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Abstract 

 

A DC-DC Zeta converter is a specific type of electrical circuit topology or configuration 

that transfers electrical power from the input to the output, producing a lower or higher 

direct-current (DC) output voltage than the DC input voltage. In practice, the input 

voltage and the load usually vary, either intentionally or otherwise; thus, a control 

subsystem is needed to ensure stable operation of the converter. In this thesis, to 

stabilize a DC-DC Zeta converter, we developed three switching control strategies based 

on two distinctive systems; an average-based system and a hybrid system.  

 

For the average-based system control, a DC-DC Zeta converter under continuous 

conduction mode (CCM) operation is considered. We take into account the uncertain 

parameters, namely the input voltage and the load, and include the uncertainties of the 

Zeta converter model in a convex polytope formed by eight and 16 vertices. We rewrite 

a linear quadratic regulator (LQR) problem into a linear matrix inequality (LMI) 

representation; we term it an LMI-LQR approach, and solve the LMI-LQR problem for 

the eight and 16 vertices of the convex polytope model to find a state-feedback 

controller. On the other hand, for the hybrid system control, we derive two switching 

control strategies, each for the Zeta converter under CCM and discontinuous conduction 

mode (DCM) operations from a control Lyapunov function. For the CCM operation, 

the Zeta converter is modeled as a class of differential inclusions, and the local 

asymptotic stability of the operating point is established using LaSalle's invariance 

principle for this class of differential inclusions. Near the operating point, we allow the 

Lyapunov function to increase and bound it by a threshold that is related to the 

prescribed switching frequency. Later, we extend the hybrid system control to a three-

mode system, instead of two-mode for the CCM operation, and formulate a switching 

control strategy for the Zeta converter in DCM operation. 

 

As a result, both the average-based and the hybrid system controllers are robust 

and able to handle large input voltage and load perturbations. Compared to the 

conventional LQR control, under the non-nominal condition, our LMI-LQR control can 

stabilize the output voltage, whereas the conventional LQR control is unable to bring 

back the state-trajectory to its operating point. However, in CCM operation, it is shown 

that the hybrid system control is more robust than the LMI-LQR control, especially if 

the perturbations are outside the predefined uncertain parameters value. Likewise, for 
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the DCM operation, our hybrid system control can stabilize the output voltage while 

maintaining the desired switching frequency requires for the DCM operation. 



iii 

 

 

 

Acknowledgment 

 

First and foremost, my highest gratitude goes to my supervisor, Professor Dr. Yoshito 

Ohta, for his willingness to accept me as a research student back in 2015, and later as a 

PhD student in 2016. His tremendous guidance and support, as well as invaluable input 

and comment throughout my PhD journey, will always be remembered. Without a 

doubt, I will never be where I am now without his excellent supervision. 

 

I want to express my appreciation to Professor Dr. Nobuo Yamashita and Professor 

Dr. Toshiyuki Ohtsuka, where both are the professors at the Graduate School of 

Informatics, Kyoto University, for serving as the committee members of my dissertation. 

Their highly useful comment and recommendation help me improve the dissertation. 

 

I would like to thank the Control System Theory laboratory secretaries, Ms. Atsuko 

Kimura who has helped me a lot with my official and personal matters, and Ms. Nobuko 

Nishikawa who has helped me prepared the important documents for the dissertation 

matter. 

 

Special thanks to the Malaysia Ministry of Education (Department of Higher 

Education) and Universiti Teknikal Malaysia Melaka (UTeM) for the much needed 

financial support. Without them, it would be impossible for me to further studies at this 

prestigious Kyoto University. 

 

My deepest and most emotional thanks go to my beloved wife Noridah Mohd 

Ridzuan, and my four adorable children Aqeela Hafez, Ashraf Hafez, Arsyad Hafez, and 

Amsyar Hafez, for always being there beside me, during the up-and-down of my PhD 

and life journeys. To my father Sarkawi Afendi, mother Norjanah Pitani, father-in-law 

Mohd Ridzuan Salleh, and mother-in-law Markonah Abu, thanks for the prayers and 

best wishes for me to complete the PhD study. 

 

Last but not least, to the other family members, friends, and those who have made 

contributions, either directly or indirectly, my sincerest thanks go to all. 

 

  

 

 



iv 

 

 



 

v 

 

 

 

 

Contents 

 

 

1 Introduction 1 

 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

 1.2 Introduction to DC-DC Converter . . . . . . . . . . . . . . . . . . . . .  3 

  1.2.1 Mode of Operation   . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

  1.2.2 Circuit Topology    . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

 1.3 DC-DC Converter Control . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

  1.3.1 Average-based System Control Approach . . . . . . . . . . .  13 

  1.3.2 Hybrid System Control Approach . . . . . . . . . . . . . . . .  17 

  1.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

 1.4 Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

  1.4.1 Conventional Zeta Converter Control . . . . . . . . . . . . . .  24 

  1.4.2 Hybrid Two-dimensional Converter Control . . . . . . . . . .  25 

 1.5 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

 

2 Preliminaries 27 

 2.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

 2.2 Zeta Converter Model in CCM Operation . . . . . . . . . . . . . . . .   27 

 2.3 Zeta Converter Model in DCM Operation . . . . . . . . . . . . . . . .   29 

 2.4 Zeta Converter Small-signal SSA Model in CCM Operation . . .  31 

 

3 Robust DC-DC Zeta Converter Control Operating in CCM 33 

 3.1 Uncertain SSA Zeta Converter Model in CCM Operation . . . . .  33 

 3.2 LMI-LQR Control Formulation . . . . . . . . . . . . . . . . . . . . . . .    35 

 3.3 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

 3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

 

4 Hybrid DC-DC Zeta Converter Control Operating in CCM    49 



vi  Contents 

 

 

 4.1 Hybrid Two-mode System Control . . . . . . . . . . . . . . . . . . . . .  49 

 4.2 Stability of Hybrid System Control . . . . . . . . . . . . . . . . . . . .  53 

  4.2.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

  4.2.2 Stability of Hybrid Zeta Converter Control in CCM . . .  57 

 4.3 Limiting the Switching Frequency . . . . . . . . . . . . . . . . . . . . .  62 

  4.3.1 Modified Hybrid CCM System Control Strategy . . . . . .  62 

  4.3.2 Modified Hybrid CCM Zeta Converter Control Strategy   64 

  4.3.3 Switching Frequency Estimation in CCM Operation . . .  66 

 4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

 

5 Hybrid DC-DC Zeta Converter Control Operating in DCM 75 

 5.1 Hybrid Three-mode System Control . . . . . . . . . . . . . . . . . . . .  75 

 5.2 Stability of Hybrid Zeta Converter Control in DCM . . . . . . . .  77 

 5.3 Modified Hybrid DCM Zeta Converter Control Strategy . . . . .  78 

 5.4 Switching Frequency Estimation in DCM Operation . . . . . . . .  79 

 5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

 

6 Conclusion 89 

 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

 6.2 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

 

Bibliography 93 

 

Appendix A List of Author’s Work 99 

 

Appendix B Matlab Code for State-feedback Controller 𝐾𝐿𝑄𝑅 101 

 

Appendix C Matlab Code for State-feedback Controller 𝐾𝐿𝑀𝐼16 103 

 

Appendix D Matlab Code for State-feedback Controller 𝐾𝐿𝑀𝐼8 107 

 

 

 



 

vii 

 

 

 

 

List of Figures 

 

 

1.1 I-V curve of a solar cell and operating points for fixed load resistance [6]. 

1.2 Solar energy harvesting systems with a DC load. 

1.3 A switching-type DC-DC converter block diagram.  

1.4 Two-mode transitions in CCM operation. 

1.5 Approximate steady-state inductor current waveform in CCM operation. 

1.6 Three-mode transitions in DCM operation. 

1.7 Approximate steady-state inductor current waveform in DCM operation. 

1.8 DC-DC buck converter circuit. 

1.9 Equivalent buck converter circuits in CCM operation for (a) mode 1, and 

(b) mode 2. 

1.10 Equivalent buck converter circuits in DCM operation for (a) mode 1, (b) 

mode 2, and (c) mode 3. 

1.11 DC-DC boost converter circuit.  

1.12 Equivalent boost converter circuits in CCM operation for (a) mode 1, 

and (b) mode 2. 

1.13 Equivalent boost converter circuits in DCM operation for (a) mode 1, 

(b) mode 2, and (c) mode 3. 

1.14 DC-DC buck-boost converter circuit. 

1.15 Equivalent buck-boost converter circuits in CCM operation for (a) mode 

1, and (b) mode 2. 

1.16 Equivalent buck-boost converter circuits in DCM operation for (a) mode 

1, (b) mode 2, and (c) mode 3. 

1.17 DC-DC Cuk converter circuit. 

1.18 Equivalent Cuk converter circuits in CCM operation for (a) mode 1, and 

(b) mode 2. 

1.19 Equivalent Cuk converter circuits in DCM operation for (a) mode 1, (b) 

mode 2, and (c) mode 3. 

1.20 DC-DC Zeta converter circuit. 

1.21 Equivalent Zeta converter circuits in CCM operation for (a) mode 1, and 

(b) mode 2. 



viii  List of Figures 

 

 

1.22 Equivalent Zeta converter circuits in DCM operation for (a) mode 1, (b) 

mode 2, and (c) mode 3. 

1.23 Average-based system control switching signal 𝑣𝑠𝑤 generation in CCM 

operation. 

1.24 Block diagram of DC-DC converter with output-feedback control. 

1.25 Block diagram of DC-DC converter with state-feedback control. 

1.26 Hybrid DC-DC converter control diagram. 

1.27 Hybrid system control switching signal 𝑣𝑠𝑤 generation in CCM 

operation. 

1.28 Approximate steady-state inductor current 𝑖𝐿 (top) and output voltage 

𝑣𝑜 (bottom) waveforms of a boost converter in CCM operation. 

 

2.1 DC-DC Zeta converter inductor currents 𝑖𝐿1 and 𝑖𝐿2, and capacitor 

voltages 𝑣𝐶1 and 𝑣𝐶2, in CCM operation for (a) mode 1, and (b) mode 

2. 

2.2 DC-DC Zeta converter inductor currents 𝑖𝐿1 and 𝑖𝐿2, and capacitor 

voltages 𝑣𝐶1 and 𝑣𝐶2, in DCM operation for (a) mode 1, (b) mode 2, and 

(c) mode 3. 

 

3.1 State-feedback controller with integral action. 

3.2 Coordinate for the reduced convex polytope covering. 

3.3 Simulation circuit of a DC-DC Zeta converter with the state-feedback 

controller. 

3.4 Performance comparison of the state-feedback controllers 𝐾𝐿𝑄𝑅 (blue 

line), 𝐾𝐿𝑀𝐼16 (black line), and 𝐾𝐿𝑀𝐼8 (red line), under nominal condition. 

Simulated response for (a) output voltage 𝑣𝑜, (b) output current 𝑖𝑜, and 

(c) control duty ratio 𝑑𝑑.  

3.5 Performance comparison of the state-feedback controllers 𝐾𝐿𝑄𝑅 (blue 

line), 𝐾𝐿𝑀𝐼16 (black line), and 𝐾𝐿𝑀𝐼8 (red line), under non-nominal 

condition. Simulated response for (a) output voltage 𝑣𝑜, (b) output 

current 𝑖𝑜, and (c) control duty ratio 𝑑𝑑. 

 

4.1 Approximate state-trajectory at the operating point for a DC-DC Zeta 

converter in CCM operation. 

4.2 Simulation circuit of a DC-DC Zeta converter hybrid system control in 

CCM operation. 



List of Figures  ix 

 

 

4.3 Simulated response in CCM operation under input voltage 𝑣𝑔 and load 𝑅 

perturbations for 𝜎1 ≈ 0 and 𝜎2 ≈ 0. Variations in (a) output voltage 𝑣𝑜, 

(b) load current 𝑖𝑜, (c) input voltage 𝑣𝑔, and (d) switching 𝑆.  

4.4 Close view of switching 𝑆 for 𝜎1 ≈ 0 and 𝜎2 ≈ 0 at the operating point in 

CCM operation under (a) 𝑣𝑔 = 18 V and 𝑅 = 2.5 Ω, (b) 𝑣𝑔 = 9 V and 𝑅 =

5 Ω, and (c) 𝑣𝑔 = 3 V and 𝑅 = 15 Ω. 

4.5 Simulated response for 𝜎1 > 0 and 𝜎2 > 0. Variations in (a) output 

voltage 𝑣𝑜, (b) penalty functions  𝜎1 and  𝜎2, and (c) switching 𝑆. 

4.6 Close view of switching 𝑆 in CCM operation under 𝑣𝑔 = 18 V and 𝑅 =

2.5 Ω, for (a) 𝜎1 = 3.84, 𝜎2 = 1.07, and (b) 𝜎1 = 5.72, 𝜎2 = 1.59. 

 

5.1 Approximate state-trajectory at the operating point for a DC-DC Zeta 

converter in DCM operation.  

5.2 Simulation circuit of a DC-DC Zeta converter hybrid system control in 

DCM operation.  

5.3 Simulated response in DCM operation under input voltage 𝑣𝑔 and  load 

𝑅 perturbations. Variations in (a) output voltage 𝑣𝑜, (b) load current 𝑖𝑜, 

(c) input voltage 𝑣𝑔, and (d) switching 𝑆.  

5.4 Close view of inductor currents 𝑖𝐿1 and 𝑖𝐿2, and switching 𝑆 at the 

operating point in DCM operation under (a) 𝑣𝑔 = 15 V and 𝑅 = 12 Ω, 

(b) 𝑣𝑔 = 18 V and 𝑅 = 10 Ω, and (c) 𝑣𝑔 = 10 V and 𝑅 = 15 Ω. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x  List of Figures 

 

 

 

 

 

 

 



 

xi 

 

 

 

 

List of Tables 

 

 

1.1 Comparison of DC-DC converter topologies characteristics. 

1.2 Comparison between average-based and hybrid system control. 

 

3.1 The DC-DC Zeta converter with uncertain parameters. 

3.2 16 uncertain parameters vectors. 

3.3 Eight uncertain parameters vectors. 

 

4.1 The DC-DC Zeta converter parameters in CCM operation. 

 

5.1 The DC-DC Zeta converter parameters in DCM operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii  List of Tables 

 

 

 



 

1 

 

 

 

 

Chapter 1 

 

Introduction 

 

 

1.1 Motivation 

 

The invention of a bipolar junction transistor (BJT) in 1947 by Shockley [1] marks the 

era of a transistor. A transistor milestone was achieved when field-effect transistor 

(FET) was invented in 1952 [2] and subsequently, in 1960, a metal-oxide-semiconductor 

FET (MOSFET) was invented [3], which has desirable properties such as incredible 

efficiency, fast switching speed, and high input resistance. These properties attracted 

the use of switching circuits in power applications, and as a consequence, power 

converters, whose main functions are achieved by the switching property of MOSFET, 

have developed rapidly in recent years. A power converter is essentially an electrical or 

electro-mechanical device that can convert electrical energy. Roughly speaking, a power 

converter can be found almost everywhere, whether in a small or large device, as long 

as the device consists of an electronic circuit.  

 

A global climate problem has prompted many countries to reduce their carbon 

footprint and dependency on fossil fuels and, in turn, use renewable energy sources [4]. 

Among those renewable energy sources, solar energy has become the most commonly 

used due to its wide reachability and abundance [5]. Although solar energy is clean and 

theoretically infinite, as with other renewable energy sources, in nature, it is uncertain. 

The solar irradiance fluctuates especially during a cloudy or rainy day, which in turn 

fluctuates the energy harvested from the solar photovoltaic (PV) cell [6]. More so, if a 

fixed load resistance is used, the generated operating point (voltage and current) are 

varied, depending on the irradiance levels, as shown in Figure 1.1.  

 

Battery-powered portable electronic devices such as a smartphone, laptop, LED 

light, power bank, etc., will have their power drains over time. Essentially, a charger 

that is connected to an alternating-current (AC) outlet is used to charge the battery of 
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these devices. However, the problem arises, for example, for outdoor activities that lasted 

for a few days or more, without any access to electricity from the grid. To tackle this 

power issue, an off-grid, solar energy harvesting system is considered as shown in Figure 

1.2 [7]. As can be seen in the figure, the solar energy harvesting system consists of three 

components; a solar energy harvester, a power management system and a DC load. Since 

solar energy fluctuates, the problems are arisen as following 

 

 the generated voltage from the PV panel is not constant, 

 too high of the voltage will damage the battery, whereas if the voltage is too 

low, then the battery cannot be charged. 

 

Therefore, to protect the battery from the PV solar panel output voltage fluctuation, a 

control subsystem for the DC-DC converter needs to be deployed. 

 

 

 
Figure 1.1: I-V curve of a solar cell and operating points for fixed load resistance [6]. 

 

 

                   

   Solar energy harvester       Power management system   DC load 

(PV panel)      (DC-DC converter)         (Smartphone, laptop, light) 

 

Figure 1.2: Solar energy harvesting system with a DC load. 

Fixed load 

resistance 

 Operating 

point 
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Motivated by the need to produce a stable and constant output voltage for the solar 

battery charging application, in this thesis, we propose the switching control strategies 

and applied the methods to a DC-DC Zeta converter. 

 

 

1.2 Introduction to DC-DC Converter 

 

A DC-DC converter is a power converter circuit where the input is direct-current (DC) 

voltage and the output is also DC voltage. Two types of DC-DC converters exist, 

categorized by a conversion manner; linear or switching. As the name implies, a linear 

converter uses a linear component, typically a resistive load, to regulate the output 

voltage. Besides that, it is also named a series converter due to the series arrangement 

of the control elements between the input and output. The linear converter has a simple 

circuit configuration, and since no switching involves, the noise is low. The downsides, 

however, are more obvious, such as poor efficiency, considerable heat generation, and 

the output voltage is always lower than the input voltage. These three weaknesses of 

the linear converter can be overcome by a switching type DC-DC converter. In general, 

the main functions of a switching DC-DC converter are [3] 

 

 to convert a DC input voltage into a DC output voltage either at a lower or 

higher level, 

 to regulate and stabilize (with the help of a control subsystem) the DC output 

voltage against the input voltage and the load variations, 

 to reduce the ripple in the DC output voltage to the below-required level. 

 

 

 

 

Figure 1.3: A switching-type DC-DC converter block diagram. 

 

 

A switching DC-DC converter consists of the switchers (MOSFET(s) and/or diode), 

an inductor(s) 𝐿, a capacitor(s) 𝐶, and a load 𝑅, as shown in Figure 1.3. The switching 

converter delivers the power from the input to the output by using the switcher 

L 

C 

R 

 Switchers       L-C components 

𝑣𝑔 

+ 

𝑣𝑜 

-  
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components. More specifically, the converter converts the DC input voltage 𝑣𝑔 by 

temporarily storing the input energy into the energy storage elements such as an 

inductor and a capacitor and then releasing it to the output at a lower or higher DC 

voltage level. Since the converter is on-and-off, back-and-forth, less power is used for 

the voltage conversion process, and thus it offers high efficiency and good thermal 

performance compared to a linear converter. However, the switching converter has 

shortcomings such as complicated design and produces high-frequency noise, which can 

cause electromagnetic interference (EMI) to the nearby device [8]. Because the switching 

converter benefits outweigh the shortfalls, it is chosen in this thesis.  

 

 

1.2.1 Mode of Operation 

 

Since the switchers exhibit on-off behaviors, the DC-DC converter can be modeled as a 

multi-mode system. For any DC-DC converter, because it consists of a MOSFET and a 

diode, theoretically, the model has up to four modes. However, due to the natural circuit 

constraint imposed by the electronic component, not all modes are feasible in practice. 

To be specific, a condition where both MOSFET and diode are on-state cannot be 

visited. Depending on the inductor’s current status, the converter can be modeled as 

either a two-mode or a three-mode system. 

 

A DC-DC converter is modeled as a two-mode system if it operates under continuous 

conduction mode (CCM). In a two-mode system, the back-and-forth transition between 

mode 1 and mode 2 is governed by exogenous switching as depicted in Figure 1.4. 

Exogenous switching occurs when an external switching signal is applied to a MOSFET. 

In practice, most converters are designed to operate under CCM operation. The 

converter is said to be in CCM operation if the inductor current flows continuously as 

can be seen in Figure 1.5. Note that a cycle, known as a switching period 𝑇𝑠𝑤,  is the 

duration taken by the consecutive transitions of mode 1 and mode 2, and it is inversely 

proportional to the switching frequency 𝑓 =
1

𝑇𝑠𝑤
. The inductor current ripple, which is 

the difference between the maximum and minimum inductor current, is denoted as 𝑖𝐿max 

and 𝑖𝐿min, respectively, is proportionally related to the switching frequency. Although it 

is desirable to have a low inductor current ripple, a high switching frequency is required, 

which in turn produces high switching loss and reduces the converter efficiency. 

Therefore, it is important to strike a balance between converter performance and 

efficiency. In practice, the switching frequency for CCM operation is chosen somewhere 

from 50 kHz to 400 kHz. 
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Figure 1.4: Two-mode transitions in CCM operation. 
 

 

 

 
Figure 1.5: Approximate steady-state inductor current waveform  

in CCM operation. 

 

 

In certain situations, especially where higher efficiency is required, a DC-DC 

converter operating in discontinuous conduction mode (DCM) is chosen. This is because 

the DCM operation generally occurs at a low switching frequency, thus less switching 

loss. Other than that, under light load (small load current) conditions, or for a specific 

application such as power factor correction, the DCM operation is also typically 

deployed. In DCM operation, the converter can be modeled by a three-mode system, as 

illustrated in Figure 1.6. The transitions from mode 1 to mode 2 and from mode 3 to 

mode 1 are performed by exogenous switching, while endogenous switching takes place 

for mode 2 to mode 3 transitions. Endogenous switching is a result of a diode turning 

on or off due to forward or reverse biased conditions, respectively. Figure 1.7 shows the 

inductor current waveform in DCM operation. As the discontinuous name suggests, a 

discontinuity in the inductor current in mode 3 can be seen where the inductor current 

is zero. The switching frequency in DCM operation is calculated from the inverse of the 

time taken for the transitions of mode 1-mode 2-mode 3. The switching frequency in 

DCM operation is relatively low, typically in the range of 20 kHz to 40 kHz, and thus 

high inductor current ripple can be expected compared to CCM operation. 

exogenous switching 
 

 mode 1  mode 2 
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Figure 1.6: Three-mode transitions in DCM operation. 

 

 

 

 
 

Figure 1.7: Approximate steady-state inductor current waveform 

in DCM operation.  

 

 

1.2.2 Circuit Topology 

 

A DC-DC converter circuit can be classified into two categories; isolated and non-

isolated. The existence of a transformer to physically and electrically separate a DC 

path between the input and the output of the converter is what differs the former from 

the latter. Although the isolated DC-DC converters provide better load protection, the 

cost, size, and efficiency are inferiors compared to the non-isolated converters, making 

them less attractive. On the other hand, the well-known circuit configurations for the 

non-isolated converters are the buck [9], the boost [10], the buck-boost [11], the Cuk 

[12], and the Zeta [13] topologies, and will be discussed next. 

 

Figure 1.8 shows the topology of a DC-DC buck converter. Buck converter is also 

known as a step-down converter because it is used to reduce the input voltage. The 

converter consists of a MOSFET Q, a diode D, an inductor L, a capacitor C, and a load 

R. Notice that a switching signal 𝑣𝑠𝑤 is applied to the MOSFET to turn it on or off. 

The equivalent circuits for the buck converter in CCM and DCM operation are given in 

 mode 1 

 mode 2  mode 3 

exogenous switching 
endogenous switching 

mode 1     mode 2       mode 3   mode 1     mode 2       mode 3              
0 

𝑖𝐿max 

0 

𝑇𝑠𝑤 2𝑇𝑠𝑤 

𝑖𝐿 

𝑡 
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Figure 1.9 and Figure 1.10, respectively. The basic operation principles of the buck 

converter are as follows. When the MOSFET is turned on, the positive terminal of the 

input voltage 𝑣𝑔 is connected to the diode and the inductor, thus supplies energy to the 

inductor. Since the diode is reverse biased, it appears as an open circuit. The equivalent 

circuit for this condition, denoted as mode 1, is shown in Figure 1.9(a) and Figure 

1.10(a). When the MOSFET is turned off, the input voltage is disconnected, and the 

inductor reacts and maintains current flow to the load, therefore reducing the inductor’s 

energy. At the same time, a current flow through the diode and turned on the diode, 

and hence, the mode 2 equivalent circuit is generated, as depicted in Figure 1.9(b) and 

Figure 1.10(b). Over time, if the MOSFET remains off-state, the energy in the inductor 

eventually drains out, and the inductor current becomes zero. This makes the diode off, 

and the mode 3 equivalent circuit in Figure 1.10(c) is produced. 

 

 

Figure 1.8: DC-DC buck converter circuit. 

 

  

             (a)            (b) 

Figure 1.9: Equivalent buck converter circuits in CCM operation for  

(a) mode 1, and (b) mode 2. 

 

 

                      (a)       (b)     (c) 

Figure 1.10: Equivalent buck converter circuits in DCM operation for  

(a) mode 1, (b) mode 2, and (c) mode 3. 
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On the other hand, a DC-DC boost converter, synonymously known as a step-up 

converter, is capable of producing an output voltage that is higher than the input 

voltage. Similar to a buck converter, the boost converter is made of a MOSFET Q, a 

diode D, an inductor L, a capacitor C, and a load R, as shown in Figure 1.11. The CCM 

and DCM operation equivalent circuits for the boost converter are illustrated in Figure 

1.12 and Figure 1.13, respectively. In Figure 1.12(a) and Figure 1.13(a), denoted as 

mode 1, the MOSFET is on-state, allowing the input voltage to store energy into the 

inductor while turned the diode off since its positive terminal is grounded. When the 

MOSFET is off-state, the diode is turned on and the energy from the inductor is released 

to the load to maintain the load current. The mode 2 equivalent circuit is depicted in 

Figure 1.12(b) and Figure 1.13(b). Eventually, the inductor current is fully discharged. 

As no current flows inside the diode, it becomes an open circuit, and the equivalent 

circuit for mode 3 is shown in Figure 1.13(c). 

 

 

Figure 1.11: DC-DC boost converter circuit. 

 

 

               (a)     (b) 

Figure 1.12: Equivalent boost converter circuit in CCM operation  

for (a) mode 1, and (b) mode 2. 

 

 

                    (a)           (b)       (c) 

Figure 1.13: Equivalent boost converter circuit in DCM operation for  

(a) mode 1, (b) mode 2, and (c) mode 3. 
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As the name implies, a converter with buck-boost topology inherits the functionality 

of the buck and boost converters, and thus, the output voltage can either be lower or 

higher than the input voltage. However, the output voltage is in reverse polarity 

compared to the input voltage. As illustrated in Figure 1.14, the electronic components 

for the buck-boost converter are identical to the buck and the boost converters, which 

comprise of a MOSFET Q, a diode D, an inductor L, a capacitor C, and a load R. In 

general, because the buck-boost converter is fundamentally a combination of the buck 

and boost converters, it shares the common operation principles of the two converters. 

Specifically, the operation principles of a buck-boost converter for mode 1, mode 2, and 

mode 3 are similar to mode 1 of a boost, mode 2 of a buck, and mode 3 of a buck or 

boost converter, respectively. The CCM and DCM operation equivalent circuits for the 

buck-boost converter are presented in Figure 1.15 and Figure 1.16, respectively. 

 

 

Figure 1.14: DC-DC buck-boost converter circuit. 

 

 

              (a)            (b) 

Figure 1.15: Equivalent buck-boost converter circuits in CCM operation for  

(a) mode 1, and (b) mode 2. 

 

 

           (a)        (b)   (c) 

Figure 1.16: Equivalent buck-boost converter circuits in DCM operation for  

(a) mode 1, (b) mode 2, and (c) mode 3. 
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The Cuk topology in Figure 1.17 shares similarities with a buck-boost converter, 

capable of stepping the input voltage down and up, having reverse output voltage 

polarity. Component-wise, the Cuk converter has an additional inductor and capacitor 

compared with the three converters mentioned above. Under mode 1 (see Figure 1.18(a) 

and Figure 1.19(a)), when the MOSFET is on-state, an inductor 𝐿1 is charged by the 

input voltage, and since the positive terminal of the capacitor 𝐶1 is grounded, the diode 

is in reverse biased, and thus it appears as an open circuit. When the MOSFET is turned 

off during mode 2 (Figure 1.18(b) and Figure 1.19(b)), the inductor 𝐿1 tries to maintain 

the current flows to the load by releasing its energy. The diode is turned on, and the 

currents in the inductors 𝐿1 and 𝐿2 flow through the diode. The current in the inductor 

𝐿1 is decreased over time, and eventually, the current flows through the diode is zero, 

thus switched off the diode, and the mode 3 equivalent circuit is given in Figure 1.19(c). 

