(fa) ≤ k),

e(x, a) := ya − fa.

The r.h.s. is written as

r.h.s. =
∑
a

s(x, a)e(x, a).

By taking the expectation with respect to x, we have

k · Regretk(f) = E
x

[∑
a

s(x, a)e(x, a)

]
= |A| E

(x,a)∼pu(x,a)
[s(x, a)e(x, a)]

≤ |A|
√

E
(x,a)∼pu(x,a)

[|s(x, a)|2] · E
(x,a)∼pu(x,a)

[|e(x, a)|2] (B.2)

=

{
E
x

[∑
a

I(rank(ya) ≤ k ⊕ rank(f(x, a)) ≤ k)

]
(B.3)

· E
x

[∑
a

(ya − f(x, a))2

]}1/2

= |A|
√

ERu
k(f) ·MSEuk(f),

where the inequality (B.2) comes from the Cauchy ‒ Schwarz inequality and the

equality (B.3) comes from the definitions of s and e. By dividing both sides by

k, we get the proposition.

Note that our bound cannot be improved without additional assumptions on

the true and assumed model classes of the causal mechanism f(x, a) (and thus

the true potential outcomes and its predictions). For any |A|, k ≤ |A|/2, ERu
k ,

MSEu, and ϵ > 0, there exist a joint distribution of potential outcomes and x,

and a model f that have the gap (the ratio) between both sides of the proposition

is (1 + ϵ).

Let us define a prototype of a potential outcome vector yκ as

yκ :=(y1, . . . , y|A|)

=(1, . . . , 1︸ ︷︷ ︸
κ

,−1, . . . ,−1︸ ︷︷ ︸
κ

, 0, . . . , 0),

that is, the first κ dimensions are 1, the following κ dimensions are −1, and the

rest are 0. When the true outcome is y = tyκ for t > 0 and κ ≤ k, and when the

prediction of the model is bad (misleading) as ŷ = −ϵy, the components of the
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r.h.s. would be

MSEu = 2κt2(1 + ϵ)2/|A|,

ERu
k = 2κ/|A|,

and thus the r.h.s. would be

r.h.s. = 2tκ(1 + ϵ)/k,

while the l.h.s. would be

Regretk = 2tκ/k.

The gap (the ratio) between them is (1 + ϵ) for any ϵ. Since we have two free

parameters κ and t, any MSEu and ERu
k can be (almost) achieved. At this point,

the constraint κ ∈ N also causes a constraint on ER, but it can be removed

(κ := |A|ERu
k/2 for any ERu

k) as follows. We consider a domain partition X1 ∈ X
and the potential outcomes as

p(y = tyκ1 |x) = 1 (x ∈ X1 ⊂ X ),

p(y = tyκ2 |x) = 1 (x ∈ X\X1),

where κ1 := ⌊|A|ERu
k/2⌋, κ2 := ⌈|A|ERu

k/2⌉, and the partition X1 can be deter-

mined to satisfy Ex [ERu
k(f, x)] = 2κ/|A|. Thus, for any |A|, k, MSEu, and ERu

k ,

the bound cannot be improved without any assumption.

Our bound means that, when κ = k ≪ |A| holds, despite this prediction ŷ

being quite “accurate” in terms of MSEu, the decision is constantly misleading

regardless of |A|/k (and thus MSEu). It could be improved when the spaces

of y and ŷ are limited and well-specified, but such specification of the model

class is another big issue in real-world applications. We therefore conclude that

minimizing only the regression accuracy MSEu is insufficient in terms of decision

performance when the treatment space is large, and minimizing the classification

accuracy ERu
k is also important.

B.1.2 Error analysis for representation balancing regularization

By performing the representation balancing regularization, our method enjoys

better generalization through minimizing the upper bound of the error on the test

distribution (under the uniform random policy). We briefly show how minimizing

the combination of empirical loss on training and the regularization of distribution

(4.5) results in minimizing the test error. First, we define the point-wise loss

function under a hypothesis h and an invertible extractor ϕ(·, ·), which defines
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the representation ϕ = ϕ(x, a) with its inverse (x, a) = ψ(ϕ), as

ℓx,ah (ϕ) :=

∫
Y
L(Ya, h(ϕ))p(Ya|x)dYa.

