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Preface

Optimization problems involving the absolute values of variables and linear terms are

called Absolute Value Optimization (AVO) problems. Since binary variables can be

expressed by using absolute value of variables, any 0-1 integer optimization problem

with linear terms can be reformulated into the AVO. Another application could be

a continuous location problem on planer region using the `1-norm as a distance

function. Although AVO problems have such applications in the real world, fewer

results have been reported except one duality result and one specific application

since AVO was proposed in 2007. It is partly because of the difficulty of solving

AVO, which is NP-hard, and the limited ability of the absolute value of variables to

express a wider range of applications.

Another interesting optimization problem is called gauge optimization (GO),

which includes gauge functions in its objective function and constraints. Gauge

functions generalize the absolute value function, GO problems have wider applica-

tion than the AVO. The general framework of GO and its duality was investigated

in the 1980’s. Then, in recent years, some researches showed that the duality frame-

work becomes concrete so that we can apply the results of GO to apply many

problems. In spite of that series of results, the GO problem in the above research

seems to have the limitation for applications. One of the reasons is that the GO

problem in the previous works can take only one constraint into account and should

include only one gauge function.

In this thesis, we analyze the theoretical properties of the generalization of AVO

problems and develop a global optimization algorithm to solve AVO. In the the-

oretical part, we generalize the absolute value functions in the AVO problem to

positively homogeneous functions. We call such problems as Positively Homoge-

neous Optimization (PHO) and investigate the duality, the optimality conditions,

and the applications of the PHO. We also consider more general GO problems than

the previous works by replacing positively homogeneous functions in PHO into gauge



functions. Such general GO problems can directly handle linear terms and multiple

constraints. The duality and the optimality conditions of the GO problem are also

investigated in the same way as the PHO case. We also extend the results to general

optimization problems by considering the so-called perspective functions. In the al-

gorithmic part, we develop an algorithm to obtain a global solution of the AVO. To

the best of the author’s knowledge, there exist no algorithms to solve the AVO in

general form except one algorithm proposed recently for a specific AVO.

The contributions of the thesis are three-fold. Firstly, we propose a dual formu-

lation of the PHO problem that has a closed-form and some interesting properties.

We also discuss the relation between the proposed duality and the Lagrangian one.

The second contribution is to investigate the theoretical properties of the GO prob-

lems as a special case of PHO. The GO problems include multiple constraints and

linear terms, which is different from the existing results. For the GO problems, we

analyze the weak and strong duality, necessary and sufficient optimality conditions,

and the extension to general optimization problems. Finally, we develop a global

optimization algorithm for the AVO by using a branch-and-bound technique. The

proposed algorithm involves the duality results of the AVO, the reformulation of the

primal and dual AVO problems into a system of equations, and the method to solve

equations including the absolute value of variables.

The author hopes that the results in this thesis will contribute to further research

on optimization problems involving absolute values, norms, and gauge functions,

both in terms of theory and algorithms.

Shota Yamanaka

June 2021
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Chapter 1

Introduction

In the real world, we have to optimize many problems that occur especially in

business situations. Some of the problems are production planning, employee and/or

production scheduling, and vehicle routing. Such problems have been studied for

many years in the field of mathematical optimization, which is a branch of applied

mathematics. In the mathematical optimization area, many researchers discuss

modeling real-world problems appropriately, efficient algorithms to solve the model,

and mathematical theories to support the modeling and the algorithm.

A mathematical optimization problem is in general described as follow:

min f(x)

s.t. x ∈ X ,
(1.0.1)

where f is called the objective function, x is a vector of appropriate dimension, and

X is a feasible region in some space. Optimization problem (1.0.1) are classified by

the continuity, the differentiability and the structure of f , and functions describing

X . In the field of continuous optimization, for instance, problem (1.0.1) is called a

quadratic optimization problem when f and the functions describing X are linear

and quadratic functions.

In this thesis, we focus on optimization problems involving the absolute value or,

more generally, the norm of variables. These problems are considered to occur in the

real world and are solved in many situations. For example, location problems with

the `1-norm as a distance function can be represented as optimization problems with

linear terms and the absolute value of variables. Such problems are called Absolute

Value Optimization (AVO), which is, in general, a nonconvex optimization problem.

Another related problem to AVO is Gauge Optimization (GO), which contains the

1



2 CHAPTER 1. INTRODUCTION

so-called gauge function in its objective function and constraints. The GO problem

is convex, and it has interesting theoretical results and practical applications.