 

 

Figure 1.17: DC-DC Cuk converter circuit. 

 

 

        (a)         (b) 

Figure 1.18: Equivalent Cuk converter circuits in CCM operation for  

(a) mode 1, and (b) mode 2. 

 

 

          (a)                    (b)                  (c) 

Figure 1.19: Equivalent Cuk converter circuits in DCM operation for 

(a) mode 1, (b) mode 2, and (c) mode 3. 
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Lastly, Figure 1.20 shows a DC-DC Zeta converter. A Zeta topology shares two 

common attributes to a Cuk; equal number of components count and the ability to 

increase or decrease the input voltage. The output voltage of a Zeta converter is in phase 

with the input voltage. In the following, the operation principles of a Zeta converter are 

explained. During the MOSFET on-state, both inductors 𝐿1 and 𝐿2 are being charged. 

Because the cathode of the diode has a higher voltage than the anode, the diode is 

reverse biased, and thus it is off-state. The mode 1 equivalent circuit is shown in Figure 

1.21(a) and Figure 1.22(a). For mode 2, the MOSFET is turned off, and the currents in 

both inductors 𝐿1 and 𝐿2 are discharged to the load to maintain the load current. The 

diode is forced to be turned on to provide a return path for the inductors’ currents, as 

depicted in Figure 1.21(b) and Figure 1.22(b). Over time, the inductors’ currents are 

depleted such that the current flows through the diode is zero; thereby, the diode 

becomes off-state. The equivalent circuit, denoted as mode 3, is depicted in Figure 

1.22(c). 

 

 

Figure 1.20: DC-DC Zeta converter circuit. 

 

 

         (a)      (b) 

Figure 1.21: Equivalent Zeta converter circuits in CCM operation for  

(a) mode 1, and (b) mode 2. 

 

 

            (a)                  (b)            (c) 

Figure 1.22: Equivalent Zeta converter circuits in DCM operation for  

(a) mode 1, (b) mode 2, and (c) mode 3. 
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To summarize, the five DC-DC converter topologies are compared in Table 1.1. 

Component-wise, each topology has a MOSFET and a diode as the switchers, and the 

Cuk and the Zeta topologies have two inductors and two capacitors as compared to one 

inductor and one capacitor for the other three topologies. In terms of functionality, the 

buck-boost, the Cuk, and the Zeta can do both step-down and step-up operation, 

whereas the buck and the boost can do step-down and step-up only, respectively. The 

output voltage is in phase with the input voltage for the buck, the boost, and the Zeta 

topologies, while the buck-boost and the Cuk topologies have negative polarity. Note 

that the output voltage ripple and the input-output isolation, which have not been 

explicitly explained before, are added for a broader comparison. As can be seen, the 

buck, the Cuk, and the Zeta topologies relatively have low output voltage ripple 

compared to the boost and buck-boost topologies. Besides that, out of the five topologies, 

only the buck, the buck-boost, and the Zeta topologies have natural input-output 

voltage isolation. 

 

Table 1.1: Comparison of DC-DC converter topologies characteristics. 

 

Topology Operation Switcher 
L-C 

component 

Output 

voltage  

Output 

voltage 

ripple 

Input-

output 

isolation 

Buck Step-down 
1 MOSFET, 

1 diode 

1 inductor, 

1 capacitor 
Positive Low Yes 

Boost Step-up 
1 MOSFET, 

1 diode 

1 inductor, 

1 capacitor 
Positive High No 

Buck-

boost 

Step-down 

& step-up 

1 MOSFET, 

1 diode 

1 inductor, 

1 capacitor 
Negative High Yes 

Cuk 
Step-down 

& step-up 

1 MOSFET, 

1 diode 

2 inductors, 

2 capacitors 
Negative Low No 

Zeta 
Step-down 

& step-up 

1 MOSFET, 

1 diode 

2 inductors, 

2 capacitors 
Positive Low Yes 

 

 

In this thesis, we choose the DC-DC Zeta converter due to the following 

justifications. The ability to do both step-up and step-down operation allows the Zeta 

converter to operate in a wider range [14]. Even though the buck-boost and the Cuk 

topologies offer similar functionality, the Zeta topology has superior electrical 

characteristics compared with the two. Namely, the Zeta converter produces a relatively 
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lower output voltage ripple compared with the buck-boost converter [15], which implies 

a lower switching frequency operation, and in turn, higher efficiency can be achieved. 

Compared to the Cuk converter, the Zeta converter has a positive output voltage, and 

thus no output voltage polarity conversion is needed. Moreover, the Zeta converter has 

a natural DC input-to-output voltage isolation, which helps to prevent unwanted signals 

or noise from being transmitted from the input to the output. 

 

 

1.3 DC-DC Converter Control 

 

The DC-DC converter requires a control subsystem that regulates the output voltage to 

follow a reference voltage. Typically, a control subsystem is designed through feedback 

to produce a closed-loop system. The advantages of a closed-loop DC-DC converter are 

 

 the converter can be stabilized even with uncertain parameters, 

 the output voltage can be regulated, and the reference voltage can be tracked, 

 the input voltage and the load variations can be compensated, 

 the converter’s transient responses can be improved. 

 

Feedback control can be divided into two types; positive feedback and negative 

feedback. As the name suggests, a positive feedback control adds the reference voltage 

and the output voltage, while in negative feedback control, the reference voltage and 

the output values are subtracted, and the latter is commonly used since it is more stable 

than the former. In Section 1.2.1, we have shown that a DC-DC converter is made of a 

two- or three-mode system under CCM or DCM operation, respectively. To design the 

feedback control, the two- and three-mode systems are represented either by the 

average-based or hybrid system. 

 

 

1.3.1 Average-based System Control Approach 

 

In an average-based system, a DC-DC converter dynamics of the two- and three-mode 

systems are averaged over a switching period. The control of the system can be realized 

through output- or state-feedback, and two design methods are usually considered for 

the controller; classical and modern control. For a classical control method, the analysis 

is carried out in the frequency domain using Laplace transform, where the converter is 

assumed to be a second-order and single variable, and higher-order system responses 

and multivariable effects are ignored. For a modern control method, the converter is 

represented as a set of first-order differential equations defined using state variables. In 

both control methods, most of the effort is spent on finding a control law to calculate 

the control duty ratio 𝑑𝑑.  



14  1.Introduction 

 

 
 

Considering CCM operation, as depicted in Figure 1.23, a control duty ratio 𝑑𝑑 is 

used to modulate and generate a pulse width modulation (PWM) switching signal 𝑣𝑠𝑤 

in the average-based system control method. Specifically, the control duty ratio is 

compared with a sawtooth signal 𝑣𝑠𝑎𝑤 having a fixed frequency and a maximum 

amplitude 𝑉𝑀 [16]. If 𝑑𝑑 ≥ 𝑣𝑠𝑎𝑤, then the switching signal level is high (logic “1”); 

otherwise, the switching signal level is low (logic “0”). The durations for the high and 

low levels of the switching signal are denoted as 𝑡𝑜𝑛 and 𝑡𝑜𝑓𝑓, respectively. The ratio of 

𝑡𝑜𝑛 over 𝑡𝑜𝑛 plus 𝑡𝑜𝑓𝑓 is known as the duty ratio 𝑑 =
𝑡𝑜𝑛

𝑡𝑜𝑛+𝑡𝑜𝑓𝑓
. It is worth emphasizing 

that the control duty ratio is instrumental in regulating the output voltage of a DC-DC 

converter; any changes to the control duty ratio will change the output voltage level. 

 

 

 

 

Figure 1.23: Average-based system control switching signal 𝑣𝑠𝑤 generation 

in CCM operation. 

 

 

 

 

Figure 1.24: Block diagram of DC-DC converter with output-feedback control. 

 

 

Figure 1.24 shows the implementation diagram of an output-feedback control 

applied to a DC-DC converter. As can be seen, only one sensor is required to measure 

the output voltage 𝑣𝑜, which is why this type of feedback is popular in practice. The 

measured output voltage is subtracted with the reference voltage 𝑣𝑟𝑒𝑓, and the error 

voltage 𝑣𝑒𝑟𝑟 is compensated by the output-feedback controller, and a control duty ratio 
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𝑑𝑑 is produced. As a result, a switching signal 𝑣𝑠𝑤 is produced based on the control 

duty ratio PWM modulation. Subsequently, based on the duty ratio 𝑑 of the switching 

signal, the output voltage of the DC-DC converter will be adjusted accordingly. 

 

On the other hand, the block diagram for a DC-DC converter using a state-feedback 

control is depicted in Figure 1.25. Typically, it is more expensive to implement this type 

of controller since more sensors are required to measure the state variables 𝑥 of the 

converter. Nevertheless, since richer dynamics are captured by the state variables, the 

performance of the converter can be easily manipulated, thus makes the controller design 

attractive. 

 

 

 

Figure 1.25: Block diagram of DC-DC converter with state-feedback control. 

 

 

In the average-based system control, a DC-DC converter is modeled based on a 

state-space averaged (SSA) approach and the corresponding linearized approximate 

model. Moreover, from the small-signal SSA model, various control techniques have been 

adopted to investigate the dynamic responses of the converter. In the following, the 

common controller's design utilizing the output-feedback and state-feedback are 

presented. 

 

Consider a DC-DC converter small-signal SSA model as following 

 

𝑑�̃�

𝑑𝑡
= 𝐴�̃� + 𝐵�̃� + 𝐵𝑑�̃�𝑑, 

�̃� = 𝐶�̃�,                     (1.1) 

 

where �̃�, �̃�, �̃�, and �̃�𝑑 are the state vector, the output, the input, and the control input 

small-signals, respectively, while  𝐴, 𝐵, 𝐵𝑑, and 𝐶 are the averaged matrices of the 

system, the input, the control input, and the output, respectively.  

 

For the output-feedback control, the frequency domain method is typically used to 

find the controller for a DC-DC converter. In the steady-state condition, the differential 
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is zero. Taking Laplace transform and assuming zero initial condition, (1.1) can be 

rewritten as 

 

�̃�(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵�̃�(𝑠) + (𝑠𝐼 − 𝐴)−1𝐵𝑑�̃�𝑑(𝑠), 

�̃�(𝑠) = −𝐶𝐴−1𝐵𝑑�̃�𝑑(𝑠).                     (1.2) 

 

From (1.2), the following four transfer functions are generated 

 

1. State vector-to-input transfer function 𝐺𝑥𝑢(𝑠) 

 

𝐺𝑥𝑢(𝑠) =
�̃�(𝑠)

�̃�(𝑠)
|

�̃�𝑑(𝑠)=0
= (𝑠𝐼 − 𝐴)−1𝐵.          (1.3) 

 

2. State vector-to-control input transfer function 𝐺𝑥𝑑(𝑠) 

 

𝐺𝑥𝑑(𝑠) =
�̃�(𝑠)

�̃�𝑑(𝑠)
|

�̃�(𝑠)=0
= (𝑠𝐼 − 𝐴)−1𝐵𝑑.          (1.4) 

 

3. Output-to-input transfer function 𝐺𝑦𝑢(𝑠) 

 

𝐺𝑦𝑢(𝑠) =
�̃�(𝑠)

�̃�(𝑠)
|

�̃�𝑑(𝑠)=0
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵.            (1.5) 

 

4. Output-to-control input transfer function 𝐺𝑦𝑑(𝑠) 

 

𝐺𝑦𝑑(𝑠) =
�̃�(𝑠)

�̃�𝑑(𝑠)
|
�̃�(𝑠)=0

= 𝐶(𝑠𝐼 − 𝐴)−1𝐵𝑑.          (1.6) 

 

Notice that (1.5) is actually a steady-state gain of the converter. Moreover, (1.5) and 

(1.6) are typically used in the design part of the output-feedback controller.  

 

As for the state-feedback control framework, the control law for the state-feedback 

is given by 

 

�̃�𝑑 = −𝐾�̃�,            (1.7) 

 

where 𝐾 is the state-feedback vector gain. 

 

Consider zero external input (�̃� = 0). Then, substituting (1.7) into (1.1), one gets 

 

𝑑�̃�

𝑑𝑡
= (𝐴 − 𝐵𝑑𝐾)�̃�.            (1.8) 
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The origin of the closed-loop state-feedback control system (1.8) is asymptotically stable 

if and only if the matrix 𝐴 − 𝐵𝑑𝐾 is Hurwitz. Thus, the state-feedback stabilization 

problem is a problem of designing a vector gain 𝐾 to assign the eigenvalues of 𝐴 − 𝐵𝑑𝐾 

in the open left-half complex plane. It is worth highlighting that the eigenvalues of 𝐴 −

𝐵𝑑𝐾 can be arbitrarily assigned, as long as the pair (𝐴, 𝐵𝑑) is controllable. In the case 

of some eigenvalues of 𝐴 are not controllable, stabilization is still possible, provided that 

the uncontrollable eigenvalues have negative real parts. Furthermore, let 𝑃 and 𝑄 be 

positive-definite symmetric matrices; then, a Lyapunov equation for the closed-loop 

system is given as follows: 

 

𝑃(𝐴 − 𝐵𝑑𝐾) + (𝐴 − 𝐵𝑑𝐾)𝑇𝑃 = −𝑄.           (1.9) 

 

Assumed (𝐴 − 𝐵𝑑𝐾) is Hurwitz, then the Lyapunov equation (1.9) has a unique positive 

definite solution [17]. Furthermore, the quadratic function 

 

𝑉(𝑥) = 𝑥𝑇𝑃𝑥,                   (1.10) 

 

is a Lyapunov function for the closed-loop system in the neighborhood of the origin. 

 

 

1.3.2 Hybrid System Control Approach 

 
A DC-DC converter, by its nature, presents hybrid behavior. Hybrid system modeling 

is a suitable modeling technique to capture both continuous and discrete dynamics of 

the converter. In essence, under hybrid system control, continuous dynamics of the 

modes and a switching rule are combined to determine which mode is active. The hybrid 

DC-DC converter control can be realized by  

 

𝑑𝑥

𝑑𝑡
= 𝑓𝛾𝑘

(𝑥, 𝑢),          (1.11) 

 

where 𝑥 is the state, 𝑢 is an external input assumed to be constant, and 𝛾𝑘 is the 

switching function corresponds to discrete mode 𝑘, where 𝑘 =1,2 and 𝑘 =1,2,3 are for 

CCM and DCM operations, respectively. Only one mode is active at any instant time 

and it is governed by a switching function that is commonly state-dependent. 

 

Figure 1.26 depicts the transitions of the modes in a hybrid DC-DC converter control 

framework. Each discrete mode 𝑘 has associated continuous dynamics 𝑓𝛾𝑘
, and it should 

be emphasized that the continuous and discrete dynamics coexist and interact with each 

other. For 𝑖, 𝑗 = 1,2,3, the control problem is to determine the switching conditions 𝐺𝑖𝑗 
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which cause a transition from mode 𝑖 to mode 𝑗 while satisfying the system requirements 

on control. In other words, under current mode 𝑘, once the continuous state-dependent 

switching function 𝛾𝑘 reaches a threshold Ξ𝑘, a decision can be made whether to jump 

to the next discrete mode. Notice that endogenous switching occurs for a transition from 

mode 2 to mode 3. Thus, 𝐺23 can simply be defined as 𝑖𝐿 = 0 (or 𝑖𝐿1 + 𝑖𝐿2 = 0) for a 

converter with one inductor (or two inductors). The switching conditions for all possible 

mode transitions are defined as follows: 

 

𝐺12: 𝛾1 > Ξ1,  𝐺21: 𝛾2 > Ξ2,  𝐺23: 𝑖𝐿 = 0,  𝐺31: 𝛾3 > Ξ3.       (1.12) 

 

 

 

 
Figure 1.26: Hybrid DC-DC converter control diagram. 

 

 

 

 

Figure 1.27: Hybrid system control switching signal 𝑣𝑠𝑤 generation  

in CCM operation. 
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Figure 1.27 shows an example of the switching signal 𝑣𝑠𝑤 generation of the hybrid 

system control in CCM operation. Under current active discrete mode 1, the 𝑣𝑠𝑤 is logic 

“1”. Under mode 1, the corresponding switching function 𝛾1 increases while 𝛾2 (switching 

function corresponds to mode 2) decreases. When 𝛾1 reaches the threshold Ξ1, then the 

𝑣𝑠𝑤 changes to logic “0”, which activates discrete mode 2. Under mode 2, 𝛾2 increases 

while 𝛾1 decreases. When 𝛾2 reaches  Ξ2, 𝑣𝑠𝑤 changes back to logic “1”, thus mode 1 is 

active, and the process keeps repeating. 

 

It is worth highlighting that the switching function 𝛾𝑘 is usually a function of state-

trajectory under mode 𝑘. The threshold Ξ𝑘 on the other hand, is a non-negative constant 

Ξ𝑘 ≥ 0, and is typically the difference of the state-trajectory from the operating point 

𝑥∗ at the switching instance from mode 𝑘 to the next discrete mode. In other words, the 

threshold is a reflection of the state ripple size. Having said that, zero threshold value 

implies zero state ripple, however, arbitrarily fast switching may occur which is 

undesirable in practice. To alleviate this problem, a positive threshold should be chosen, 

and this is termed spatial regularization [33]. Furthermore, the threshold can be 

determined from the control system requirements such as voltage regulation or switching 

frequency constraints. 

 

The hybrid system control strategies for a DC-DC converter in CCM and DCM 

operation can be realized as follows. 

 

Hybrid System Control Strategy for CCM Operation 

 

 If the system is operating at mode 1 and reaches 𝛾1(Ξ1), then it switches to mode 

2. 

 If the system is operating at mode 2 and reaches 𝛾2(Ξ2), then it switches to mode 

1. 

 

 

Hybrid System Control Strategy for DCM Operation 

 

 If the system is operating at mode 1 and reaches 𝛾1(Ξ1), then it switches to mode 

2. 

 If the system is operating at mode 2 and reaches  𝑖𝐿 = 0, then it switches to mode 

3. 

 If the system is operating at mode 2 and reaches 𝛾3(Ξ3), then it switches to mode 

1. 
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Typically, a hybrid system control strategy can be derived based on two methods; state 

waveform analysis and Lyapunov function candidate. Using a DC-DC boost converter 

operating under CCM as an example, a hybrid system control strategy based on the 

state waveform analysis borrowed from [18] will be discussed first.  

 

Under CCM operation, the two-mode system of a boost converter are given by 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1,      

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2,          (1.13)  

 

where 

 

𝐴1 = [
0 0

0 −
1

𝐶𝑅

],   𝐵1 = [
𝑣𝑔

𝐿

0
], 

𝐴2 = [
0 −

1

𝐿
1

𝐶
−

1

𝐶𝑅

],   𝐵2 = [
𝑣𝑔

𝐿

0
].         (1.14) 

 

 

 

 

 

Figure 1.28: Approximate steady-state inductor current 𝑖𝐿 (top) and output voltage 𝑣𝑜 

(bottom) waveforms of a boost converter in CCM operation. 

 

 

Based on the observation of the inductor current 𝑖𝐿 in Figure 1.28, it can be seen 

that the transitions from mode 1 to mode 2 and mode 2 to mode 1 of the boost converter 

𝑖𝐿 = 𝑖𝐿
∗ + ∆𝑖𝐿 

 

 

mode 1        mode 2 

𝑡 

𝑡 

∆𝑣𝑜 

∆𝑣𝑜 

∆𝑖𝐿 

∆𝑖𝐿 

𝑖𝐿
∗ 

𝑣𝑜
∗ 

𝑖𝐿 

𝑣𝑜 

0 

0 

𝑖𝐿max 

𝑖𝐿min 

𝑣𝑜min 

𝑣𝑜max 

𝑖𝐿 = 𝑖𝐿
∗ − ∆𝑖𝐿 
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occur when the inductor current reach 𝑖𝐿 = 𝑖𝐿
∗ + ∆𝑖𝐿 and 𝑖𝐿 = 𝑖𝐿

∗ − ∆𝑖𝐿, respectively. 

Following this observation, the switching functions 𝛾1 and 𝛾2, and the thresholds Ξ1 and 

Ξ1 are defined by 

 

𝛾1 = 𝑖𝐿,   𝛾2 = −𝑖𝐿,   Ξ1 = 𝑖𝐿
∗ + ∆𝑖𝐿,   Ξ2 = 𝑖𝐿

∗ − ∆𝑖𝐿,       (1.15) 

 

respectively.  

 

The performance specification is defined by the size of the output voltage ripple ∆𝑣𝑜. 

As such, the inductor current ripple ∆𝑖𝐿 in (1.15) is written as a function of ∆𝑣𝑜 to 

achieve the output voltage constraint. For that, the waveforms in Figure 1.28 and the 

dynamics (1.12) are analyzed, and it is found that 

 

∆𝑖𝐿 =
𝐶𝑅𝑣𝑔

𝐿𝑣𝑟𝑒𝑓
∆𝑣𝑜.          (1.16) 

 

Additionally, by equating the converter input and output power, and solving for the 

average inductor current 𝑖𝐿
∗, one gets [18] 

 

𝑖𝐿
∗ =

𝑣𝑟𝑒𝑓
2

𝑅𝑣𝑔
.          (1.17) 

 

Thus, the Hybrid System Control Strategy for CCM Operation for the state waveform 

analysis can be executed by applying parameters in (1.15) to (1.17). As a result, the 

prescribed output voltage regulation can be achieved. Moreover, a similar procedure can 

be used to produce a switching control strategy for DCM operation. 

 

For a Lyapunov-based hybrid system control strategy, first, consider the following 

two-mode and there-mode systems in (1.18) and (1.19), respectively. 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢,              

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢,                   (1.18)  

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢,             

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢,  

𝑑𝑥

𝑑𝑡
= 𝐴3𝑥 + 𝐵3𝑢.          (1.19) 

 

Choose a candidate of Lyapunov function 
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𝑉(𝑥) = (𝑥 − 𝑥∗)𝑇𝑃(𝑥 − 𝑥∗),         (1.20) 

 

where 𝑃 is a positive definite matrix and 𝑥∗ is the operating point. 

 

Under CCM operation, the derivatives of 𝑉(𝑥) (1.20) along the trajectories of (1.18) 

for mode 1 and mode 2 are given by (1.21) and (1.22), respectively. 

 

𝛾1(𝑥) ≔
𝜕𝑉

𝜕𝑥
(𝐴1𝑥 + 𝐵1𝑢0) 

= (𝑥 − 𝑥∗)𝑇(𝑃𝐴1 + 𝐴1
𝑇𝑃)(𝑥 − 𝑥∗) + 2(𝐴1𝑥∗ + 𝐵1𝑢0)𝑇𝑃(𝑥 − 𝑥∗),       (1.21) 

 

𝛾2(𝑥) ≔
𝜕𝑉

𝜕𝑥
(𝐴2𝑥 + 𝐵2𝑢0) 

= (𝑥 − 𝑥∗)𝑇(𝑃𝐴2 + 𝐴2
𝑇𝑃)(𝑥 − 𝑥∗) + 2(𝐴2𝑥∗ + 𝐵2𝑢0)𝑇𝑃(𝑥 − 𝑥∗),       (1.22) 

 

Whereas under DCM operation, the derivatives of 𝑉(𝑥) (1.20) along the trajectories of 

(1.19) for mode 1, and mode 3 are given by 

 

𝛾1(𝑥) ≔
𝜕𝑉

𝜕𝑥
(𝐴1𝑥 + 𝐵1𝑢0) 

= (𝑥 − 𝑥∗)𝑇(𝑃𝐴1 + 𝐴1
𝑇𝑃)(𝑥 − 𝑥∗) + 2(𝐴1𝑥∗ + 𝐵1𝑢0)𝑇𝑃(𝑥 − 𝑥∗),       (1.23) 

𝛾3(𝑥) ≔
𝜕𝑉

𝜕𝑥
(𝐴3𝑥 + 𝐵3𝑢0) 

= (𝑥 − 𝑥∗)𝑇(𝑃𝐴2 + 𝐴2
𝑇𝑃)(𝑥 − 𝑥∗) + 2(𝐴2𝑥∗ + 𝐵2𝑢0)𝑇𝑃(𝑥 − 𝑥∗).       (1.24) 

 

respectively. 

  

Notice that under the DCM operation, 𝛾2 is omitted because the transition from mode 

2 to mode 3 is endogenous. 

 

By applying the switching functions in (1.21) and (1.22), and (1.23) and (1.24), in the 

Hybrid System Control Strategy for CCM Operation and Hybrid System Control Strategy 

for DCM Operation, respectively, the system state-trajectory is driven along the fastest 

converging direction while guaranteeing the asymptotic stability of the system. Note 

that the thresholds Ξ1, Ξ2 and Ξ3 have not been explicitly defined. They will be detailed 

out in Chapter 4 and Chapter 5.  
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1.3.3 Summary 

 

A summary of the main differences of both average-based and hybrid system controls of 

a DC-DC converter is given in Table 1.2.  

 

Table 1.2: Comparison between average-based and hybrid system control. 

 
Average-based system 

control 

Hybrid system  

control 

System model 
SSA model  

(with approximation) 

Hybrid model  

(no approximation) 

Controller design 
Compensator parameter 

selection  

Switching function 

definition  

MOSFET switching PWM modulation 
Direct switching  

(no modulation) 

Switching frequency Fixed Adjustable 

 

 

In terms of system modeling, the two modes or the three modes of the converter are 

averaged to produce an approximate single system under the average-based system, by 

using a state-space averaging (SSA) approach and corresponding linear approximation. 

For the hybrid system model, each mode is treated individually, and all the dynamics 

are captured without any approximation. In the controller design, for the average-based 

system control, the parameter of the compensator needs to be selected, and usually 

tuning is required to find the best parameter. Whereas for the hybrid system control, 

the switching functions need to be defined. To turned the MOSFET on and off, a 

modulated PWM switching signal is used by the average-based system control, while 

direct MOSFET switching is used in the hybrid system control. As a result, the 

switching frequency produced by the former is fixed while the latter is adjustable. 

 

 

1.4 Previous Studies 

 

Some researchers have studied the control problem of a DC-DC converter using the 

average-based system control method. Meanwhile, no work was reported under the 

hybrid system control framework to stabilize a Zeta converter, whose dynamic equation 

is described by a fourth-order system. Therefore, this section will review some studies 
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on the average-based Zeta converter control and the hybrid control of DC-DC converters 

described by second-order systems, such as a buck, a boost, and a buck-boost converters.   

 

 

1.4.1 Conventional Zeta Converter Control 

 

In [19, 20], the authors have proposed a proportional-integral (PI) to control a DC-DC 

Zeta converter. The authors have modeled the Zeta converter by taking into account 

the internal resistance of the two inductors and two capacitors. The PI controller was 

found from the control-to-output transfer function, considering crossover frequency of 

10 kHz [19] and 12 kHz [20] and phase margin of at least 45 degrees. To reduce the 

magnitude of output voltage overshoot, a derivative term was added, and a proportional-

integral-derivative (PID) controller designed using the Ziegler–Nichols method was 

presented in [21]. Moreover, an optimal version of the PID controller based on ant colony 

optimization (ACO) and a reduced-order Zeta converter model was proposed in [22]. 

Generally, although the PI and the PID controllers produce fast output voltage 

responses, the effort by the control duty ratio is high. To compensate for the variations 

of the load and the internal resistances of the inductors and the capacitors, adaptive 

control was deployed to control a DC-DC Zeta converter in [23, 24]. In [23], a model 

reference adaptive control (MRAC) strategy was used to adjust the controller 

parameters so that the output voltage of the Zeta converter tracked the output voltage 

of the reference model. Furthermore, to cope with the nonlinearity model of the 

converter, a combination of MRAC with neural networks (NN) was used in [24]. The 

designed controller gave a satisfactory result but was very sensitive to the changes in 

the magnitude of the reference signal. In [25], a fuzzy logic-based controller was used to 

improve the steady-state and dynamic performance of a Zeta converter.  