Then, the expected losses for the training (source) and the test distribution (tar-

get) are

ϵs(h) :=

∫
X ,Φ

∑
a∈A

ℓx,ah (ϕ)p(ϕ|x, a)p(x, a)dϕdx,

ϵt(h) :=

∫
X ,Φ

∑
a∈A

ℓx,ah (ϕ)p(ϕ|x, a)pu(a|x)p(x)dϕdx,

where p(ϕ|x, a) = δ(ϕ − ϕ(x, a)). We assume there exists B > 0 such that
1
B ℓ

x,a
h (ϕ) ∈ G for the given function space G. Then the integral probability

metric IPMG is defined for ϕ ∈ Φ = {ϕ(x, a)|p(x, a) > 0} as

IPMG(p1, p2) := sup
g∈G

∣∣∣∣∫
Φ
g(ϕ)(p1(ϕ)− p2(ϕ))dϕ

∣∣∣∣ .
The difference between the expected losses under training and test distributions

are then bounded as

ϵt(h)− ϵs(h) =

∫
Φ
ℓ
ψ(ϕ)
h (ϕ) (pu(ϕ)− p(ϕ)) dϕ

= B

∫
Φ

1

B
ℓ
ψ(ϕ)
h (ϕ) (pu(ϕ)− p(ϕ)) dϕ

≤ B sup
g∈G

∣∣∣∣∫
Φ
g(ϕ) (pu(ϕ)− p(ϕ)) dϕ

∣∣∣∣
= B · IPMG (p(ϕ), pu(ϕ)) .

Although B is unknown, the hyperparameter tuning of the regularization strength

α in (4.5) can achieve the tuning of B.

B.1.3 Minimizing IPM while preserving the causal relation

We show that minimizing the discrepancy between p(ϕx,a) and pu(ϕx,a) and pre-

serving the causal relationships are not necessarily in conflict with each other.

Let us consider an example of p(x, a) shown in Table B.1 and a representation

ϕ(x, a) = x+ a. Then, for any ϵ ∈ (−1/9, 1/9), the representation distribution is

calculated as, e.g., p(ϕx,a = 1) = p(x = 1, a = 0) + p(x = 0, a = 1) = 2/9. In the
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same manner, we have

p(ϕx,a = 0) = p(ϕx,a = 4) = 1/9,

p(ϕx,a = 1) = p(ϕx,a = 3) = 2/9, (B.4)

p(ϕx,a = 2) = 1/3.

Also, the uniform target distribution is calculated as pu(x, a) := p(x)pu(a) = 1/9

for all x, a ∈ {0, 1, 2}, and the representation distribution is the same as (B.4),

meaning IPM(p(ϕx,a), p
u(ϕx,a)) = 0. If the true causal relation can be written via

ϕx,a as y = h(ϕ(x, a)) for some h, then this representation extractor can achieve

IPM = 0 while preserving the causal relation, and thus it can still achieve Lu = 0.

On the other hand, the action-wise representation extraction approach (e.g.,

CFRNet [Shalit et al., 2017] in Fig. 4.3(a)) cannot achieve both the extraction of

fully balanced representation
∑
DIPM = 0 and the preservation of the relation in

this case with ϵ ̸= 0. Only constant representation ϕ(x) = c for all x ∈ {0, 1, 2}
can achieve

∑
a,a′∈ADIPM(p(ϕx|a), p(ϕx|a′)) = 0, and then the true relation y =

h(x+ a) is not expressible.

When the action-wise representation achieves IPM = 0, our representation

ϕ(x, a) can also achieve IPM = 0 under an assumption that the marginal action

distribution is uniform, i.e., p(a) = pu(a). By defining the representation of both

the feature and action as a concatenation ϕ(x, a) = (ϕx, a), we have

p (ϕx,a) = p (ϕx,a)

= p (ϕx | a) p(a)

= p (ϕx) p(a)

= p (ϕx) pu(a)

= pu (ϕx, a)

under p(a) = pu(a).

These facts demonstrate that our proposed regularizer encourages a weaker

(but sufficient) condition than the action-wise representation balancing approach.

