
GPU Computing Aiming at Vortex Filament
Evolution

Yu-Hsun Lee

Graduate School of Informatics, Kyoto University

Abstract

In this thesis, we investigate a high-performance parallel computation for the vortex
filament method based on Rosenhead’s regularized Biot–Savart law for incompress-
ible fluid on Graphics Processing Units (GPUs). Since it is hard to treat mathe-
matical properties of the Biot–Savart law, which is a non-linear integro-differential
equation, we focus on the numerical treatment of the Biot–Savart law and provide
computation reliability for vortex filament evolution.

Our first achievement is efficient implementation of vortex filament evolution
with GPU architecture. The computational complexity grows quadratically as an
increase of discretization point in the discretized Biot–Savart law we use in this
research. We accelerate computations by GPU architecture and improve the com-
putational speed by optimizing the choice of warp size that affects the manipulation
of GPU computing resources. We also use shared memory to get the best comput-
ing performance. We measure the rounding error quantitatively by comparing the
numerical solutions with quadruple precision and multiple-precision arithmetic.

The second achievement is the case studies under bounded and unbounded vor-
tex filaments proposed by Kimura and Moffatt (2018). We reproduce the numerical
reconnection of vortex filaments by GPU computation and establish reliability based
on numerical experiments. Our proposed GPU computation enables us to investi-
gate the relation of temporal and spatial discretization parameters to mitigate dis-
turbance in numerical solutions in reasonable computational time. We also propose
a method to estimate the reconnection time. Moreover, the numerical solutions by
the proposed discretization scheme converge exponentially to the solutions with the
most significant spatial discretization parameter we use in the bounded case.

I

Acknowledgment

The author would like to thank the author’s advisor, Professor Hiroshi Fujiwara, for
his guidance and encouragement during the doctoral course. Without his support,
the author could not tide over author’s Ph.D. study in Japan.

The author thanks Professor Yuusuke Iso, Professor Emeritus Takaaki Nishida and
Professor Daisuke Kawagoe for their advice and criticism.

The author also thanks Professor Yoshifumi Kimura at Graduate School of Math-
ematics, Nagoya University whose advice and works on fluid dynamics made enor-
mous contribution to the author’s Ph.D. study.

The author also thanks the members of sub-department of Applied Analysis for
many help and suggestion.

Finally, the author would like to express his gratitude to his family for their supports
in every way.

II

Contents

1 Introduction 1

2 GPU Computation for the Biot–Savart law 5
2.1 Introduction . 6
2.2 Parallel Algorithm . 7
2.3 Performance Optimization . 12
2.4 Quantitative Estimate of Rounding Errors by Multiple-Precision Arith-

metic . 15
2.5 Computational Time of Figure-of-eight Vortex Filament Evolution . . 17

3 Bounded case : Figure-of-eight Vortex Filament 19
3.1 Reliability Criteria . 21
3.2 Estimate of Reconnection Time . 25
3.3 Estimate of Accumulation of Rounding Errors 28
3.4 Convergence of Numerical Solutions 30

4 Unbounded case : Tent-shaped Vortex Filament 33
4.1 Reliability Criteria . 35
4.2 Estimate of Reconnection Time . 36
4.3 Estimate of Accumulation of Rounding Errors 38

5 Conclusion 40

Bibliography 41

III

Chapter 1

Introduction

In this thesis, we discuss a design and implementation of Graphics Processing Units
(GPU) computation for the sake of reliability of numerical treatment of three di-
mensional vortex filament evolution by the Biot-Savart law for incompressible fluid.
The proposed acceleration enables us to process computation of the vortex filament
evolution with various computational conditions, and thus we establish reliability
based on numerical experiments.

We study the self-induced motion of a figure-of-eight vortex filament and a tilted
hyperbola with two branches of vortex filaments with Rosenhead regularized Biot–
Savart law [1, 2]. Let ξ ∈ I be a parameter defined on an interval I ⊂ R, and
define the space curve rµ(t, ξ) where t is the time parameter. Then the velocity is
represented by

vµ(t,x) = −
Γ

4π

∫
I

(
x− rµ(t, ξ)

)
× ∂rµ

∂ξ(
|x− rµ(t, ξ)|2 + µ2

)3/2 dξ, x ∈ R3 (1.1)

where µ is a regularization parameter, and the evolution of the space curve is eval-
uated by velocity

∂rµ

∂t
= vµ

(
t, rµ(t, ξ)

)
. (1.2)

The initial shapes of vortex filaments we shall treat are proposed by Y. Kimura
and H. K. Moffatt [3, 4], and they reproduce the vortex reconnection with the
cut-off regularized Biot-Savart law and have the consistency of Leray scaling for
self-similarity in Navier–Stokes equations.

Since the regularized Biot-Savart law is a non-linear integro-differential equation,
it is challenging to consider the properties and behavior of the exact solution by
mathematical analysis. Local existence and uniqueness of solutions have been only
proved for a specific function space [2], while estimation for finite-time singularity
and behaviors as regularization have not been established. Therefore numerical
computations play essential roles in investigating motion of vortex filament in three
dimensions. However, there have been no detailed discussions on the reliability of
numerical solutions as far as the author knows.

From the viewpoint of numerical computation, a discretized Biot–Savart law
acts as an N-body problem, which has a quadratic computation complexity and
takes huge computational time among the interaction of massive N bodies. As

1

the first release of NVIDIA CUDA [5], a parallel computation programming inter-
face for NVIDIA’s GPU, Lars Nyland et al. implemented fast N-body simulation
with CUDA in 2007 [6]. They focus on all-pairs N-body simulation rather than
hierarchical approach like fast multipole method [7] that provide an idea to design
and implement the accurate numerical computation of vortex filament evolution on
GPU.

We study the acceleration of numerical methods for vortex filament evolution
mainly on GPU and establish reliability examinations of numerical solutions. Our
main contribution is investigating the relation between temporal and spatial dis-
cretization parameters to reproduce the reconnection of vortex filament by the high-
performance GPU computing and investigate the reliability of GPU computation
by estimating the accumulation of rounding errors. Moreover, we achieve 8.58 times
faster computation on a personal computer by NVIDIA TITAN V GPU than the
supercomputer used in the research of Y. Kimura and H. K. Moffatt [3].

This thesis contains four chapters. In Chapter 2, we discuss the detail of GPU
implementation and algorithms of the vortex filament evolution. In Chapter 3, we
study the evolution of vortex with bounded vortex filament and discuss the reliability
of numerical experiments. In Chapter 4, we follow the similar discussions flow as
Chapter 3 with unbounded vortex filaments. Later in this chapter, we will introduce
the background of the Biot–Savart law and the vortex filament method.

Biot-Savart Law for Incompressible Fluid
Under the assumption of incompressible fluid, velocity v and the vorticity ω satisfy
relations

ω = ∇× v, ∇ · v = 0. (1.3)
By solving the Poisson equation on v in R3 under suitable assumptions, the velocity
field v is represented by

v(x) = − 1

4π

∫
R3

(x− x′)× ω(x′)

|x− x′|3
dx′, x ∈ R3 (1.4)

which is known as the Biot-Savart law for incompressible fluid [8]. Once we specified
the vorticity, we could “recover” the velocity field by the Biot-Savart formula.

In order to investigate motion of the vortex, Helmholtz has proposed the concepts
of vortex lines and vortex filaments (the fluid bounded by the vortex lines passing
through the points of an infinitely small closed curve) [9, 10]. Helmholtz proved
that vortex lines moved as material lines and described the properties of vortex
filaments. In 1895, H. Lamb published the book “Hydrodynamics.” He interpreted
the vortex as a thin filament and connected the result with the Biot-Savart law in
electromagnetism [11],

v(x) = − Γ

4π

∫
C

(
x− r(s)

)
× ∂r

∂s

|x− r(s)|3
dl, x ∈ R3\C (1.5)

where the right hand side is the line integral.
This thin vortex filament approximation describes the vicinity behavior of vortex

filaments. As the point approach the vortex filament, the self-induced velocity results

2

n
σ

t

b

x

Γ

r(s)

Figure 1.1: Illuatration of a vortex filament under the Frenet framework

in logarithmic divergence. The analysis of this divergence is firstly proposed by Da
Rios [12], which is called the localized induction approximation (LIA).

v(x) =
Γ

4π
κb ln

(
L

σ

)
+O(1), x ∈ R3\C (1.6)

where b is the binormal unit vector in the Fernet framework, L is the length of a
neighboring segment and σ is the distance from the thickness of vortex tube. See
Figure 1.1. Under the vortex filament approximation, this approximation did not
consider the structures of the vortex core. The first attempt to take the finite core
into account was done by Rosenhead [1].

For the development of the vortex filament method, Leonard [13] discussed the
generalized Biot-Savart integral in three-dimension, which extends from the two-
dimensional vortex blob method. The vortex filament method considers sufficiently
smooth vortex structure and the accuracy of vortex stretching. The convergence of
the vortex filament method is discussed by Greengard [14] and Soler [15].