1.1 Absolute value optimization and

its related problems

1.1.1 Absolute value equation

In recent years, the so-called absolute value equations (AVEs) and absolute value

optimization (AVO) problems have been attracted much attention. The AVEs were

introduced in 2004 by Rohn [82]. Basically, if A,B ∈ Rm×n are given matrices, and

b ∈ Rm is a given vector, one should find a vector x that satisfies the following

equation:

Ax+B|x| = b, (1.1.1)

where |x| is a vector whose i-th entry is the absolute value of the i-th entry of x.

Linear Complementarity Problems

It is known that AVE (1.1.1) are equivalent to the linear complementarity problems

(LCP) [40,64,77], which include many real-world applications.

Example 1.1 (Linear complementarity problem). The purpose of the LCP is to

find y, z ∈ Rn such that

y = Qz + q, z ≥ 0, y ≥ 0, and yT z = 0,

which can be rewritten as

0 ≤ z ⊥ Qz + q ≥ 0, (1.1.2)

where Q ∈ Rn×n and q ∈ Rn.

Mangasarian [61] showed how to reduce LCP (1.1.2) into AVE (1.1.1). We obtain

the solution of LCP (1.1.2) by solving the following AVE:

(I +M)(I −M)−1x− |x| = −((I +M)(I −M)−1 + I)q

and computing z by

z = (I −M)−1(x+ q).
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Prokopyev [77] proved that AVE (1.1.1) can be reduced to LCP (1.1.2) when we

denote y = (r, s, t, θ1)T ∈ R`, z = (p, w, θ2)T ∈ R`, q = (0,−c, c, 0)T ∈ R`, and

Q =


−E 2E 0

A B − A 0

−A A−B 0

0 0 0

 ∈ R`×`,

where ` = max{n + 2m, 2n}, θ1 ∈ R`−n−2m, θ2 ∈ R`−2n and the size of zero compo-

nents in Q and q are set in order to Q ∈ R`×` and q ∈ R`.

Existing results

The main topic of theoretical research for the AVEs is about unique solvability [64,

82–85,105,112]. For a slightly specific AVE

Ax− |x| = b, (1.1.3)

where A ∈ Rn×n, b ∈ Rn, Mangasarian and Meyer [64] and Rohn et al. [85] showed

that AVE (1.1.3) for any b has a unique solution when the smallest singular value

of A is greater than 1. The unique solvability for the more general AVE

Ax−B|x| = b, (1.1.4)

where A,B ∈ Rn×n, b ∈ Rn, was also studied. Rohn et al. [85] and Rohn [84] proved

that AVE (1.1.4) is uniquely solvable when the singular value of |A−1B| is less than

one or when the minimum singular value of A exceeds the maximum singular value

of |B|. Here, the absolute value of a matrix A = (aij) is defined by |A| = (|aij|).
Since 2007, some methods for solving AVEs have been presented in the literature.

For example, Rohn [83] considered an iterative algorithm using the sign of variables

for the case that A and B are square matrices. For more general A and B, Man-

gasarian [61] provided a method involving successive linearization techniques. Other

methods include a concave minimization approach, given by Mangasarian [60, 63],

and Newton-type methods, proposed by Bello Cruz et al. [9], Caccetta et al. [16],

Mangasarian [62], and Zhang and Wei [112]. Some generalizations of AVEs were

also proposed. For example, Hu et al. [41] considered an AVE involving the absolute

value of variables associated with the second-order cones. Miao et al. [66] investi-

gated an AVE with the so-called circular cones. In both papers, quasi-Newton based

algorithms were developed.
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1.1.2 Absolute value optimization problems

As an extension of AVEs, Mangasarian [61] proposed in 2007 the AVO problems,

which have the absolute value of variables in their objective and constraint functions.

More precisely, the AVO problem is given by

min cTx+ dT |x|
s.t. Ax+B|x| = b,

Hx+K|x| ≥ p,

(1.1.5)

where c, d ∈ Rn, b ∈ Rm, p ∈ R`, A,B ∈ Rm×n, H,K ∈ R`×n.

It is clear that AVO (1.1.5) includes linear programming. However, it is, in

general, hard to solve because AVO (1.1.5) is non-differentiable due to the absolute

value functions and is not always convex depending on d, B and K. In particular,

it is NP-hard to obtain even feasible solutions of the problem because solving AVEs

was proved to be NP-hard.

Linear Programs with Linear Complementarity Constraints

Since AVE (1.1.1) and LCP (1.1.2) are equivalent, AVO (1.1.5) includes the so-called

Linear Programs with Linear Complementarity Constraints (LPLCC). LPLCC is

stated formally as follows [33,39,46,109].