Note that there is a potential issue with the use of a representation balancing

regularizer with such a non-invertible representation as ϕ(x, a) = x + a. That

is, an unobservable error term would be induced in the upper-bound [Johansson

et al., 2019, Zhao et al., 2019]. Thus, a minimization of only the observable error

terms (L+Dbal) may not lead to a minimization of the target error in such cases.

Some countermeasures have been proposed to address this issue, such as adding

a reconstruction loss of inputs to guarantee invertibility of the representation

[Zhang et al., 2020], but in some cases, Dbal = 0 is achieved only by using a
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Table B.1: Example observational distribution p(x, a) and its marginal distribu-
tions p(x) and p(a).

µ(a|x)p(x) a = 0 a = 1 a = 2 p(x)

x = 0 1/9 1/9 + ϵ 1/9− ϵ 1/3
x = 1 1/9− ϵ 1/9 1/9 + ϵ 1/3
x = 2 1/9 + ϵ 1/9− ϵ 1/9 1/3

p(a) 1/3 1/3 1/3

non-invertible representation, as in the example in Table B.1. Therefore, this

point remains an area for improvement in future work.

B.1.4 Connection between ERu
k in Proposition 4.4.1 and ERu

µ in (4.2)

We explain how we obtain ERu in Eq. (4.2) from ERu
k in Proposition 4.4.1. Recall

ERu
k in Proposition 4.4.1:

ERu
k(f) :=E

x

[
1

|A|
∑
a∈A

I ((rank(ya) ≤ k)⊕ (rank(f(x, a)) ≤ k))

]
.

We can show the following:

I ((rank(ya) ≤ k)⊕ (rank(f(x, a)) ≤ k))

= I
(

(ya∗k ≤ ya)⊕ (f(x, â∗k) ≤ f(x, a))
)

= I
(

(ya∗k ≤ ya)⊕ (ya∗k ≤ f(x, a)− f(x, â∗k) + ya∗k)
)

= I
(

(ya∗k ≤ ya)⊕ (ya∗k ≤ f
′(x, a))

)
,

where f ′(x, a) := f(x, a)− f(x, â∗k) + ya∗k . We then have

ERu
k(f) =E

x

[
1

|A|
∑
a∈A

I((ya ≥ ya∗k)⊕ (f ′(x, a) ≥ ya∗k))

]
.

Here, the rank with f ′ (rank(f ′(x, a))) is the same as that of f , but the difference

is that f ′ satisfies the condition f ′(x, â∗k) = ya∗k . That is, the k-th largest value

among {f ′(x, a)}a equals to ya∗k . Although, since ya∗k is unobservable, we relaxed

the optimization of f ′ in the function space that satisfies the condition into the

optimization in the general function space. In addition, we used the average

performance of the past decision-makers (µ) with respect to the target (x) ȳ

instead of unobservable ya∗k , as

ERu
µ(f) = E

x

[
1

|A|
∑
a∈A

I(ya ≥ ȳ ⊕ f(x, a) ≥ ȳ)

]
.

In the end, for such k′ that satisfies ya∗
k′+1
≤ ȳ ≤ ya∗

k′
and for such f ′ that
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satisfies f ′(x, â∗k′) = ya∗
k′

, we have ERu
µ(f ′) = ERu

k=k′(f
′).

B.2 Experimental Details and Additional Results

B.2.1 Detailed experimental settings

Synthetic data generation process

Our synthetic datasets are built as follows.

1 Sample x ∼ N (0, 1)d, where d = 5.

2 Sample a ∈ {0, 1}m, where m = 5, from p(a|x) ∝ exp(10 |xΣ − aΣ|), where

xΣ and aΣ are the following.

2-1 In settings other than Setup B, xΣ = x∆ = w⊤
x x, where the projection

is sampled as wx ∼ N (0, 1/d)d.

2-2 In Setup B, xΣ = x1, i.e., only the first dimension in x is used to bias

a.

2-3 aΣ = w⊤
a a, where wa ∼ N (0, 1/m)m.

3 Calculate the expected outcome ya = f(x, a), where we examine two types

of functions f , namely, Quadratic and Bilinear. In the Quadratic setting,

f(x, a) = a2Υ − 2xΥ, where xΥ and aΥ are one-dimensional representations

of x and a, respectively.