Vortex Filament Method
In this section, we introduce the vortex filament method reviewed by Leonard [13].
In fluid dynamics, a vortex means the flow revolves around an axis line in a region
which vorticity is distributed over a finite core with radius σ. Considering a thin
vortex tube with radius σ ≪ 1, we call the vorticity tube as a vortex filament
which can be treated as a line vortex. To idealize the vortex filament as a smooth
space curve, suppose the curve has no cross-sectional area. By Kelvin’s circulation
theorem, the circulation of a filament is a constant Γ in time for inviscid fluid [16].
For the configuration of space curves at time t is r(t, ξ), where ξ ∈ I is a parameter
on an interval I ⊂ R. Thus the vorticity field is represented as

ω(t,x) = Γ

∫
I

γ
(
x− r(t, ξ)

) ∂r
∂ξ

dξ, x ∈ R3 (1.7)

3

where γ is a smooth function with rapid decay and normalization∫
R3

γ(x) dx = 1. (1.8)

Assumed that γ has the form

γ(x− r) =
1

σ3
p

(
|x− r|

σ

)
. (1.9)

Therefore a regularized Biot–Savart law of (1.4) by (1.7) is represented by

vg(t,x) = −
Γ

4π

∫
I

(
x− r(t, ξ)

)
× ∂r

∂ξ
g(|x− r(t, ξ)|/σ)

|x− r(t, ξ)|3
dξ, x ∈ R3 (1.10)

where g is defined by
g(y) = 4π

∫ y

0

p(t)t2 dt (1.11)

and from the normalization of γ, g has properties

g(y) = O(y3), y → 0
g(y)→ 1, y →∞.

One of the well known regularization methods is proposed by Rosenhead [1], and
the regularized Biot–Savart equation is represented by

vµ(t,xµ) = −
Γ

4π

∫
I

(
xµ − rµ(t, ξ)

)
× ∂rµ

∂ξ(
|xµ − rµ(t, ξ)|2 + µ2

)3/2 dξ, xµ ∈ R3 (1.1)

where µ = O(σ). Under the Rosenhead regularization, smoothing function is con-
sidered as g(y) = y3/(y2 +α)3/2, where α is a positive number. For the evolution of
the curve rµ(t, ξ), it moves with the velocity,

∂rµ

∂t
= vµ

(
t, rµ(t, ξ)

)
. (1.2)

Moreover, if we consider there are M vortex filaments rk, 1 ≤ k ≤ M in the
space, then we could obtains the evolution of M vortex filaments by extending the
(1.10) as:

vg(t,x) = −
M∑
k=1

Γk

4π

∫
Ik

(
x− rk

g(t, ξ)
)
× ∂rk

g

∂ξ
g(|x− rk

g(t, ξ)|/σk)

|x− rk
g(t, ξ)|3

dξ, (1.12)

and the evolution of the curve rk
g(t, ξ), it moves with the local velocity,

∂rk
g

∂t
= vg

(
t, rk

g(t, ξ)
)
. (1.13)

4

Chapter 2

GPU Computation for the
Biot–Savart law

In this study, we investigate the numerical computation of the Biot–Savart law with
Rosenhead regularization which is presented in Eq. (1.1).

vµ(t,x) = −
Γ

4π

∫
I

(
x− rµ(t, ξ)

)
× ∂rµ

∂ξ(
|x− rµ(t, ξ)|2 + µ2

)3/2 dξ, x ∈ R3 (1.1)

We consider the initial shape of vortex filament as a closed curve and has a
Lagrangian parameterization as C0 = {rµ(0, θ) | 0 ≤ θ < 2π}. Let the time step
∆t > 0, N be a positive integer, and θi = 2πi/N for 0 ≤ i < N . We discretize
the initial shape C0 and allocate N nodes to x0,i = rµ(0, θi). Then the discretized
scheme of Eq. (1.1) for xµ ∈ rµ(t, ξ) becomes

vt,i = −
Γ

4π

2π

N

N−1∑
j=0

(xt,i − xt,j)× τ t,j(
|xt,i − xt,j|2 + µ2

)3/2 , 0 ≤ i < N, (2.1)

where vt,i is velocity at xt,i = rµ(t, θi). For the tangent vector τ t,j, we use the
Fourier method to ensure spectral accuracy. Define the Discrete Fourier Transform
for each component xj be

Xk =
N−1∑
j=0

xje
−i 2π

N
kj, (2.2)

then the corresponding component τj of tangent vector τ t,j can be approximated by
the inverse Discrete Fourier Transform

τj ≈
1

N

N
2
−1∑

k=0

(i · k)Xke
i 2π
N

jk +
N−1∑
k=N

2

(
i · (k −N)

)
Xke

i 2π
N

j(k−N)

 . (2.3)

For the time-stepping, the 4th order Runge-Kutta method is used.

5

2.1 Introduction
In this section, we shall introduce the computation on Graphics Processing Units
(GPUs). With the development of general-purpose computing on graphics pro-
cessing units (GPGPU), we can perform high-performance scientific computing on
GPUs. In 2007, NVIDIA released the Compute Unified Device Architecture (CUDA)
as a parallel computing application programming interface (API) for NVIDIA’s
GPUs and developers can use C/C++ interface to the CUDA.

In this study, we use NVIDIA TITAN V, which was released at the end of 2017.
NVIDIA TITAN V uses Volta micro-architecture GV100 and contains 80 streaming
multiprocessors (SMs). For each GV100 SM, it contains 64 FP32 cores for single
precision arithmetic processing and 32 FP64 cores for double precision arithmetic
processing [17].

Figure 2.1: Volta GV100 streaming multiprocessor [17]

In the CUDA GPU programming model, we use the terms: Grids, Blocks,
Threads to describe how to manipulate the GPU resources. In general, we divide
the computation on nodal points N into several GPU grids G; for each grid, we have
GPU blocks B and serval threads T inside a block. Fig. 2.2 shows the grid, block,
and thread hierarchy of the CUDA programming model [5]. Note that the maximum
number of threads per multiprocessor is 2048, and the maximum number of threads
per block is 1024 for TITAN V.

6

Table 2.1: Computational environment

CPU Ryzen Threadripper 2990WX (3.0GHz, 32 cores)
Memory DDR4-1866 128GB
OS CentOS Linux 7.9.2009
GPU TITAN V (5120 CUDA cores, 12GB HBM2 memory)

with CUDA 10.2
C++ Compiler GCC Version 4.8.5
FFT fftw Version 3.3.8
exflib Version 20180620

Figure 2.2: Grid of thread blocks [5]

2.2 Parallel Algorithm
In this section, we shall describe two parallelization methods to compute the Biot-
Savart law. In the Eq. (2.1), we need to calculate the velocity by the Biot-Savart
law at each nodal point. This step contains a computation complexity of O(N2).

Before we start a GPU computation, we need to generate the initial value on host
memory then copy the values to GPU device memory. CUDA provides malloc like
function cudaMallocHost and cudaMalloc to allocate the host and device memory.
To copy the memory from host memory to GPU device memory, we use

1 cudaMemcpy(void *dst, void *src, size_t nbytes, cudaMemcpyHostToDevice)

where dst is destination pointer, src is source pointer, and nbytes is the size of
memory we would like to copy. After the memory copy, all of the computation and
memory accesses are done on the GPU device. Since the exchange of host memory
and GPU memory is expensive, we need to reduce this kind of operation during
computation.

After that, we introduce the algorithm to update the position of the nodal points
by the Runge-Kutta method.

7

Algorithm 1: Runge-Kutta algorithm for time-stepping
Result: Update xt+∆t,i

Data: Input: xt,i for i = 0, 1, · · · , N − 1

Step 1 :

1. Calculate tangent vector from xt,i by Eq. (2.3)
2. Calculate k1

i = vt,i(xt) by Eq. (2.1)
3. Update temporary position x̃i = xt,i +∆tk1

2

Step 2 :

1. Calculate tangent vector from x̃i by Eq. (2.3)
2. Calculate k2

i = vt,i(x̃) by Eq. (2.1)
3. Update temporary position x̃i = xt,i +∆tk2

2

Step 3 :

1. Calculate tangent vector from x̃i by Eq. (2.3)
2. Calculate k3

i = vt,i(x̃) by Eq. (2.1)
3. Update temporary position x̃i = xt,i +∆tk3

Step 4 :

1. Calculate tangent vector from x̃i by Eq. (2.3)
2. Calculate k4

i = vt,i(x̃) by Eq. (2.1)

Sum. Update xt+∆t,i = xt,i +
1
6
∆t(k1

i + 2k2
i + 2k3

i + k4
i)

In each step of calculating the temporary velocity k by the Biot-Savart law from
Eq. (2.1) contains a computation complexity of O(N2). For the closed curve initial
condition, while we calculate the tangent vector, we also meet the complexity of
O(N2) if we use the traditional DFT algorithm. cuFFT [18] helps us for doing the
Fast Fourier Transform, which has a computational complexity of O(N logN) on
CUDA enabled GPUs. We introduce two parallelization strategies to manipulate the
O(N2) computation while updating the velocity. Throughout the chapter, we define
the computation time for each step by updating one time step ∆t, which includes
four times of the Biot-Savart law calculation and 24 times (DFT and inverse DFT
for each dimension per Runge-Kutta step) of the Fast Fourier Transform.

In the following subsections, we will introduce two parallelization strategies to
manipulate GPU computing resources of calculating ki in the Runge-Kutta algo-
rithm. For the sample code present in subsections, we execute the GPU kernel code
by

8

1 gpu_biot<<<B,T>>>
2 (double *const d_x, double *const d_y, double *const d_z,
3 double *const d_tx,double *const d_ty,double *const d_tz,
4 double *d_kx,double *d_ky,double *d_kz,
5 const int LENGTH, const double d_dh, const double gamma
6)

where B and T represent the number of blocks and threads we manipulate for GPU
computing respectively. Table 2.2 describes the meaning of each parameters.