Example 1.2 (Linear programs with linear complementarity constraints).

min cTx+ dTy

s.t. Ax+By ≥ b,

0 ≤ y ⊥ p+Hx+Ky ≥ 0,

(1.1.6)

where b, c, d and p are vectors, A, B, H and K are matrices of appropriate dimen-

sions.

LPLCC (1.1.6) started to be investigated in the 1970’s [42, 43, 47], and many

theoretical results, algorithms, and applications are proposed [57]. In particular, it

is proposed that the LPLCC can be applied to parameter calibration in machine

learning [10,54,55]. Note that LPLCC (1.1.6) is a special case of mathematical pro-

gram with equilibrium constraints (MPEC) [57]. MPEC also has many applications

in various areas such as economics, engineering, and transportation [57]. However,

MPEC is in general difficult to deal with since its feasible region is necessarily non-

convex and even disconnected.
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0-1 integer optimization problems

We can rewrite an optimization problem with binary variables as an AVO because

0-1 integer variables can be represented by using the absolute value of variables. A

0-1 integer variable can be transformed into the absolute value form as follows:

x ∈ {0, 1}n ⇔
∣∣∣∣x− 1

2

∣∣∣∣ =
1

2
. (1.1.7)

Considering the above formulation, we give an example of a binary value optimiza-

tion problem of facility location called the Capacitated Facility Location Problem

(CFLP) [23,101]. CFLP is one of the well-known location optimization problems in

descrete form and it is NP-hard. CFLP has been studied since the 1960’s [1,53,71],

and even in recent years the variation of CFLP and algorithms are investigated [5,

103,113].

CFLP minimizes the total cost of locating facilities and services between facilities

and clients under the constraints about demands and the capacity of facilities.

Example 1.3 (Capacitated facility location problem [23,101]).

min
∑
j∈J

cjxj +
∑
i∈I

∑
j∈J

hijyij

s.t.
∑
j∈J

yij = bi, i ∈ I∑
i∈I

yij − ujxj ≤ 0, j ∈ J

xj ∈ {0, 1} j ∈ J ,

(1.1.8)

where I and J are the sets of clients and candidate locations, cj ∈ R is a locating

cost of facility at j, hij ∈ R is a service cost that a facility at j gives clients i, bi ∈ R
is a demand of client i, uj ∈ R is a capacity of facility locating j, xj represents

whether facility is located at j or not and yij is the amount of service that client j

recieves from facility at j.

The above problem minimizes the total cost of locating facilities and services

under the first constraint about demands and the second constraint of capacity of

facilities. Problem (1.1.8) can be written as AVO by using reformulation (1.1.7) as
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follows:

min
∑
j∈J

cj

(
zj +

1

2

)
+
∑
i∈I

∑
j∈J

hijyij

s.t.
∑
j∈J

yij = bi, i ∈ I

∑
i∈I

yij − uj
(
zj +

1

2

)
≤ 0, j ∈ J

|zj| =
1

2
,

(1.1.9)

where only continuous variables exist.

Continuous facility location problems

Since the absolute value of variables is one of the most popular measures for distance,

facility location problems (FLPs) in continuous space could be another application

of AVO (1.1.5). The classical studies of FLPs are focusing on minimizing the total

distance or minimizing the maximum distances between new facilities and existing

ones [74]. Mathematical models of location problems fall into four major categories,

which are Analytic models, Continuous models, Network models and Discrete mod-

els [26]. Note that problem (1.1.8) is an example of Discrete models.

Here we introduce some instances of continuous location models in which the

`1-norm or rectilinear distance functions are involved. In continuous models, we can

consider many distance measure, such as the `1-norm, the `2-norm, the `p-norm,

p ≥ 1, a general/polyhedral gauge, the Hausdorff distance, and so on [35]. In the

following, we first show minisum and minimax single facility location problems,

then we give minisum and minimax multi-facility location problems which are an

extension of single facility problems. Finally, maxisum and maximin multi-facility

location problems are represented.

A single facility location problem is one of the simplest location problems. In the

problem, we usually minimize an objective function using norms that represent the

distances between new facility and existing ones. Some applications of the single fa-

cility location problem are locating a hospital in a metropolitan area, new classroom

building on a college campus, and a new component in an electrical network [26]. In

particular, the `1-norm as a distance function tends to be used in location problems

because both the appropriateness as distance measure and the easiness to analyze

the problem are compatible.
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Location problems of a single facility

Location problems of a single facility in minisum and minimax forms are described as

follows. In each example, n is the number of existing facilities, wi ∈ R is the weight

of the distance between x and facility i, and pi ∈ R2 is the location of existing

facility i.