On the other hand, a state-feedback controller for a DC-DC Zeta converter was 

reported in [26]. Pole placement and optimal control were used to formulate the state-

feedback controller. For the pole placement formulation, the state-feedback controller 

was derived by placing the poles seven times farther from the system’s open left-half 

most poles location of the complex plane. For the optimal control formulation, an 

algebraic Ricatti equation was used to solve a linear quadratic regulator (LQR) problem 

over a finite time interval. The proposed state-feedback controllers can regulate the 

output voltage, and it was shown to work better than the PI controller since less effort 

was needed by the control duty ratio [27]. However, the output voltage steady-state 

error is considerably large. The most recent work was presented in [15]. The load and 

the input voltage variations were included in the Zeta converter model and were utilized 

in the design procedure based on the LQR problem. Albeit a robust controller was 

achieved, a relatively high percentage of ripple was propagated in the control duty ratio. 
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1.4.2 Hybrid Two-dimensional Converter Control 

 

Hybrid system controls have been implemented for the stabilization of the DC-DC 

converters in [18, 28-35]. In [18, 28, 29], the authors have proposed a hybrid switching 

algorithm for a buck [18], a boost [28], and a buck-boost [29] converters. The hybrid 

switching algorithm restricted the state-trajectory within the limit specified by the guard 

conditions which were derived based on the observation of the approximated steady-

state state waveform. Precisely, an explicit relation between the output voltage ripple 

and the inductor current ripple was found, and the switching took place when the pre-

defined output voltage ripple size was reached. The authors in [30] have developed a 

hybrid system switching strategy of a boost converter where the switching among the 

modes was governed by an adjustable reference voltage and a reference current which 

were calculated by an energy balance principle. Even though the output voltage 

regulation was achieved, no theoretical work was discussed to prove the stability of the 

system.  

 

In [31-35], the authors have proposed a Lyapunov-based hybrid system control to 

stabilize the DC-DC converters. In [31], the switching rule that assigns the mode 

decreasing the value of the Lyapunov function most was deployed for the buck, boost, 

and buck-boost converters. When the trajectory reached the switching boundary, it 

evolved as a sliding mode solution, which meant that the switching interval became 

infinitesimally small. The authors in [32, 33] have used a buck [32] and a boost [32, 33] 

converters and extended the idea in [31] by introducing a spatial regularization to reduce 

the switching frequency. In [34, 35], the authors have used sampled-data control to avoid 

sliding mode solutions. Though switching frequency was controlled by the sampling 

period, it tends to be small because the method was based on sufficient conditions. 

Hence the trajectory was close to the sliding solution. In general, because two-

dimensional DC-DC converters were used in [31, 33-35], the stabilities of the hybrid 

control systems were analyzed by the standard Lyapunov approach by showing the 

decrease of the Lyapunov function along the trajectory. Furthermore, although the 

switching frequency can be controlled in [32-35], because the heuristic procedure was 

used to set the switching frequency, the output voltage was prone to have an offset 

error. 

 

 

1.5 Thesis Contribution 

 

This thesis presents three DC-DC Zeta converter control techniques. For the first control 

technique, we propose a robust DC-DC Zeta converter control operating in continuous 

conduction mode (CCM). We use an uncertain DC-DC Zeta converter model and 

formulate a linear quadratic regulator (LQR) problem into linear matrix inequality 

(LMI) representation; we refer to it as an LMI-LQR approach. We find the robust state-
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feedback LMI-LQR control for the uncertain system and compare the performance to 

conventional LQR control. For the second control technique, we present a hybrid DC-

DC Zeta converter control operating in CCM. Based on a control Lyapunov function 

(CLF), we define two switching functions to govern the hybrid system control strategy. 

We analyze the state waveform near the operating point under CCM operation and find 

an explicit relation between the hybrid switching control strategy and the switching 

frequency. For the third control technique, we propose a hybrid DC-DC Zeta converter 

control under discontinuous conduction mode (DCM) operation. We deploy a similar 

hybrid system control strategy in CCM, but with an additional switching function for 

the third mode. Moreover, we derive a hybrid system switching control strategy and the 

switching frequency relation by approximating the DCM steady-state state waveform. 

 

As a result, we show that, through simulation, under highly uncertain conditions, 

our LMI-LQR control can robustly stabilize the output voltage, whereas the 

conventional LQR control is unable to return to its operating point, as reported in [36, 

37]. For the hybrid system control in CCM, as reported in [38, 39], the controller has 

no problem in stabilizing the converter, even when the input voltage and the load are 

decreased as high as −66 % and −200 %, respectively. Moreover, it is shown that the 

hybrid system control is more robust than the LMI-LQR control especially if the 

perturbations are outside the predefined uncertain parameters range, as reported in [40]. 

Furthermore, for the DCM operation, our hybrid system control can regulate the output 

voltage, while maintaining the desired DCM switching frequency as reported in [41, 42]. 

Apart from that, we established local asymptotic stability of the operating point by 

exploiting LaSalle’s invariance principle for the class of differential inclusions, as 

reported in [39].  
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Chapter 2 

 

Preliminaries 

 

 

2.1 Mathematical Notation 

 

Throughout this thesis, the following mathematical notation will be used. ℝ and ℝ_ 

denote the set of real, and non-positive numbers, respectively. For 𝜌 ∈ ℝ, ℝ>𝜌, ℝ<𝜌, 

ℝ≥𝜌, and ℝ≤𝜌 denote the set of real numbers larger, smaller, larger than or equal to, 

and smaller than or equal to 𝜌, respectively. The notation conv denotes the convex hull  

of a set. For a function 𝛼 : ℝ𝑛 → ℝ, 𝛼−1 denotes the inverse image of 𝛼. For a singleton 

{𝑐}, 𝑐 ∈ ℝ, we use the simplified notation, 𝛼−1(𝑐) = 𝛼−1({𝑐}).  A set-valued map 𝐹 is 

denoted as 𝐹:ℝ𝑛 ⇝ ℝ𝑚, where for 𝑥 ∈ ℝ𝑛, 𝐹(𝑥) ⊂ ℝ𝑚. 

 

 

2.2 Zeta Converter Model in CCM Operation 

 

In this chapter, three mathematical models of a DC-DC Zeta converter will be presented. 

The Zeta converter under continuous conduction mode (CCM), discontinuous 

conduction mode (DCM), and small-signal state-space averaging (SSA) models will be 

derived in sequential section order. These three models are instrumental and will be 

used in the following chapters of this thesis. 

 

For a DC-DC Zeta converter operating in CCM, it can be modeled by a two-mode 

system, as depicted in Figure 2.1. Under mode 1 (see Figure 2.1(a)) and mode 2 (see 

Figure 2.1(b)), the dynamics of the inductor currents 𝑖𝐿1 and 𝑖𝐿2, and the capacitor 

voltages 𝑣𝐶1 and 𝑣𝐶2, are given by (2.1) and (2.2), respectively. 
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𝑑𝑖𝐿1

𝑑𝑡
=

1

𝐿1
𝑣𝑔,  

𝑑𝑖𝐿2

𝑑𝑡
=

1

𝐿2
(𝑣𝐶1 − 𝑣𝐶2 + 𝑣𝑔), 

𝑑𝑣𝐶1

𝑑𝑡
= −

1

𝐶1
𝑖𝐿2, 

𝑑𝑣𝐶2

𝑑𝑡
=

1

𝐶2
(𝑖𝐿2 −

1

𝑅
𝑣𝐶2).           (2.1) 

 

𝑑𝑖𝐿1

𝑑𝑡
= −

1

𝐿1
𝑣𝐶1, 

𝑑𝑖𝐿2

𝑑𝑡
= −

1

𝐿2
𝑣𝐶2, 

𝑑𝑣𝐶1

𝑑𝑡
=

1

𝐶1
𝑖𝐿1, 

𝑑𝑣𝐶2

𝑑𝑡
=

1

𝐶2
(𝑖𝐿2 −

1

𝑅
𝑣𝐶2).           (2.2) 

 

 

 

 

 

 

Figure 2.1: DC-DC Zeta converter inductor currents 𝑖𝐿1 and 𝑖𝐿2, and capacitor 

voltages 𝑣𝐶1 and 𝑣𝐶2, in CCM operation for (a) mode 1, and (b) mode 2. 

 

 

The state-space representations for the Zeta converter under CCM operation for mode 

1 and mode 2 can be described as 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢,            (2.3) 

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢,            (2.4) 

 

respectively. 

 

Choose state vector 𝑥 = [𝑖𝐿1  𝑖𝐿2  𝑣𝐶1  𝑣𝐶2]
𝑇, and the input 𝑢 = 𝑣𝑔. Then, the matrices 

of the Zeta converter in CCM can be found by comparing (2.1) and (2.2) to (2.3) and 

(2.4), respectively, and are given by 

𝑣𝑔 

R 𝐿1 

𝐿2 

𝐶1 

𝐶2 

𝐿1 

𝐶1 

(a)             (b)
    

R 

𝐿2 

𝐶2 
𝑖𝐿1 

𝑖𝐿2 

𝑖𝐿1 

𝑖𝐿2 − 𝑣𝐶1 + − 𝑣𝐶1 + 

+
𝑣𝐶2 

- 

+
𝑣𝐶2 

- 

+ 
𝑣𝑜 
- 

+ 
𝑣𝑜 
- 



2. Preliminaries  29 
 

𝐴1 =

[
 
 
 
 
 
0 0 0 0

0 0
1

𝐿2
−

1

𝐿2

0 −
1

𝐶1
0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 

,  𝐵1 =

[
 
 
 
 

1

𝐿1

1

𝐿2

0
0]
 
 
 
 

,            

𝐴2 =

[
 
 
 
 
 
 0 0 −

1

𝐿1
0

0 0 0 −
1

𝐿2

1

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 
 

,  𝐵2 = [

0
0
0
0

].          (2.5) 

 

 

2.3 Zeta Converter Model in DCM Operation 

 

In DCM operation, as shown in Figure 2.2, a Zeta converter can be modeled by a three-

mode system. The dynamics of inductor currents 𝑖𝐿1 and 𝑖𝐿2, and capacitor voltages 𝑣𝐶1 

and 𝑣𝐶2, under mode 1, mode 2, and mode 3, as illustrated in Figure 2.2(a), Figure 

2.2(b), and Figure 2.2(c), respectively, are given by 

 

𝑑𝑖𝐿1

𝑑𝑡
=

1

𝐿1
𝑣𝑔,  

𝑑𝑖𝐿2

𝑑𝑡
=

1

𝐿2
(𝑣𝐶1 − 𝑣𝐶2 + 𝑣𝑔), 

𝑑𝑣𝐶1

𝑑𝑡
= −

1

𝐶1
𝑖𝐿2, 

𝑑𝑣𝐶2

𝑑𝑡
=

1

𝐶2
(𝑖𝐿2 −

1

𝑅
𝑣𝐶2).           (2.6) 

 

𝑑𝑖𝐿1

𝑑𝑡
= −

1

𝐿1
𝑣𝐶1, 

𝑑𝑖𝐿2

𝑑𝑡
= −

1

𝐿2
𝑣𝐶2, 

𝑑𝑣𝐶1

𝑑𝑡
=

1

𝐶1
𝑖𝐿1, 

𝑑𝑣𝐶2

𝑑𝑡
=

1

𝐶2
(𝑖𝐿2 −

1

𝑅
𝑣𝐶2).           (2.7) 

 

𝑑𝑖𝐿1

𝑑𝑡
= −

1

𝐿1+𝐿2
(𝑣𝐶1 − 𝑣𝐶2), 

𝑑𝑖𝐿2

𝑑𝑡
=

1

𝐿1+𝐿2
(𝑣𝐶1 − 𝑣𝐶2), 

𝑑𝑣𝐶1

𝑑𝑡
=

1

𝐶1
𝑖𝐿1, 

𝑑𝑣𝐶2

𝑑𝑡
=

1

𝐶2
(𝑖𝐿2 −

1

𝑅
𝑣𝐶2).           (2.8) 
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respectively. 

 

        

 

 

 

 

 

Figure 2.2: DC-DC Zeta converter inductor currents 𝑖𝐿1 and 𝑖𝐿2, and capacitor 

voltages 𝑣𝐶1 and 𝑣𝐶2, in DCM operation for (a) mode 1, (b) mode 2, and (c) mode 3. 

 

 

Mode 1, mode 2, and mode 3 of the Zeta converter in DCM operation can be represented 

in state-space by 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢,            (2.9) 

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢,           (2.10) 

𝑑𝑥

𝑑𝑡
= 𝐴3𝑥 + 𝐵3𝑢,           (2.11) 

 

respectively. 

 

Consider the state vector 𝑥 = [𝑖𝐿1  𝑖𝐿2  𝑣𝐶1  𝑣𝐶2]
𝑇, and the input 𝑢 = 𝑣𝑔, then, comparing 

(2.6), (2.7), and (2.8) to (2.9), (2.10), and (2.11), respectively, one gets the matrices of 

the Zeta converter in DCM operation as follows: 

 

𝐴1 =

[
 
 
 
 
 
0 0 0 0

0 0
1

𝐿2
−

1

𝐿2

0 −
1

𝐶1
0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 

,  𝐵1 =

[
 
 
 
 

1

𝐿1

1

𝐿2

0
0]
 
 
 
 

,          

𝑖𝐿2 

𝑣𝑔 

R 𝐿1 

𝐿2 

𝐶1 

𝐶2 

𝐿1 

𝐶1 

(a)             (b)
    

R 

𝐿2 

𝐶2 
𝑖𝐿1 

𝑖𝐿2 

𝑖𝐿1 

− 𝑣𝐶1 + − 𝑣𝐶1 + 

+
𝑣𝐶2 

- 

+
𝑣𝐶2 

- 

𝐶1 

R 

𝐿2 

𝐶2 
𝑖𝐿1 

𝑖𝐿2 
− 𝑣𝐶1 + 

+
𝑣𝐶2 

- 

(c) 

+ 
𝑣𝑜 
- 

+ 
𝑣𝑜 
- 

+ 
𝑣𝑜 
- 
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𝐴2 =

[
 
 
 
 
 
 0 0 −

1

𝐿1
0

0 0 0 −
1

𝐿2

1

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 
 

,  𝐵2 = [

0
0
0
0

],        

𝐴3 =

[
 
 
 
 
 
 0 0 −

1

𝐿1+𝐿2

1

𝐿1+𝐿2

0 0
1

𝐿1+𝐿2
−

1

𝐿1+𝐿2

1

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2 ]
 
 
 
 
 
 

,  𝐵3 = [

0
0
0
0

].        (2.12) 

 
 

2.4 Zeta Converter Small-signal SSA Model in CCM Operation 
 

In SSA approach, mode 1 and mode 2 of the DC-DC Zeta converter in CCM operation 

are averaged over one switching period. The SSA of the Zeta converter can be written 

as 

 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢,          (2.13) 

 

where 

 

𝐴 = 𝐴1𝑑 + 𝐴2(1 − 𝑑),          

𝐵 = 𝐵1𝑑 + 𝐵2(1 − 𝑑),         (2.14) 

 

where 𝑑 is the duty ratio. 

 

Assume the variables change linearly around the operating point such that  

 

𝑥 = 𝑋 + �̃�, 

𝑢 = 𝑈 + �̃�, 

𝑑 = 𝐷𝑑 + �̃�𝑑,          (2.15) 

 

where 𝑋, 𝑈, and 𝐷𝑑 are the steady-state values, �̃�, �̃�, and �̃�𝑑 are the small-signal values. 

 

Substituting (2.14) and (2.15) into (2.13), one gets the Zeta converter small-signal 

SSA model as follows: 

 

𝑑�̃�

𝑑𝑡
= 𝐴𝑠𝑠�̃� + 𝐵𝑠𝑠�̃� + 𝐵𝑑�̃�𝑑 + 𝐴𝑑𝑥�̃�𝑑�̃� + 𝐵𝑑𝑢�̃�𝑑�̃�,        (2.16) 
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where 

𝐴𝑠𝑠 = 𝐴1𝐷𝑑 + 𝐴2(1 − 𝐷𝑑),           

𝐵𝑠𝑠 = 𝐵1𝐷𝑑 + 𝐵2(1 − 𝐷𝑑),           

𝐵𝑑 = (𝐴1 − 𝐴2)𝑋 + (𝐵1 − 𝐵2)𝑈,          

𝐴𝑑𝑥 = 𝐴1 − 𝐴2,            

𝐵𝑑𝑢 = 𝐵1 − 𝐵2.           (2.17) 

 

Because the differential of steady-state is zero (
𝑑𝑋

𝑑𝑡
= 0), from (2.13), the steady-state 

for the state vector is given by 

 

𝑋 = −𝐴𝑠𝑠
−1𝐵𝑠𝑠𝑈.          (2.18) 

 

If the products of small-signal terms �̃�𝑑�̃� and �̃�𝑑�̃� in (2.16) are considered small and 

neglected, the approximate small-signal SSA model for the converter is described as 

 

𝑑�̃�

𝑑𝑡
= 𝐴𝑠𝑠�̃� + 𝐵𝑠𝑠�̃� + 𝐵𝑑�̃�𝑑.         (2.19) 

 

Choose steady-state input 𝑈 = 𝑉𝑔. Then, from (2.5), (2.17) and (2.18), the matrices for 

the Zeta converter small-signal SSA model (2.19) are given by 

 

𝐴𝑠𝑠 =

[
 
 
 
 
 
 0 0 −

1−𝐷𝑑

𝐿1
0

0 0
𝐷𝑑

𝐿2
−

1

𝐿2

1−𝐷𝑑

𝐶1
−

𝐷𝑑

𝐶1
0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 
 

,  𝐵𝑠𝑠 =

[
 
 
 
 
𝐷𝑑

𝐿1

𝐷𝑑

𝐿2

0
0 ]

 
 
 
 

,  𝐵𝑑 =

[
 
 
 
 
 

𝑉𝑔

(1−𝐷𝑑)𝐿1

𝑉𝑔

(1−𝐷𝑑)𝐿2

𝐷𝑑𝑉𝑔

(1−𝐷𝑑)2𝐶1𝑅

0 ]
 
 
 
 
 

.     (2.20) 
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Chapter 3 

 

Robust DC-DC Zeta Converter Control 

Operating in CCM 

 

3.1 Uncertain SSA Zeta Converter Model in CCM Operation 

 

In this section, modifying the idea from [43], we propose a robust state-feedback control 

technique to stabilize an uncertain DC-DC Zeta converter operating in continuous 

conduction mode (CCM). The Zeta converter is modeled based on a linear state-space 

averaging (SSA) approach, and the state-feedback controller is formulated in terms of a 

linear matrix inequality (LMI) from a linear quadratic regulator (LQR) problem. 

 

In general, a basic state-feedback control for a converter produces an output voltage 

error [26]. To achieve zero-offset between the output voltage 𝑣𝑜 and the reference voltage 

𝑣𝑟𝑒𝑓, an additional state-variable �̃�𝑖𝑛𝑡 = ∫(𝑣𝑟𝑒𝑓 − 𝑣𝐶2)𝑑𝑡 is introduced to enforce the 

integral action of the output error, as illustrated in Figure 3.1. Let the augmented state 

vector is given by  �̃�𝑎 = [𝑖�̃�1  �̃�𝐿2  �̃�𝐶1  �̃�𝐶2  �̃�𝑖𝑛𝑡 ]
𝑇, then from (2.20) in Section 2.4, the 

matrices are augmented as follows: 

 

𝐴𝑠𝑠𝑎 =

[
 
 
 
 
 
 
 0 0 −

1−𝐷𝑑

𝐿1
0 0

0 0
𝐷𝑑

𝐿2
−

1

𝐿2
0

1−𝐷𝑑

𝐶1
−

𝐷𝑑

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2
0

0 0 0 −1 0]
 
 
 
 
 
 
 

,  𝐵𝑠𝑠𝑎 =

[
 
 
 
 
 
𝐷𝑑

𝐿1

𝐷𝑑

𝐿2

0
0
0 ]
 
 
 
 
 

,  𝐵𝑑𝑎 =

[
 
 
 
 
 
 

𝑉𝑔

(1−𝐷𝑑)𝐿1

𝑉𝑔

(1−𝐷𝑑)𝐿2

𝐷𝑑𝑉𝑔

(1−𝐷𝑑)
2𝐶1𝑅

0
0 ]

 
 
 
 
 
 

.   (3.1) 

 

From (3.1), some parameters can be uncertain, and these matrices are represented 

as a function of such parameters. If the external input is neglected, the small-signal SSA 

model for the uncertain DC-DC Zeta converter is given by 
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𝑑�̃�𝑎

𝑑𝑡
= 𝐴𝑠𝑠𝑎(𝑝)�̃�𝑎 + 𝐵𝑑𝑎(𝑝)�̃�,           (3.2) 

  

where 𝑝 is the vector of uncertain parameters. Let 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛𝑝
), where 𝑛𝑝 is the 

number of uncertain parameters. It is assumed that each parameter has an upper and 

lower limit. Then, the allowable values of the vector 𝑝 are constrained in a hyper-

rectangle in ℝ𝑛𝑝 with 𝑁 = 2𝑛𝑝 vertices. The uncertain matrices 𝐴𝑠𝑠𝑎(𝑝) and 𝐵𝑑𝑎(𝑝) can 

be included in a convex polytope  

 

[𝐴𝑠𝑠𝑎(𝑝), 𝐵𝑑𝑎(𝑝)] ∈ conv {𝒢1, … , 𝒢𝑁} ≔ {∑ 𝜆𝑖𝒢𝑖
𝑁
𝑖=1 ,   𝜆𝑖 ≥ 0,   ∑ 𝜆𝑖 = 1𝑁

𝑖=1 },    (3.3) 

 

where the images of the matrix [𝐴𝑠𝑠𝑎(𝑝), 𝐵𝑑𝑎(𝑝)] for each vertex corresponding to a set 

{𝒢1, … , 𝒢𝑁}. The components of the set {𝒢1, … , 𝒢𝑁} are the extrema of a convex polytope 

that contains the images for all allowable values of 𝑝. 

  

 

 

 

Figure 3.1: State-feedback controller with integral action. 

   

 

In practice, the input and the output of a DC-DC Zeta converter can vary since 

they are connected to the external source and load, respectively. As such, the input 

voltage 𝑉𝑔 and the load 𝑅 are chosen as the uncertain parameters. However, because the 

duty ratio 𝐷𝑑 largely influences the matrices (3.1) and is a function of 𝑉𝑔 described by 

𝐷𝑑 = (1 +
𝑉𝑔

𝑣𝑟𝑒𝑓
)
−1

[26], 𝐷𝑑 is selected as the uncertain parameter instead of 𝑉𝑔. To 

describe a convex polytope of the uncertainty, each block must depend linearly on the 

uncertain parameters. Since the condition is not met for 𝐴𝑠𝑠𝑎 and 𝐵𝑑𝑎 matrices, two 

new variables are introduced; 
1

1−𝐷𝑑
 and 

𝐷𝑑

(1−𝐷𝑑)2𝑅
, to produce linear dependence. Thus, 

the vector of uncertain parameters for the Zeta converter can be written as 

 

+ 
− 𝑣𝑠𝑎𝑤 𝑣𝑠𝑤 

DC-DC Zeta 

Converter 

State-feedback 

controller 

𝑣𝑔 

𝑑𝑑 

 

Integrator 

𝑣𝑟𝑒𝑓 
𝑣𝑜 

𝑥 

𝑥𝑖𝑛𝑡 

𝑥𝑎 

− + 
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𝑝 = (𝐷𝑑,
1

1−𝐷𝑑
,

𝐷𝑑

(1−𝐷𝑑)2𝑅
,

1

𝑅
).           (3.4) 

 

Furthermore, the uncertain parameters are assumed to be within the following range: 

 

     𝐷𝑑 ∈ [𝐷𝑑,min   𝐷𝑑,max], 

    
1

1−𝐷𝑑
∈ [

1

1−𝐷𝑑,min
   

1

1−𝐷𝑑,max
], 

𝐷𝑑

(1−𝐷𝑑)2𝑅
∈ [

𝐷𝑑,min

(1−𝐷𝑑,min)
2
𝑅max

   
𝐷𝑑,max

(1−𝐷𝑑,max)2𝑅min
], 

       
1

𝑅
∈ [

1

𝑅max
   

1

𝑅min
].                   (3.5) 

 

The parameters given by (3.4) define the uncertain matrices 𝐴𝑠𝑠𝑎(𝑝) and 𝐵𝑑𝑎(𝑝), which 

can be included in the convex polytope (3.3). In general, the convex polytope of 

uncertainty is covered by 16 vertices for a given four uncertain parameters in (3.4). 

However, as will be presented later in Section 3.3, to reduce the conservativeness, an 

additional version of the convex polytope of uncertainty covered by eight vertices is 

proposed.  

 

 

3.2 LMI-LQR Control Formulation 

 

In this section, a linear matrix inequality (LMI) will be formulated from a linear 

quadratic regulator (LQR) problem, which can then be solved by the convex 

optimization method. This convex optimization method is particularly advantageous 

because it guarantees the quadratic stability for all possible cases of the uncertain DC-

DC Zeta converter. In the following, the quadratic stability of an uncertain system is 

presented. 

 

Consider a linear system 

 

𝑑𝑥

𝑑𝑡
= 𝐴𝑐𝑙𝑥,             (3.6) 

 

where 𝐴𝑐𝑙 is the closed-loop system matrix. The well-established Lyapunov theory states 

that if there exists a positive definite matrix 𝑃, such that the quadratic function 

 

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 > 0  ∀𝑥 ≠ 0,            

  

satisfies the following condition along the trajectories of the system (3.6) 
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�̇�(𝑥) = 𝑥𝑇(𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙)𝑥 < 0  ∀𝑥 ≠ 0, 

 

then the system (3.6) is quadratically stable and all its trajectories will converge to the 

origin [44]. Furthermore, assume that the system (3.6) is the uncertain system described 

by 𝐴𝑐𝑙,𝑖 ∈ conv {𝐴𝑐𝑙,1, 𝐴𝑐𝑙,2, … , 𝐴𝑐𝑙,𝑁}. If there exist 𝑃 > 0 such that 

 

𝑥𝑇(𝐴𝑐𝑙,𝑖
𝑇 𝑃 + 𝑃𝐴𝑐𝑙,𝑖)𝑥 < 0  ∀𝑥 ≠ 0,  ∀𝑖 = 1,… ,𝑁 

 

then the uncertain system (3.6) is quadratically stable. 

 

Assume the augmented matrices 𝐴𝑠𝑠𝑎 and 𝐵𝑑𝑎 are controllable and all the states are 

accessible. Then, feedback of all of the states through a gain matrix 𝐾 can be used, and 

the control law is given by [45] 

 

�̃�𝑑 = �̃�𝑑 = −𝐾�̃�𝑎.            (3.7) 

 

To optimally control the control effort within a performance specification, a compensator 

is sought to provide a control effort for an input that minimizes a cost function or 

performance index [46] as follows: 

 

𝐽 = ∫ (�̃�𝑎
𝑇𝑄𝑤�̃�𝑎 + �̃�𝑑

𝑇𝑅𝑤�̃�𝑑)
∞

0
𝑑𝑡,           (3.8) 

 

where 𝑄𝑤 is a symmetric, positive semidefinite matrix and 𝑅𝑤 is a symmetric, positive 

definite matrix. The optimization problem (3.8) is known as an LQR problem. The LQR 

problem is essentially a weighted minimization of the states �̃�𝑎 and the control input 

�̃�𝑑, by selecting weighting matrices 𝑄𝑤 and 𝑅𝑤, respectively.  

 

Inserting (3.7) into (3.8), one gets 

 

𝐽 = ∫ (�̃�𝑎
𝑇(𝑄𝑤 + 𝐾𝑇𝑅𝑤𝐾)�̃�𝑎)

∞

0
𝑑𝑡. 

 

Using trace operator Tr(. ), the above cost function is equivalent to 

 

𝐽 = ∫ Tr((𝑄𝑤 + 𝐾𝑇𝑅𝑤𝐾)�̃�𝑎�̃�𝑎
𝑇)

∞

0
𝑑𝑡  

= Tr(𝑄𝑤 + 𝐾𝑇𝑅𝑤𝐾)𝑃0,           

 

where 𝑃0 = ∫ (�̃�𝑎�̃�𝑎
𝑇)

∞

0
𝑑𝑡 is a definite positive symmetric matrix that satisfies 
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(𝐴𝑠𝑠𝑎 − 𝐵𝑑𝑎𝐾)𝑃0 + 𝑃0(𝐴𝑠𝑠𝑎 − 𝐵𝑑𝑎𝐾)𝑇 + �̃�𝑎(0)�̃�𝑎(0)
𝑇 = 0, 

 

where �̃�𝑎(0) represents the initial condition of the state. 