Table 2.2: Parameters for computing the Biot-Savart law on GPU

parameter meaning
d_x, d_y, d_z components of xi, 0 ≤ i < N
d_tx, d_ty, d_tz components of tangent vector at xi, 0 ≤ i < N
d_kx, d_ky, d_kz empty array for storing temporary velocity ki, 0 ≤ i < N
LENGTH number of nodal points N
d_dh ∆θ = 2π/N
gamma constant strength Γ for vortex filament

2.2.1 One-dimensional Indexing
In the 1-D indexing, each thread computes the velocity of the i-th node contributed
from N points. Suppose the size of a block, which means the number of threads
inside the block, is T = 2n, n ∈ N. Under the limitation of CUDA, the maximum of T
is 1024. The total number of blocks we need is N/T. For the mapping of threads and
discrete indexing, the index i is calculated by blockIndex × T + threadIndex.
With this thread allocation, the computation in each thread is O(N) and all of
threads compute in parallel. The sample code for each thread is shown in Listing
2.1 and a sketch of threads manipulating is illustrated in Fig. 2.3.

Block 0
Thread 0

vt,0

Block 0
Thread 1

vt,1

Block 0
Thread 2

vt,2

· · · · · ·
Block 0
Thread T − 1

vt,T−1

Block 1
Thread 0

vt,T

Block 1
Thread 1

vt,T+1

Block 1
Thread 2

vt,T+2

· · · · · ·
Block 1
Thread T − 1

vt,2T−1

...

Block (N/T-2)
Thread 0

vt,N−2T

Block (N/T-2)
Thread 1

vt,N−2T+1

Block (N/T-2)
Thread 2

vt,N−2T+2

· · · · · ·
Block (N/T-2)
Thread T − 1

vt,N−T−1

Block (N/T-1)
Thread 0

vt,N−T

Block (N/T-1)
Thread 1

vt,N−T+1

Block (N/T-1)
Thread 2

vt,N−T+2

· · · · · ·
Block (N/T-1)
Thread T − 1

vt,N−1

Figure 2.3: Sketch of threads manipulating for 1-D indexing

1 __global__ void gpu_biot
2 (double *const d_x, double *const d_y, double *const d_z,
3 double *const d_tx,double *const d_ty,double *const d_tz,

9

4 double *d_kx,double *d_ky,double *d_kz,
5 const int LENGTH, const double d_dh, const double gamma)
6 {
7 int i = blockIdx.x * blockDim.x + threadIdx.x;
8 double dxj,dyj,dzj;
9 double dtxj,dtyj,dtzj;

10 double norm,ds_over_norm3;
11

12 double mu = 1e-5;
13

14 dxi = d_x[i]; dyi = d_y[i]; dzi = d_z[i];
15

16 for(int j = 0; j < LENGTH; j++){
17 dxj = d_x[j]; dtxj = d_tx[j];
18 dyj = d_y[j]; dtyj = d_ty[j];
19 dzj = d_z[j]; dtzj = d_tz[j];
20

21 norm = sqrt((dxi-dxj)*(dxi-dxj)+(dyi-dyj)*(dyi-dyj)
22 +(dzi-dzj)*(dzi-dzj)+mu*mu);
23 ds_over_norm3 = (d_dh/(norm*norm*norm)*-1*gamma/(4*M_PI));
24

25 d_kx[i] += (dtzj*(dyi-dyj)-dtyj*(dzi-dzj))*ds_over_norm3;
26 d_ky[i] += (dtxj*(dzi-dzj)-dtzj*(dxi-dxj))*ds_over_norm3;
27 d_kz[i] += (dtyj*(dxi-dxj)-dtxj*(dyi-dyj))*ds_over_norm3;
28 }
29 }

Listing 2.1: Sample code for 1-D indexing

2.2.2 Two-dimensional Indexing
For a 2-D indexing method, we allocate the blocks and threads in 2D by B =
(N/Tx, N/Ty), and T = (Tx, Ty). By the limitation of CUDA, Tx × Ty ≤ 1024.
In this method, each thread only computes the velocity of the i-th point induced
by the j-th point. The index i is calculated by blockIndex × Tx + threadIndex
x and the index j is calculated by blockIndex × Ty + threadIndex y. In order
to get the summation from each thread, we use atomicAdd to guarantee the result
does not interfere with other threads. If we follow the way to sum of the result by
following codes,

25 d_kx[i] += (dtzj*(dyi-dyj)-dtyj*(dzi-dzj))*ds_over_norm3;
26 d_ky[i] += (dtxj*(dzi-dzj)-dtzj*(dxi-dxj))*ds_over_norm3;
27 d_kz[i] += (dtyj*(dxi-dxj)-dtxj*(dyi-dyj))*ds_over_norm3;

this works well in 1-D indexing since the summation is serial. However in the
2-D indexing case, the summation to d_kx, d_ky, and d_kz is read and modify in
parallel that causes a race condition. Several threads might read the same old values
at the same time, then update the global memory with wrong values. atomicAdd
use the compare-and-swap (CAS) operation which is an atomic instruction used in
multithreading to realize lock-free data updates. Note that the atomic access to
memory are all serialized but out-of-order.

10

Let the calculation of inside of summation in Eq. (2.1)

− Γ

4π

2π

N

(xt,i − xt,j)× ∂xt,j

∂θ(
|xt,i − xt,j|2 + µ2

)3/2 (2.4)

be k̃(i, j). Fig. 2.4 represents the thread manipulating for 2-D indexing. For the
sketch of threads computing and atomicAdd while calculating ki is illustrated in
Fig. 2.5.

Thread (0, 0)

k̃(0, 0)

Thread (0, 1)

k̃(0, 1)

Thread (0, 2)

k̃(0, 2)

Thread (0, 3)

k̃(0, 3)

Thread (0, 4)

k̃(0, 4)
· · · · · ·

Thread (0, N − 1)

k̃(0, N − 1)

Thread (1, 0)

k̃(1, 0)

Thread (1, 1)

k̃(1, 1)

Thread (1, 2)

k̃(1, 2)

Thread (1, 3)

k̃(1, 3)

Thread (1, 4)

k̃(1, 4)
· · · · · ·

Thread (1, N − 1)

k̃(1, N − 1)

Thread (2, 0)

k̃(2, 0)

Thread (2, 1)

k̃(2, 1)

Thread (2, 2)

k̃(2, 2)

Thread (2, 3)

k̃(2, 3)

Thread (2, 4)

k̃(2, 4)
· · · · · ·

Thread (2, N − 1)

k̃(2, N − 1)

...

Thread
(N − 1, 0)

k̃(N − 1, 0)

Thread
(N − 1, 1)

k̃(N − 1, 1)

Thread
(N − 1, 2)

k̃(N − 1, 2)

Thread
(N − 1, 3)

k̃(N − 1, 3)

Thread
(N − 1, 4)

k̃(N − 1, 4)

· · · · · ·
Thread
(N − 1, N − 1)

k̃(N − 1, N − 1)

Figure 2.4: Sketch of thread manipulating for 2-D indexing

Thread (i, 0)

k̃(i, 0)

Thread (i, 1)

k̃(i, 1)

Thread (i, 2)

k̃(i, 2)

Thread (i, 3)

k̃(i, 3)

Thread (i, 4)

k̃(i, 4)
· · · · · ·

Thread (i, N − 1)

k̃(i, N − 1)

+ atomicAdd

Global memory
d_kx[i],d_ky[i],d_ky[i]

Figure 2.5: Sketch of atomicAdd for 2-D indexing while calculating for index i

The sample code for the 2-D indexing and using atomicAdd is shown in Listing
2.2. Compare to the 1-D indexing, 2-D indexing is fully parallelized and faster than
the 1-D indexing under small N . In Table 2.3, we show the time comparison for

11

average execution time for each step under different N . We observe that in large N ,
the 1-D indexing has a shorter execution time.

1 __global__ void gpu_biot
2 (double *const d_x, double *const d_y, double *const d_z,
3 double *const d_tx,double *const d_ty,double *const d_tz,
4 double *d_kx,double *d_ky,double *d_kz,
5 const int LENGTH, const double d_dh, const double gamma)
6 {
7 double dxi,dyi,dzi;
8 double dxj,dyj,dzj;
9 double dtxj,dtyj,dtzj;

10 double norm,ds_over_norm3;
11

12 double mu = 1e-5;
13

14 int i = blockIdx.x * blockDim.x + threadIdx.x;
15 int j = blockIdx.y * blockDim.y + threadIdx.y;
16

17 dxi = d_x[i]; dxj = d_x[j]; dtxj = d_tx[j];
18 dyi = d_y[i]; dyj = d_y[j]; dtyj = d_ty[j];
19 dzi = d_z[i]; dzj = d_z[j]; dtzj = d_tz[j];
20

21 norm = sqrt((dxi-dxj)*(dxi-dxj)+(dyi-dyj)*(dyi-dyj)
22 +(dzi-dzj)*(dzi-dzj)+mu*mu);
23 ds_over_norm3 = (d_dh/(norm*norm*norm)*-1*gamma/(4*M_PI));
24

25 atomicAdd(&d_kx[i], (dtzj*(dyi-dyj)-dtyj*(dzi-dzj))*ds_over_norm3);
26 atomicAdd(&d_ky[i], (dtxj*(dzi-dzj)-dtzj*(dxi-dxj))*ds_over_norm3);
27 atomicAdd(&d_kz[i], (dtyj*(dxi-dxj)-dtxj*(dyi-dyj))*ds_over_norm3);
28 }

Listing 2.2: Sample code for the 2-D indexing

Table 2.3: Comparison of average calculation time of two methods for calculate once
of the Biot–Savart kernel code gpu_biot

unit: millisec.
N 1-D Indexing 2-D Indexing

8192 4.1 1.8
16384 8.1 8.0
32768 20.3 30.8
65536 80.9 133.1

2.3 Performance Optimization
2.3.1 Shared Memory
Inside CUDA programming, there are several kinds of memory. Each thread has
private local memory. Each block has shared memory which is visible to threads

12

that belong to the same block. All of the threads can access the global memory.
Compare to global memory, shared memory provides a faster speed and lower latency
to access data inside shared memory.