3-1 In Setup B, xΥ = w⊤
x,2:dx2:d, where x2:d denotes all dimensions other

than the first one (xΣ).

3-2 In settings other than Setup B, xΥ = xΣ(=: x∆).

3-3 In Setup A, aΥ = w′⊤
a a, where w′

a ∼ N (0, 1/m)m.

3-4 In settings other than Setup A, aΥ = aΣ(=: a∆).

3-5 In Bilinear setting, f(x, a) = x⊤Wa, where W ∼ N (0, 1/(dm))(d,m).

4 Sample the observed outcome y ∼ N (ya, 0.1).

Details of semi-synthetic data

We transformed the target attributes of elapsed times into the average speed as

the outcome, i.e., y = 4∑
zi

, where {zi}1:4 are the original elapsed times. Then we

standardized y and the feature attributes. Each feature attribute can take binary

values or up to four different powers of two values. Out of 1,327k total parameter

combinations, only 241.6k feasible combinations are recorded. We split these

original feature dimensions into a and x as follows. The dimensions of the action

space m ranged from three to six, and the 8th, 11th, 12th, 13th, 14th, and 3rd
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Table B.2: Training sample size for each setting.

m |A| Ntr

3 8 24,160
4 16 12,080
5 32 6,040
6 64 3,591

Figure B.1: Elapsed time for training. Error bars indicate standard deviation.

dimensions are regarded as a from the head in order (e.g., for m = 3, the 8th,

11th, and 12th dimensions in the original feature attributes are regarded as a).

This split was for maximizing the overlap of A(x) among X .

Other DNN parameters

The detailed parameters we used for DNN-based methods (S-DNN, M-DNN,

CFRNet, and the proposed methods RMNet-IPM and RMNet-HSIC) were as

follows. The backbone DNN structure had four layers for representation extrac-

tion and three layers for the hypothesis with the width of 64 for the middle layers

and the width of 10 for the representation ϕx,a. In RMNet-HSIC, the representa-

tion ϕx,a = (ϕx, ϕa) was composed of representations of feature (ϕx) and action

(ϕa), each of which had a width of 5. The batch size was 64 except for CFRNet,

where it was 512 due to the need to approximate the distributions for each action.

The strength of the L2 regularizer was 10−4. We used Adam [Kingma and Ba,

2015] as the optimizer with the learning rate of 10−4.

B.2.2 Additional experimental results

Elapsed times compared to CFR

Figure B.1 shows the comparison in training time between the proposed method

RMNet-IPM and CFRNet. For CFRNet, the elapsed time increased when the

size of the action space |A| became large. The main reason for this is the calcula-

tion of distance between the representation distributions for each pair of actions
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Table B.3: Semi-synthetic results on normalized mean cumulative gain (NMCG)
and other metrics in k = 2. Best and second-best methods are in bold.

Normalized mean cumulative gain @ k=2 MSEu ERu
k=2

|A| 8 16 32 64 8 16 32 64 8 16 32 64
Method

OLS 0.08 ± 0.15 0.01 ± 0.19 −0.00 ± 0.12 0.03 ± 0.10 1.12 1.89 1.70 5.86 0.374 0.215 0.118 0.061
RF 0.27 ± 0.08 0.34 ± 0.07 0.33 ± 0.05 0.38 ± 0.05 1.03 0.87 0.93 1.07 0.358 0.205 0.111 0.057
kNN 0.27 ± 0.04 0.30 ± 0.06 0.30 ± 0.04 0.37 ± 0.02 0.59 0.64 0.64 0.63 0.356 0.206 0.112 0.057
BART 0.13 ± 0.13 0.18 ± 0.12 0.15 ± 0.10 0.09 ± 0.09 1.06 1.05 1.15 1.63 0.371 0.213 0.116 0.060
M-DNN 0.30 ± 0.08 0.43 ± 0.05 0.29 ± 0.06 0.34 ± 0.04 0.81 0.82 0.81 0.85 0.357 0.205 0.114 0.057
S-DNN 0.32 ± 0.08 0.27 ± 0.10 0.32 ± 0.07 0.45 ± 0.05 0.69 0.68 0.74 0.72 0.353 0.208 0.111 0.055
CFRNet 0.44 ± 0.09 0.41 ± 0.08 0.34 ± 0.07 0.35 ± 0.04 0.79 0.78 0.83 0.86 0.334 0.204 0.111 0.057
RankNet 0.37 ± 0.07 0.29 ± 0.09 0.37 ± 0.07 0.44 ± 0.05 6.98 11.34 8.26 2.60 0.349 0.205 0.109 0.055