 

Define 𝑃 by a matrix inequality 

 

(𝐴𝑠𝑠𝑎 − 𝐵𝑑𝑎𝐾)𝑃 + 𝑃(𝐴𝑠𝑠𝑎 − 𝐵𝑑𝑎𝐾)𝑇 + 𝐼 < 0. 

 

Because ‖�̃�𝑎(0)‖ < 1, we have 

 

Tr(𝑄𝑤 + 𝐾𝑇𝑅𝑤𝐾)𝑃0 < Tr(𝑄𝑤 + 𝐾𝑇𝑅𝑤𝐾)𝑃. 

 

Hence, the matrix 𝑃 gives an upper bound for the performance of the feedback control 

(3.7). 

 

The feedback gain 𝐾 is attained from the following optimization problem 

 

min
𝑃,𝐾

Tr(𝑄𝑤𝑃) + Tr(𝑅𝑤

1

2 𝐾𝑃𝐾𝑇𝑅𝑤

1

2 ), 

 

subject to 

 

𝐴𝑠𝑠𝑎𝑃 + 𝑃𝐴𝑠𝑠𝑎
𝑇 − 𝐵𝑑𝑎𝐾𝑃 − (𝐾𝑃)𝑇𝐵𝑑𝑎

𝑇 + 𝐼 < 0. 

 

Due to the existence of nonlinear term (multiplication of 𝐾 and 𝑃), a new variable      

𝑌 = 𝐾𝑃 is introduced, thus the optimization can be rewritten as 

 

min
𝑃,𝑌

Tr(𝑄𝑤𝑃) + Tr(𝑅𝑤

1

2 𝑌𝑃−1𝑌𝑇𝑅𝑤

1

2 ), 

 

subject to 

 

𝐴𝑠𝑠𝑎𝑃 + 𝑃𝐴𝑠𝑠𝑎
𝑇 − 𝐵𝑑𝑎𝑌 − 𝑌𝑇𝐵𝑑𝑎

𝑇 + 𝐼 < 0. 

 

Likewise, define 𝑋 = 𝑅𝑤

1

2 𝑌𝑃−1𝑌𝑇𝑅𝑤

1

2  such that  

 

min
𝑋

Tr(𝑋) subject to X > 𝑅𝑤

1

2 𝑌𝑃−1𝑌𝑇𝑅𝑤

1

2 . 
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Moreover, using Schur’s complement, X > 𝑅𝑤

1

2 𝑌𝑃−1𝑌𝑇𝑅𝑤

1

2  is equivalent to 

 

[
𝑋 𝑅𝑤

1

2 𝑌

𝑌𝑇𝑅𝑤

1

2 𝑃

] > 0.           

 

The complete LMI-LQR control formulation is therefore given by 

 

min
𝑃,𝑌,𝑋

Tr(𝑄𝑤𝑃) + Tr(𝑋),           

 

subject to 

 

𝐴𝑠𝑠𝑎𝑃 + 𝑃𝐴𝑠𝑠𝑎
𝑇 − 𝐵𝑑𝑎𝑌 − 𝑌𝑇𝐵𝑑𝑎

𝑇 + 𝐼 < 0, 

[
𝑋 𝑅𝑤

1

2 𝑌

𝑌𝑇𝑅𝑤

1

2 𝑃

] > 0, 𝑃 > 0.           (3.9) 

 

Note that the constraint in (3.9) is for a system without uncertainty. To include the 

uncertain parameters, nominal matrices 𝐴𝑠𝑠𝑎 and 𝐵𝑑𝑎 in (3.9) are replaced with the 

matrices that correspond to all vertices of the polytope 𝐴𝑠𝑠𝑎,𝑖 and 𝐵𝑑𝑎,𝑖 defined in (3.3), 

which can be written as follows: 

 

𝐴𝑠𝑠𝑎,𝑖𝑃 + 𝑃𝐴𝑠𝑠𝑎,𝑖
𝑇 − 𝐵𝑑𝑎,𝑖𝑌 − 𝑌𝑇𝐵𝑑𝑎,𝑖

𝑇 + 𝐼 < 0,  𝑖 = 1,… ,𝑁.       (3.10) 

 

The solution of (3.9) produces a common matrix 𝑃 that satisfies (3.10) at all the vertices 

of the convex polytope. Once this minimization under constraints is solved, the LMI-

LQR controller can be recovered by 𝐾 = 𝑌𝑃−1. Since 𝑃 satisfies (3.10), this feedback 

gain 𝐾 will ensure quadratic stability of the closed-loop system. It is worth highlighting 

that compared with a conventional LQR formulation based on the Riccati equation, the 

presented LMI-LQR formulation allows one to include the uncertainties of the 

parameters into the controller design procedure, thus, produces a robust controller. 

 

Remark 1. The main purpose of the above LMI-LQR formulation is to have a fixed 

gain controller that is simple yet can produce satisfactory output voltage regulation 

performance under uncertain operating conditions. This is important consideration 

because a fast controller is needed due to the high switching frequency is required.  
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3.3 Design Example 

 

In this section, the proposed LMI-LQR control is applied to a DC-DC Zeta converter 

using a set of parameters tabulated in Table 3.1. Referring to Table 3.1 and 𝐷𝑑 =

(1 +
𝑣𝑔

𝑣𝑟𝑒𝑓
)
−1

, from (3.5), it follows that 

 

𝐷𝑑 ∈ [0.375   0.6],  
1

1−𝐷𝑑
∈ [1.6   2.5],  

𝐷𝑑

(1−𝐷𝑑)2𝑅
∈ [0.32   2.5],  

1

𝑅
∈ [0.33   0.67].(3.11) 

 

 

Table 3.1: The DC-DC Zeta converter with uncertain parameters. 

 

Parameter Value 
Nominal 

value 

𝑣𝑔 [6    15] V 15 V 

𝑣𝑜(𝑣𝑟𝑒𝑓) 9 V - 

𝑅 [1.5   3] Ω 1.5 Ω 

𝐿1 100 μH - 

𝐿2 55 μH - 

𝐶1 100 μF - 

𝐶2 200 μF - 

𝑓 100 kHz - 

 

 

Conventionally, as given in Table 3.2, 16 uncertain parameter vectors 𝑝 are allowed, 

in correspond to four uncertain parameters (3.11). Subsequently, a convex polytope with 

16 vertices is formed, which is given by the following system matrices 

 

[𝐴𝑠𝑠𝑎(𝑝), 𝐵𝑑𝑎(𝑝)] ∈ 𝒫16 = co{𝒢1𝑎, … , 𝒢16𝑎}: 

𝒢1𝑎 = [𝐴𝑠𝑠𝑎(𝑝1𝑎), 𝐵𝑑𝑎(𝑝1𝑎)],   𝒢2𝑎 = [𝐴𝑠𝑠𝑎(𝑝2𝑎), 𝐵𝑑𝑎(𝑝2𝑎)],   

𝒢3𝑎 = [𝐴𝑠𝑠𝑎(𝑝3𝑎), 𝐵𝑑𝑎(𝑝3𝑎)],   𝒢4𝑎 = [𝐴𝑠𝑠𝑎(𝑝4𝑎), 𝐵𝑑𝑎(𝑝4𝑎)],  

𝒢5𝑎 = [𝐴𝑠𝑠𝑎(𝑝5𝑎), 𝐵𝑑𝑎(𝑝5𝑎)],   𝒢6𝑎 = [𝐴𝑠𝑠𝑎(𝑝6𝑎), 𝐵𝑑𝑎(𝑝6𝑎)],  

𝒢7𝑎 = [𝐴𝑠𝑠𝑎(𝑝7𝑎), 𝐵𝑑𝑎(𝑝7𝑎)],   𝒢8𝑎 = [𝐴𝑠𝑠𝑎(𝑝8𝑎), 𝐵𝑑𝑎(𝑝8𝑎)],  

𝒢9𝑎 = [𝐴𝑠𝑠𝑎(𝑝9𝑎), 𝐵𝑑𝑎(𝑝9𝑎)],   𝒢10𝑎 = [𝐴𝑠𝑠𝑎(𝑝10𝑎), 𝐵𝑑𝑎(𝑝10𝑎)],  

𝒢11𝑎 = [𝐴𝑠𝑠𝑎(𝑝11𝑎), 𝐵𝑑𝑎(𝑝11𝑎)],   𝒢12𝑎 = [𝐴𝑠𝑠𝑎(𝑝12𝑎), 𝐵𝑑𝑎(𝑝12𝑎)],  

𝒢13𝑎 = [𝐴𝑠𝑠𝑎(𝑝13𝑎), 𝐵𝑑𝑎(𝑝13𝑎)],   𝒢14𝑎 = [𝐴𝑠𝑠𝑎(𝑝14𝑎), 𝐵𝑑𝑎(𝑝14𝑎)],  

𝒢15𝑎 = [𝐴𝑠𝑠𝑎(𝑝15𝑎), 𝐵𝑑𝑎(𝑝15𝑎)],   𝒢16𝑎 = [𝐴𝑠𝑠𝑎(𝑝16𝑎), 𝐵𝑑𝑎(𝑝16𝑎)].       (3.12) 
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Table 3.2: 16 uncertain parameters vectors. 

 

Uncertain parameters vector 

𝑝 = (𝐷𝑑 ,   
1

1−𝐷𝑑
,   

𝐷𝑑

(1−𝐷𝑑)2𝑅
,   

1

𝑅
)  

𝑝1𝑎 = (0.375,   1.6,   0.32,   0.33) 

𝑝2𝑎 = (0.375,   1.6,   0.32,   0.67) 

𝑝3𝑎 = (0.375,   1.6,   2.5,     0.33) 

𝑝4𝑎 = (0.375,   1.6,   2.5,     0.67) 

𝑝5𝑎 = (0.375,   2.5,   0.32,   0.33) 

𝑝6𝑎 = (0.375,   2.5,   0.32,   0.67) 

𝑝7𝑎 = (0.375,   2.5,   2.5,     0.33) 

𝑝8𝑎 = (0.375,   2.5,   2.5,     0.67) 

𝑝9𝑎 = (0.6,   1.6,   0.32,   0.33)  

𝑝10𝑎 = (0.6,   1.6,   0.32,   0.33) 

𝑝11𝑎 = (0.6,   1.6,   2.5,   0.33) 

𝑝12𝑎 = (0.6,   1.6,   2.5,   0.33)  

𝑝13𝑎 = (0.6,   2.5,   0.32,   0.33)  

𝑝14𝑎 = (0.6,   2.5,   0.32,   0.33)  

𝑝15𝑎 = (0.6,   2.5,   2.5,   0.33)  

𝑝16𝑎 = (0.6,   2.5,   2.5,   0.33)  

 

 
The stability and an upper cost bound are guaranteed for the convex polytope (3.12) 

for the uncertainties described in (3.11). Due to the switching nature of a DC-DC Zeta 

converter, the control duty ratio contains a high-frequency ripple. The ripple should be 

lower than 20% to avoid the nonlinear behavior of the PWM circuitry [47, 48]. As such, 

a less conservative design is proposed where the convex polytope covering is tightened. 

The proposed procedure to tighten the polytope covering is illustrated in Figure 3.2. 

Essentially, the procedure involves finding a few coordinates such that the polytope s 

sufficiently covered. From the procedure, the possible values of the uncertain parameters 

vector are now reduced to eight, as tabulated in Table 3.3. The corresponding eight 

vertices of the convex polytope of uncertainty is formed by the following system matrices 

 

[𝐴𝑠𝑠𝑎(𝑝), 𝐵𝑑𝑎(𝑝)] ∈ 𝒫8 = co{𝒢1𝑏 , … , 𝒢8𝑏}: 

𝒢1𝑏 = [𝐴𝑠𝑠𝑎(𝑝1𝑏), 𝐵𝑑𝑎(𝑝1𝑏)],   𝒢2𝑏 = [𝐴𝑠𝑠𝑎(𝑝2𝑏), 𝐵𝑑𝑎(𝑝2𝑏)],   

𝒢3𝑏 = [𝐴𝑠𝑠𝑎(𝑝3𝑏), 𝐵𝑑𝑎(𝑝3𝑏)],   𝒢4𝑏 = [𝐴𝑠𝑠𝑎(𝑝4𝑏), 𝐵𝑑𝑎(𝑝4𝑏)],  

𝒢5𝑏 = [𝐴𝑠𝑠𝑎(𝑝5𝑏), 𝐵𝑑𝑎(𝑝5𝑏)],   𝒢6𝑏 = [𝐴𝑠𝑠𝑎(𝑝6𝑏), 𝐵𝑑𝑎(𝑝6𝑏)],  

𝒢7𝑏 = [𝐴𝑠𝑠𝑎(𝑝7𝑏), 𝐵𝑑𝑎(𝑝7𝑏)],   𝒢8𝑏 = [𝐴𝑠𝑠𝑎(𝑝8𝑏), 𝐵𝑑𝑎(𝑝8𝑏)].         (3.13) 
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Table 3.3: Eight uncertain parameters vectors. 

 

Uncertain parameters vector 

𝑝 = (𝐷𝑑 ,   
1

1−𝐷𝑑
,   

𝐷𝑑

(1−𝐷𝑑)2
∙ (

1

𝑅
),   

1

𝑅
)  

𝑝1𝑏 = (0.375,   1.6,   0.95 ∙ (0.33),   0.33)  

𝑝2𝑏 = (0.375,   1.6,   0.95 ∙ (0.67),   0.67)  

𝑝3𝑏 = (0.52,   1.97,   1.78 ∙ (0.33),     0.33)  

𝑝4𝑏 = (0.52,   1.97,   1.78 ∙ (0.67),     0.67)  

𝑝5𝑏 = (0.52,   2.01,   1.78 ∙ (0.33),   0.33)  

𝑝6𝑏 = (0.52,   2.01,   1.78 ∙ (0.67),   0.67)  

𝑝7𝑏 = (0.6,   2.5,   3.75 ∙ (0.33),     0.33)  

𝑝8𝑏 = (0.6,   2.5,   3.75 ∙ (0.67),     0.67)  

 

 

 

 

 

Figure 3.2: Coordinate for the reduced convex polytope covering. 
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Remark 2. Although it is possible to further tighten the convex polytope covering to 

improve some performance specifications, as will be shown later in Section 3.4, the 

proposed polytope covering version is sufficient to produce the desired output voltage 

regulation and control duty ratio ripple propagation. 

 

To demonstrate the effectiveness of the proposed control formulation, three versions 

of state-feedback LQR controllers are presented: 1) the nominal LQR feedback controller 

𝐾𝐿𝑄𝑅, 2) the LMI-LQR feedback controller 𝐾𝐿𝑀𝐼16 with 16 vertices for the uncertain 

convex polytope, and 3) the LMI-LQR feedback controller 𝐾𝐿𝑀𝐼8 with 8 vertices of an 

uncertain convex polytope. The weight matrices 𝑄𝑤 and 𝑅𝑤 of the LQR performance 

index are selected as follows: 

 

𝑄𝑤 =

[
 
 
 
 
0 0 0 0 0
0 10−4 0 0 0
0 0 0 0 0
0 0 0 10−4 0

0 0 0 0 5 × 106]
 
 
 
 

,   𝑅𝑤 = 1.       (3.14) 

 

The three state-feedback controllers are found by solving the optimization problem (3.9) 

with the matrices defined in (3.1) and (3.14). The computation is done by Matlab LMI 

solver [49] called mincx, which is based on the barrier function of the interior-point 

method. The details of the Matlab codes are presented in Appendix B to D. Note that 

to find 𝐾𝐿𝑀𝐼16 and 𝐾𝐿𝑀𝐼8, the LMI constraint (3.10) and their respective convex polytope 

of uncertainty (3.12) and (3.13) are used. Consider the control input �̃�𝑑 = �̃�𝑑 and �̃� =

−𝐾1𝑖�̃�1 − 𝐾2�̃�𝐿2 − 𝐾3�̃�𝐶1 − 𝐾4�̃�𝐶2 − 𝐾5�̃�int. Then, the state-feedback gain vectors are 

given by 

 

𝐾𝐿𝑄𝑅 = [0.0673 0.0441 0.0661 0.1876 −2236.1], 

𝐾𝐿𝑀𝐼16 = [0.3755 0.0701 0.1588 0.3408 −2226.4], 

𝐾𝐿𝑀𝐼8 = [0.2531 0.0450 0.1736 0.3551 −2240.1].       (3.15) 

 

From (3.15), it can be observed that the state-feedback controller 𝐾𝐿𝑄𝑅 for the nominal 

plant has considerably smaller gains compared to those with multiple plants. Roughly 

speaking, as much uncertainty there is in a DC-DC Zeta converter, higher state-feedback 

gains are expected, especially the gains for the inductor currents  𝑖̃𝐿1 and 𝑖�̃�2. 

 

Remark 3. The positive definiteness of matrix 𝑃 (𝑃 > 0) in constraint (3.9) is verified 

by the Matlab numerical solution of the optimization problem in (3.9) where all the 

eigenvalues of 𝑃 are positive for all three controllers in (3.15). 
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3.4 Simulation Results 

 

To verify the performance of the proposed state-feedback control method, a 

simulation is carried out using PSIM, which is a circuit-based simulator. The simulation 

circuit for the closed-loop DC-DC Zeta converter is depicted in Figure 3.3. For 

simplicity, all electronic components are considered ideal where the internal resistances 

are considered small and negligible, and all the state variables are assumed measurable 

using either a current or voltage sensor. The simulation results are group into two 

conditions; nominal and non-nominal. A nominal condition refers to a nominal input 

voltage 𝑣𝑔 = 15 V (implies duty ratio 𝐷𝑑 = 0.375), whereas 𝑣𝑔 = 6 V (𝐷𝑑 = 0.6) is 

referred to as a non-nominal condition.  

 

 

 

 

Figure 3.3: Simulation circuit of a DC-DC Zeta converter 

with the state-feedback controller. 

 

 

The performance of the three state-feedback controllers under the nominal condition 

is compared in Figure 3.4. The waveforms of Figure 3.4(a), Figure 3.4(b), and Figure 

3.4(c) show the output voltage 𝑣𝑜 signal, the output current 𝑖𝑜 signal, and the control 

duty ratio 𝑑𝑑 signal, respectively. Moreover, the lines in blue, black, and red colors 

correspond to state-feedback controllers 𝐾𝐿𝑄𝑅, 𝐾𝐿𝑀𝐼16, and 𝐾𝐿𝑀𝐼8, respectively. Notice 

that the start-up response is omitted, and the simulated response begins in a steady-

state condition. As can be seen in the figure, the initial conditions for the output voltage 

𝑣𝑜, the load 𝑅, and the control duty ratio 𝑑𝑑 are 9 V, 1.5 Ω (implies output current 𝑖𝑜 =

6 A), and 0.375, respectively. Note that due to high-frequency ripple propagation, the 
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Figure 3.4: Performance comparison of the state-feedback controllers 𝐾𝐿𝑄𝑅 (blue line), 

𝐾𝐿𝑀𝐼16 (black line), and 𝐾𝐿𝑀𝐼8 (red line), under nominal condition. Simulated response 

for (a) output voltage 𝑣𝑜, (b) output current 𝑖𝑜, and (c) control duty ratio 𝑑𝑑. 
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control duty ratio appears “thick” and will be discussed shortly. At 𝑡 = 0.5 ms, a load 

perturbation occurs where the load is changed to 3 Ω, evidently shown in Figure 3.4(b), 

where the output current is changed to 3 A. From the output voltage observation in 

Figure 3.4(a), all the three state-feedback controllers can handle the +50 % load 

increment. In terms of performance, comparatively, the controller 𝐾𝐿𝑀𝐼8 provides the 

best output voltage response with minimum overshoot and fastest settling time. The 

controller 𝐾𝐿𝑄𝑅 produces the same amount of overshoot as 𝐾𝐿𝑀𝐼8 but has the worst 

settling time. While the controller 𝐾𝐿𝑀𝐼16 yields faster settling time than the controller 

𝐾𝐿𝑄𝑅, the output voltage overshoot is the largest. On the other hand, at 𝑡 = 3 ms, the 

load is returned to its nominal value of 1.5 Ω, which implies an output current of 6 A. 

From the figure, the output voltage response is found to be similar (but in the opposite 

direction) to the previous case. Concerning the control duty ratio response in Figure 

3.4(c), for both instances, 𝑡 = 0.5 ms and 𝑡 = 3 ms, all the three state-feedback 

controllers produced considerably small control effort to stabilize the DC-DC Zeta 

converter. The performance of the controllers is differentiated by the magnitude of the 

ripple propagated by the control duty ratio. In this case, the controller 𝐾𝐿𝑄𝑅 propagated 

the least ripple at 9.6 %, followed by the controller 𝐾𝐿𝑀𝐼8 (19%), and the controller 

𝐾𝐿𝑀𝐼16 produced 28%. 

 

In the case of the non-nominal condition, the simulation result is presented in Figure 

3.5. Notice that the signals are in steady-state under the nominal condition for 0 ≤ 𝑡 <

0.5 ms and the non-nominal condition occurs at 𝑡 = 0.5 ms onwards. This is to avoid 

the conventional LQR controller 𝐾𝐿𝑄𝑅 from failing to regulate the output voltage on 

start-up, since it is designed based on the nominal condition. At 𝑡 = 0.5 ms, the Zeta 

converter circuit is perturbed by the load, where the value is changed from 3 Ω to 1.5 Ω, 

which implies an output current changed from 6 A to 3 A, respectively, as depicted in 

Figure 3.5(b). From the output voltage response in Figure 3.5(a), comparing the 

performance of all three state-feedback controllers, it is observed that the controller 

𝐾𝐿𝑀𝐼8 produced a reasonable overshoot and the fastest settling time. The controller 

𝐾𝐿𝑀𝐼16 generated the largest overshoot and the settling time is slightly more than the 

controller 𝐾𝐿𝑀𝐼8, in addition to some small oscillation. Although the controller 𝐾𝐿𝑄𝑅 

gave the least overshoot, the output voltage is largely oscillating. At 𝑡 = 3 ms, when the 

load is changed back to 3 Ω, the output voltage and the output current for the controller 

𝐾𝐿𝑄𝑅 deteriorated further and do not return to their respective operating point. As for 

the controllers 𝐾𝐿𝑀𝐼8 and 𝐾𝐿𝑀𝐼16, even though the overshoot and settling time are 

considerably more than in the previous case, nevertheless, the output voltage is settled 

at its operating point. Observing the control duty ratio response in Figure 3.5(c) revealed  
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Figure 3.5: Performance comparison of the state-feedback controllers 𝐾𝐿𝑄𝑅 (blue line), 

𝐾𝐿𝑀𝐼16 (black line), and 𝐾𝐿𝑀𝐼8 (red line), under non-nominal condition. Simulated 

response for (a) output voltage 𝑣𝑜, (b) output current 𝑖𝑜, and  

(c) control duty ratio 𝑑𝑑. 
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that 4.8%, 10%, and 16% ripples are propagated by the controllers 𝐾𝐿𝑄𝑅, 𝐾𝐿𝑀𝐼8, and 

𝐾𝐿𝑀𝐼16, respectively. It can be seen that only minimal control efforts are needed by the 

controllers 𝐾𝐿𝑀𝐼8 and 𝐾𝐿𝑀𝐼16 to compensate the load perturbations at 𝑡 = 0.5 ms and 

𝑡 = 3 ms. On the contrary, the controller 𝐾𝐿𝑄𝑅 encountered difficulties in coping with 

the load perturbation at 𝑡 = 0.5 ms, and after the second load perturbation at 𝑡 = 3 ms, 

the control of the Zeta converter is eventually lost, and the control duty ratio became 

saturated. 

 

 

3.5 Summary 

 

In this chapter, we present a control formulation based on a linear matrix inequality 

(LMI) from a linear quadratic regulator (LQR) problem to regulate the output voltage 

of a DC-DC Zeta converter. Compared with conventional LQR control which is designed 

for a nominal plant, our LMI-LQR control takes into account multiple plants. 

Furthermore, we propose a tighter version of the convex polytope of uncertainty. The 

conventional LQR control produces an optimal performance under the nominal 

condition, however, when the system is highly uncertain, the control function is lost 

such that it fails to bring back the state-trajectory to its operating point. Our LMI-LQR 

controllers performs well even under non-nominal conditions and in the presence of high 

load perturbation. Due to the importance of having robust control and at the same time 

meeting the ripple propagation limitation, it is worth highlighting the benefits of having 

a reduced convex polytope covering in the control design. 
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Chapter 4 

 

Hybrid DC-DC Zeta Converter Control 

Operating in CCM 

 

4.1 Hybrid Two-mode System Control 

 

In this section, considering continuous conduction mode (CCM) operation of a DC-DC 

converter, we propose a hybrid system control strategy based on a Lyapunov functional 

candidate for a two-mode system and motivate its stability analysis. 

 

Two-mode system of the same state dimension are given by 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢,            (4.1) 

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢,            (4.2) 

 

where 𝑥(𝑡) ∈ ℝ𝑛 is the state and 𝑢(𝑡) ∈ ℝ is the input. Fix 𝑢0 ∈ ℝ and 𝜆 ∈ ℝ. Assume 

that 

𝜆𝐴1 + (1 − 𝜆)𝐴2 

 

is invertible. Define  

 

𝑥∗ = −( 𝜆𝐴1 + (1 − 𝜆)𝐴2)
−1( 𝜆𝐵1 + (1 − 𝜆)𝐵2)𝑢0.         (4.3) 

 

Note that we do not assume the stability nor the non-singularity of the matrices 𝐴1 and 

𝐴2. Let 𝒮𝑖 (𝑖 = 1, 2) denote the set of stationary points of the two-mode system (4.1 and 

(4.2); namely 

 

𝒮1 = {𝑥: 𝐴1𝑥 + 𝐵1𝑢0 = 0 }, 𝒮2 = {𝑥: 𝐴2𝑥 + 𝐵2𝑢0 = 0 }.         (4.4) 
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If 𝐴𝑖 is non-singular, 𝒮𝑖 is a singleton; otherwise it may be empty or infinite. The 

following proposition is easy to derive, but useful in the subsequent discussions. 

 

Proposition 1. The point 𝑥∗ is given by (4.3) if and only if it satisfies the following 

equation: 

 

𝜆(𝐴1𝑥
∗ +𝐵1𝑢0) = −(1 − 𝜆)(𝐴2𝑥

∗ + 𝐵2𝑢0).          (4.5) 

 

Furthermore, 𝐴𝑖𝑥
∗ + 𝐵𝑖𝑢0 ≠ 0 (𝑖 = 1, 2) if and only if 𝒮1 ∩ 𝒮2 = ∅. 

 

Proof. Since 

 

( 𝜆𝐴1 + (1 − 𝜆)𝐴2)𝑥
∗ = ( 𝜆𝐵1 + (1 − 𝜆)𝐵2)𝑢0, 

 

the equivalence of (4.3) and (4.5) is immediate. If 𝑥# ∈ 𝒮1 ∩ 𝒮2, then 

 

𝜆(𝐴1𝑥
# + 𝐵1𝑢0) = −(1 − 𝜆)(𝐴2𝑥

# + 𝐵2𝑢0) = 0, 

 

which implies 𝑥# = 𝑥∗ by the non-singularity of 𝜆𝐴1 + (1 − 𝜆)𝐴2. Conversely, if 𝐴1𝑥
∗ +

𝐵1𝑢0 = 0, then 𝐴2𝑥
∗ + 𝐵2𝑢0 = 0 by (4.5)(4.5). Thus, 𝑥∗ ∈ 𝒮1 ∩ 𝒮2.    ∎ 

 

We are interested in a switching control law that drives the state of the switching 

system with the modes (4.1) and (4.2) to 𝑥∗ under 𝑢(𝑡) ≡ 𝑢0. For this, define a candidate 

Lyapunov function 

 

𝑉(𝑥) = (𝑥 − 𝑥∗)𝑇𝑃(𝑥 − 𝑥∗),           (4.6)  

 

where 𝑃 is a positive definite matrix. Because 𝑃 > 0, there exist 𝑐1 > 0 and  𝑐2 > 0 such 

that 

 

𝑐1‖𝑥 − 𝑥
∗‖2 ≤ 𝑉(𝑥) ≤ 𝑐2‖𝑥 − 𝑥

∗‖2,          (4.7) 

 

holds. The derivatives of 𝑉(𝑥) along the trajectories of (4.1) and (4.2) are 

 

𝛼1(𝑥) ≔
𝜕𝑉

𝜕𝑥
(𝐴1𝑥 + 𝐵1𝑢0) 

= (𝑥 − 𝑥∗)𝑇(𝑃𝐴1 + 𝐴1
𝑇𝑃)(𝑥 − 𝑥∗) + 2(𝐴1𝑥

∗ + 𝐵1𝑢0)
𝑇𝑃(𝑥 − 𝑥∗),         (4.8) 
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𝛼2(𝑥) ≔
𝜕𝑉

𝜕𝑥
(𝐴2𝑥 + 𝐵2𝑢0) 

= (𝑥 − 𝑥∗)𝑇(𝑃𝐴2 + 𝐴2
𝑇𝑃)(𝑥 − 𝑥∗) + 2(𝐴2𝑥

∗ + 𝐵2𝑢0)
𝑇𝑃(𝑥 − 𝑥∗),         (4.9) 

 

respectively. 