We represent Algorithm 2 to show how do we manipulate the shared memory for
the Biot-Savart computation. Note that in order to use the shared memory in CUDA
C++, we should declare the variable by using the __shared__ variable declaration
specifier. The CUDA built-in command __syncthreads() enables us to synchronize
threads. The sample code and usage of shared memory are listed in Listing 2.3 lines
16-18. In this algorithm, we optimize the computation with 1-D indexing by the use
of shared memory. However, the size of shared memory in NVIDIA TITAN V only
has 48KB in each block. Acceleration is not apparent with a small size of shared
memory. In Tables 2.4 and 2.5 we present two different size of block with T = 32 and
T = 1024 which are consist to the size of shared memory. In the case N = 65536,
larger shared memory shows more efficiency of computational speed. Note that the
choice of T only affects the manipulation of threads for gpu_biot. For calculation
of tangent vectors, the size of grids T is fixed. However, it is more improved if we
choose a suitable thread size T. We will discuss the choice of thread size T and the
warp in the next subsection.

Algorithm 2: Algorithm for manipulate the shared memory
Result: Update vi

Data: Input: xi, τ i = ∂xi/∂θ for i = 0, 1, · · · , N − 1

Step 1 : Set i← blockIndex ∗ T + threadIndex be global index

Step 2 : Initialize shared memory x̃ with size T

Step 3 : Iterate by blockIndex b
for b← 0 to N/T− 1 do

(a) Threads synchronization
(b) Assign global data xb∗T+threadIndex to shared memory x̃threadIndex.
(c) Threads synchronization
(d) Iterate by threadIndex k

for k ← 0 to T− 1 do
Update vi by Eq. (2.1) where xj is assigned in x̃k

end

end

1 __global__ void gpu_biot
2 (double *const d_x, double *const d_y, double *const d_z,
3 double *const d_tx,double *const d_ty,double *const d_tz,
4 double *d_kx,double *d_ky,double *d_kz,
5 const int LENGTH, const double d_dh, const double gamma)

13

6 {
7 double dxi,dyi,dzi;
8 double dtxj,dtyj,dtzj;
9 double norm,ds_over_norm3;

10

11 double mu = 1e-5;
12

13 int i = blockIdx.x * blockDim.x + threadIdx.x;
14 int jj = threadIdx.x;
15

16 __shared__ double d_xx[T];
17 __shared__ double d_yy[T];
18 __shared__ double d_zz[T];
19

20 dxi = d_x[i];
21 dyi = d_y[i];
22 dzi = d_z[i];
23

24 for(int j=0; j<LENGTH; j+= blockDim.x)
25 {
26 __syncthreads();
27 d_xx[jj] = d_x[j+jj];
28 d_yy[jj] = d_y[j+jj];
29 d_zz[jj] = d_z[j+jj];
30 __syncthreads();
31

32 for(int k=0; k<blockDim.x;k++)
33 {
34 dtxj = d_tx[j+k];
35 dtyj = d_ty[j+k];
36 dtzj = d_tz[j+k];
37 norm = std::sqrt((dxi-d_xx[k])*(dxi-d_xx[k]) +
38 (dyi-d_yy[k])*(dyi-d_yy[k]) +
39 (dzi-d_zz[k])*(dzi-d_zz[k])+mu*mu);
40 ds_over_norm3=(d_dh/(norm*norm*norm)*-1*gamma/(4*M_PI));
41

42 d_kx[i]+=(dtzj*(dyi-d_yy[k])-dtyj*(dzi-d_zz[k]))*ds_over_norm3;
43 d_ky[i]+=(dtxj*(dzi-d_zz[k])-dtzj*(dxi-d_xx[k]))*ds_over_norm3;
44 d_kz[i]+=(dtyj*(dxi-d_xx[k])-dtxj*(dyi-d_yy[k]))*ds_over_norm3;
45 }
46 }
47 }
48

Listing 2.3: Sample code for 1-D indexing with shared memory

2.3.2 Warp Optimization
Warps are the basic execution unit in each CUDA core. Inside a warp, it contains
32 consecutive threads, which are executed simultaneously with same instructions.
No matter how we design the grid blocks in 1-D or 2-D, the hardware will partition
the thread blocks into warps. In Tables 2.4 and 2.5, it is a small improvement of
computation speed by using shared memory. However, it is essential to choose the

14

Table 2.4: Comparison of average calculation time of using shared memory for each
time step under T = 32

unit: millisec.
1-D Using Global Memory 1-D Using Shared Memory

N sum. tangent total sum. tangent total
8192 16.5 0.40 17.1 16.2 0.33 16.7

16384 33.5 0.50 34.2 32.6 0.49 33.4
32768 80.8 0.51 81.7 81.4 0.48 82.3
65536 324.6 0.51 325.6 323.8 0.50 324.9

Table 2.5: Comparison of average calculation time of using shared memory for each
time step under T = 1024

unit: millisec.
1-D Using Global Memory 1-D Using Shared Memory

N sum. tangent total sum. tangent total
8192 35.2 0.36 35.8 34.8 0.36 35.3

16384 70.2 0.48 70.9 69.5 0.47 70.2
32768 140.1 0.53 141.1 138.8 0.51 139.7
65536 366.0 0.53 367.1 359.5 0.52 360.7

size of threads. It takes twice of execution time if we do not optimize the size of
threads. In implementation of Rosenhead’s scheme, there are no branches during
the calculation that will not cause the warp divergence. Tables 2.6 and 2.7 compare
computation time depending on the choice of block sizes. In the 1-D indexing case,
T = 32 performs the shortest execution time, where T = 32 coincides with the thread
size of a warp. In 2-D indexing, T = (16, 16) attains the shortest execution time.

Table 2.6: Comparison of average calculation time of block size for each step with
1-D indexing

unit: millisec.
N\T 16 32 64 128 256 512 1024
8192 16.4 16.4 16.3 16.3 17.1 20.6 35.0

16384 37.9 32.7 34.4 34.1 34.4 40.9 69.6
32768 125.5 82.0 85.0 86.9 90.5 91.6 138.8
65536 529.3 325.1 346.0 341.5 372.6 358.9 361.7

2.4 Quantitative Estimate of Rounding Errors by
Multiple-Precision Arithmetic

In GPUs, single precision arithmetic and half precision arithmetic are commonly
used for graphics processing purposes. With the development of GPUs, many ap-
plications require the accuracy of floating-point computation. Nowadays, GPGPU

15

Table 2.7: Comparison of average calculation time of block size for each step with
2-D indexing

unit: millisec.
N\T (8,8) (16,16) (32,32)
8192 9.2 8.3 9.1

16384 36.2 34.7 36.6
32768 126.6 115.3 135.6
65536 539.5 533.3 612.5

is used for high-performance scientific computing, and double precision arithmetic
is also supported by some NVIDIA GPUs.

NVIDIA GPUs comply with the IEEE754-2008 standard [19, 20, 21] of single
and double precision binary floating-point format, which are widely used in scientific
computation, for hardware-level support. In the IEEE754 standard, a floating-
point number consists of three fields: sign, exponent, and fraction. IEEE754 double
precision has 53-bits in the fraction part, which is approximately 16 decimal digits.
However, in some advanced scientific and engineering computations, the influence
of rounding errors is serious. Particularly, it is hard to measure rounding errors in
parallel computing since the computational order may not be preserved.

One strategy to reduce rounding errors is to extend the precision of the fraction
part in floating-point expressions. In IEEE754-2008 standard, it specifies quadru-
ple precision arithmetic as a 128-bits binary floating-point format which contains
113-bits in the fraction part. This gives approximately 34 significant decimal digits
precision. However, quadruple precision arithmetic has not yet been popular for
native hardware support. For software libraries level implementation, one of the
de facto standard compiler GNU Compilers Collection (GCC) provides a quadruple
precision arithmetic environment quadmath [22] on AMD64 and Intel64 architec-
tures, which are popular processor architectures for PC. Furthermore, we also use
a multiple-precision arithmetic environment exflib [23], which enables us to specify
arbitrarily computational precision in advance. Table 2.8 presents bits lengths and
precisions of floating-point types used in the present thesis.

In order to verify the reliability of double precision computation on GPU and
estimate rounding errors introduced by the approximation of the Rosenhead regu-
larization method, we process computation with three different precisions: double
precision, quadruple precision, and multiple precision (50 digits) . We assume the
results with exflib (50 digits) have the most accuracy, and then we are able to
estimate rounding errors in results with IEEE754 double precision and quadruple
precision arithmetic by using those with exflib as a reference. For further numerical
results, discussions are presented in Section 3.3 and Section 4.3.

16

Table 2.8: Precision of floating-point types used in experiments. In exflib, 50 decimal
digits is specified as desired computational precision.

type total sign exponent fraction
(bits) (bits) (bits) (bits) (decimal digits)

IEEE754 double 64 1 11 53 (15.95)
quadmath 128 1 15 113 (34.02)
exflib (50 digits) 256 1 63 193 (58.10)

2.5 Computational Time of Figure-of-eight Vor-
tex Filament Evolution

We apply the proposed design and implementation to the figure-of-eight vortex
filament evolution [3]. Table 2.9 shows elapse times for some pairs of N and ∆t in
the computational environment presented in Table 2.1. For the time-stepping, the
Runge-Kutta method shown in Algorithm 1 is adopted. For instance, the proposed
GPU computation consumes approximately 0.0839 seconds to obtain xt+∆t,i from
xt,i for the case N = 32768.