Example 1.4 (Minisum location problem of a single facility [26]).

min
x

n∑
i=1

wi e
T |x− pi|, (1.1.10)

The above problem can be easily transformed into the AVO by denoting yi :=

x− pi as follows:

min
x

n∑
i=1

wi e
T |yi|

s.t. x− yi = pi, i = 1, . . . , n.

(1.1.11)

Example 1.5 (Minimax location problem of a single facility [26]).

min
x

max
i
{ wi eT |x− pi|+ hi, 1 ≤ i ≤ n }, (1.1.12)

where hi ∈ R is the cost for user i to prepare to go to the new facility.

By introducing a new variable z, problem (1.1.12) can be reformulated as

min z

s.t. wi e
T |x− pi|+ hi ≤ z, i = 1, . . . , n,

(1.1.13)

which can be represented as the AVO by taking yi := x− pi as follows:

min z

s.t. wi e
T |yi|+ hi ≤ z, i = 1, . . . , n,

x− yi = pi, i = 1, . . . , n.

(1.1.14)

Some of the algorithms for solving Minisum location problems (1.1.10) are the so-

called median method, programmed mathematical method and contour line method.

Minimax problems (1.1.12) are solved by transforming the problem to (1.1.13), in-

troducing some inequalities, and using linear programming technique [26].
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Location problems of multiple facilities

Problems of locating more than two facilities are the direct extension of a single

FLP. Such problems are called multifacility location problems (MFLP), in which

multiple new facilities are located in some areas where some facilities exist. The

MFLP minimizes the sum of the cost proportional to the distances between new

facilities and the one between new and existing facilities. The most popular MFLPs

are Minisum and Minimax FLP describes as follows.

In the following examples, n and m are the numbers of new facilities and existing

ones, respectively. We also denote vjk ∈ R and wji ∈ R as weights for balancing the

distances between new facilities and between new and existing ones.

Example 1.6 (Minisum location problem of multi-facilities [26]).

min
x

∑
1≤j<k≤n

vjk e
T |xj − xk|+

n∑
j=1

m∑
i=1

wji e
T |xj − pi|, (1.1.15)

Example 1.7 (Minimax location problem of multi-facilities [26]).

min
x

max{ wji eT |xj − pi|, j = 1, . . . , n, i = 1, . . . ,m; (1.1.16)

vjk e
T |xj − xk|, 1 ≤ j < k ≤ n },

Typical algorithms for solving minisum MFLP are linear programming approach

[67, 79, 98, 99] and decomposition technique [15, 45]. Theoretical results about the

optimality conditions have been reported in [20,49,76,79].

Note that all minisum and minimax FLPs (1.1.10), (1.1.12), (1.1.15), (1.1.16)

are convex optimization problems since the absolute value functions are convex.

However, those problems become nonconvex when there exist constraints of some

forbidden areas described by using the absolute value functions [13,14,52]. We con-

sider such problems in Chapter 6 and show some results of numerical experiments.

In FLPs of a single facility or multiple facilities described above, we attempt to

locate desirable facilities, which are preferable to be located nearby to inhabitants.

For instance, hospitals, shopping stores and schools are categorized in such facilities.

On the other hand, there is another class of facilities, which are undesirable ones in

our community. Some of the examples are garbage dump sites, chemical plants and

prisons. Although those facilities are necessary for our life, it is favorable for them

to be located as far as a residential area. Such problems are modeled as maxisum

and maximin FLPs [19,22,25,80]. Although there are not many results about those
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FLPs using the `1-norm in planer region, we can consider maxisum and maximin

MFLP using the `1-norm analogious to problems (1.1.15) and (1.1.16). We give

numerical experiments of problem (1.1.18) in Chapter 6.

Example 1.8 (Maxisum location problem of multi-facilities).

max
x

∑
1≤j<k≤n

vjk e
T |xj − xk|+

n∑
j=1

m∑
i=1

wji e
T |xj − pi|, (1.1.17)

Example 1.9 (Maximin location problem of multi-facilities).

max
x

min{ wji eT |xj − pi|, j = 1, . . . , n, i = 1, . . . ,m; (1.1.18)

vjk e
T |xj − xk|, 1 ≤ j < k ≤ n },

Scheduling problem of automated vehicles

Qian et al. [78] showed a scheduling problem about automated vehicles at intersec-

tions without signals can be formulated as AVO as follows. For problem (1.1.19),

they also gave an algorithm called the alternately iterative descent method and

showed its efficiency through some case studies in which different traffic conditions

are considered.