 

Proposition 2. Suppose that 𝑃𝐴1 + 𝐴1
𝑇𝑃 ≤ 0 and 𝑃𝐴2 + 𝐴2

𝑇𝑃 ≤ 0. Then, 

 

𝛼2
−1(ℝ≥0) ⊂ 𝛼1

−1(ℝ≤0),   𝛼1
−1(ℝ≥0) ⊂ 𝛼2

−1(ℝ≤0),        (4.10) 

 

𝛼1
−1(0) ∩ 𝛼2

−1(0) = {𝑥: 𝑥 − 𝑥∗ ∈ ker  (𝑃𝐴1 + 𝐴1
𝑇𝑃) ∩ ker  (𝑃𝐴2 + 𝐴2

𝑇𝑃) ∩  

ker  (𝐴1𝑥
∗ + 𝐵1𝑢0)

𝑇𝑃}.           (4.11) 

 

The proof is based on the following observation. 

 

Lemma 1. Let 𝑄1 ≤ 0 and 𝑄2 ≤ 0 be 𝑛 × 𝑛 symmetric matrices. Let 𝑣1 ∈ ℝ
𝑛 and 𝑣2 ∈

ℝ𝑛 satisfy 𝜆𝑣1 + (1 − 𝜆)𝑣2 = 0 for some 0 < 𝜆 < 1. Define  

 

𝑝1(𝑥) ≔ 𝑥𝑇𝑄1𝑥 + 𝑣1
𝑇𝑥, 𝑝2(𝑥) ≔ 𝑥𝑇𝑄2𝑥 + 𝑣2

𝑇𝑥. 

 

Then 

 

𝑝1
−1(ℝ≤0) ⊂ 𝑝2

−1(ℝ≥0), 𝑝2
−1(ℝ≤0) ⊂ 𝑝2

−1(ℝ≥0), 

𝑝1
−1(0) ∩ 𝑝2

−1(0) = ker𝑄1 ∩ ker𝑄2 ∩ ker 𝑣1
𝑇. 

 

Proof. If 𝑝1(𝑥) > 0, then 

0 < 𝜆𝑝1(𝑥) = 𝜆𝑥
𝑇𝑄1𝑥 + 𝜆𝑣1

𝑇𝑥 

≤ 𝜆𝑣1
𝑇𝑥 = −(1 − 𝜆)𝑣2

𝑇𝑥  

≤ −(1 − 𝜆)𝑥𝑇𝑄2𝑥 − (1 − 𝜆)𝑣2
𝑇𝑥 = −(1 − 𝜆)𝑝2(𝑥) 

 

holds. Thus, 𝑝2(𝑥) < 0. Because 𝑝1
−1(ℝ≤0) = ℝ

𝑛 ∖ 𝑝1
−1(ℝ>0) and 𝑝2

−1(ℝ≥0) = ℝ
𝑛 ∖

 𝑝2
−1(ℝ<0), 𝑝2

−1(ℝ≥0) ⊂ 𝑝1
−1(ℝ≤0). By interchanging 𝑝1 and 𝑝2, in the argument, it 

follows that 𝑝1
−1(ℝ≥0) ⊂ 𝑝2

−1(ℝ≤0). If 𝑝1(𝑥) = 𝑝2(𝑥) = 0, then 

 

0 = 𝜆𝑝1(𝑥) = 𝜆𝑥
𝑇𝑄1𝑥 + 𝜆𝑣1

𝑇𝑥 

≤ 𝜆𝑣1
𝑇𝑥 = −(1 − 𝜆)𝑣2

𝑇𝑥  

≤ −(1 − 𝜆)𝑥𝑇𝑄2𝑥 − (1 − 𝜆)𝑣2
𝑇𝑥 = −(1 − 𝜆)𝑝2(𝑥) = 0. 
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Hence all the inequalities hold as equalities. This implies 𝑣1
𝑇𝑥 = 0, 𝑥𝑇𝑄1𝑥 = 0, and 

𝑥𝑇𝑄2𝑥 = 0, which means 𝑥 ∈ ker𝑄1 ∩ ker𝑄2 ∩ ker 𝑣1
𝑇. Conversely, if 𝑥 ∈ ker𝑄1 ∩

ker𝑄2 ∩ ker 𝑣1
𝑇, then 𝑥 ∈ ker 𝑣2

𝑇 and 𝑝1(𝑥) = 𝑝2(𝑥) = 0.     ∎ 

 

Proof of Proposition 2. Define 

 

𝑄1 ≔ 𝑃𝐴1 + 𝐴1
𝑇𝑃,   𝑄2 ≔ 𝑃𝐴2 + 𝐴2

𝑇𝑃, 

𝑣1 ≔ 2𝑃(𝐴1𝑥
∗ + 𝐵1𝑢0), 𝑣2 ≔ 2𝑃(𝐴2𝑥

∗ + 𝐵2𝑢0), 

𝑝1(𝑥) ≔ 𝛼1(𝑥 + 𝑥
∗),    𝑝2(𝑥) ≔ 𝛼2(𝑥 + 𝑥

∗). 

 

Notice that the assumptions of Lemma 1 are satisfied since (4.5) holds. Then the proof 

is immediate from Lemma 1.         ∎ 

 

Based on Proposition 2, we propose the following hybrid system control strategy. 

 

Hybrid CCM System Control Strategy 1 

 

 If the system is operating in mode 1 and reaches 𝛼1
−1(0), then it switches to 

mode 2. 

 If the system is operating in mode 2 and reaches 𝛼2
−1(0), then it switches to 

mode 1. 

 

To analyze the stability of the Hybrid CCM System Control Strategy 1, we consider 

the differential inclusion 

 

𝑑𝑥

𝑑𝑡
∈ 𝐹(𝑥),          (4.12) 

 

𝐹(𝑥) ≔ {

{𝐴1𝑥 + 𝐵1𝑢0} if 𝑥 ∈ 𝑀1,
{𝐴2𝑥 + 𝐵2𝑢0} if 𝑥 ∈ 𝑀2,

conv {𝐴1𝑥 + 𝐵1𝑢0, 𝐴2𝑥 + 𝐵2𝑢0} if 𝑥 ∈ 𝑀0,

 

 

where 

 

𝑀1 = {𝑥: 𝛼1
−1(ℝ<0) ∩ 𝛼2

−1(ℝ>0) = 𝛼1
−1(ℝ<0)}, 

𝑀2 = {𝑥: 𝛼1
−1(ℝ>0) ∩ 𝛼2

−1(ℝ<0) = 𝛼2
−1(ℝ<0)}, 

  𝑀0 = {𝑥: 𝛼1
−1(ℝ≤0) ∩ 𝛼2

−1(ℝ≤0)}. 

 

The set-valued map 𝐹: ℝ𝑛 ⇝ ℝ𝑛 is upper semi-continuous, and its values are bounded 

closed convex sets. Solutions of (4.12) include solutions of (4.1), (4.2) with the hybrid 
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system control strategy. We shall analyze the stability of the operating point 𝑥∗ of the 

differential inclusion (4.12). 

 

 

4.2 Stability of Hybrid System Control 

 

In this section, we will analyze the stability of the hybrid system control strategy 

proposed in the previous section and apply the method to a DC-DC Zeta converter 

operating in CCM. 

 

 

4.2.1 Stability Analysis 

 

Consider the differential inclusion (4.12) and the function 𝑉(𝑥) in (4.6). Define 

�̇�(𝑥): ℝ𝑛 ⇝ ℝ by 

 

�̇�(𝑥) =
𝜕𝑉

𝜕𝑥
𝐹(𝑥) ≔ {

𝜕𝑉

𝜕𝑥
𝜔: 𝜔 ∈ 𝐹(𝑥)}. 

 

It is easy to verify that 

 

�̇�(𝑥) = {

{𝛼1(𝑥)} if 𝑥 ∈ 𝑀1,
{𝛼2(𝑥)} if 𝑥 ∈ 𝑀2,

conv {𝛼1(𝑥), 𝛼2(𝑥)} if 𝑥 ∈ 𝑀0.
        (4.13) 

 

The inverse image �̇�−1(𝑆), where 𝑆 ⊂ ℝ, is defined by 

 

�̇�−1(𝑆) ≔ {𝑦 ∈ ℝ𝑛: �̇�(𝑦) ∩ 𝑆 ≠ ∅}. 

 

When 𝑆 = {𝑎}, we write �̇�−1(𝑎) ≔ �̇�−1({𝑎}). 

 

Proposition 3. Consider the differential inclusion (4.12) and the Lyapunov function 

(4.6). Then, 

 

�̇�−1(0) = 𝛼1
−1(0) ∪ 𝛼2

−1(0). 

 

Proof. If 𝑥 ∈ 𝛼1
−1(0), then �̇�(𝑥) = conv {0, 𝛼2(𝑥)} ∋ 0. Similarly, we have 0 ∈ �̇�(𝑥) if 

𝑥 ∈ 𝛼2
−1(0). Hence �̇�−1(0) ⊃ 𝛼1

−1(0) ∪ 𝛼2
−1(0). Conversely, if 0 ∈ �̇�(𝑥), then                      

𝑥 ∈ 𝛼1
−1(ℝ≤0) ∩ 𝛼2

−1(ℝ≤0) and 0 ∈ conv {𝛼1(𝑥), 𝛼2(𝑥)}. Because 𝛼1(𝑥) ≤ 0 and 𝛼2(𝑥) ≤
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0, this implies either 𝛼1(𝑥) = 0 or 𝛼2(𝑥) = 0.       ∎ 

 

Proposition 4. Let 𝑥∗, 𝒮1, and 𝒮2 be defined by (4.3) and (4.4). Then {𝑥∗} ∪ 𝒮1 ⊂

𝛼2
−1(0) hold. 

 

Proof. We have already shown that 𝑥∗ ∈ 𝛼1
−1(0) ∩ 𝛼2

−1(0) in Proposition 2. If 𝑥 ∈ 𝒮1, 

then 𝛼1(𝑥) = 0 by (4.8). Similarly, if 𝑥 ∈ 𝒮2, then 𝛼2(𝑥) = 0.    ∎ 

 

Proposition 5. Let 𝑥# ∈ {𝑥∗} ∪ 𝒮1 ∪ 𝒮2. Then, the differential inclusion (4.12) has a 

stationary solution 𝜙(𝑡, 𝑥#) ≡ 𝑥#. 

 

Proof. If 𝑥# ∈ 𝒮1, then 𝛼1(𝑥
#) = 0 by Proposition 4. Thus 𝐹(𝑥#) = conv {0, 𝐴2𝑥

∗1 +

𝐵2𝑢0} ∋ 0. Similarly, 𝑥# ∈ 𝒮2 implies 0 ∈ 𝐹(𝑥#). By Proposition 4, 𝛼1(𝑥
∗) = 𝛼2(𝑥

∗) =

0. Consequently, 𝐹(𝑥∗) = conv {𝐴1𝑥
∗ +𝐵1𝑢0, 𝐴2𝑥

∗ +𝐵2𝑢0} ∋ 𝜆(𝐴1𝑥
∗ + 𝐵1𝑢0) + (1 −

𝜆)(𝐴2𝑥
∗ + 𝐵2𝑢0) = 0          ∎ 

 

By Proposition 5, the operation point 𝑥∗ is not globally asymptotically stable if 𝒮1 ∪

𝒮2 ≠ ∅. We shall study the local asymptotic stability of 𝑥∗. The next result shows that 

𝑥∗ is stable in this sense. 

 

Theorem 1. Suppose that 𝑃𝐴1 + 𝐴1
𝑇𝑃 ≤ 0 and 𝑃𝐴2 + 𝐴2

𝑇𝑃 ≤ 0 hold. If 𝛼1
−1(0) ∩ 𝛼2

−1(0) 

contains no solution of (4.12) except for 𝑥(𝑡) ≡ 𝑥∗, then 𝑥∗ is locally asymptotically 

stable. 

 

The proof of Theorem 1 hinges on a couple of Lemmas. The first one states that the 

operating point 𝑥∗ is stable. 

 

Lemma 2. Suppose that 𝑃𝐴1 + 𝐴1
𝑇𝑃 ≤ 0 and 𝑃𝐴2 + 𝐴2

𝑇𝑃 ≤ 0 hold. Then 𝑥∗ is stable. 

 

Proof. Note that the set-valued function 𝐹(𝑥) in (4.12) is defined for all 𝑥 ∈ ℝ𝑛 from 

(4.10) in Proposition 2. Let 휀 > 0, and choose 𝛿 =
𝑐1

𝑐2
> 0. If ‖𝑥0 − 𝑥

∗‖2 < 𝛿, it follows 

from (4.7) that 𝑉(𝑥0) ≤ 𝑐2𝛿 = 𝑐1휀. Along the trajectory 𝜙(𝑡, 𝑥0) of (4.12), it holds that 

 

𝑑

𝑑𝑡
𝑉(𝜙(𝑡, 𝑥0)) = �̇�(𝜙(𝑡, 𝑥0)) ⊂ ℝ≤0, 

 

by (4.13), and hence 𝑉(𝜙(𝑡, 𝑥0)) ≤ 𝑉(𝑥0) holds. This implies that ‖𝜙(𝑡, 𝑥0) − 𝑥
∗‖2 ≤ 휀, 
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and therefore 𝑥∗ is stable.         ∎ 

 

One of the important observations is the property of the limiting set of a solution of 

a differential inclusion with an upper semi-continuous set-valued map. Let 

 

𝑑𝑥

𝑑𝑡
∈ 𝐹(𝑥),          (4.14) 

 

be a differential inclusion where 𝐹: ℝ𝑛 ⇝ ℝ𝑛 is upper semi-continuous and its values are 

bounded closed convex sets. Let 𝜙(𝑡, 𝑥0) be a solution of (4.14). A point 𝜔 ∈ ℝ𝑛 is called 

a limit point of  𝜙(𝑡, 𝑥0) if there is a sequence {𝑡𝑘} in [0,∞) such that 𝑡𝑘 → ∞ and  

 

lim
𝑘→∞

𝜙(𝑡𝑘 , 𝑥0) = 𝜔. 

 

The set of all limit points of 𝜙(𝑡, 𝑥0) is called the limit set of 𝜙(𝑡, 𝑥0) and is denoted as 

Ω. 

 

Lemma 3. Consider the differential inclusion (4.14). Suppose that a solution 𝜙(𝑡, 𝑥0) 

is bounded. Then the limit set Ω is nonempty, closed, and bounded. Furthermore, if 𝜔 ∈

Ω, then there exists a solution of 𝜙(𝑡, 𝜔) of (4.14) with initial condition 𝑥(0) = 𝜔 

satisfying 𝜙(𝑡, 𝜔) ∈ Ω for all 𝑡 ≥ 0. 

 

Proof. The first half is elementary, see for example [50, Lemma 5.30]. To prove the 

second half, let {𝑡𝑘} be a sequence in [0,∞) such that 𝑡𝑘 → ∞ and 𝜔𝑘 ≔ 𝜙(𝑡𝑘 , 𝑥0) tends 

to 𝜔 ∈ Ω. Let 𝑇 > 0 be fixed, and define 𝜓𝑘(𝑡) ≔ 𝜙(𝑡 + 𝑡𝑘, 𝑥0) for 𝑡 ∈ [0, 𝑇]. Note that 

𝜓𝑘(𝑡) is a solution of (4.14) with the initial condition 𝑥(0) = 𝜔𝑘. Using a similar 

argument as in [51, p.13, Theorem 4] and [51, p.104, Theorem 1], one can prove there 

exists 𝜓 and a convergent subsequence of  {𝜓𝑘} where the limit is 𝜓, and 𝜓(𝑡) = 𝜙(𝑡, 𝜔) 

is a solution of the differential inclusion (4.14) with the initial condition 𝑥(0) = 𝜔. Then 

any point on 𝜓(𝑡) is a limit point of 𝜙(𝑡, 𝑥0) and hence 𝜙(𝑡, 𝜔) ∈ Ω for 0 ≤ 𝑡 ≤ 𝑇. Since 

this is true for any 𝑇 > 0, this concludes the proof.      ∎ 

 

Lemma 4. There exists 𝑟 > 0 such that for every 𝜔 in the set {(𝛼1
−1(0) ∖ 𝛼2

−1(0)) ∪

(𝛼2
−1(0) ∖ 𝛼1

−1(0))} ∩ {𝑥: 𝑉(𝑥) < 𝑟} and every solution 𝜙(𝑡, 𝜔) of (4.14), there exists 𝜏 >

0 such that 𝑉(𝜙(𝜏, 𝜔)) < 𝑉(𝜔). 
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Proof. Define  

 

�̇�1(𝑥) ≔
𝜕𝛼1(𝑥)

𝜕𝑥
(𝐴1𝑥 + 𝐵1𝑢0), 

 

and recall from (4.9) that 

 

𝜕𝛼1(𝑥)

𝜕𝑥
= 2((𝑥 − 𝑥∗)𝑇(𝑃𝐴1 + 𝐴1

𝑇𝑃) + (𝐴1𝑥
∗ + 𝐵1𝑢0)

𝑇𝑃). 

 

It follows that �̇�1(𝑥) is a continuous function; moreover, 

 

�̇�1(𝑥
∗) = (𝐴1𝑥

∗ + 𝐵1𝑢0)
𝑇𝑃(𝐴1𝑥

∗ + 𝐵1𝑢0) > 0, 

 

and from the continuity of �̇�1(𝑥), �̇�1(𝑥) > 0 in some neighborhood of 𝑥∗, say 𝑁 =

{𝑥: 𝑉(𝑥) < 𝑟} for some 𝑟 > 0. Let 𝜔 ∈ (𝛼1
−1(0) ∖ 𝛼2

−1(0)) ∩ 𝑁. Since 𝛼1(𝜔) = 0, 

𝛼2(𝜔) < 0 by (10). We can take 𝜏 > 0 small enough, so 𝛼2(𝜙(𝜏, 𝜔)) < 0 for all 𝑡 ∈

[0, 𝜏]. If 𝑉(𝜙(𝑡, 𝜔)) = 𝑉(𝜔) for all 𝑡 ∈ [0, 𝜏], then 

 

𝑑

𝑑𝑡
𝑉(𝜙(𝑡, 𝜔)) =

𝜕𝑉

𝜕𝑥

𝑑

𝑑𝑡
𝜙(𝑡, 𝜔) = 0,         (4.15) 

 

for almost all 𝑡. Let 𝒯 = {𝑡: 𝛼1(𝜙(𝜏, 𝜔)) > 0}. Note that 𝒯 is an open set. If 𝑡 ∈ 𝒯, then 

by (4.12) 𝐹(𝜙(𝜏, 𝜔)) = {𝐴2𝜙(𝜏, 𝜔) + 𝐵2𝑢0}, and hence 
𝜕𝑉

𝜕𝑥

𝑑

𝑑𝑡
𝜙(𝑡, 𝜔) = 𝛼2(𝜙(𝜏, 𝜔)) < 0. 

Hence 𝒯 = ∅. Consequently,  𝐹(𝜙(𝜏, 𝜔)) = conv {𝐴1𝜙(𝜏, 𝜔) + 𝐵1𝑢0, 𝐴2𝜙(𝜏, 𝜔) + 𝐵2𝑢0}, 

but 
𝜕𝑉

𝜕𝑥
𝐴2𝜙(𝜏, 𝜔) + 𝐵2𝑢0 = 𝛼2(𝜙(𝜏, 𝜔)) < 0 implies 

𝑑

𝑑𝑡
𝜙(𝜏, 𝜔) = 𝐴1𝜙(𝜏, 𝜔) + 𝐵1𝑢0 for 

almost all 𝑡. Hence 𝜙(𝜏, 𝜔) is the solution of the differential equation 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢0,   𝑥(0) = 𝜔,   0 ≤ 𝑡 ≤ 𝜏, 

 

𝑉(𝜙(𝑡, 𝜔)) is twice continuously differentiable, and 

 

𝑑2

𝑑𝑡2
𝑉(𝜙(𝑡, 𝜔)) = �̇�1(𝜙(𝑡, 𝜔)) > 0, 𝑡 ∈ [0, 𝜏]. 

 

This implies that 𝛼1(𝜙(𝑡, 𝜔)) > 𝛼1(𝜙(0,𝜔)) = 0 for some 𝑡. But 𝒯 = ∅, and this is not 

possible. Hence, 𝑉(𝜙(𝜏, 𝜔)) ≤ 𝑉(𝜙(𝑡, 𝜔)) < 𝑉(𝜔) for some 𝑡 ∈ [0, 𝜏]. The proof for         

𝜔 ∈ (𝛼2
−1(0) ∖ 𝛼1

−1(0)) ∩ 𝑁 is similar.        ∎ 
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Proof of Theorem 1. Since 𝜙(𝑡, 𝑥0) is bounded, its limit set Ω is an invariant set by 

Lemma 3. Since 𝑉(𝑥) is bounded from below and 𝑉(𝜙(𝑡, 𝑥0)) is monotonically non-

increasing for every sequence {𝑡𝑘} such that 𝑡𝑘 → ∞ as 𝑘 → ∞, 𝑐 ≔ lim
𝑘→∞

𝑉(𝜙(𝑡𝑘 , 𝑥0)) 

exists. If 𝜔 ∈ Ω, then there exists a sequence {𝑡𝑘} such that 𝜔 = lim 𝜙(𝑡𝑘 , 𝑥0). This 

means 𝑉(𝜔) = 𝑉(lim𝜙(𝑡𝑘 , 𝑥0)) = lim𝑉(𝜙(𝑡𝑘 , 𝑥0)) = 𝑐. Because Ω is an invariant set, 

0 ∈ 𝑉(𝜔) for any 𝜔 ∈ Ω. From Proposition 3, 𝜔 ∈ 𝛼1
−1(0) ∪ 𝛼2

−1(0). Take 𝑟 > 0 and 

𝑁 = {𝑥: 𝑉(𝑥) < 𝑟} as in Lemma 4. If 𝜔 ∈ {(𝛼1
−1(0) ∖ 𝛼2

−1(0)) ∪ (𝛼2
−1(0) ∖ 𝛼1

−1(0))} ∩

𝑁, then 𝜔 is not a limit point by Lemma 4. Thus, 𝜔 ∈ 𝛼1
−1(0) ∩ 𝛼2

−1(0). Hence, if 

𝑉(𝑥0) < 𝑟, then 𝜙(𝑡, 𝑥0) does not have a limit point except 𝑥∗.    ∎ 

 

Remark 1. Theorem 1 is a consequence of LaSalle’s invariance principle proved for the 

differential inclusion (4.12). This is a useful tool to prove the stability of the hybrid 

system control applied to a DC-DC Zeta converter in Section 4.3.2. 

 

 

4.2.2 Stability of Hybrid Zeta Converter Control in CCM 

 

As presented in Section 2.2, for the state vector 𝑥 = [𝑖𝐿1 𝑖𝐿2 𝑣𝐶1 𝑣𝐶2]
𝑇 and the input 𝑢 =

𝑣𝑔, the matrices for a DC-DC Zeta converter operating in CCM are given by 

 

𝐴1 =

[
 
 
 
 
 
0 0 0 0

0 0
1

𝐿2
−

1

𝐿2

0 −
1

𝐶1
0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 

,    𝐵1 =

[
 
 
 
 
1

𝐿1
1

𝐿2

0
0]
 
 
 
 

, 

𝐴2 =

[
 
 
 
 
 
 0 0 −

1

𝐿1
0

0 0 0 −
1

𝐿2
1

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 
 

,    𝐵2 = [

0
0
0
0

].        (4.16) 

 

If 𝑢0 > 0, then mode 1 has no stationary solution, and mode 2 has a unique stationary 

solution 𝑥∗2 = [0 0 0 0]𝑇. 

 

For 𝜆 ∈ (0,1), 

 

𝑥∗ = −( 𝜆𝐴1 + (1 − 𝜆)𝐴2)
−1( 𝜆𝐵1 + (1 − 𝜆)𝐵2)𝑢0 
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=

[
 
 
 
 
 
 0 0 −

1−𝜆

𝐿1
0

0 0
𝜆

𝐿2
−

1

𝐿2
1−𝜆

𝐶1
−

𝜆

𝐶1
0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 
 

[
 
 
 
 
𝜆

𝐿1
𝜆

𝐿2

0
0]
 
 
 
 

𝑢0  

=

[
 
 
 
 
𝑣𝑟
2

𝑅𝑣𝑔
𝑣𝑟

𝑅
𝑣𝑟
𝑣𝑟 ]
 
 
 
 

=:

[
 
 
 
𝑖𝐿1
∗

𝑖𝐿2
∗

𝑣𝐶1
∗

𝑣𝐶2
∗ ]
 
 
 

,            (4.17) 

 

where 𝑣𝑔 ≔ 𝑢0 and 𝑣𝑟 ≔
𝜆𝑢0

1−𝜆
. Based on the energy stored in the inductors and the 

capacitors of the Zeta converter, define 

 

𝑃 ≔

[
 
 
 
 
 
𝐿1

2
0 0 0

0
𝐿2

2
0 0

0 0
𝐶1

2
0

0 0 0
𝐶2

2 ]
 
 
 
 
 

.         (4.18) 

 

Then  

 

     𝑃𝐴1 + 𝐴1
𝑇𝑃 =

[
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
1

𝑅]
 
 
 

≤ 0, 

     𝑃𝐴2 + 𝐴2
𝑇𝑃 =

[
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
1

𝑅]
 
 
 

≤ 0, 

(𝐴1𝑥
∗ + 𝐵1𝑢0)

𝑇𝑃 = [
𝑣𝑔

2

𝑣𝑔

2
−
𝑣𝑟

2𝑅
0], 

(𝐴2𝑥
∗ + 𝐵2𝑢0)

𝑇𝑃 = [−
𝑣𝑟

2
−
𝑣𝑟

2
−

𝑣𝑟
2

2𝑅𝑣𝑔
0].        (4.19) 

 

From (4.19),  

 

ker (𝑃𝐴1 + 𝐴1
𝑇𝑃) ∩ ker  (𝑃𝐴2 + 𝐴2

𝑇𝑃) ∩ ker (𝐴1𝑥
∗ + 𝐵1𝑢0)

𝑇𝑃 = span {𝑑1, 𝑑2}, 

 

where 
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𝑑1 =

[
 
 
 
𝑣𝑟

𝑅

0
𝑣𝑔
0 ]
 
 
 

, 𝑑2 = [

0
𝑣𝑟

𝑅
𝑣𝑔
0

].         (4.20) 

 

The function �̇�(𝑥) decreases along the trajectory as long as 𝑥 ∉  𝛼1
−1(0) ∩ 𝛼2

−1(0). It 

remains to see what happens when the trajectory reaches 𝛼1
−1(0) ∩ 𝛼2

−1(0). 

 

Lemma 5. Let 𝑥 ∈  𝛼1
−1(0) ∩ 𝛼2

−1(0). Then the following properties hold: 

 

(a) 0 ∈ 𝐹(𝑥) if and only if 𝑥 = 𝑥∗. 

(b) if 𝑥 − 𝑥∗ ∉ span {𝑑1}, then 𝐹(𝑥) ∩ ker (𝑃𝐴1 + 𝐴1
𝑇𝑃) ∩ ker  (𝑃𝐴2 + 𝐴2

𝑇𝑃) ≠ ∅. 