RMNet-IPM 0.66 ± 0.01 0.43 ± 0.06 0.49 ± 0.04 0.50 ± 0.05 0.73 0.85 0.73 0.73 0.304 0.197 0.106 0.053
RMNet-HSIC 0.49 ± 0.07 0.49 ± 0.09 0.52 ± 0.05 0.65 ± 0.04 0.44 0.61 0.66 0.30 0.334 0.194 0.104 0.050

Table B.4: Semi-synthetic results on normalized mean cumulative gain (NMCG)
and other metrics in k = 4. Best and second-best methods are in bold.

Normalized mean cumulative gain @ k=4 MSEu ERu
k=4

|A| 8 16 32 64 8 16 32 64 8 16 32 64
Method

OLS 0.18 ± 0.15 −0.01 ± 0.15 −0.00 ± 0.11 0.02 ± 0.07 1.12 1.89 1.70 5.86 0.471 0.373 0.221 0.117
RF 0.24 ± 0.08 0.34 ± 0.07 0.34 ± 0.05 0.36 ± 0.05 1.03 0.87 0.93 1.07 0.459 0.330 0.198 0.104
kNN 0.19 ± 0.05 0.26 ± 0.06 0.28 ± 0.04 0.36 ± 0.02 0.59 0.64 0.64 0.63 0.467 0.339 0.203 0.106
BART 0.11 ± 0.12 0.23 ± 0.11 0.16 ± 0.10 0.13 ± 0.09 1.06 1.05 1.15 1.63 0.485 0.350 0.212 0.114
M-DNN 0.42 ± 0.05 0.38 ± 0.06 0.28 ± 0.06 0.26 ± 0.04 0.79 0.82 0.82 0.85 0.418 0.334 0.207 0.110
S-DNN 0.28 ± 0.08 0.28 ± 0.10 0.31 ± 0.07 0.44 ± 0.05 0.68 0.59 0.79 0.69 0.451 0.339 0.198 0.098
CFRNet 0.46 ± 0.05 0.40 ± 0.06 0.30 ± 0.06 0.26 ± 0.03 0.79 0.79 0.86 0.86 0.408 0.327 0.204 0.111
RankNet 0.33 ± 0.07 0.28 ± 0.10 0.36 ± 0.06 0.44 ± 0.04 6.20 11.09 7.98 4.48 0.439 0.331 0.192 0.099

RMNet-IPM 0.39 ± 0.06 0.43 ± 0.07 0.43 ± 0.05 0.49 ± 0.05 0.69 0.77 0.67 0.72 0.422 0.318 0.188 0.095
RMNet-HSIC 0.35 ± 0.09 0.49 ± 0.07 0.47 ± 0.05 0.62 ± 0.02 0.65 0.53 0.55 0.35 0.438 0.305 0.180 0.087

∑
a̸=a′ DIPM (pa(ϕ), pa′(ϕ)) in Fig. 4.3(a). The decrease of the elapsed time for

RMNet is mainly due to the sample sizes shown in Table B.2.

Semi-synthetic results for k > 1

Table. 4.2 shows the results for k = 1. We also evaluated with respect to k = 2

and k = 4 as shown in Table B.3 and Table B.4, respectively. The metric for

k > 1 is defined as the following normalized mean cumulative gain (NMCG):

NMCGk(f) :=
Ex
[∑

a:rank(f(x,a))≤k ya

]
Ex
[∑

a:rank(ya)≤k ya

] .

The model selection is also performed with respect to NMCGk. The results were

similar to that in k = 1, which demonstrates the robustness of the proposed

methods with respect to the choice of k (and thus the policy πk).
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Z. Su, A. Jamshidi, A. Núñez, S. Baldi, and B. De Schutter. Multi-level

condition-based maintenance planning for railway infrastructures–a scenario-

based chance-constrained approach. Transportation Research Part C: Emerging

Technologies, 84:92–123, 2017.
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