In order to avoid the singularity, Y. Kimura and H. K. Moffatt have adopted the
cut-off method [3] for the Biot-Savart law with respect to arc-length which is given
by

vi = −
Γ

4π

N−1∑
j=0

j ̸=i

(xi − xj)× τ j

|xi − xj|3
∆sj, 0 ≤ i < N, (2.5)

where

∆sj =


(|x0 − xN−1|+ |x1 − x0|)/2, j = 0,
(|xj − xj−1|+ |xj+1 − xj|)/2, 1 ≤ j ≤ N − 2,

(|xN−1 − xN−2|+ |x0 − xN−1|)/2, i = N − 1.
(2.6)

and τ j ≡ ∂xj/∂s is the unit tangent vector at xj.
In computation presented by Kimura and Moffatt [4], they have employed the

supercomputer Fujitsu PREIMEHPC FX100 in Information Technology Center,
Nagoya University. Their computational time is approximately 403312 seconds as
the wall clock time with N = 32768 and ∆t = 6.25 × 10−7 for 0 ≤ t ≤ 0.35 (=
560000∆t). It means that their computation consumes approximately 0.720 seconds
to compute xt+∆t,i from xt,i.

From the results, the proposed GPU computation achieves 8.58 times faster
computation than CPU shared memory parallelization.

17

Table 2.9: Timing comparison of different N with figure-of-eight vortex filament
under GPU computation, 0 ≤ t ≤ 0.4

N ∆t Total
4096 5× 10−5 1m 8s
8192 2× 10−5 5m 36s

16384 4.5× 10−6 50m 12s
32768 1× 10−6 9h 19m 18s
65536 3× 10−7 5d 10h 33m 29s

18

Chapter 3

Bounded case : Figure-of-eight
Vortex Filament

The purpose of Chapter 3 and Chapter 4 is to demonstrate an effectiveness of the
proposed GPU computation to ensure reliability of numerical computation of the
Biot-Savart law. In particular, we adopt the figure-of-eight vortex as the initial
condition in this chapter.

The figure-of-eight vortex is proposed by Y. Kimura and H. K. Moffatt [3]. This
shape is described as the skewed vortices by adding two ring parts at the ends
of vortices. The following particular parametrization of the curve is used in this
chapter. The initial shape of the figure-of-eight vortex is illustrated in Fig. 3.1a:

x =


x(θ) = 0.5 sin 2θ,
y(θ) = 2.5 sin θ,
z(θ) = 0.05 cos θ.

(0 ≤ θ < 2π) (3.1)

Let us recall the discretization of Biot–Savart equation with Rosenhead regulariza-
tion for a closed curve,

vt,i = −
Γ

4π

2π

N

N−1∑
j=0

(xt,i − xt,j)× ∂xt,j

∂θ(
|xt,i − xt,j|2 + µ2

)3/2 , 0 ≤ i < N (2.1)

In the discretization, we allocate the initial shape by x0,i = x(θi) with θi = 2πi/N ,
where 0 ≤ i < N . Throughout this chapter, Γ = 4π/50, µ = 10−5 and the proposed
GPU implementation with double precision arithmetic are used unless otherwise
stated.

Our numerical solutions at t = 0.338 and t = 0.340 are shown in Fig. 3.2. The
central parts of the curve which are separated at t = 0 as shown in Fig. 3.1a touch
each other near y = 0 depicted in Fig. 3.1b and 3.2b where blue and orange parts
represent those in z > 0 and z < 0 in the initial condition (3.1). This is called the
reconnection of the vortex filament.

19

-0.5 0 0.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

-0.5 0 0.5

z

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

(a) Initial shape (3.1)

-0.5 0 0.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

-0.5 0 0.5

z

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
(b) Reconnection which is observed at
t = 0.340 by numerical simulation with
N = 8192 and ∆t = 2× 10−5

Figure 3.1: Evolution of figure-of-eight vortex filament

0 0.1 0.2

x

-0.1

-0.05

0

0.05

0.1

y

-0.1

-0.05

0

0.05

0.1

y

-0.1 0 0.1

z

(a) t = 0.338

0 0.1 0.2

x

-0.1

-0.05

0

0.05

0.1

y

-0.1

-0.05

0

0.05

0.1

y

-0.1 0 0.1

z

(b) t = 0.340

Figure 3.2: Reconnection of figure-of-eight vortex filament near the estimated re-
connection time t = 0.3385 (N = 8192, ∆t = 2× 10−5)

20

3.1 Reliability Criteria
We investigate the relation between temporal and spatial discretization parameters.
In the discussions on finite difference schemes for time evolutional problems, the
stability of numerical schemes plays an essential role in ensuring the reliability of
numerical solutions. For typical cases, the stability of schemes is involved with
temporal and spatial discretization parameters. On the other hand, conditions for
stability of the scheme (2.1) have not been developed as far as the author knows.

In numerical computation with N = 8192 and ∆t = 4×10−5 by the Runge-Kutta
method, the numerical results start oscillating at a very early stage t = 0.0020 (=
50∆t) as Fig. 3.3a and Fig. 3.3b which are respectively obtained under the double
precision and multiple precision arithmetic computation, while numerical solutions
with N = 8192 and ∆t = 2 × 10−5 under double precision arithmetic computation
have no disturbance as Fig. 3.3c.

In order to discuss the reason of the disturbance, we calculate

|at,n|2 = |Xt,n|2 + |Yt,n|2 + |Zt,n|2, (3.2)

where {Xt,n}, {Yt,n}, and {Zt,n} are discrete Fourier transform defined by

Xt,n =
N−1∑
k=0

xt,ke
−i 2π

N
kn, (3.3)

Yt,n =
N−1∑
k=0

yt,ke
−i 2π

N
kn, (3.4)

and

Zt,n =
N−1∑
k=0

zt,ke
−i 2π

N
kn, (3.5)

where xt,k, yt,k, and zt,k are components of xt,k. Fig. 3.4 depicts behaviors of {at,n}.
For the initial shape, the amplitude decays exponentially with respect to the Fourier
modes. As time progresses in the case ∆t = 4×10−5, the effect from high frequency
modes grow rapidly. Around t = 0.0006, the amplitude of high frequency modes
reaches same level as low frequency modes. On the contrary, |at,n| with N = 8192
and ∆t = 2 × 10−5 decays exponentially in the period 0 ≤ t ≤ 0.004 as Fig. 3.4c.
This corresponds to the differences between Figs. 3.3a, b and Fig. 3.3c.

With the efficiency of GPU computation, we found the parameter pairs of N
and ∆t, which enable us to meet reconnection of the vortex filament numerically.
For the cases which could reproduce the reconnection called Type S parameters. For
the cases which diverge in a very early stage, we called it Type U parameters.

Fig. 3.5 shows our numerical results with N versus ∆t on the log-log scale.
The red circles(⃝) in the figure mean the Type S pairs of N and ∆t, while the
blue crosses(×) mean the Type U pairs we have examined. The green line is our
estimated interface of the Type S and Type U region calculated by the least-square
method. We state that the interface is proportional to 1/N2. We also note that
the interface is influenced by the choice of regularization parameters. Comparison
among µ = 10−2, 10−3, 10−4, and 10−5 is shown in Fig. 3.6.

21

-0.5 0 0.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
y

-0.5 0 0.5

z

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

∆t = 4× 10−5

(a) Type U, double preci-
sion

-0.5 0 0.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

-0.5 0 0.5

z

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

∆t = 4× 10−5

(b) Type U, multiple preci-
sion

-0.5 0 0.5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

-0.5 0 0.5

z

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

0.8

1

1.2

1.4

1.6

1.8

2

10 -3

∆t = 2× 10−5

(c) Type S, double precision

Figure 3.3: Numerical results by Type U and Type S parameter pairs (t = 0.0020,
N = 8192). The color bar corresponds to the distance calculated by (2.6).

(a) ∆t = 4 × 10−5, double
precision

(b) ∆t = 4 × 10−5, multiple
precision

(c) ∆t = 2×10−5, double pre-
cision

Figure 3.4: Amplitude of Fourier modes |at,n| for 0 ≤ t ≤ 0.004, N = 8192

Moreover, we plot the interface line for several Γ in Fig. 3.7 , which exhibits that
∆t will proportional to 1/|Γ|.

22

10
3

10
4

10
5

Number of Points

10
-7

10
-6

10
-5

10
-4

10
-3

 t

Type S

Type U

Figure 3.5: Reliable region for figure-of-eight vortex, Γ = 4π
50

and µ = 10−5

10
3

10
4

10
5

Number of Points

10
-6

10
-5

10
-4

10
-3

10
-2

 t

Figure 3.6: Reliable parameter interface for figure-of-eight vortex under different µ

23

0.5 1 1.5 2

Number of Points 10
4

10
-6

10
-5

10
-4

 t

Figure 3.7: Reliable region for figure-of-eight vortex under |Γ| = 2π
50
, 4π
50
, 8π
50
, 16π

50
and

µ = 10−5. The red circles are the Type S parameters and the blue cross are the
Type U parameters.

24

3.2 Estimate of Reconnection Time
In order to justify the ocurrence of vortex filament reconnection, the minimum sepa-
ration Dmin which measures the distance between the skewed parts of two branches is
introduced. Fig. 3.8 is the development of the square of minimum distances (Dmin)

2

with figure-of-eight vortex under several N , while Fig. 3.9 is its magnification around
reconnection moments. These figures suggest the results of Dmin ∼ (t∗−t)1/2 for each
N and ∆t where t∗ is the reconnection time depending on N . A scaling property

Dmin(t) ∼
√
|Γ|(tc − t) as t→ tc (3.6)

under the assumption of existence of the reconnection time tc has also been observed
in many studies [24, 25] and can be verified numerically. To obtain the result in
Fig. 3.8 and Fig. 3.9, parameters we used and the computational times are listed
in Table 2.9. The discretization parameters N and ∆t are chosen from Type S
identically the red circles in Fig. 3.5.