Example 1.10 (Scheduling problem of automated vehicles).

min eTx

s.t. |Ax+ b| ≥ c,

|Hjx+ kij| ≥ dj, ∀i ∈ Ij, j ∈ J
x ≥ α,

x ≥ β,

(1.1.19)

where b, c, kij, dj, α, β ∈ Rn, A ∈ Rm×n, and Hj ∈ Rm×n are given vectors and

matrices. The sets J and Ij denote lanes and vehicles at lane j, respectively.

Linear support vector machine

A linear support vector machine (SVM) can be an application of the AVO. SVM is a

useful classification tool in the field of machine learning and data mining. Especially,

for large-scale data, the computational cost of training and testing of linear SVM

is low comparing to that of nonlinear SVM involving kernel methods. In SVM,



10 CHAPTER 1. INTRODUCTION

the sum of the regularization term and loss function is minimized. In particular,

some results about the so-called `1-norm SVM have been studied [12, 59, 110, 116],

which is described as follows. Usually, problem (1.1.20) is transformed into linear

programming and solved by using existing methods or software.

Example 1.11 (`1-norm linear support vector machine).

min
w,b
‖w‖1 + c

n∑
i=1

(max{0, 1− yi(wTxi + b)}), (1.1.20)

where c > 0 is the regularization parameter, {(xi, yi)}ni=1, xi ∈ Rm, yi ∈ {−1,+1} is

a set of given data. The first and second terms are called regularization term and

loss function, respectively.

Problems with capped `1-norm

In recent years, the so-called Capped `1-norm have been studied and got more at-

tention for its robustness in the field of machine learning and data mining. Capped

`1-norm is described by

n∑
i=1

min{|xi|, α}, (1.1.21)

where α > 0 is the parameter to control the domain that the `1-norm effects. In

classification and regression, we solve the problems of minimizing sum of the loss

function which describes the misfit between the actual data and model, and the

regularization term which controls the fitting of the model to the data.

Many types of norms are used in loss functions and regularization terms. In

particular, the `1-norm is more robust against outliers comparing to the `2-norm.

However, the robustness is not enough when there exist heavy outliers [114, 115].

Capped `1-norm have been used to obtain more robustness in such situation. Also,

capped `1-norm is a better approximation of the `0-norm. The effectiveness of the

norm is shown in many papers of machine learning and pattern recognition [48, 56,

72,96,104,114,115].

Capped `1-norm (1.1.21) can be described by using only the absolute value func-

tions as follows:

n∑
i=1

(
|xi|+ α− 1

2
(|xi + α|+ |xi − α|)

)
. (1.1.22)
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Then the optimization problems with capped `1-norm can be transformed into the

AVO. The following example is the so-called twin SVM [96] in which we find a pair

of nonparallel hyperplanes w1x+ b1 = 0 and w2x+ b2 = 0, where w1, w2, b1, b2 ∈ Rn.

Example 1.12 (Capped `1-norm Twin Support Vector Machines [96]).

min
w1,b1

m1∑
i=1

min(‖w1xi + b1‖1, α1) + c1

m2∑
i=1

min(‖β1,i‖1, α2)

s.t. −Bw1 − e2b1 + β1 ≥ e2,

(1.1.23)

min
w2,b2

m2∑
i=1

min(‖w2xi + b2‖1, α3) + c2

m1∑
i=1

min(‖β1,i‖1, α4)

s.t. Aw2 + e1b2 + β2 ≥ e1,

(1.1.24)

We have to solve the above two problems to obtain a pair of hyperplanes. Al-

though it is not easy to solve because of the nonconvexity, Wang et al. [96] proposed

an iterative algorithm through the so-called re-weighted trick [48, 72, 73] and refor-

mulation of problems (1.1.23) and (1.1.24) into approximation ones.

Existing results and issues

To the best of the author’s knowledge, the only theoretical result for AVO (1.1.5) is

the duality proposed by Mangasarian [61]. The dual of (1.1.5) can be represented

as

max bTu+ pTv

s.t. |ATu+HTv − c|+BTu+KTv ≤ d,

v ≥ 0,

(1.1.25)

and weak duality, in which

cTx+ dT |x| ≥ bTu+ pTv

holds for feasible solutions x and (u, v) of problems (1.1.5) and (1.1.25), were proved.

An algorithm for the specific AVO (1.1.19) was investigated in [78]; however,

to the best of the author’s knowledge, there is no method to solve more general

AVO (1.1.5) itself. When comparing to AVEs, the research associated with AVO

problems is insufficient even if there are many applications described in this section.