(c) if 𝑥 − 𝑥∗ ∈ span {𝑑1}, and 𝑥 ≠ 𝑥∗, then 𝐹(𝑥) ∩ span {𝑑1} ≠ ∅. 

 

Proof. It follows from (4.17) that  

 

𝐴1𝑥
∗ + 𝐵1𝑣𝑔 =

[
 
 
 
0
0

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
+

[
 
 
 
 
𝑣𝑔

𝐿1
𝑣𝑔

𝐿2

0
0 ]
 
 
 
 

=

[
 
 
 
 
 

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

,        (4.21) 

𝐴2𝑥
∗ +𝐵2𝑣𝑔 =

[
 
 
 
 
 −

𝑣𝑟

𝐿1

−
𝑣𝑟

𝐿2

𝑣𝑟
2

𝐶1𝑅𝑣𝑔

0 ]
 
 
 
 
 

+ [

0
0
0
0

] =

[
 
 
 
 
 −

𝑣𝑟

𝐿1

−
𝑣𝑟

𝐿2

𝑣𝑟
2

𝐶1𝑅𝑣𝑔

0 ]
 
 
 
 
 

.        (4.22) 

 

Note that 𝑥 ∈ 𝛼1
−1(0) ∩ 𝛼2

−1(0) if and only if 𝑥 = 𝑥∗ + ∆𝑥 with 

 

∆𝑥 = 𝛿1𝑑1 + 𝛿2𝑑2 =

[
 
 
 
 𝛿1

𝑣𝑟

𝑅

𝛿2
𝑣𝑟

𝑅

(𝛿1 + 𝛿2)𝑣𝑔
0 ]

 
 
 
 

.        (4.23) 

 

From this, it follows that 

 

𝐴1∆𝑥 =

[
 
 
 
 
 

0

(𝛿1 + 𝛿2)
𝑣𝑔

𝐿2

−𝛿2
𝑣𝑟

𝐶1𝑅

𝛿2
𝑣𝑟

𝐶2𝑅 ]
 
 
 
 
 

,   𝐴2∆𝑥 =

[
 
 
 
 
 −(𝛿1 + 𝛿2)

𝑣𝑔

𝐿1

0

𝛿1
𝑣𝑟

𝐶1𝑅

𝛿2
𝑣𝑟

𝐶2𝑅 ]
 
 
 
 
 

. 
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Hence if 𝑥 ∈ 𝛼1
−1(0) ∩ 𝛼2

−1(0), then 

 

𝐴1𝑥 + 𝐵1𝑣𝑔 = 𝐴1𝑥
∗ +𝐵1𝑣𝑔 + 𝐴1∆𝑥 

=

[
 
 
 
 
 

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

+

[
 
 
 
 
 

0

(𝛿1 + 𝛿2)
𝑣𝑔

𝐿2

−𝛿2
𝑣𝑟

𝐶1𝑅

𝛿2
𝑣𝑟

𝐶2𝑅 ]
 
 
 
 
 

,        (4.24) 

 

𝐴2𝑥 + 𝐵2𝑣𝑔 = 𝐴2𝑥
∗ + 𝐵2𝑣𝑔 + 𝐴2∆𝑥 

=

[
 
 
 
 
 −

𝑣𝑟

𝐿1

−
𝑣𝑟

𝐿2

𝑣𝑟
2

𝐶1𝑅𝑣𝑔

0 ]
 
 
 
 
 

+

[
 
 
 
 
 −(𝛿1 + 𝛿2)

𝑣𝑔

𝐿1

0

𝛿1
𝑣𝑟

𝐶1𝑅

𝛿2
𝑣𝑟

𝐶2𝑅 ]
 
 
 
 
 

,        (4.25) 

 

Hence if 𝜔 ∈ 𝐹(𝑥) for 𝑥 ∈ 𝛼1
−1(0) ∩ 𝛼2

−1(0) ∖ span {𝑑1}, then 

 

[0 0 0 1]𝜔 =
𝛿2𝑣𝑟

𝐶2𝑅
≠ 0, 

 

which shows 𝐹(𝑥) ∩ ker (𝑃𝐴1 + 𝐴1
𝑇𝑃) ∩ ker  (𝑃𝐴2 + 𝐴2

𝑇𝑃) ≠ ∅ and  0 ∉ conv{𝐴1𝑥 +

𝐵1𝑣𝑔, 𝐴2𝑥 + 𝐵2𝑣𝑔}. Suppose 𝑥 − 𝑥∗ ∈ span {𝑑1}, then, 

 

rank [(𝐴1𝑥 + 𝐵1𝑣𝑔) (𝐴2𝑥 + 𝐵2𝑣𝑔)] = rank 

[
 
 
 
 

𝑣𝑔

𝐿1
−
𝑣𝑟

𝐿1
− 𝛿1

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2
+ 𝛿1

𝑣𝑔

𝐿2
−
𝑣𝑟

𝐿2

−
𝑣𝑟

𝐶1𝑅

𝑣𝑟
2

𝐶1𝑅𝑣𝑔
+ 𝛿1

𝑣𝑟

𝐶1𝑅]
 
 
 
 

   

= rank 

[
 
 
 
 

𝑣𝑔

𝐿1
−𝛿1

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2
+ 𝛿1

𝑣𝑔

𝐿2
𝛿1

𝑣𝑟

𝐿2

−
𝑣𝑟

𝐶1𝑅
𝛿1

𝑣𝑟

𝐶1𝑅 ]
 
 
 
 

  

= rank

[
 
 
 
 

𝑣𝑔

𝐿1
−
𝑣𝑔

𝐿1
𝑣𝑔

𝐿2
+ 𝛿1

𝑣𝑔

𝐿2

𝑣𝑟

𝐿2

−
𝑣𝑟

𝐶1𝑅

𝑣𝑟

𝐶1𝑅 ]
 
 
 
 

   

= rank

[
 
 
 
 0 −

𝑣𝑔

𝐿1
𝑣𝑟+𝑣𝑔

𝐿2
+ 𝛿1

𝑣𝑔

𝐿2

𝑣𝑟

𝐿2

0
𝑣𝑟

𝐶1𝑅 ]
 
 
 
 

. 
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If 𝛿1 ≠ −
𝑣𝑟+𝑣𝑔

𝑣𝑔
, then 𝐴1𝑥 + 𝐵1𝑣𝑔 and 𝐴2𝑥 + 𝐵2𝑣𝑔 are linearly independent, and hence 

0 ∉ 𝐹(𝑥). If 𝛿1 = −
𝑣𝑟+𝑣𝑔

𝑣𝑔
, then 

 

𝑥 = 𝑥∗ + ∆𝑥 =

[
 
 
 
 
𝑣𝑟
2

𝑅𝑣𝑔
𝑣𝑟

𝑅
𝑣𝑟
𝑣𝑟 ]
 
 
 
 

+

[
 
 
 
 −

𝑣𝑟+𝑣𝑔

𝑣𝑔
(
𝑣𝑟

𝑅
)

0

−
𝑣𝑟+𝑣𝑔

𝑣𝑔
(𝑣𝑔)

0 ]
 
 
 
 

=

[
 
 
 
 −

𝑣𝑟

𝑅
𝑣𝑟

𝑅
−𝑣𝑔
𝑣𝑟 ]
 
 
 
 

, 

𝐴1𝑥 + 𝐵1𝑣𝑔 =

[
 
 
 
 
 

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

+

[
 
 
 
 

0

−
𝑣𝑟+𝑣𝑔

𝑣𝑔
(
𝑣𝑔

𝐿2
)

0
0 ]

 
 
 
 

 =

[
 
 
 
 
 

𝑣𝑔

𝐿1

−
𝑣𝑟

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

, 

𝐴2𝑥 + 𝐵2𝑣𝑔 =

[
 
 
 
 
 −

𝑣𝑟

𝐿1

−
𝑣𝑟

𝐿2

𝑣𝑟
2

𝐶1𝑅𝑣𝑔

0 ]
 
 
 
 
 

+

[
 
 
 
 

𝑣𝑟+𝑣𝑔

𝑣𝑔
(
𝑣𝑔

𝐿1
)

0

−
𝑣𝑟+𝑣𝑔

𝑣𝑔
(
𝑣𝑟

𝐶1𝑅
)

0 ]
 
 
 
 

=

[
 
 
 
 
 

𝑣𝑔

𝐿1

−
𝑣𝑟

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

. 

 

Because 𝐴1𝑥 + 𝐵1𝑣𝑔 = 𝐴2𝑥 + 𝐵2𝑣𝑔 ≠ 0, we have 0 ∉ 𝐹(𝑥). Finally, note that  

 

∆𝑥𝑇𝑃(𝐴1𝑥 + 𝐵1𝑣𝑔) = [𝛿1
𝐿1𝑣𝑟

2𝑅
𝛿2

𝐿2𝑣𝑟

2𝑅
(𝛿1 + 𝛿2)

𝐶1𝑣𝑔

2
0]

{
 
 

 
 

[
 
 
 
 
 

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

+

[
 
 
 
 
 

0

(𝛿1 + 𝛿2)
𝑣𝑔

𝐿2

−𝛿2
𝑣𝑟

𝐶1𝑅

𝛿2
𝑣𝑟

𝐶2𝑅 ]
 
 
 
 
 

}
 
 

 
 

  

= 0, 

 

∆𝑥𝑇𝑃(𝐴2𝑥 + 𝐵2𝑣𝑔) = [𝛿1
𝐿1𝑣𝑟

2𝑅
𝛿2

𝐿2𝑣𝑟

2𝑅
(𝛿1 + 𝛿2)

𝐶1𝑣𝑔

2
0]

{
 
 

 
 

[
 
 
 
 
 

𝑣𝑟

𝐿1
𝑣𝑟

𝐿2

−
𝑣𝑟

𝐶1𝑅𝑣𝑔

0 ]
 
 
 
 
 

+

[
 
 
 
 
 −(𝛿1 + 𝛿2)

𝑣𝑔

𝐿1

0

𝛿1
𝑣𝑟

𝐶1𝑅

𝛿2
𝑣𝑟

𝐶2𝑅 ]
 
 
 
 
 

}
 
 

 
 

  

= 0. 

 

Let 𝑥 − 𝑥∗ ∈ span {𝑑1} and 𝑥 ≠ 𝑥∗. Then for every 𝜔 ∈ 𝐹(𝑥), 𝑑1
𝑇𝑃𝜔 = 0. Since 0 ∉ 𝐹(𝑥), 

it follows that 𝐹(𝑥) ∩ span {𝑑1} = ∅.        ∎ 

 

Theorem 2. Consider the differential inclusion (4.12) defined by the system matrices 

(4.16) and the operating point 𝑥∗ in (4.17). Then, the operating point 𝑥∗ is local 
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asymptotically stable. 

 

Proof. Assume that 𝜙(𝑡, 𝑥0) is a solution of the differential inclusion satisfying 𝜙(𝑡, 𝑥0) ∈

𝛼1
−1(0) ∩ 𝛼2

−1(0) for 𝑡 ≥ 0 and 𝑥0 ≠ 𝑥
∗. If 𝑥0 − 𝑥

∗ ∉ span {𝑑1}, then 
𝑑

𝑑𝑡
𝜙(𝑡, 𝑥0) ∉

ker (𝑃𝐴1 + 𝐴1
𝑇𝑃) ∩ ker  (𝑃𝐴2 + 𝐴2

𝑇𝑃) by Lemma 5, but this contradicts the assumption 

that 𝜙(𝑡, 𝑥0) ∈ 𝛼1
−1(0) ∩ 𝛼2

−1(0) for 𝑡 ≥ 0. If 𝑥0 − 𝑥
∗ ∈ span {𝑑1}, then from Lemma 5, 

there exists 𝑡1 such that 𝑥1 ≔ 𝜙(𝑡1, 𝑥0) satisfies 𝑥1 − 𝑥
∗ ∉ span {𝑑1}. Then the trajectory 

𝜙(𝑡, 𝑥1) cannot stay in 𝛼1
−1(0) ∩ 𝛼2

−1(0) just as we have proved before. This completes 

the proof.           ∎ 

 

Remark 2. The state dimension of the Zeta converter model is four, and the set 

𝛼1
−1(0) ∩ 𝛼2

−1(0) includes the two-dimensional affine set spanned by 𝑑1 and 𝑑2 in (4.20). 

The stability of the operating point is a consequence of Theorem 1, which is a 

differential-inclusion version of LaSalle’s invariance principle. 

 

 

4.3 Limiting the Switching Frequency 

 

The hybrid system control proposed in Section 4.2 requires an unbounded number of 

switching as a solution approaches the operating point 𝑥∗. In this section, the hybrid 

system control strategy discussed in Section 4.2 is modified to limit the switching 

frequency of a Zeta converter. 

 

 

4.3.1 Modified Hybrid CCM System Control Strategy 

 

The Hybrid System Control Strategy 1 considered in Section 4.2 is based on the signs 

of the derivatives along the trajectories (4.8) and (4.9). Let 𝜌1, 𝜌2 > 0 and ᾶ1 and ᾶ2 

be modified switching functions that satisfy the following 

 

ᾶ1(𝑥) ≥ 𝛼1(𝑥), ᾶ2(𝑥) ≥ 𝛼2(𝑥),               (4.26) 

𝛼2
−1(ℝ≥0) ⊂ ᾶ1

−1(ℝ≤𝜌1),    𝛼1
−1(ℝ≥0) ⊂ ᾶ2

−1(ℝ≤𝜌2).       (4.27) 

 

Notice that (4.27) is equivalent to 

 

ᾶ1
−1(ℝ>𝜌1) ⊂ 𝛼2

−1(ℝ<0),    ᾶ2
−1(ℝ>𝜌2) ⊂ 𝛼1

−1(ℝ<0). 

 

Based on (4.26) and (4.27), we propose the following modified hybrid system control 

strategy. 
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Hybrid CCM System Control Strategy 2 

 

 If the system is operating at mode 1 and reaches ᾶ1
−1(𝜌1), then it switches to 

mode 2. 

 If the system is operating at mode 2 and reaches ᾶ2
−1(𝜌2), then it switches to 

mode 1. 

 

The differential inclusion (4.12) is modified accordingly. 

 

𝑑𝑥

𝑑𝑡
∈ �̃�(𝑥),          (4.28) 

 

�̃�(𝑥) ≔ {

{𝐴1𝑥 + 𝐵1𝑢0} if 𝑥 ∈ �̃�1,

{𝐴2𝑥 + 𝐵2𝑢0} if 𝑥 ∈ �̃�2,

conv {𝐴1𝑥 + 𝐵1𝑢0, 𝐴2𝑥 + 𝐵2𝑢0} if 𝑥 ∈ �̃�0,

 

 

where 

�̃�1 = {𝑥: 𝛼1
−1(ℝ<0) ∩ ᾶ2

−1(ℝ>𝜌2) = ᾶ2
−1(ℝ>𝜌2)}, 

�̃�2 = {𝑥: ᾶ1
−1(ℝ>𝜌1) ∩ 𝛼2

−1(ℝ<0) = ᾶ1
−1(ℝ>𝜌1)}, 

    �̃�0 = {𝑥: ᾶ1
−1(ℝ≤𝜌1) ∩ ᾶ2

−1(ℝ≤𝜌2)}. 

 

Assumption 1. The sets ᾶ1
−1(ℝ≤𝜌1) ∩ 𝛼1

−1(ℝ>0) and ᾶ2
−1(ℝ≤𝜌2) ∩ 𝛼2

−1(ℝ>0) are 

bounded. 

 

Proposition 6. Suppose Assumption 1 holds. Let 𝑐 > 0 satisfy 

 

𝑐 > sup {𝑉(𝑥): 𝑥 ∈ (ᾶ1
−1(ℝ≤𝜌1) ∩ 𝛼1

−1(ℝ>0)) ∪ (ᾶ2
−1(ℝ≤𝜌2) ∩ 𝛼2

−1(ℝ>0))}. 

 

Then for any solution �̃�(𝑡, 𝑥0) of (4.28), there exists 𝑇 > 0 such that �̃�(𝑡, 𝑥0) ∈

{𝑥: 𝑉(𝑥) < 𝑐} for 𝑡 > 𝑇. 

 

Proof. First, we shall prove that �̃�(𝑥) ⊂ 𝐹(𝑥) if 𝑥 ∉ Ξ𝜌 ≔ (ᾶ1
−1(ℝ≤𝜌1) ∩ 𝛼1

−1(ℝ>0)) ∪

(ᾶ2
−1(ℝ≤𝜌2) ∩ 𝛼2

−1(ℝ>0)). From (4.27), ᾶ1
−1(ℝ>𝜌1) ⊂ 𝛼2

−1(ℝ<0). So, if ᾶ2(𝑥) > 𝜌2, then  

 

�̃�(𝑥) = {
{𝐴1𝑥 + 𝐵1𝑢0} = 𝐹(𝑥), 𝛼2(𝑥) > 0,

{𝐴2𝑥 + 𝐵2𝑢0} ⊂ conv {𝐴1𝑥 + 𝐵1𝑢0, 𝐴2𝑥 + 𝐵2𝑢0} = 𝐹(𝑥), 𝛼2(𝑥) ≤ 0.
 

 

From Assumption 1, the number 𝑐 > 0 exists. If 𝑉(𝑥0) > 𝑐, then a solution �̃�(𝑡, 𝑥0) of 
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(4.28) satisfies �̃�(𝑡, 𝑥0) = 𝜙(𝑡, 𝑥0) as long as �̃�(𝑡, 𝑥0) ∉ Ξ𝜌 where 𝜙(𝑡, 𝑥0) is a solution 

of (4.12). There exists 𝑇 > 0 such that 𝑉(𝜙(𝑡, 𝑥0)) ≥ 𝑐 if 𝑡 > 𝑇 because 𝑉(𝜙(𝑡, 𝑥0)) is 

monotonically decreasing and 𝑉(𝜙(𝑡, 𝑥0)) → 0 as 𝑡 → ∞ from Theorem 1. Note that 

Ξ𝜌 ∩ {𝑥: 𝑉(𝑥) ≥ 𝑐} = ∅. This implies that �̃�(𝑡, 𝑥0) = 𝜙(𝑡, 𝑥0) and 𝑉 (�̃�(𝑡, 𝑥0)) ≥ 𝑐 for 

0 ≤ 𝑡 ≤ 𝑇. Furthermore, 𝑉 (�̃�(𝑡, 𝑥0)) is non-increasing when �̃�(𝑡, 𝑥0) ∉ Ξ𝜌. Therefore,  

𝑉 (�̃�(𝑡, 𝑥0)) < 𝑐 for 𝑡 > 𝑇.         ∎ 

 

 

4.3.2 Modified Hybrid CCM Zeta Converter Control Strategy 

 

From (4.19), 

𝛼1(𝑥) = (𝑥 − 𝑥
∗)𝑇

[
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
1

𝑅]
 
 
 

(𝑥 − 𝑥∗) + 𝑣𝑔(𝑖𝐿1 − 𝑖𝐿1
∗ ) + 𝑣𝑔(𝑖𝐿2 − 𝑖𝐿2

∗ ) −
𝑣𝑟

𝑅
(𝑣𝐶1 − 𝑣𝐶1

∗ ), 

     (4.29) 

 

𝛼2(𝑥) = (𝑥 − 𝑥
∗)𝑇

[
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 −
1

𝑅]
 
 
 

(𝑥 − 𝑥∗) − 𝑣𝑟(𝑖𝐿1 − 𝑖𝐿1
∗ ) − 𝑣𝑟(𝑖𝐿2 − 𝑖𝐿2

∗ ) +
𝑣𝑟
2

𝑅𝑣𝑔
(𝑣𝐶1 − 𝑣𝐶1

∗ ). 

(4.30) 

 

Define  

 

𝑑3 ≔

[
 
 
 
 
𝑣𝑔𝑅𝐶1

𝐿1
𝑣𝑔𝑅𝐶1

𝐿2
−𝑣𝑟
0 ]
 
 
 
 

,    𝑑4 ≔ [

0
0
0
𝑣𝑟

].         (4.31) 

 

Then {𝑑1, 𝑑2, 𝑑3, 𝑑4} with 𝑑1 and 𝑑2 in (4.20) is a basis of ℝ4, and thus any 𝑥 ∈ ℝ4 can 

be written as 

 

𝑥 − 𝑥∗ = ∆𝑥 = 𝛿1𝑑1 + 𝛿2𝑑2 + 𝛿3𝑑3 + 𝛿4𝑑4.        (4.32) 

 

The modified functions ᾶ1(𝑥) and ᾶ2(𝑥) can be defined as 

 

ᾶ1(𝑥) ≔ 𝛼1(𝑥) + 𝑘1𝛿4
2 + 𝛽(𝑐1‖𝛿1, 𝛿2‖),        (4.33) 

ᾶ2(𝑥) ≔ 𝛼2(𝑥) + 𝑘2𝛿4
2 + 𝛽(𝑐2‖𝛿1, 𝛿2‖),        (4.34) 
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where ‖𝛿1, 𝛿2‖ is any norm in ℝ2, and 𝛽: ℝ≥0 → ℝ≥0 is a monotone nondecreasing 

function satisfying  

 

𝛽(0) = 0,    𝛽(𝑧) = 𝜌,   if 𝑧 ≥ 𝜌, 

0 < 𝑘1 <
𝑣𝑟
2

𝑅
, 0 < 𝑘2 <

𝑣𝑟
2

𝑅
, 𝑐1 > 0, 𝑐2 > 0, 𝜌 > 0. 

 

Proposition 7. The functions ᾶ1 and ᾶ2 defined by (4.33) and (4.34) satisfy (4.26), 

(4.27), and Assumption 1. 

 

Proof. It is obvious that (4.26) holds. Suppose 𝛼2(𝑥) ≥ 0. Define 𝑝1(𝑥 − 𝑥
∗) ≔ 𝛼1(𝑥) +

𝑘1𝛿4
2 and 𝑝2(𝑥 − 𝑥

∗) ≔ 𝛼2(𝑥) + 𝑘2𝛿4
2. Then the quadratic terms of 𝑝1 and 𝑝2 are 

nonpositive, and hence by Lemma 1, we assert that 𝛼1(𝑥) + 𝑘1𝛿4
2 ≤ 0. Because 

𝛽(𝑐1‖𝛿1, 𝛿2‖) ≤ 𝜌1, we obtain ᾶ1(𝑥) ≤ 𝜌1. Similarly, 𝛼1(𝑥) ≥ 0 implies ᾶ2(𝑥) ≤ 𝜌2. To 

show that 𝛼1
−1(ℝ>0) ∩ ᾶ1

−1(ℝ≤𝜌1) is bounded, we use the representation (4.30) and show 

that the set {(𝑑1, 𝑑2, 𝑑3, 𝑑4): 𝑥 ∈ 𝛼1
−1(ℝ>0) ∩ ᾶ1

−1(ℝ≤𝜌1)} is bounded. If 𝛼1(𝑥) > 0 and 

ᾶ1(𝑥) ≤ 𝜌1, then  

 

𝜌1 > ᾶ1(𝑥) − 𝛼1(𝑥) = 𝑘1𝛿4
2 + 𝛽(𝑐1‖𝛿1, 𝛿2‖) ≥ {

𝛽(𝑐1‖𝛿1, 𝛿2‖),

𝑘1𝛿4
2.

         (4.35) 

 

From (4.35), it follows that ‖𝛿1, 𝛿2‖ <
𝜌1

𝑐1
 and |𝛿4| < √

𝜌1

𝑘1
. From the definition of 𝛼1, ᾶ1, 

and 𝑑3, we have 

 

𝛼1(𝑥) = 𝑘𝛿3 + 𝛾(𝛿1, 𝛿2, 𝛿4),   ᾶ1(𝑥) = 𝑘𝛿3 + �̃�(𝛿1, 𝛿2, 𝛿4), 

 

where 𝛾 and �̃� are continuous functions and 

 

𝑘 =
𝑣𝑟
2𝑅𝐶1

𝐿1
+
𝑣𝑟
2𝑅𝐶1

𝐿2
+
𝑣𝑟
2

𝑅
> 0. 

 

Let  

 

𝑀 ≔ sup {𝛾(𝛿1, 𝛿2, 𝛿4): ‖𝛿1, 𝛿2‖ <
𝜌1

𝑐1
, |𝛿4| < √

𝜌1

𝑘1
 }, 

𝑚 ≔ inf {�̃�(𝛿1, 𝛿2, 𝛿4): ‖𝛿1, 𝛿2‖ <
𝜌1

𝑐1
, |𝛿4| < √

𝜌1

𝑘1
 }. 
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Then, 

0 < 𝛼1(𝑥) = 𝑘𝛿3 + 𝛾(𝛿1, 𝛿2, 𝛿4) ≤ 𝑘𝛿3 +𝑀, 

𝜌1 ≥ ᾶ1(𝑥) = 𝑘𝛿3 + �̃�(𝛿1, 𝛿2, 𝛿4) ≥ 𝑘𝛿3 +𝑚, 

 

and it follows that −
𝑀

𝑘
< 𝛿3 ≤

𝜌1−𝑚

𝑘
. The boundedness of the set 𝛼2

−1(ℝ>0) ∩ ᾶ2
−1(ℝ≤𝜌2) 

can be proved similarly.         ∎ 

 

 

4.3.3 Switching Frequency Estimation in CCM Operation 

 

Although the modified hybrid system control strategy can limit the switching frequency, 

the value of the switching frequency itself, however, is controlled by the parameters in 

Hybrid CCM System Control Strategy 2. In this subsection, we will show how to decide 

such parameters based on a linear-line approximation of the trajectory. 

 

From Section 4.4.2, the switching occurs when 

 

𝜌1 ≔ ᾶ1(𝑥
∗ + ∆𝑥1), 

𝜌2 ≔ ᾶ2(𝑥
∗ + ∆𝑥2), 

 

where ∆𝑥1 ≔ [∆𝑖𝐿1,1  ∆𝑖𝐿2,1  ∆𝑣𝐶1,1 0]
𝑇
 and ∆𝑥2 ≔ [∆𝑖𝐿1,2  ∆𝑖𝐿2,2  ∆𝑣𝐶1,2 0]

𝑇
 are the 

difference of the approximated state-trajectory from the operating point at their 

respective switching instants as shown in Figure 4.1. 

 

Observing Figure 4.1 and from (4.21) and (4.22), the gradient of the state-trajectory 

at the operating point is given by 

 

2∆𝑥1

𝜆𝑇𝑠𝑤
=

[
 
 
 
 
 

𝑣𝑔

𝐿1
𝑣𝑔

𝐿2

−
𝑣𝑟

𝐶1𝑅

0 ]
 
 
 
 
 

,  
2∆𝑥2

(1−𝜆)𝑇𝑠𝑤
=

[
 
 
 
 
 −

𝑣𝑟

𝐿1

−
𝑣𝑟

𝐿2

𝑣𝑟
2

𝐶1𝑅𝑣𝑔

0 ]
 
 
 
 
 

. 

 

where 𝑇𝑠𝑤 =
1

𝑓
 is the period of the switching frequency 𝑓. With  𝜆 =

𝑣𝑟

𝑣𝑟+𝑣𝑔
 (from (4.17)) 

the above expressions can be rewritten as 
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∆𝑥1 =

[
 
 
 
 
 

𝑣𝑟𝑣𝑔

2𝑓𝐿1(𝑣𝑟+𝑣𝑔)

𝑣𝑟𝑣𝑔

2𝑓𝐿2(𝑣𝑟+𝑣𝑔)

−
𝑣𝑟
2

2𝑓𝐶1𝑅(𝑣𝑟+𝑣𝑔)

0 ]
 
 
 
 
 

,    ∆𝑥2 =

[
 
 
 
 
 −

𝑣𝑟𝑣𝑔

2𝑓𝐿1(𝑣𝑟+𝑣𝑔)

−
𝑣𝑟𝑣𝑔

2𝑓𝐿2(𝑣𝑟+𝑣𝑔)

𝑣𝑟
2

2𝑓𝐶1𝑅(𝑣𝑟+𝑣𝑔)

0 ]
 
 
 
 
 

.        (4.36) 

 

 

 

 

 

Figure 4.1: Approximate state-trajectory at the operating point 

for a DC-DC Zeta converter in CCM operation. 