0 0.1 0.2 0.3 0.4

t

0

0.002

0.004

0.006

0.008

0.01

(D
m

in
)2

N=2048

N=4096

N=8192

N=16384

N=32768

N=65536

Figure 3.8: Development of the square of minimum distance (Dmin)
2

We apply the least square method to find an estimated line for the square of
minium distance (Dmin)

2 on the interval [0.30, 0.32]. From the crossing point of
approximated line and the horizontal axis, we get the estimated reconnection time
t∗ = t∗(N). Fig. 3.10 gives the approximated straight line and the estimated re-
connection time for the Fig. 3.8. Table 3.1 lists the estimated reconnection time t∗

respect to N .
In order to support the convergence of the method, let the estimated reconnection

time be terc of the vortex filament evolution (1.1) and suppose the error |t∗(N)− terc|
has relation

|t∗(N)− terc| = O
(
N−α

)
. (3.7)

Since terc and α are unknown, we find the optimal terc and α such that the error
|t∗(N)− terc| fits the relation (3.7) by linear regression with logarithmic transforma-
tion. In this research, we use the golden section search on a specified interval and

25

0.26 0.28 0.3 0.32 0.34 0.36 0.38

t

0

0.5

1

1.5

2

2.5

3

3.5

(D
m

in
)2

10
-3

N=2048

N=4096

N=8192

N=16384

N=32768

N=65536

Figure 3.9: Development of (Dmin)
2 near estimated reconnection times

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

t

0

0.5

1

1.5

2

2.5

(D
m

in
)2

10
-3

t=0.3385

Figure 3.10: The approximated line and estimated reconnection time t = 0.3385 is
obtained for the figure-of-eight vortex (N = 8192)

Table 3.1: Estimated reconnection time t∗ in different N

N t∗ N t∗

2400 0.3554 16800 0.3339
4800 0.3436 19200 0.3333
7200 0.3397 21600 0.3327
9600 0.3373 24000 0.3323

12000 0.3359 26400 0.3319
14400 0.3348 28800 0.3316

use the norm of the residuals of least square method as cost function to find the terc
such that the error is minimized. As the result, the estimated reconnection time
terc = 0.3266 and order α = 0.6990 are derived by N and t∗ presented in Table 3.1.
In Fig. 3.11, we plot the relation (3.7) by the read line with data in Table 3.1 by blue

26

circles. In order to verify the assumption, we also plot (N, t∗) = (32768, 0.3311) and
(65536, 0.3293) which are not used in fitting by red squares. In order to establish the
goodness-of-fit, we use the coefficient of determination R2 by measuring the error
between |t∗(N)− terc| and estimated value from O(N−α).

10
-5

10
-4

10
-3

1/Number of Points

10
-3

10
-2

t*
-t

e
rc

Figure 3.11: Convergence of errors |t∗(N)− terc| under figure-of-eight vortex

With our estimate, terc = 0.3266 is a lot far from our largest computational result
t∗ = 0.3292 for N = 65536. If we reproduce the result with error less than 10−3,
we need around N = 350000 which is 5 times as large as the largest parameter we
examined.

0.305 0.31 0.315 0.32 0.325 0.33

t

0

2

4

6

8

(D
m

in
)2

10
-4

Figure 3.12: Comparison of the terc = 0.3266 indicated by the red cross with the
estimated reconnection time t∗ = 0.3292 for N = 65536

Moreover, we also use Richardson extrapolation to estimate the reconnection
time. We estimate convergence rate α by following approximation,

t(Richardson)
erc ≈ t∗ (14400)+

t∗ (14400)− t∗(2400)

6α − 1
≈ t∗ (28800)+

t∗ (28800)− t∗(2400)

12α − 1
,

(3.8)
where N = 2400, 14400, 28800 are the smallest, middle, and the largest data in Table
3.1. The estimated reconnection time t

(Richardson)
erc = 0.3264, and α = 0.6942. As the

result, our estimate by optimization method shows high correlation R2 = 0.9990 and

27

estimate by Richardson extrapolation is R2 = 0.9994. Two methods give coincident
result, thus proposed optimal approximation is reliable.

3.3 Estimate of Accumulation of Rounding Errors
In this section, we discuss the accumulation of rounding errors in double precision
arithmetic quantitatively near the estimated reconnection time for the sake of relia-
bility. Particularly, in the numerical evolution of the figure-of-eight vortex filament,
we meet the singularity at the reconnection time. This kind of singularity usu-
ally causes a rapid accumulation of rounding errors. However, the standard GPU
architecture supports single and double precision arithmetic. Therefore we com-
pare results by using different computational environments as stated in Section 2.4:
double precision on GPU, quadratic precision on CPU, and multiple precision on
CPU.

We measure the errors between double precision arithmetic and 50 decimal digits
by

max
j

∣∣x(double)
t,j − x

(50 digits)
t,j

∣∣∣∣x(50 digits)
t,j

∣∣ (3.9)

and those between quadruple precision arithmetic and 50 decimal digits by

max
j

∣∣x(quadruple)
t,j − x

(50 digits)
t,j

∣∣∣∣x(50 digits)
t,j

∣∣ , (3.10)

where x
(double)
t,j ,x

(quadruple)
t,j , and x

(50 digits)
t,j are respectively numerical solutions under

double, quadruple, and 50 decimal digits by multiple precision arithmetic. The
results with N = 8192 and ∆t = 2×10−5 are shown in Table 3.2 and Fig. 3.13. The
results indicate that the rounding errors are not significant even after a short period
of the estimated reconnection time t∗ = 0.3385, while the rapid growth of errors are
observed after reconnection for double precision and quadruple precision. Thus we
conclude that the numerical simulation, including reconnection, is reliable in terms
of rounding errors.

Table 3.2: Maximum relative errors (3.9) and (3.10) of figure-of-eight vortex filament
under double precision, quadruple precision with multiple precision, where t∗ =
0.3385. (N = 8192, ∆t = 2× 10−5)

Double (GPU) Quadruple (CPU)
0.320 6.45× 10−13 4.76× 10−31 before t∗

0.338 1.23× 10−12 3.44× 10−31 near t∗

0.342 9.58× 10−9 3.27× 10−27 after t∗

0.344 1.02× 101 1.15× 10−1 after t∗

Table 3.3 gives the computational times with different arithmetic for 0 ≤ t ≤
0.4 (= 20000∆t) in the environment given in Table 2.1. In the table, the second
column gives elapsed times to find tangent vectors by FFT, while the third column

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

t

10
-15

10
-10

10
-5

10
0

10
5

re
la

ti
v
e
 e

rr
o
r

(a) Errors (3.9) in double precision

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

t

10
-30

10
-20

10
-10

10
0

re
la

ti
v
e
 e

rr
o
r

(b) Errors (3.10) in quadruple precision

Figure 3.13: Maximum relative errors (3.9) and (3.10) of figure-of-eight vor-
tex filament under double precision, quadruple precision with multiple precision
(N = 8192, ∆t = 2 × 10−5) for 0 ≤ t ≤ 0.344. The vertical line is the estimated
reconnection time t∗ = 0.3385.

gives those to calculate numerical integration and time stepping. Computation of
quadruple precision and multiple precision are still taken much more time than
GPU computation. It is not practical to investigate the rounding errors with case
N = 65536.

Table 3.3: Elapse times of different precision with figure-of-eight vortex filament,
N = 8192, ∆t = 2× 10−5 for 0 ≤ t ≤ 0.4

Tangent Sum. Total
double (16 digits, GPU, 5120 cores) 7s 5m 27s 5m 36s
double (16 digits, 32 threads) 41s 25m 40s 26m 30s
quadmath (34 digits, 32 threads) 12m 17s 1d 19h 01m 1d 19h 14m
exflib (58 digits, 32 threads) 19m 21s 2d 15h 51m 2d 16h 10m

29

3.4 Convergence of Numerical Solutions
This section is devoted to investigating the convergence of numerical solutions based
on numerical experiments. This gives another standpoint to ensure the reliability of
the results obtained by the proposed scheme (2.1).

Let x
(N)
t,i , 0 ≤ i < N , be numerical solutions corresponding to x(t, θi) under the

spatial discretization parameter N and double precision arithmetic. We define

max
k
|x(N)

t,k − x̃
(N)
t,k |, (3.11)

where x̃
(N)
t,k = x

(65536)
t,(65536/N)k which maps the fine discretization points to those in

the specified N . Since it is hard to obtain the exact solution, the error measures
difference by the numerical results obtained under the maximum possible parameter
N = 65536, which is assumed to be the closest to the exact solution.

Firstly, we fix µ = 10−2 and ∆t = 7.5 × 10−3. Fig. 3.14 is the error at t =
0.15 (= 20∆t). In this case, we meet the error at 10−12, which is at the rounding
error level. In Fig. 3.14, we also compare the error under multiple precision. For
the case N = 32768, its error between N = 65536 is less than 10−40. Note that
the horizontal axis is in the linear scale, while the vertical axis is in the logarithmic
scale. It means exponential decay of maximum error with respect to N estimated
by error ≈ 0.02444× 0.9969N . On the other hand, in approximation to (1.1) by

vt,i = −
Γ

4π

N−1∑
j=0

(xt,i − xt,j)× ∂xt,j

∂s(
|xt,i − xt,j|2 + µ2

)3/2∆sj, 0 ≤ i < N (3.12)

where ∆si is defined by (2.6), the errors show O(N−2.131) convergence. The result is
exhibited in Fig. 3.15, where both horizontal and vertical axes are in the logarithmic
scale.