One of these reasons seems to be the difficulty of obtaining feasible solutions of

the problems. In fact, their constraints include AVEs, which is known to be NP-

hard [61].



12 CHAPTER 1. INTRODUCTION

1.2 Gauge Optimization problems

Another optimization problem related to AVO is gauge optimization (GO), which

was introduced by Freund [30] and recently investigated by Friedlander et al. [32]

and Aravkin et al. [6].

1.2.1 Gauge optimization problems in general form

GO problems basically consist of optimization problems involving the so-called gauge

functions. The GO problem proposed in [6, 30–32] is described as follows:

min g(x)

s.t. x ∈ X ,
(1.2.1)

where X ⊆ Rn is a closed convex set and g : Rn → R∪{∞} is a gauge function. Here,

we say that g is a gauge function if g is convex, nonnegative, positively homogeneous

(i.e., g(αx) = αg(x), α > 0) and satisfies g(0) = 0. For instance, the `p-norm for

p ∈ [1∞] and max function are gauges. Note that GO problem (1.2.1) is convex

because gauge functions are convex.

Freund [30] first introduced problem (1.2.1) and its gauge dual as follows:

min g◦(y)

s.t. y ∈ X̄ ,
(1.2.2)

where g◦ is the polar function of g, which is defined by

g◦(y) := inf{µ ≥ 0 | yTx ≤ µg(x)}, (1.2.3)

and X̄ is the so-called anti-polar set of X defined by

X̄ := {y ∈ Rn | yTx ≥ 1 for all x ∈ Rn}. (1.2.4)

Note that the constraint of problem (1.2.1) can be nonlinear because the set X is

just a closed convex set, not a convex polyhedron.

In [30], some examples of GO (1.2.1) and their dual are shown, and we introduce

two of them in the following.

Example 1.13 (Convex quadratic programming [96]).

min
1

2
xTQx+ qTx

s.t. Ax ≥ b,
(1.2.5)
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where Q is a symmetric positive semidefinite matrix. Suppose that the matrix Q can

be decomposed as Q = MTM for some matrix M . If M is nonsingular or if q lies

in the row space of M , then q can be represented as q = MT s for some s. Then the

above quadratic programming problem can be rewritten as

min
1

2
xTMTMx+ sTMx

s.t. Ax ≥ b,
(1.2.6)

which is equivalent to the following GO problem:

min ‖Mx+ s‖2

s.t. Ax ≥ b,
(1.2.7)

The gauge dual is also the following quadratic programming:

min yTAQ−1ATy

s.t. (bT + qTQ−1AT )y = 1,

y ≥ 0.

(1.2.8)

Example 1.14 (Optimization problems with the `p-norm [96]).

min
x,y

‖x‖p
s.t. Bx+ Cy ≥ d,

(1.2.9)

where 1 ≤ p ≤ ∞. The gauge dual of the above problem is written as

min
z
‖BT z‖q

s.t. CT z = 0,

dT z = 1,

z ≥ 0,

(1.2.10)

where q satisfies 1/p+ 1/q = 1.

Existing results and issues

Freund [30] investigated the gauge duality of problems (1.2.1) and (1.2.2). One of

the results is the weak duality in the gauge framework, which indicates that

g(x) g(y) ≥ 1 (1.2.11)

holds for feasible solutions x and y of problems (1.2.1) and (1.2.2), respectively. He

also showed the sufficient condition for optimality, which states x and y are optimal
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for problems (1.2.1) and (1.2.2) if g(x) g(y) = 1. Another result is that the gauge

dual of (1.2.2) becomes the original problem (1.2.1).

Although problem (1.2.1) is slightly abstract to apply the gauge duality theory

to more concrete forms of optimization problems, the paper [30] shows that X and X̄
can be written explicitly when X := {x | Ax ≥ b}. In that case, primal and dual

gauge optimization pare is concretely represented as

min g(x)

s.t. Ax ≥ b,
(1.2.12)

and

max bTy

s.t. g◦(MTy) ≤ 1,

y ≥ 0,

(1.2.13)

respectively. Then the above duality theory can be applied to the well-known prob-

lems such as linear programming with positive optimal value, the `p-norm opti-

mization problems with p ∈ [1,∞], and convex quadratic optimization problems.

Considering applications to wider fields; however, it is desirable to handle nonlinear

constraints in a concrete form analogous to the linear cases (1.2.12) and (1.2.13).

1.2.2 Gauge optimization problems in a specific form

More recently, Friedlander et al. [32] considered the following GO problem with a

nonlinear constraint in a concrete form:

min
x∈X

g(x)

s.t. h(b− Ax) ≤ σ,
(1.2.14)

where X is a finite-dimensional Euclidean space, g and h are gauge functions, σ is a

scalar, and b, A are, respectively, a vector and a matrix with appropriate dimensions.