 

 

Define penalty functions 𝜎1 ≔ 𝑘1𝛿4
2 + 𝛽(𝑐1‖𝛿1, 𝛿2‖) and 𝜎2 ≔ 𝑘2𝛿4

2 + 𝛽(𝑐2‖𝛿1, 𝛿2‖) 

and assume the state-trajectory near the operating point. Therefore, the penalty functions 

are close to 0 such that 𝜎1 ≈ 0 and 𝜎2 ≈ 0, consequently, 𝜌1 ≈ 𝛼1(𝑥
∗ + ∆𝑥1) and 𝜌2 ≈
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𝛼2(𝑥
∗ + ∆𝑥2). Nevertheless, the effect of 𝜎1 > 0 and 𝜎2 > 0 will be investigated and 

illustrated graphically later in Section 4.5. Therefore, with (4.17) and (4.36), and from 

(4.29) and (4.30), we have 

 

𝜌1 ≈
𝑣𝑟(𝐿1𝐿2𝑣𝑟

2+𝐶1𝐿1𝑅
2𝑣𝑔

2+𝐶1𝐿2𝑅
2𝑣𝑔

2)

2𝑓𝐶1𝐿1𝐿2𝑅
2(𝑣𝑟+𝑣𝑔)

,         (4.37) 

𝜌2 ≈
𝑣𝑟
2(𝐿1𝐿2𝑣𝑟

2+𝐶1𝐿1𝑅
2𝑣𝑔

2+𝐶1𝐿2𝑅
2𝑣𝑔

2)

2𝑓𝐶1𝐿1𝐿2𝑅
2𝑣𝑔(𝑣𝑟+𝑣𝑔)

.                    (4.38) 

 

From (4.37) and (4.38), we observe how the desired switching frequency 𝑓 is related to 

the thresholds 𝜌1 and 𝜌2.  As such, the DC-DC Zeta converter will operate at the 

prescribed switching frequency under the modified hybrid system control strategy. 

Though the expressions of 𝜌1 and 𝜌2 look complex, some of the parameters are pre-

processed beforehand (offline). Nowadays, considering the capability of the high-speed 

processors like in the DSP, FPGA, or even microcontroller, there should be no 

performance issue in executing the hybrid system control strategy.  

 

 

4.4 Simulation Results 

 

In this section, the proposed hybrid DC-DC Zeta converter control strategy is simulated 

using a circuit-based simulator called PSIM, as depicted in Figure 4.2. Considering a 

solar battery charging application for a smartphone, the output of a photovoltaic (PV) 

panel, which act as the input voltage 𝑣𝑔 of the converter, is assumed to be  18 V and 

the converter output voltage 𝑣𝑜 5 V is considered to charge the smartphone. The 

parameters for the Zeta converter are considered ideal (zero internal resistance) as 

tabulated in Table 4.1. All four state variables 𝑖𝐿1, 𝑖𝐿2, 𝑣𝐶1, and 𝑣𝐶2, the input voltage 

𝑣𝑔, and the load current 𝑖𝑜 are assumed to be measurable. Note that the load 𝑅 is sensed 

using 𝑣𝐶2 and 𝑖𝑜 measurements such that 𝑅 =
𝑣𝐶2

𝑖𝑜
. With parameters in Table 4.1 and 

using fixed number to reduce the computational burden, then �̃�1, �̃�2, 𝜌1 and 𝜌2 in 

(4.33), (4.34), (4.37) and (4.38), can respectively be rewritten as 

 

�̃�1(𝑥) = 𝑣𝑔(𝑖𝐿1 + 𝑖𝐿2) − 𝑖𝑜 (
5

𝑣𝐶2
(𝑣𝐶1 + 𝑣𝑔 + 5) + 𝑣𝐶2 − 10) + 𝜎1,       (4.39) 

�̃�2(𝑥) = −5(𝑖𝐿1 + 𝑖𝐿2) + 𝑖𝑜 (
25𝑣𝐶1

𝑣𝐶2𝑣𝑔
− 𝑣𝐶2 + 10) + 𝜎2,        (4.40) 

𝜌1 ≈
1

4(𝑣𝑔+5)
(2𝑣𝑔

2 + 25(
𝑖𝑜

𝑣𝐶2
)
2
),            (4.41) 

𝜌2 ≈
5

4𝑣𝑔(𝑣𝑔+5)
(2𝑣𝑔

2 + 25(
𝑖𝑜

𝑣𝐶2
)
2
),                    (4.42) 
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Table 4.1: The DC-DC Zeta converter parameters in CCM operation. 

 

Parameter Value 

𝑣𝑔 18 V 

𝑣𝑜(𝑣𝑟) 5 V 

𝑅 2.5 Ω 

𝐿1 100 μH 

𝐿2 100 μH 

𝐶1 100 μF 

𝐶2 220 μF 

𝑓 100 kHz 

 

 

 

 

 

Figure 4.2: Simulation circuit of a DC-DC Zeta converter hybrid control  

in CCM operation. 
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In Figure 4.3 and Figure 4.4, the simulation results for 𝜎1 ≈ 0 and 𝜎2 ≈ 0 are shown. 

The waveforms of Figure 4.3(a), Figure 4.3(b), Figure 4.3(c), and Figure 4.3(d) show the 

output voltage 𝑣𝑜, the load current 𝑖𝑜, the input voltage 𝑣𝑔, and the switching 𝑆 signals, 

respectively. In practice, the voltage generated by the PV panel fluctuates, however, since 

a small time interval (a few milliseconds) is used in the simulation, a step input voltage 

is considered. For nominal input voltage 18 V and load 2.5 Ω (implies 𝑖𝑜 = 2 A ), no 

overshoot at the output voltage and load current are observed during start-up, and the 

settling time is approximately 10 ms. At 𝑡 = 20 ms, the input voltage is reduced by 

−50 % to 9 V while the load is increased by +50 %  to 5 Ω (𝑖𝑜 = 1 A ), respectively. 

Despite the considerably large perturbations, the hybrid system control produced no 

output voltage overshoot, albeit some oscillations, and settles at 𝑡 ≈ 30 ms. Afterwards, 

at 𝑡 = 40 ms, 𝑣𝑔 = 4.5 V and 𝑅 = 15 Ω (𝑖𝑜 = 0.33 A), a variations of −50 % and 

+200 %, respectively. Compared to previously, the output voltage oscillates more, 

nonetheless eventually it returned to its operating point, though with a longer settling 

time. It is worth highlighting that the converter is now operating in step-up mode 

(instead of step-down mode for the first two perturbations), this proves the effectiveness 

of the switching control in regulating the output voltage at both operation modes. Finally, 

at 𝑡 = 80 ms, the input voltage and the load is returned to their nominal value 

18 V (+300 %) and 2.5 Ω (−83.33 %), respectively. Albeit significant perturbations, the 

hybrid system control works perfectly with minimum output voltage oscillation and 

considerably fast settling time (≈ 8 ms). The close view of the switching waveform under 

three input voltages and loads perturbations discussed above is illustrated in Figure 4.4. 

As can be observed, the hybrid system control produced switching frequencies 99.42 kHz 

(see Figure 4.4(a)), 99.79 kHz (Figure 4.4(b)), and 98.77 kHz (Figure 4.4(c)), which is 

close to the desired 100 kHz switching frequency, thus validates its usefulness. 

 

In the next simulation, the effect of introducing the penalty functions 𝜎1 > 0 and 

𝜎2 > 0, will be discussed. For this simulation, nominal input voltage 18 V and load 2.5 Ω 

are used. As can be observed in Figure 4.5, the introduction of 𝜎1 and 𝜎2 does not have 

much effect on the response of the output voltage (see Figure 4.5(a)). Increasing 𝜎1 and 

𝜎2, however, increases the switching frequency, as shown in Figure 4.6. Precisely, for 

𝜎1 = 3.84 and 𝜎2 = 1.07, the switching frequency is 203.67 kHz, and it increases further 

to 454.55 kHz for a larger penalty function 𝜎1 = 5.72 and 𝜎2 = 1.59. These observations 

are expected:  (4.37) and (4.38) are no longer valid, since 𝜎1 and 𝜎2 are not approximately 

zero. As 𝜎1 and 𝜎2 reaches thresholds 𝜌1 = 7.087 and 𝜌2 = 1.969, respectively, the 

number of switching becomes unbounded, which is identical to the case of Hybrid CCM 

System Control Strategy 1 in Section 4.2. 
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Figure 4.3: Simulated response in CCM operation under input voltage 𝑣𝑔 and load 𝑅 

perturbations for 𝜎1 ≈ 0 and 𝜎2 ≈ 0. Variations in (a) output voltage 𝑣𝑜, (b) load 

current 𝑖𝑜, (c) input voltage 𝑣𝑔, and (d) switching 𝑆. 
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Figure 4.4: Close view of switching 𝑆 for 𝜎1 ≈ 0 and 𝜎2 ≈ 0 at the operating point in 

CCM operation under (a) 𝑣𝑔 = 18 V and 𝑅 = 2.5 Ω, (b) 𝑣𝑔 = 9 V and 𝑅 = 5 Ω,  

and (c) 𝑣𝑔 = 3 V and 𝑅 = 15 Ω. 
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Figure 4.5: Simulated response for 𝜎1 > 0 and 𝜎2 > 0. Variations in  

(a) output voltage 𝑣𝑜, (b) penalty functions  𝜎1 and  𝜎2, and  

(c) switching 𝑆. 
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Figure 4.6: Close view of switching 𝑆 under 𝑣𝑔 = 18 V and 𝑅 = 2.5 Ω, for  

(a) 𝜎1 = 3.84, 𝜎2 = 1.07, and (b) 𝜎1 = 5.72, 𝜎2 = 1.59. 

 

 

4.5 Summary 

 

In this chapter, a hybrid system control strategy for the stabilization of a DC-DC Zeta 

converter operating in continuous conduction mode (CCM) is proposed. The hybrid 

system control strategy is based on a Lyapunov functional candidate for a four-

dimensional Zeta converter model. The local asymptotical stability of the operating 

point is established using LaSalle’s invariance principle for differential inclusion. By 

applying spatial regularization, a modified hybrid system control strategy reduces the 

switching frequency and keeps the state-trajectory around a neighborhood of the 

operating point. Furthermore, by approximating the state-trajectory near the operating 

point, an explicit relation between the modified hybrid system control strategy and the 

switching frequency is obtained, which allows one to choose systematically the desired 

switching frequency for the converter to operate. The method works well even if the 

operation point changes significantly and it is valid for both step-up and step-down 

operations. 
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Chapter 5 

 

Hybrid DC-DC Zeta Converter Control 

Operating in DCM 

 

5.1 Hybrid Three-mode System Control 

 

In this section, we propose a hybrid system control strategy based on a control Lyapunov 

function (CLF) candidate for a three-mode system, which is a model for DC-DC Zeta 

converter operating under discontinuous conduction mode (DCM). 

 

Consider the state vector 𝑥 = [𝑖𝐿1 𝑖𝐿2 𝑣𝐶1 𝑣𝐶2]
𝑇 and the input 𝑢 = 𝑣𝑔. Then, the 

state-space equations of a Zeta converter in DCM operation, as derived in Section 2.3, 

for mode 1, mode 2, and mode 3 are represented respectively by 

 

𝑑𝑥

𝑑𝑡
= 𝐴1𝑥 + 𝐵1𝑢,            (5.1) 

𝑑𝑥

𝑑𝑡
= 𝐴2𝑥 + 𝐵2𝑢,            (5.2) 

𝑑𝑥

𝑑𝑡
= 𝐴3𝑥 + 𝐵3𝑢,            (5.3) 

 

where  

 

𝐴1 =

[
 
 
 
 
 
0 0 0 0

0 0
1

𝐿2
−

1

𝐿2

0 −
1

𝐶1
0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 

,    𝐵1 =

[
 
 
 
 

1

𝐿1

1

𝐿2

0
0]
 
 
 
 

,          (5.4) 
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𝐴2 =

[
 
 
 
 
 
 0 0 −

1

𝐿1
0

0 0 0 −
1

𝐿2

1

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2]
 
 
 
 
 
 

,    𝐵2 = [

0
0
0
0

],          (5.5) 

𝐴3 =

[
 
 
 
 
 
 0 0 −

1

𝐿1+𝐿2

1

𝐿1+𝐿2

0 0
1

𝐿1+𝐿2
−

1

𝐿1+𝐿2

1

𝐶1
0 0 0

0
1

𝐶2
0 −

1

𝑅𝐶2 ]
 
 
 
 
 
 

,    𝐵3 = [

0
0
0
0

].               (5.6) 

 

Note that under mode 3, 𝑖𝐿1 + 𝑖𝐿2 = 0 and 𝑖𝐿2 > 0 hold, which means that the currents 

of the inductors are not independent. Therefore, the state of mode 3 is restricted in a 

three-dimensional subspace. 

 

Consider the operating point 𝑥∗ of the DC-DC Zeta converter under DCM operation 

given by 

 

𝑥∗ =

[
 
 
 
𝑖𝐿1
∗

𝑖𝐿2
∗

𝑣𝐶1
∗

𝑣𝐶2
∗ ]

 
 
 

=

[
 
 
 
 
 

𝑣𝑟𝑒𝑓
2

𝑅𝑣𝑔

𝑣𝑟𝑒𝑓

𝑅
𝑣𝑟𝑒𝑓

𝑣𝑟𝑒𝑓]
 
 
 
 
 

.            (5.7) 

 

The control aims to produce an output voltage 𝑣𝑜 that follows a reference voltage 𝑣𝑟𝑒𝑓. 

For that, based on the sum of energies available in a Zeta converter, a CLF candidate 

is chosen as following 

 

𝑉(𝑥) = (𝑥 − 𝑥∗)𝑇𝑃(𝑥 − 𝑥∗), 

𝑃 ≔

[
 
 
 
 
 
𝐿1

2
0 0 0

0
𝐿2

2
0 0

0 0
𝐶1

2
0

0 0 0
𝐶2

2 ]
 
 
 
 
 

.           (5.8) 

 

Under mode 1, mode 2, and mode 3 of the Zeta converter in DCM operation, let the 

respective derivative of 𝑉(𝑥) along the trajectory denoted by 𝛼1(𝑥), 𝛼2(𝑥) and 𝛼3(𝑥) 

be defined by 
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𝛼1(𝑥) ≔ (𝐴1𝑥 + 𝐵1𝑣𝑔)
𝑇
𝑃(𝑥 − 𝑥∗) + (𝑥 − 𝑥∗)𝑇𝑃(𝐴1𝑥 + 𝐵1𝑣𝑔)  

= −
1

𝑅
(𝑣𝐶2

∗ − 𝑣𝐶2)
2 + 𝑣𝑔(𝑖𝐿1 − 𝑖𝐿1

∗ ) + 𝑣𝑔(𝑖𝐿2 − 𝑖𝐿2
∗ ) −

𝑣𝑟𝑒𝑓

𝑅
(𝑣𝐶1 − 𝑣𝐶1

∗ ),         (5.9) 

 

𝛼2(𝑥) ≔ (𝐴2𝑥 + 𝐵2𝑣𝑔)
𝑇
𝑃(𝑥 − 𝑥∗) + (𝑥 − 𝑥∗)𝑇𝑃(𝐴2𝑥 + 𝐵2𝑣𝑔)  

= −
1

𝑅
(𝑣𝐶2

∗ − 𝑣𝐶2)
2 − 𝑣𝑟𝑒𝑓(𝑖𝐿1 − 𝑖𝐿1

∗ ) − 𝑣𝑟𝑒𝑓(𝑖𝐿2 − 𝑖𝐿2
∗ ) +

𝑣𝑟𝑒𝑓
2

𝑅𝑣𝑔
(𝑣𝐶1 − 𝑣𝐶1

∗ ),     (5.10) 

 

𝛼3(𝑥) ≔ (𝐴3𝑥 + 𝐵3𝑣𝑔)
𝑇
𝑃(𝑥 − 𝑥∗) + (𝑥 − 𝑥∗)𝑇𝑃(𝐴3𝑥 + 𝐵3𝑣𝑔)  

= −
1

𝑅
(𝑣𝐶2

∗ − 𝑣𝐶2)
2 + (𝑖𝐿2 − 𝑖𝐿2

∗ )(𝑣𝐶2 − 𝑣𝐶2
∗ ) +

𝑣𝑟𝑒𝑓
2

𝑅𝑣𝑔
(𝑣𝐶1 − 𝑣𝐶1

∗ ).                 (5.11) 

 

Subsequently, a switching control mechanism for the stabilization of the converter which 

is based on CLF (5.8), is proposed as following. 

 

Hybrid DCM System Control Strategy 1 

 

 If the system is operating in mode 1 and reaches 𝛼1
−1(0), then it switches to 

mode 2. 

 If the system is operating in mode 2 and reaches 𝛼2
−1(0), then it switches to 

mode 1. 

 If the system is operating in mode 3 and reaches 𝛼3
−1(0), then it switches to 

mode 1. 

 

 

5.2 Stability of Zeta Converter in DCM 

 

In this section, we analyze the stability of the Hybrid DCM System Control Strategy 

1 defined in Section 5.1. It is important to highlight that the switching control 

mechanism for the DCM operation follows the similar line with the one in the CCM 

operation, except that for the later, the third mode does not exist, and the transitions 

from mode 2 to mode 3, and from mode 3 to mode 1, are not defined. Nevertheless, the 

local stability of the DCM operation is derived from that of the CCM operation. 

 

Theorem 1. The operating point 𝑥∗ is locally asymptotic stable under the Hybrid DCM 

System Control Strategy 1. 

 

Proof. Let 𝛾1 = min𝑉(𝑥) subject to 𝑖𝐿1 + 𝑖𝐿2 = 0. Then the minimum is achieved by 
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𝑥† =

[
 
 
 
 
 

𝐿1𝑖𝐿1
∗ −𝐿2𝑖𝐿2

∗

𝐿1+𝐿2

−𝐿1𝑖𝐿1
∗ +𝐿2𝑖𝐿2

∗

𝐿1+𝐿2

𝑣𝐶1
∗

𝑣𝐶2
∗ ]

 
 
 
 
 

,          (5.12) 

 
and the optimal value is 

 

𝛾1 = 𝑉(𝑥†) =
𝐿1𝐿2𝑣𝑟𝑒𝑓

2 (𝑣𝑟𝑒𝑓+𝑣𝑔)
2

2(𝐿1+𝐿2)𝑅2𝑣𝑔
2 .         (5.13) 

 

The set {𝑥: 𝑉(𝑥) < 𝛾1} is invariant under the Hybrid DCM System Control Strategy 1 

and does not contain mode 3. From Theorem 1 of CCM operation in Section 4.2.1 which 

uses LaSalle's invariance principle for hybrid systems, the locally asymptotical stability 

of the operation point follows.           ∎ 

 

Remark 1. Under the Hybrid DCM System Control Strategy 1, mode 3 does not emerge 

if a trajectory starts within the invariant set {𝑥: 𝑉(𝑥) < 𝛾1}. 

 

Remark 2. The proof of Theorem 1 does not say that 𝑥† is reachable in a standard 

operation. Instead, it merely says that once the value of the Lyapunov function 𝑉(𝑥) 

becomes smaller than 𝛾1, then mode 3 will never emerge. 

 

 

5.3 Modified Hybrid DCM Zeta Converter Control Strategy 

 

Under the Hybrid DCM System Control Strategy 1, the DCM operation is not 

guaranteed. In fact, as the state-trajectory approaches the operating point, the switching 

becomes arbitrarily fast such that mode 3 is lost, thus the DCM operation cannot be 

achieved. To maintain the DCM operation, the hybrid system control strategy needs to 

be modified, which is discussed in this section.  

 

To reduce the switching frequency, the switching timing needs to be relaxed and the 

distance from the operating point needs to be penalized. For that, let 𝜌1, 𝜌2, 𝜌3 > 0 

which satisfy 

 

𝛼1
−1(ℝ>𝜌1

) ⊂ 𝛼2
−1(ℝ<0),  𝛼2

−1(ℝ>𝜌2
) ⊂ 𝛼3

−1(ℝ<0),  𝛼3
−1(ℝ>𝜌3

) ⊂ 𝛼1
−1(ℝ<0). (5.14) 

 

Based on (5.14), we propose the following modified switching control mechanism. 
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Hybrid DCM System Control Strategy 2 

 

 If the system is operating in mode 1 and reaches 𝛼1
−1(𝜌1), then it switches to 

mode 2. 

 If the system is operating in mode 2 and reaches 𝑖𝐿1 + 𝑖𝐿2 = 0, then it switches 

to mode 3. 

 If the system is operating in mode 3 and reaches 𝛼3
−1(𝜌3), then it switches to 

mode 1. 

 

Remark 3. Under mode 3, 𝑖𝐿1 + 𝑖𝐿2 = 0 holds. Hence, 𝑖𝐿1 + 𝑖𝐿2 = 0 is defined in the 

switching mechanism instead of 𝛼2
−1(𝜌2). Nonetheless, the transition from mode 2 to 

mode 3 is due to endogenous switching, thus neither of the two conditions contribute to 

the external switching. Therefore, in the next section, finding 𝜌2 will be omitted 

 

 

5.4 Switching Frequency Estimation in DCM Operation 

 

To estimate the switching frequency, as shown in Figure 5.1, the state-trajectory is 

assumed to have the following properties. 

 

 It is close (near) to the operating point. 

 It moves in a piecewise linear line. 

 It evolves periodically. 

 

Define 

 

𝜌1 ≔ 𝛼1(𝑥
∗ + ∆𝑥1),         (5.15) 

𝜌3 ≔ 𝛼3(𝑥
∗ + ∆𝑥3),         (5.16) 

 

where ∆𝑥1 ≔ [∆𝑖𝐿1,1  ∆𝑖𝐿2,1  ∆𝑣𝐶1,1 0]
𝑇
 and ∆𝑥3 ≔ [∆𝑖𝐿1,3  ∆𝑖𝐿2,3  ∆𝑣𝐶1,3 0]

𝑇
 are the 

difference of the approximated state-trajectory from the operating point at switching 

instants for mode 1 and mode 3, respectively, as depicted in Figure 5.1. 

 

Substituting (5.7) and from (5.9) and (5.11), 𝜌1 and 𝜌2 in (5.15) and (5.16), respectively, 

can be rewritten as follows: 

 

𝜌1 = 𝑣𝑔(∆𝑖𝐿1,1 + ∆𝑖𝐿2,1) −
𝑣𝑟𝑒𝑓

𝑅
∆𝑣𝐶1,1,        (5.17) 

𝜌3 =
𝑣𝑟𝑒𝑓

2

𝑅𝑣𝑔
∆𝑣𝐶1,3.          (5.18) 
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Figure 5.1: Approximate state-trajectory at the operating point 

for a DC-DC Zeta converter in DCM operation. 

 
 

For the following analysis, the dynamics in (5.4) and (5.5), and Figure 5.1 are 

referred. 

 

∆𝑖𝐿1,1 = ∆𝑖𝐿1𝑝𝑝 − 𝑖𝐿1
∗ − 𝐼𝑚𝑖𝑛  

=
𝑑𝑣𝑔

𝑓𝐿1
−

𝑣𝑟𝑒𝑓
2

𝑅𝑣𝑔
− 𝐼𝑚𝑖𝑛.                (5.19) 

 

∆𝑖𝐿2,1 = ∆𝑖𝐿2𝑝𝑝 − 𝑖𝐿2
∗ + 𝐼𝑚𝑖𝑛 

=
𝑑𝑣𝑔

𝑓𝐿2
−

𝑣𝑟𝑒𝑓

𝑅
+ 𝐼𝑚𝑖𝑛.               (5.20)  

𝑖𝐿2 

∆𝑖𝐿1,1 

∆𝑖𝐿2,1 

𝑖𝐿1
∗  

𝑖𝐿2
∗  

𝑣𝐶1
∗  

𝑣𝐶2
∗  

∆𝑣𝐶1,1 

∆𝑖𝐿2,3 

∆𝑖𝐿1,3 ∆𝑖𝐿1𝑝𝑝 

∆𝑖𝐿2𝑝𝑝 

∆𝑣𝐶1,3 

𝑡 

𝑡 

𝑡 

𝑡 

 𝑑𝑇𝑠𝑤          𝑑1𝑇𝑠𝑤    (1 − 𝑑 − 𝑑1)𝑇𝑠𝑤 

𝑣𝐶1 

𝑣𝐶2 

−𝐼𝑚𝑖𝑛 

𝐼𝑚𝑖𝑛 

0 

𝑖𝐿2 

0 

0 

0 

mode 1     mode 2         mode 3 
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∆𝑣𝐶1,1 = −
1

2𝐶1
∆𝑖𝐿2,1 (

𝐿1

𝑣𝑔
∆𝑖𝐿2,1)  

=
𝐿1

2𝐶1𝑣𝑔
(
𝑑𝑣𝑔

𝑓𝐿2
−

𝑣𝑟𝑒𝑓

𝑅
+ 𝐼𝑚𝑖𝑛)

2

.         (5.21) 

 

∆𝑣𝐶1,3 =
1

2𝐶1
(𝑖𝐿2

∗ − 𝐼𝑚𝑖𝑛) (
𝐿2

𝑣𝑔
(𝑖𝐿2

∗ − 𝐼𝑚𝑖𝑛))  

=
𝐿2

2𝐶1𝑣𝑔
(

𝑣𝑟𝑒𝑓

𝑅
− 𝐼𝑚𝑖𝑛)

2
.          (5.22) 

 

From above, 𝑓 =
1

𝑇𝑠𝑤
 is the switching frequency and 𝑑 is the duty ratio.  

 

Under mode 3, 𝐼𝑚𝑖𝑛 = 𝑖𝐿2𝑚𝑖𝑛 (see Figure 5.1) and the minimum is also achieved by 

𝑥† (5.12). Comparing 𝑖𝐿2𝑚𝑖𝑛 with the second row of 𝑥†, one finds 

 

𝐼𝑚𝑖𝑛 =
−𝐿1𝑖𝐿1

∗ +𝐿2𝑖𝐿2
∗

𝐿1+𝐿2
=

𝐿2𝑣𝑔𝑣𝑟𝑒𝑓−𝐿1𝑣𝑟𝑒𝑓
2

𝑅𝑣𝑔(𝐿1+𝐿2)
.        (5.23) 

 

To find 𝑑, ∆𝑖𝐿1𝑝𝑝 in mode 1 and mode 2 is observed and is given by 

 

∆𝑖𝐿𝑝𝑝 =
𝑑𝑣𝑔

𝑓𝐿1
=

𝑑1𝑣𝑟𝑒𝑓

𝑓𝐿1
.          (5.24) 

 

Then, solving for 𝑑 in (5.24), one gets the following 

 

𝑑 =
𝑣𝑟𝑒𝑓

𝑣𝑔
𝑑1,          (5.25) 

 

where 𝑑1 is the duty ratio of mode 2.  

 

On the other hand, the average inductor currents of 𝑖𝐿1
∗  and 𝑖𝐿2

∗  can be expressed by 

 

𝑖𝐿1
∗ =

𝑑𝑣𝑔(𝑑+𝑑1)

2𝐿1𝑓
− 𝐼𝑚𝑖𝑛,         (5.26) 

𝑖𝐿2
∗ =

𝑑𝑣𝑔(𝑑+𝑑1)

2𝐿2𝑓
+ 𝐼𝑚𝑖𝑛.         (5.27) 

 

With (5.25), by summing (5.26) and (5.27) and solving for 𝑑1, one yield 

 

𝑑1 = √
2𝐿1𝐿2𝑓

(𝐿1+𝐿2)𝑅
.          (5.28) 
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By substituting (5.23), (5.25), and (5.28) into (5.19), (5.20), (5.21) and (5.22), 

respectively,  ∆𝑖𝐿1,1, ∆𝑖𝐿2,1, ∆𝑣𝐶1,1, and ∆𝑣𝐶1,3 can be rewritten as follows: 

 

∆𝑖𝐿1,1 =
𝑣𝑟𝑒𝑓

𝑅𝑣𝑔
(√

2𝐿2𝑅

𝑓𝐿1(𝐿1+𝐿2)
+

𝐿1𝑣𝑟𝑒𝑓−𝐿2𝑣𝑔

𝐿1+𝐿2
− 𝑣𝑟𝑒𝑓),         (5.29) 

∆𝑖𝐿2,1 =
𝑣𝑟𝑒𝑓

𝑅𝑣𝑔
(√

2𝐿1𝑅

𝑓𝐿2(𝐿1+𝐿2)
−

𝐿1𝑣𝑟𝑒𝑓−𝐿2𝑣𝑔

𝐿1+𝐿2
− 𝑣𝑔),        (5.30) 

∆𝑣𝐶1,1 =
𝐿1𝑣𝑟𝑒𝑓

2

2𝐶1𝑅𝑣𝑔
2 (√

2𝐿1𝑅

𝑓𝐿2(𝐿1+𝐿2)
−

𝐿1𝑣𝑟𝑒𝑓−𝐿2𝑣𝑔

𝐿1+𝐿2
− 𝑣𝑔)

2

,        (5.31) 

∆𝑣𝐶1,3 =
𝐿2𝑣𝑟𝑒𝑓

2

2𝐶1𝑅2𝑣𝑔
(1 +

𝐿1𝑣𝑟𝑒𝑓−𝐿2𝑣𝑔

𝑣𝑔(𝐿1+𝐿2)
)
2

.         (5.32) 

 

Furthermore, 𝜌1 is computed by substituting (5.29) to (5.32) into (5.17) while 𝜌3 is found 

by inserting (5.32) into (5.18). It is worthwhile to highlight that the steady-state 

switching frequency 𝑓 appears in the function (5.29) to (5.31), of which, an inverse 

proportional relationship is shown. Therefore, by pre-defined 𝑓, one can systematically 

decide the steady-state switching frequency for the Zeta converter to operate.  