0.5 1 1.5 2 2.5 3 3.5

Number of Points 10
4

10
-25

10
-20

10
-15

10
-10

10
-5

e
rr

o
r

double precision

multiple precision

Figure 3.14: Errors in log scale versus N when µ = 10−2, t = 0.15 with scheme (2.1)

30

10
3

10
4

Number of Points

10
-8

10
-7

10
-6

10
-5

e
rr

o
r

Figure 3.15: Log-log plot of errors versus N when µ = 10−2, t = 0.15 with scheme
(3.12)

Secondly, we also choose µ = 10−2 but fix N = 8192 and change ∆t to measure
the error of temporal discretization by

max
k
|x(∆t)

t,k − x
(∆tc)
t,k |. (3.13)

We use ∆tc = 4.6875 × 10−4 as reference and measure the error at t = 0.15
under ∆t = 7.5× 10−3, 3.75× 10−3, 1.875× 10−3, and 9.375× 10−4. Fig. 3.16 shows
the O(∆t4) convergence which consists with the order of the Runge-Kutta method.
Note that errors come from temporal discretization are smaller than those come
from spatial discretization under scheme (3.12).

Finally, we choose µ = 10−5. The errors along to different N is shown in Fig. 3.17.
In this case, we use the maximum ∆t which could meet numerical reconnection
without turbulence. In this case, the error is also observed to decay exponentially
as N goes large.

31

10
-3

10
-2

 t

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

e
rr

o
r

Figure 3.16: Log-log plot of errors at t = 0.15 versus ∆t when µ = 10−2, N = 8192
with scheme (2.1)

0.5 1 1.5 2 2.5 3 3.5

Number of Points 10
4

10
-3

10
-2

10
-1

e
rr

o
r

Figure 3.17: Errors in log scale versus N when µ = 10−5, t = 0.15 with scheme (2.1)

32

Chapter 4

Unbounded case : Tent-shaped
Vortex Filament

In this chapter, we will give another case study of the proposed GPU computation to
unbounded curves, a tilted hyperbola with two branches called tent-shaped, which
has been proposed by Y. Kimura and H. K. Moffatt [4]. It consists of two smooth
unbounded curves, and its initial shape is depicted in Fig. 4.1, which shows the two
branches x1 in blue and x2 in orange of a tent-shaped vortex filament.

x1 :


x(p) = c cosh p cos θ
y(p) = (c/m) sinh p
z(p) = −c cosh p sin θ

x2 :


x(p) = −c cosh p cos θ
y(p) = (c/m) sinh p
z(p) = −c cosh p sin θ

with c = 0.1, m = 0.35, θ = π/4 and p ∈ R.

(4.1)

-0.3 -0.2 -0.1 0 0.1 0.2

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y

-0.25

-0.2

-0.15

-0.1

z

0.5

y

0
0.2

x

-0.5 0-0.2

Figure 4.1: Initial shape of the tent model

Let us recall the regularized Biot–Savart law for multiple vortex filaments

vµ(t,x) = −
M∑
k=1

Γk

4π

∫
Ik

(
x− rk

µ(t, ξ)
)
× ∂rk

µ

∂ξ
g(|x− rk

µ(t, ξ)|/σk)

|x− rk
µ(t, ξ)|3

dξ, (4.2)

where g(y) = y3/(y2 + α) and α = (σi/µ)
2 give Rosenhead regularization. In the

numerical computation, a finite number of points are distributed on the initial shape

33

of the tent model (4.1), and the velocity of each point given by (4.2) is approximately
calculated to find the evolution of the curve. Let M be a positive integer, and
h = π/(2M). Using the distribution appeared in the double exponential rule [26],
we adopt parameterization

pi = sinh

(
π

2
sinh(ih)

)
−M ≤ i ≤M, h > 0, (4.3)

and ∆pi defined by

∆pi =
π

2
h cosh(ih) cosh

(
π

2
sinh(ih)

)
. (4.4)

Note that the number of total points on x1
µ and x2

µ is N = 4M + 2. The velocity
at discretized point is calculated by

v1
t,i = −

Γ1

4π

M∑
j=−M

(x1
t,i − x1

t,j)× τ 1
t,j(

|x1
t,i − x1

t,j|2 + µ2
)3/2∆pj −

Γ2

4π

M∑
j=−M

(x1
t,i − x2

t,j)× τ 2
t,j(

|x1
t,i − x2

t,j|2 + µ2
)3/2∆pj,

(4.5)

v2
t,i = −

Γ2

4π

M∑
j=−M

(x2
t,i − x2

t,j)× τ 2
t,j(

|x2
t,i − x2

t,j|2 + µ2
)3/2∆pj −

Γ1

4π

M∑
j=−M

(x2
t,i − x1

t,j)× τ 1
t,j(

|x2
t,i − x1

t,j|2 + µ2
)3/2∆pj,

(4.6)

where −M ≤ i ≤ M , v1
t,i and v2

t,i are velocities at x1
t,i = r1

µ(t, pi) and x2
t,i =

r2
µ(t, pi) respectively, and τ k = ∂xk

µ/∂p is the tangent vector and it is calculated
by the fourth-order finite difference. Note that for f ∈ C6(R), we have

f ′(x)− −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h

=
1

30
f (5)(x)h4 +O(h6)

(4.7)

and

f ′(x)− −3f(x+ 4h) + 16f(x+ 3h)− 36f(x+ 2h) + 48f(x+ h)− 25f(x)

12h

=
1

5
f (5)(x)h4 +O(h5)

(4.8)

as h → 0. Moreover, two branches perform as symmetrical to the plane x = 0,
and we adopt replicating algorithm to reduce the computation. Throughout this
chapter, Γ1 = −Γ2 = 4π/50 and µ = 10−5 are used unless otherwise stated.

Note that the supremum norm is not applicable to the tent-shaped vortex fil-
ament due to its unboundedness. In fact, maximum errors defined by (3.11) are
attained almost at the edge of truncated curves, and rounding errors are dominant
in double precision arithmetic.

34

4.1 Reliability Criteria
In this section, we discuss the choice of reliable parameter pairs N and ∆t to repro-
duce the numerical reconnection.

Fig. 4.2 shows the results for at t = 0.006 with different sizes of ∆t. Fig. 4.2a
and Fig. 4.2b are numerical solutions calculated with ∆t = 4× 10−5 by double and
multiple precision arithmetic respectively, and they have disturbance. However in
Fig. 4.2c, the curve is smooth under ∆t = 2 × 10−5, and we can reproduce the
reconnection.

Fig. 4.3 depicts Type S and Type U pairs of N and ∆t we have tested by the
red circles, and blue crosses, respectively. The green line is the estimated interface
of the Type S and Type U region by the least-square method. We state that the
interface of reliable parameter pairs under the tent-shaped vortex is proportional to
1/N2.

-0.2 -0.1 0 0.1 0.2

x

-0.2

-0.1

0

0.1

0.2

y

∆t = 4× 10−5

(a) Type U, double preci-
sion

-0.2 -0.1 0 0.1 0.2

x

-0.2

-0.1

0

0.1

0.2

y

∆t = 4× 10−5

(b) Type U, multiple preci-
sion

-0.2 -0.1 0 0.1 0.2

x

-0.2

-0.1

0

0.1

0.2

y

0.45

0.5

0.55

0.6

0.65

0.7

∆t = 2× 10−5

(c) Type S, double precision

Figure 4.2: Numerical results by Type U and Type S parameter pairs (t = 0.006,
N = 3202). The color bar corresponds to the distance calculated by (2.6).

10
4

Number of Points

10
-7

10
-6

10
-5

10
-4

 t

Type U

Type S

Figure 4.3: Reliable regions for the tent model

35

4.2 Estimate of Reconnection Time
As we discussed in Section 3.2, we introduce the minimum separation Dmin and
examine a scaling property (3.6). Fig. 4.4 depicts the development of the square of
the minimum distance (Dmin)

2. Computational times are listed in Table 4.1, where
pairs of N and ∆t are chosen from Type S examined in Fig. 4.3.

Fig. 4.5 depicts the regression line and the estimated reconnection time for N =
9602. For the profile before and after the estimated reconnection time t∗ = 0.4691
with N = 9602 is shown in Fig. 4.6. The orange curve touches the blue one and the
collision happens after t = 0.4691. As in Section 3.2, we set the fitting range by the
time interval [0.40, 0.42].

0 0.1 0.2 0.3 0.4 0.5 0.6

t

0

0.005

0.01

0.015

0.02

(D
m

in
)2

N=2402

N=4802

N=9602

N=19202

N=38402

Figure 4.4: Development of the tent-shaped vortex along the curve of the square of
minimum distance

Table 4.1: Elapse times for tent-shaped vortex filament under GPU computation
0 ≤ t ≤ 0.52

N ∆t Total
2402 4.5× 10−5 33s
4802 1× 10−5 5m 04s
9602 3× 10−6 35m 22s

19202 7× 10−7 5h 34m 32s
38402 1.5× 10−7 2d 23h 05m

We assume the convergence relation (3.7) and verify the assumption based on the
numerical computation. Similarly to Section 3.2, the estimated reconnection time
t∗(N) shown in Table 4.2 gives terc = 0.3467, and α = 0.2381. As define in Section
3.2, coefficient of determination R2 = 0.99998. Fig. 4.7 depicts the regression line
and |t∗−terc|. Moreover, we estimate reconnection time by Richardson extrapolation
with t∗(2402), t∗(19202), and t∗(38402) which are similar to (3.8). We have the
estimate with t

(Richardson)
erc = 0.3433, α = 0.2324, and R2 = 0.99994. The results

derived by Richardson extrapolation consist with those by the golden section search,
and thus both results are validated.