Although problem (1.2.14) is less general comparing to (1.2.1), it is sufficiently

concrete to analyze theoretical properties and to apply the problem to more useful

optimization problems. They also show the gauge dual of (1.2.14) as follows:

min
y∈X

g◦(ATy)

s.t. yT b− σh◦(y) ≥ 1.
(1.2.15)

We show two examples of the above GO problems, which are finding minimum-

length solutions and sparse optimization problem.
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Example 1.15 (Norm and minimum length solutions [21, 32, 102]). The primal

problem that minimizes the norm of x under linear constraints and its gauge dual

are described as follows:

min ‖x‖
s.t. Ax = b,

(1.2.16)

min ‖ATy‖∗
s.t. bTy ≥ 1,

(1.2.17)

where ‖ · ‖∗ denotes the dual norm.

Example 1.16 (Sparse optimization [32, 92, 93]). The primal problem is solved in

the field of sparse optimization, and its gauge dual is described by using the `∞-norm

as follows:

min ‖x‖1

s.t. ‖Ax− b‖2 ≤ σ,
(1.2.18)

min ‖ATy‖∞
s.t. bTy − σ‖y‖2 ≥ 1.

(1.2.19)

The following example shows that a linear conic optimization problem can be

seen as a GO problem.

Example 1.17 (Linear conic optimization [32, 75, 87]). Consider the primal and

dual pair of linear conic optimization

min cTx

s.t. Ax = b, x ∈ K,
(1.2.20)

and

max bTy

s.t. c− ATy ∈ K∗.
(1.2.21)

The above primal problem can be transformed into the GO problem by setting ĉ =

c−AT ŷ, where ŷ is a feasible solution of the dual problem. Then the primal problem

can be seen as the following GO problem:

min ĉTx+ δK(x)

s.t. Ax = b.
(1.2.22)
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Existing results and issues

In order to analyze the duality relationships, they first investigate a general GO

problem (1.2.1) and its Fenchel dual. The Fenchel dual of (1.2.1) are described as

max
y
−(δX )∗(−y)

s.t. g◦(y) ≤ 1.
(1.2.23)

Denote vp, vgd, vfd as the optimal values of problems (1.2.1), (1.2.2), and (1.2.23),

respectively. Then we have

vp ≥ vfd =
1

vgd
> 0.

Moreover, if y∗ is the solution of (1.2.23), then y∗/vfd is the solution of (1.2.2).

Conversely, if y∗ solves (1.2.2), then y∗vfd solves (1.2.23).

For the more concrete GO (1.2.14), they showed its Lagrangian dual as follows:

max
y∈X

bTy − σh◦(y)

s.t. g◦(ATy) ≤ 1,
(1.2.24)

and investigated the relations of solutions between problems (1.2.15) and (1.2.24)

by using duality results about the Fenchel dual. Let vld denote the optimal value

of (1.2.24). They prove that vfd = vld under some assumptions. In addition, if y∗ is a

solution of (1.2.24), then y∗/vld is the solution of (1.2.15). Also, if y∗ solves (1.2.15)

and vgd > 0, then y∗vld solves (1.2.24).

Aravkin et al. [6] presented other theoretical results for the GO problems (1.2.14)

and (1.2.15). In particular, they gave optimality conditions, and a way to recover

a primal solution from the gauge dual. In that paper, they also extended their

results to a more general convex optimization problem, where g and h were not

necessarily gauge functions by using the so-called perspective functions. In addition,

they proposed the perspective duality, which is an extension of the gauge duality.

The applications of the gauge duality exist in developing algorithms by taking

advantage of the gauge dual rather than the Lagrangian dual. The constraint of

the gauge dual problem (1.2.15) is simpler compared with that of the Lagrangian

dual (1.2.24). Therefore the computational cost of algorithms including projection

can be low. Using this advantage, Friedlander and Macêdo [31] applied this gauge

duality to solve low-rank spectral optimization problems. Also, Aravkin et al. [7]

developed level-set methods for convex optimization problems.



1.3. MOTIVATIONS AND CONTRIBUTIONS 17

The GO problems in these previous works [6, 30–32] do not involve linear terms

in their objective functions. Therefore, these GO frameworks cannot directly handle

such as linear conic optimization problems. Moreover, differently from AVO (1.1.5),

GO problem (1.2.14) does not consider multiple constraints, but only one gauge con-

straint. It seems that these drawbacks make us unable to apply the GO framework

to wider applications.