 

 

5.5 Simulation Results 

 

In this section, to verify the effectiveness of the proposed Hybrid DCM System 

Control Strategy 2, a circuit-based simulation is conducted under PSIM environment. 

The simulation circuit for the DC-DC Zeta converter with the hybrid control is 

constructed as in Figure 5.2, using circuit parameters tabulated in Table 5.1. Internal 

resistance for each of the parameters is assumed small and therefore neglected.  

 

To provide the data for the online switching control computation, besides the four 

state-variables 𝑖𝐿1, 𝑖𝐿2, 𝑣𝐶1, and 𝑣𝐶2, an additional two variables are sensed from the 

circuit, namely, the input voltage 𝑣𝑔 and the load current 𝑖𝑜, to increase the controller’s 

robustness. Notice that load current 𝑖𝑜 is measured to monitor the change of load 𝑅 

using the following equality 𝑅 =
𝑣𝐶2

𝑖𝑜
. To minimize the online computational burden, the 

switching functions 𝛼1 (5.9) and 𝛼3 (5.11), and the thresholds functions 𝜌1 (5.17) and 

𝜌3 (5.18) are pre-computed offline using parameters in Table 5.1, which can be rewritten 

as 

 

𝛼1 = 𝑣𝑔(𝑖𝐿1 + 𝑖𝐿2) − 𝑖𝑜 (
5

𝑣𝐶2
(𝑣𝐶1 + 𝑣𝑔 + 5) + 𝑣𝐶2 − 10),       (5.33) 

𝛼3 =
𝑖𝑜

2
(
25

𝑣𝑔
(
𝑣𝐶1

𝑣𝐶2
− 1) − 2𝑣𝐶2 −

5𝑣𝐶1

𝑣𝐶2
+ 15),         (5.34) 
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𝜌1 =
5𝑣𝑔𝑖𝑜

𝑣𝐶2
(√

2𝑣𝐶2

𝑖𝑜
−

5

𝑣𝑔
− 1) (

25𝑖𝑜
2

8𝑣𝑔
2𝑣𝐶2

2 (√
2𝑣𝐶2

𝑖𝑜
−

5

𝑣𝑔
− 1) + 1),        (5.35) 

𝜌
3

= −
625𝑖𝑜

3

8𝑣𝐶2
3 𝑣𝑔

2
(1 +

5

𝑣𝑔
)

2

.            (5.36) 

 

respectively. 

 

 

 

 

 

Figure 5.2: Simulation circuit of a DC-DC Zeta converter hybrid system control  

in DCM operation. 

 

 

The simulation results under the input voltage 𝑣𝑔 and the load 𝑅 perturbations are 

illustrated in Figure 5.3. The variations of the output voltage 𝑣𝑜, the load current 𝑖𝑜, the 

input voltage 𝑣𝑔, and the switching 𝑆 are shown in Figure 5.3(a), Figure 5.3(b), Figure 

5.3(c), and Figure 5.3(d), respectively. Under nominal input voltage 15 V and load 12 Ω 

(implies 𝑖𝑜 = 0.42 A), no overshoot is seen at the output voltage and the load current 

during start-up, albeit some oscillations are observed, and they settled approximately 

𝑄 

𝑣𝑔 
𝐿1 

𝐿2 𝐶1 

𝐶2 𝐷 
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𝜌3 

 

𝜌1 

𝑣𝑜 
𝑖𝑜 

𝑣𝐶1 
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𝑖𝐿2 

𝑣𝐶2 
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0 

 

𝑣𝑔 
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under 25 ms. At 𝑡 = 30 ms, the input voltage is increased by +20 %, and the load is 

decreased by −16.7 %, to settle at 18 V and 10 Ω (𝑖𝑜 = 0.5 A), respectively. As can be 

seen in the figure, both the output voltage and the load current transient responses can 

be considered negligible. Moreover, at 𝑡 = 60 ms, the input voltage is dropped to 

10 V (−44.4 %) and the load is increased by +50 % to 15 Ω (𝑖𝑜 = 0.33 A). Due to the 

large perturbations, an oscillation is observed at the output voltage and the load current. 

Finally, at 𝑡 = 90 ms, the input voltage and the load are returned to their nominal value 

15 V (+50 %) and 12 Ω (+20 %), respectively. Despite considerably large perturbations, 

the switching control has no problem in regulating the output voltage.  

 

In Figure 5.4, the close view of the inductor currents 𝑖𝐿1 and 𝑖𝐿2, and the switching 

𝑆, see, respectively, top and bottom of Figure 5.4(a), Figure 5.4(b), and Figure 5.4(c), 

at the operating point is presented . As observed in the three figures, under three 

combinations of the input voltage 15 V, 18 V, and 10 V, and load 12 Ω, 15 Ω, and 10 Ω, 

respectively, the switching control is able maintain the DCM operation for the three 

conditions, as can be observed by the discontinuity of both steady-state inductor 

currents. On the other hand, by looking at the switching signal, the switching frequencies 

generated by the hybrid system control under 𝑣𝑔 = 15 V and 𝑅 = 12 Ω (see bottom of 

Figure 5.4(a)), 𝑣𝑔 = 18 V and 𝑅 = 10 Ω (bottom of Figure 5.4(b)), and (c) 𝑣𝑔 = 10 V 

and 𝑅 = 15 Ω (bottom of Figure 5.4(c)), are given by 20.11 kHz, 19.82 kHz, and 

19.18 kHz, respectively. Since the desired switching frequency is 20 kHz, there are slight 

discrepancies of +0.55 %, −0.90 %, and −4.10 %, respectively.  

 

 

Table 5.1: The DC-DC Zeta converter parameters in DCM operation. 

 

Parameter Value 

𝑣𝑔 15 V 

𝑣𝑜(𝑣𝑟) 5 V 

𝑅 12 Ω 

𝐿1 100 μH 

𝐿2 100 μH 

𝐶1 100 μF 

𝐶2 220 μF 

𝑓 20 kHz 
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Figure 5.3: Simulated response in DCM operation under input voltage 𝑣𝑔 and  

load 𝑅 perturbations. Variations in (a) output voltage 𝑣𝑜, (b) load current 𝑖𝑜,  

(c) input voltage 𝑣𝑔, and (d) switching 𝑆. 
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Figure 5.4: Close view of inductor currents 𝑖𝐿1 and 𝑖𝐿2, and switching 𝑆  

at the operating point in DCM operation under (a) 𝑣𝑔 = 15 V and 𝑅 = 12 Ω,  

(b) 𝑣𝑔 = 18 V and 𝑅 = 10 Ω, and (c) 𝑣𝑔 = 10 V and 𝑅 = 15 Ω. 

 

 

   29.833          29.867           29.900  
 

1 

   59.833          59.867           59.900  
 

   59.833          59.867           59.900  
                   (b) 

   29.833          29.867           29.900  
                          (a) 
 

   89.833          89.867           89.900  
 

   89.833          89.867           89.900  
(c) 

Time(ms) 

0.5 

0 

1 

0.5 

0 

1 

0.5 

0 

1 

0 

1 

0 

1 

0 

𝑖𝐿2 

𝑖𝐿1 

𝑖𝐿2 

𝑖𝐿1 

𝑖𝐿2 

𝑖𝐿1 

𝑇𝑠𝑤 = 49.72 μs 

(𝑓 = 20.11 kHz) 

 

𝑇𝑠𝑤 = 50.46 μs 

(𝑓 = 19.82 kHz) 

 

𝑇𝑠𝑤 = 52.13 μs 

(𝑓 = 19.18 kHz) 

 



5. Hybrid DC-DC Zeta Converter Control Operating in DCM  87 
 

5.6 Summary 

 

In this chapter, we propose a hybrid system control strategy for the stabilization of a 

DC-DC Zeta converter operating in discontinuous conduction mode (DCM). In essence, 

the hybrid three-mode system control strategy presented in this chapter is the extension 

of a hybrid two-mode system control discussed in Chapter 4. We give a stability analysis 

that is simple but sufficient to prove the stability of the hybrid control system strategy 

in DCM operation. We analyze the states waveforms in DCM operation and find an 

explicit relation between the hybrid system control strategy and the switching frequency. 

Overall, the hybrid system control strategy works well in regulating the output voltage 

and maintaining the DCM operation even under large operating point deviations while 

producing the desired steady-state switching frequency. 
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Chapter 6 

 

Conclusion 

 

 

6.1 Conclusion 

 

We have presented the control techniques for the stabilization of a DC-DC Zeta 

converter based on two distinctive systems; average-based system and hybrid system. 

The average-based system control technique is applied to a Zeta converter operating in 

continuous conduction mode (CCM). The design of the controller is based on state-

space averaging (SSA) approach and corresponding linear approximation model. In SSA 

approach, the dynamics of the two-mode system is averaged over a switching period, to 

produce a Zeta converter model with a single system representation. On the other hand, 

a hybrid system control is realized to a Zeta converter under CCM and discontinuous 

conduction mode (DCM) operation. In hybrid system, the continuous and discrete 

dynamics of the Zeta converter are considered. For each mode of the two-mode and 

three-mode system operating in CCM and DCM respectively, a switching function based 

on the continuous dynamics of the converter is defined, consequently, is used to enforce 

the discrete switching action of the hybrid control. 

 

The first contribution of this thesis was given in Chapter 3, where the main result 

has been published in [37]. Using average-based system control technique, we have 

proposed a state-feedback control of the uncertain DC-DC Zeta converter operating in 

CCM. We have chosen the input voltage and the load as uncertain parameters. We have 

produced two versions of convex polytope of uncertainty; formed by 16 vertices and 

eight vertices. We have represented linear quadratic regulator (LQR) problem in the 

form of linear matrix inequality (LMI), denoted as LMI-LQR. With the help of Matlab 

LMI solver, we have calculated two state-feedback gain vectors, denoted as 𝐾𝐿𝑀𝐼16 and 

𝐾𝐿𝑀𝐼8, which satisfies the LMI-LQR at all 16 and 8 vertices of the convex polytope of 

uncertainty. The conventional LQR controller 𝐾𝐿𝑄𝑅 is also added for comparison 
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purpose. From the simulated response, we have found that controllers 𝐾𝐿𝑀𝐼16 and 𝐾𝐿𝑀𝐼8 

are highly robust albeit significant changes in the operating point, and that controller 

𝐾𝐿𝑄𝑅 was failed to bring back the operating point. However, we have identified that 

controller 𝐾𝐿𝑀𝐼8 is the viable option in practice to avoid pulse width modulation (PWM) 

circuitry problem. From this observation, we have shown the importance of having a 

reduce convex polytope covering in the control design. 

 

Chapter 4 has discussed the second contribution of this thesis, with a paper 

published in [39]. We have presented a hybrid system control strategy for a DC-DC 

Zeta converter in CCM operation, where the Zeta converter is modelled by a class of 

differential inclusions. We have proposed two switching functions by exploiting the 

derivative of Lyapunov function along the trajectories �̇�(𝑥). We have defined a Hybrid 

CCM System Control Strategy 1, based on the signs of �̇�(𝑥), and analyzed the local 

asymptotic stability using LaSalle's invariance principle for a class of differential 

inclusions. Because the current control strategy produces unbounded number of 

switching, we have proposed a modified control strategy defined by Hybrid CCM System 

Control Strategy 2, where we allowed �̇�(𝑥) to be positive, and we have proven �̇�(𝑥) can 

be bounded by a positive threshold 𝜌.  Furthermore, we have analyzed the approximated 

CCM states waveform at the operating point, and we have found that 𝜌 is inversely 

proportional to the switching frequency. We have verified, through simulation, the 

effectiveness of our hybrid system switching control strategy. We have shown that the 

Zeta converter can be stabilized even with the existence of large input voltage and load 

perturbations, and the simulated switching frequency is approximately equal to the 

predefined switching frequency. 

 

For the final contribution of this thesis, the result has been published in [42] and 

was presented in Chapter 5. We have proposed a hybrid DC-DC Zeta converter control 

strategy under DCM operation. We have extended the method used in Chapter 4, by 

defining a third switching function for the third mode based on the control Lyapunov 

function candidate. We have analyzed the local asymptotic stability of the differential 

equations of the three-mode Zeta converter model under the defined Hybrid DCM 

System Control Strategy 1. Similarly, we have improved the current hybrid control to 

alleviate the infinite switching issue with the introduction of Hybrid DCM System 

Control Strategy 2. To ensure the Zeta converter operates at the desired DCM switching 

frequency, we established an explicit relation between the Hybrid DCM System Control 

Strategy 2 and the switching frequency. To achieve this, we have analyzed the 

approximated steady-state states waveform operating in DCM. Based on the outcome 

of the simulation, we have proved that the proposed method is able to regulate the 

output voltage of the Zeta converter and produce the desired switching frequency.  
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6.2 Recommendation 

 
For the average-based system control, it is immediate to propose the extension of the 

LMI-LQR control method to a DC-DC Zeta converter under DCM operation. 

Furthermore, a linear parameter-varying (LPV) system with specific transient 

performance criteria such as maximum output voltage overshoot and settling time can 

be considered. 

 

In Chapter 5, through simulation, the three-mode system of the Zeta converter is 

proven to be stable under the improved hybrid system control strategy. However, the 

theoretical stability analysis has not been carried out. Therefore, a theoretical analysis 

could be established to prove the practical stability of the hybrid control operating in 

DCM. Moreover, a practical stability analysis under a unified hybrid system control 

strategy for both CCM and DCM operation may be established. 

 

As for the DC-DC Zeta converter, the parameters are assumed ideal. If the proposed 

average-based and hybrid system controllers are to be implemented in practice, a lower 

operating point level is expected due to the Zeta converter model inaccuracy. Thus, it 

is recommended to consider internal resistance, and the diode could be replaced with a 

MOSFET, to achieve better efficiency. Moreover, a discrete hybrid system control with 

a model predictive control that produces fast online computation can be studied. 
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Appendix B: Matlab Code for  

State-feedback Controller 𝐾𝐿𝑄𝑅 

 

 

%Define nominal matrix A and B 

A = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];      

B = [2.40E+05; 4.36E+05; -9.6E+04; 0; 0]; 

 

 

%Define LQR performance index 

Q = [0 0 0 0 0; 0 1E-4 0 0 0; 0 0 0 0 0; 0 0 0 1E-4 0; 0 0 0 0 5E+06]; 

R = 1; 

 

 

setlmis([]);   %LMI system initialization 

  

 

%Define variable matrices 

P = lmivar(1,[5 1]);   

X = lmivar(1,[1 1]);   

Y = lmivar(2,[1 5]);   

 

 

%Define LMI constraint AP+PA'-BY-Y'B+I<0 for the nominal plant 

lmiterm([1 1 1 P],A,1,'s'); lmiterm([1 1 1 Y],-B,1,'s');  lmiterm([1 

1 1 0],1); 

 

 

%Define LMI constraint [X (R^0.5)Y; Y'(R^0.5) P]>0 

lmiterm([-2 1 1 X],1,1); 

lmiterm([-2 2 1 -Y],1,R^0.5);  

lmiterm([-2 2 2 P],1,1); 

 

 

%Define constraint P>0 

lmiterm([-3 1 1 P],1,1); 

  

LMIs = getlmis; %LMI system internal description 

 

%Find and set the storage size based on number of uncertain plants 

n = decnbr(LMIs); 

c = zeros(n,1); 
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%Objective function 

for j=1:n, 

    [Pj,Xj,Yj] = defcx(LMIs,j,P,X,Y); 

    c(j) = trace(Q*Pj) + trace(Xj);     

end 

  

options = [1e-6,0,0,0,0];                

[copt,xopt] = mincx(LMIs,c,options);     

 

Popt = dec2mat(LMIs,xopt,P);   %Find the optimal P matrix 

Yopt = dec2mat(LMIs,xopt,Y);   %Find the optimal Y matrix 

  

K_LQR = Yopt*(inv(Popt)) %Compute controller K_LQR 
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Appendix C: Matlab Code for  

State-feedback Controller 𝐾𝐿𝑀𝐼16 

 

 

%Define 16 matrices of the convex polytope 

A1 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B1 = [2.40E+05; 4.36E+05; -4.80E+04; 0; 0]; 

 

A2 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B2 = [2.40E+05; 4.36E+05; -4.80E+04; 0; 0]; 

 

A3 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B3 = [2.40E+05; 4.36E+05; -3.75E+05; 0; 0]; 

 

A4 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B4 = [2.40E+05; 4.36E+05; -3.75E+05; 0; 0]; 

 

A5 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B5 = [3.75E+05; 6.82E+05; -4.80E+04; 0; 0]; 

 

A6 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B6 = [3.75E+05; 6.82E+05; -4.80E+04; 0; 0]; 

 

A7 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B7 = [3.75E+05; 6.82E+05; -3.75E+05; 0; 0]; 

 

A8 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B8 = [3.75E+05; 6.82E+05; -3.75E+05; 0; 0]; 

 

A9 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B9 = [2.40E+05; 4.36E+05; -4.80E+04; 0; 0]; 

 

A10 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B10 = [2.40E+05; 4.36E+05; -4.80E+04; 0; 0]; 
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A11 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B11 = [2.40E+05; 4.36E+05; -3.75E+05; 0; 0]; 

 

A12 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B12 = [2.40E+05; 4.36E+05; -3.75E+05; 0; 0]; 

 

A13 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B13 = [3.75E+05; 6.82E+05; -4.80E+04; 0; 0]; 

 

A14 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B14 = [3.75E+05; 6.82E+05; -4.80E+04; 0; 0]; 

 

A15 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];  

B15 = [3.75E+05; 6.82E+05; -3.75E+05; 0; 0]; 

 

A16 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];  

B16 = [3.75E+05; 6.82E+05; -3.75E+05; 0; 0]; 

 

 

%Define LQR performance index 

Q = [0 0 0 0 0; 0 1E-4 0 0 0; 0 0 0 0 0; 0 0 0 1E-4 0; 0 0 0 0 5E+06]; 

R = 1; 

 

 

setlmis([]);   %LMI system initialization 

  

 

%Define variable matrices 

P = lmivar(1,[5 1]);   

X = lmivar(1,[1 1]);   

Y = lmivar(2,[1 5]);   

 

 

%Define LMI constraint AP+PA'-BY-Y'B+I<0 for 16 uncertain plants 

lmiterm([1 1 1 P],A1,1,'s'); lmiterm([1 1 1 Y],-B1,1,'s');  

lmiterm([1 1 1 0],1); 

 

lmiterm([2 1 1 P],A2,1,'s'); lmiterm([2 1 1 Y],-B2,1,'s'); 

lmiterm([2 1 1 0],1); 

 

lmiterm([3 1 1 P],A3,1,'s'); lmiterm([3 1 1 Y],-B3,1,'s'); 

lmiterm([3 1 1 0],1); 

 

lmiterm([4 1 1 P],A4,1,'s'); lmiterm([4 1 1 Y],-B4,1,'s'); 

lmiterm([4 1 1 0],1); 

 

lmiterm([5 1 1 P],A5,1,'s'); lmiterm([5 1 1 Y],-B5,1,'s'); 

lmiterm([5 1 1 0],1); 

 

lmiterm([6 1 1 P],A6,1,'s'); lmiterm([6 1 1 Y],-B6,1,'s'); 

lmiterm([6 1 1 0],1); 

 

lmiterm([7 1 1 P],A7,1,'s'); lmiterm([7 1 1 Y],-B7,1,'s'); 

lmiterm([7 1 1 0],1); 
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lmiterm([8 1 1 P],A8,1,'s'); lmiterm([8 1 1 Y],-B8,1,'s'); 

lmiterm([8 1 1 0],1); 

 

lmiterm([9 1 1 P],A9,1,'s'); lmiterm([9 1 1 Y],-B9,1,'s'); 

lmiterm([9 1 1 0],1); 

 

lmiterm([10 1 1 P],A10,1,'s'); lmiterm([10 1 1 Y],-B10,1,'s'); 

lmiterm([10 1 1 0],1); 

 

lmiterm([11 1 1 P],A11,1,'s'); lmiterm([11 1 1 Y],-B11,1,'s'); 

lmiterm([11 1 1 0],1); 

 

lmiterm([12 1 1 P],A12,1,'s'); lmiterm([12 1 1 Y],-B12,1,'s'); 

lmiterm([12 1 1 0],1); 

 

lmiterm([13 1 1 P],A13,1,'s'); lmiterm([13 1 1 Y],-B13,1,'s'); 

lmiterm([13 1 1 0],1); 

 

lmiterm([14 1 1 P],A14,1,'s'); lmiterm([14 1 1 Y],-B14,1,'s'); 

lmiterm([14 1 1 0],1); 

 

lmiterm([15 1 1 P],A15,1,'s'); lmiterm([15 1 1 Y],-B15,1,'s'); 

lmiterm([15 1 1 0],1); 

 

lmiterm([16 1 1 P],A16,1,'s'); lmiterm([16 1 1 Y],-B16,1,'s'); 

lmiterm([16 1 1 0],1); 

 

  

%Define LMI constraint [X (R^0.5)Y; Y'(R^0.5) P]>0 

lmiterm([-17 1 1 X],1,1); 

lmiterm([-17 2 1 -Y],1,R^0.5);  

lmiterm([-17 2 2 P],1,1); 

 

 

%Define constraint P>0 

lmiterm([-18 1 1 P],1,1); 

  

LMIs = getlmis; %LMI system internal description 

 

%Find and set the storage size based on number of uncertain plants 

n = decnbr(LMIs); 

c = zeros(n,1); 

 

%Objective function 

for j=1:n, 

    [Pj,Xj,Yj] = defcx(LMIs,j,P,X,Y); 

    c(j) = trace(Q*Pj) + trace(Xj);     

end 

  

options = [1e-6,0,0,0,0];                

[copt,xopt] = mincx(LMIs,c,options);     

 

Pcom = dec2mat(LMIs,xopt,P);   %Find the common P matrix 

Ycom = dec2mat(LMIs,xopt,Y);   %Find the common Y matrix 

  

K_LMI16 = Ycom*(inv(Pcom)) %Compute controller K_LMI16 

 

 

 

 



106                               C. Matlab Code for State-feedback Controller 𝐾𝐿𝑀𝐼16 

 

 

 



107 

 

 

 

 

Appendix D: Matlab Code for  

State-feedback Controller 𝐾𝐿𝑀𝐼8 

 

 

%Define 8 matrices of the convex polytope 

A1 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];      

B1 = [2.40E+05; 4.36E+05; -4.80E+04; 0; 0]; 

 

A2 = [0 0 -6.25E+03 0 0; 0 0 6.82E+03 -1.82E+04 0; 6.25E+03 -3.75E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];      

B2 = [2.40E+05; 4.36E+05; -4.80E+04; 0; 0]; 

 

A3 = [0 0 -4.80E+03 0 0; 0 0 9.45E+03 -1.82E+04 0; 4.80E+03 -5.20E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];      

B3 = [2.96E+05; 5.37E+05; -8.90E+04; 0; 0]; 

 

A4 = [0 0 -4.80E+03 0 0; 0 0 9.45E+03 -1.82E+04 0; 4.80E+03 -5.20E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];      

B4 = [2.96E+05; 5.37E+05; -1.78E+05; 0; 0]; 

 

A5 = [0 0 -4.80E+03 0 0; 0 0 9.45E+03 -1.82E+04 0; 4.80E+03 -5.20E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];      

B5 = [3.02E+05; 5.48E+05; -8.90E+04; 0; 0];  

  

A6 = [0 0 -4.80E+03 0 0; 0 0 9.45E+03 -1.82E+04 0; 4.80E+03 -5.20E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];      

B6 = [3.02E+05; 5.48E+05; -1.78E+05; 0; 0]; 

 

A7 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -1.67E+03 0; 0 0 0 -1 0];      

B7 = [3.75E+05; 6.82E+05; -3.75E+05; 0; 0]; 

 

A8 = [0 0 -4.00E+03 0 0; 0 0 1.09E+04 -1.82E+04 0; 4.00E+03 -6.00E+03 

0 0 0; 0 5.00E+03 0 -3.33E+03 0; 0 0 0 -1 0];      

B8 = [3.75E+05; 6.82E+05; -3.75E+05; 0; 0]; 

 

 

%Define LQR performance index 

Q = [0 0 0 0 0; 0 1E-4 0 0 0; 0 0 0 0 0; 0 0 0 1E-4 0; 0 0 0 0 5E+06]; 

R = 1; 

 

 

setlmis([]);   %LMI system initialization 
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%Define variable matrices 

P = lmivar(1,[5 1]);   

X = lmivar(1,[1 1]);   

Y = lmivar(2,[1 5]);   

 

 

 

%Define LMI constraint AP+PA'-BY-Y'B+I<0 for 8 uncertain plants 

lmiterm([1 1 1 P],A1,1,'s'); lmiterm([1 1 1 Y],-B1,1,'s');  lmiterm([1 

1 1 0],1); 

 

lmiterm([2 1 1 P],A2,1,'s'); lmiterm([2 1 1 Y],-B2,1,'s'); lmiterm([2 

1 1 0],1); 

 

lmiterm([3 1 1 P],A3,1,'s'); lmiterm([3 1 1 Y],-B3,1,'s'); lmiterm([3 

1 1 0],1); 

 

lmiterm([4 1 1 P],A4,1,'s'); lmiterm([4 1 1 Y],-B4,1,'s'); lmiterm([4 

1 1 0],1); 

 

lmiterm([5 1 1 P],A5,1,'s'); lmiterm([5 1 1 Y],-B5,1,'s'); lmiterm([5 

1 1 0],1); 

 

lmiterm([6 1 1 P],A6,1,'s'); lmiterm([6 1 1 Y],-B6,1,'s'); lmiterm([6 

1 1 0],1); 

 

lmiterm([7 1 1 P],A7,1,'s'); lmiterm([7 1 1 Y],-B7,1,'s'); lmiterm([7 

1 1 0],1); 

 

lmiterm([8 1 1 P],A8,1,'s'); lmiterm([8 1 1 Y],-B8,1,'s'); lmiterm([8 

1 1 0],1); 

 

 

%Define LMI constraint [X (R^0.5)Y; Y'(R^0.5) P]>0 

lmiterm([-9 1 1 X],1,1); 

lmiterm([-9 2 1 -Y],1,R^0.5);  

lmiterm([-9 2 2 P],1,1); 

 

 

%Define constraint P>0 

lmiterm([-10 1 1 P],1,1); 

  

LMIs = getlmis; %LMI system internal description 

 

%Find and set the storage size based on number of uncertain plants 

n = decnbr(LMIs); 

c = zeros(n,1); 

 

%Objective function 

for j=1:n, 

    [Pj,Xj,Yj] = defcx(LMIs,j,P,X,Y); 

    c(j) = trace(Q*Pj) + trace(Xj);     

end 

  

options = [1e-6,0,0,0,0];                

[copt,xopt] = mincx(LMIs,c,options);     

 

Pcom = dec2mat(LMIs,xopt,P);   %Find the common P matrix 

Ycom = dec2mat(LMIs,xopt,Y);   %Find the common Y matrix 

  

K_LMI8 = Ycom*(inv(Pcom)) %Compute controller K_LMI8 