36

0.45 0.455 0.46 0.465 0.47

t

0

2

4

6

8

10

(D
m

in
)2

10
-4

t=0.4693

Figure 4.5: The regression line and estimated reconnection time t = 0.4691 is ob-
tained for the tent-shaped vortex (N = 9602)

-0.01 -0.005 0 0.005

x

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

y

-0.02

0

0.02

0.04

z

0.06

0.08

0.2 0.05

xy

00
-0.05-0.2

(a) t = 0.4690

-0.01 -0.005 0 0.005

x

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
y

0.06

0.07

0.05

0.08

z

0.09

0.02

y

0

x

0-0.05
-0.02

(b) t = 0.4696

Figure 4.6: Reconnection of tent-shaped vortex near the estimated Reconnection
Time t = 0.4691 (N = 9602)

In Fig. 4.8, we plot the estimated terc by the red cross and the decay of minimum
separations (Dmin)

2. In the case of tent model, the convergence of reconnection time
is far from our computed largest result N = 38402.

Table 4.2: Estimate of reconnection time t∗ in different N

N t∗ N t∗

2402 0.5171 21602 0.4476
4802 0.4907 24002 0.4451
7202 0.4775 26402 0.4429
9602 0.4689 28802 0.4409

12002 0.4627 31202 0.4391
14402 0.4578 33602 0.4374
16802 0.4538 36002 0.4359
19202 0.4505 38402 0.4345

37

10
-5

10
-4

1/Number of Points

0.08

0.1

0.12

0.14

0.16

t*
-t

e
rc

Figure 4.7: The error |t∗(N) − terc| versus 1/N under tent-shaped vortex filaments
where terc = 0.3466

0 0.1 0.2 0.3 0.4 0.5 0.6

t

0

0.005

0.01

0.015

0.02

(D
m

in
)2

N=2402

N=4802

N=9602

N=19202

N=38402

Figure 4.8: Comparison of the terc = 0.3466 indicated by the red cross with the
estimated reconnection time t∗ = 0.4346 for N = 38402

4.3 Estimate of Accumulation of Rounding Errors
In this section, we measure the rounding errors by changing the precisions of arith-
metic. In Table 4.3, the maximum relative errors similar to (3.9) and (3.10) under
tent-shaped vortex filament are presented. For the relative error in 0 ≤ t ≤ 0.52,
we see the rapid growth of rounding errors after the reconnection time illustrated
in Fig. 4.9. In the tent-shaped case, N = 3202 and ∆t = 2 × 10−5 are used. The
results also show that the rounding errors are not significant near the estimated
reconnection time t∗ = 0.5055. Thus we conclude that the numerical simulation,
including reconnection, is reliable in terms of rounding errors.

Table 4.4 shows the computational times with different arithmetic for 0 ≤ t ≤
0.52 (= 26000∆t) where N = 3202 and ∆t = 2× 10−5 are used.

38

Table 4.3: Maximum relative errors of tent-shaped vortex filaments under double,
quadruple precision with multiple precision, where t∗ = 0.5055. (N = 3202, ∆t =
2× 10−5)

Double (GPU) Quadruple (CPU)
0.4500 2.20× 10−12 6.21× 10−22 before t∗

0.5040 2.46× 10−12 3.85× 10−21 near t∗

0.5060 2.47× 10−12 9.95× 10−21 after t∗

0.5100 1.36× 104 1.41× 102 after t∗

0 0.1 0.2 0.3 0.4 0.5 0.6

t

10
-15

10
-10

10
-5

10
0

10
5

re
la

ti
v
e
 e

rr
o
r

(a) Double precision

0 0.1 0.2 0.3 0.4 0.5 0.6

t

10
-20

10
-10

10
0

re
la

ti
v
e
 e

rr
o
r

(b) Quadruple precision

Figure 4.9: Maximum relative errors of tent-shaped vortex filaments under double,
quadruple precision with multiple precision (N = 3202, ∆t = 2× 10−5) for 0 ≤ t ≤
0.51. The vertical line is the estimated reconnection time t∗ = 0.5055.

Table 4.4: Elapse times of different precision with tent-shaped vortex filaments with
N = 3202 and ∆t = 2× 10−5

unit: sec.
Total

double (16 digits, GPU, 5120 cores) 1m 42s
double (16 digits, 32 cores) 3m 36s
quadmath (34 digits, 32 cores) 5h 6m 54s
exflib (58 digits, 32 cores) 7h 53m 48s

39

Chapter 5

Conclusion

In this thesis, we discuss fast and reliable numerical computation for simulation of
vortex filament evolution described by (1.1). We propose the efficient use of Graph-
ics Processing Units (GPUs), which enable us to verify the reliability of numerical
results by performing and comparing computations with various computation pa-
rameters.

Firstly, we have introduced design and implementation of vortex filament evolu-
tions on GPU, which is equipped with thousands of cores and is suitable for parallel
computations. In this thesis, we employ the numerical scheme (2.1) for the numerical
computation of vortex filament evolution. It has O(N2) computational complexity
when the vortex filament is approximated by N points. We optimize computation
performance by using shared memory. We also optimize the choice of warp sizes
by measuring computational times with several combinations of possible warp sizes.
As a result, we achieve 8.58 times faster than supercomputer computation, and we
push forward twice the nodal points N than the previous studies by Kimura and
Moffatt.

Secondly, we study the reliability of the employed scheme (2.1) with figure-of-
eight vortex and tent-shaped vortex. Numerical stability of schemes is essential
in time evolution problems. However, it is challenging to evaluate the reliability
of schemes by mathematical analysis. Thus, we investigate reliability parameter
pairs with the aid of massive GPU computations. Moreover, a rigorous estimate of
reconnection time is also hard. We estimate the reconnection time by examining
numerical solutions precisely. Finally, we compare numerical solutions under GPU
computation with standard double precision arithmetic with quadruple precision and
multiple precision by exflib. From the results, we verify the reliability of numerical
solutions in terms of discretization and rounding errors.

40

Bibliography

[1] L. Rosenhead, “The spread of vorticity in the wake behind a cylinder,” Proc.
R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character, vol. 127, no.
806, pp. 590–612, 1930.

[2] L. C. Berselli and H. Bessaih, “Some results for the line vortex equation,”
Nonlinearity, vol. 15, no. 6, pp. 1729–1746, 2002.

[3] Y. Kimura and H. K. Moffatt, “Scaling properties towards vortex reconnection
under Biot-Savart evolution,” Fluid Dyn. Res., vol. 50, no. 1, 2018.

[4] ——, “A tent model of vortex reconnection under Biot-Savart evolution,” J.
Fluid Mech., vol. 834, pp. 1–12, 2018.

[5] NVIDIA Corporation, “CUDA C++ Programming Guide, re-
lease: 10.2.89,” 2017. https://docs.nvidia.com/cuda/archive/10.2/
cuda-c-programming-guide/index.html

[6] H. Nguyen, GPU Gems 3, 1st ed. Addison-Wesley Professional, 2007.

[7] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J.
Comput. Phys., vol. 73, no. 2, pp. 325–348, 1987.

[8] A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow. Cambridge
University Press, nov 2001.

[9] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den
Wirbelbewegungen entsprechen.” J. für die reine und Angew. Math., vol. 55,
pp. 25–55, 1858.

[10] K. Moffatt, “Vortex Dynamics: The Legacy of Helmholtz and Kelvin,” in IU-
TAM Symp. Hamiltonian Dyn. Vor. Struct. Turbul. Dordrecht: Springer
Netherlands, 2007, pp. 1–10.

[11] H. Lamb, Hydrodynamics. University Press, 1895.

[12] L. S. Da Rios, “Sul moto d’un liquido indefinito con un filetto vorticoso di forma
qualunque,” Rend. del Circ. Mat. di Palermo, vol. 22, no. 1, pp. 117–135, 1906.

[13] A. Leonard, “Vortex methods for flow simulation,” J. Comput. Phys., vol. 37,
no. 3, pp. 289–335, 1980.

41

[14] C. Greengard, “Convergence of the Vortex Filament Method,” Math. Comput.,
vol. 47, no. 176, p. 387, 1986.

[15] J. Soler, “Vortex filament method,” IMA J. Numer. Anal., vol. 10, no. 1, pp.
75–102, 1990.

[16] W. Thomson, “VI.—On Vortex Motion,” Trans. R. Soc. Edinburgh, vol. 25,
no. 1, pp. 217–260, 1868.

[17] NVIDIA Corporation, “Nvidia Tesla V100 GPU Volta Architecture,” 2017.

[18] ——, “Cufft Library User’s Guide,” 2013. https://developer.nvidia.com/
cuda-toolkit-55-archive

[19] “ANSI/IEEE 754-1985 Standard for Binary Floating-Point Arithmetic,” 1985.

[20] “IEEE 754–2008 Standard for Floating-Point Arithmetic,” 2008.

[21] N. Whitehead and A. Fit-Florea, “Precision & performance: Floating point and
IEEE 754 compliance for NVIDIA GPUs,” 2011.

[22] “GCC libquadmath.” https://gcc.gnu.org/onlinedocs/libquadmath/

[23] H. Fujiwara, “exflib: multiple-precision arithmetic library.” http://www-an.
acs.i.kyoto-u.ac.jp/~fujiwara/exflib/

[24] E. D. Siggia, “Collapse and amplification of a vortex filament,” Phys. Fluids,
vol. 28, no. 3, pp. 794–805, 1985.

[25] A. T. De Waele and R. G. Aarts, “Route to vortex reconnection,” Phys. Rev.
Lett., vol. 72, no. 4, pp. 482–485, 1994.

[26] H. Takahasi and M. Mori, “Double exponential formulas for numerical integra-
tion,” Publ. Res. Inst. Math. Sci., vol. 9, no. 3, pp. 721–741, 1974.

42