1.3 Motivations and contributions

The study on AVO is in its infancy, and, to the author’s knowledge, there have

been no works except for the above-mentioned duality results of Mangasarian [61]

and the application of Qian et al. [78]. Moreover, there is no algorithm to solve

AVO (1.1.5) in a general form. Although many theoretical and algorithmic results

for AVEs exist, the research associated with AVO problems is not sufficient. One of

the reasons seems that it is difficult to obtain even feasible solutions of the problem.

In fact, their constraints include some AVEs, which are known to be NP-hard [61] to

solve. Moreover, the ability of the expression of the absolute values seems not enough

to model real world problems. On the other hand, the gauge function generalizes the

absolute value function and includes a wider class of functions such as the `2-norm

and the `p-norm, p ≥ 1. However, the previous works related to the GO problems

only involve one constraint that includes only one gauge function term.

In this thesis, we focus on investigating the theoretical property of the AVO

problem and its generalizations and develop an algorithm for the AVO problem.

From these aspects, the motivations and contributions of the thesis are itemized as

follows.

(1) To generalize the AVO problem and analyze its theoretical results

We generalize the AVO problem by replacing the absolute value function with

the positively homogeneous one. Examples of the positively homogeneous

function include the absolute value function and the `p-norm function, where

p is a positive real number. The problem is an extension of the AVO and

is not necessarily convex. We call such a problem as positively homogeneous

optimization and propose its dual formulation in a closed-form analogous to

the AVO dual. Then we discuss the extension of the weak duality result

investigated by Mangasarian for the AVO. We also study the relation between

the dual formulation and the Lagrangian dual.
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(2) To investigate the more general GO problem and its extension

The positively homogeneous function includes the gauge one. Then we can

consider an optimization problem with multiple constraints involving gauge

functions compared to the existing results which consider only one gauge con-

straint. Moreover, we extend the generalized GO problem to a general opti-

mization problem by using the perspective framework.

(3) To develop an algorithm for the AVO problem

An algorithm for a specific AVO was proposed in [78]; however, to the best of

the author’s knowledge, there is no method to solve the general AVO (1.1.5).

In this thesis, we develop a global optimization algorithm for AVO (1.1.5)

by using the idea of a branch-and-bound procedure. We provide numerical

experiments for some facility location problems and verify the effectiveness of

the proposed algorithm.

1.4 Outline of the thesis

The thesis is organized as follows.

In Chapter 2, we introduce some preliminaries including notations, basic math-

ematical properties, and existing results that are necessary in the later Chapters.

In Chapter 3, we propose a dual formulation that, differently from the Lagrangian

dual approach, has a closed-form and some interesting properties. In particular, we

discuss the relation between the Lagrangian duality and the one proposed here and

give some sufficient conditions under which these dual problems coincide. Finally,

we show that some well-known problems, e.g., the sum of norms optimization and

the group Lasso-type optimization problems, can be reformulated as positively ho-

mogeneous optimization problems.

In Chapter 4, We focus on a special positively homogeneous optimization prob-

lem, whose objective function and constraints consist of some gauge and linear

functions. We prove not only weak duality but also strong duality. We also study

necessary and sufficient optimality conditions associated with the problem. More-

over, we give sufficient conditions under which we can recover a primal solution from

a Karush-Kuhn-Tucker point of the dual formulation. Finally, we discuss how to ex-

tend the above results to general optimization problems by considering the so-called

perspective functions.
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In Chapter 5, we first propose an algorithm for the AVO, which is based on

the branch-and-bound method. In the branching procedure, we generate two sub-

problems by restricting the sign of a component of the variable x in the primal AVO

problem to be nonnegative or nonpositive. In the bounding procedure, we utilize the

duality results in AVO to obtain a lower bound for each subproblem. Furthermore,

to examine the effectiveness of the proposed algorithm, we apply it to solve facility

location problems (FLPs). By using the `1-norm as a distance function, an FLP can

naturally be formulated as an AVO. In particular, we can use the AVO formulation

to deal with a nonconvex region in which facilities are located. We stress that such

a problem is considerably difficult to solve compared with the conventional FLPs

that assume the convexity of the region.

In Chapter 6, we conclude the thesis and mention some future issues.
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Chapter 2

Preliminaries

In this chapter, we give mathematical notations and review the properties of theories

and algorithms that will be appeared in this thesis.

2.1 Notations

We use the following notations throughout the paper. We denote by R++ the set

of positive real numbers. Let x ∈ Rn be an n-dimensional column vector, and

A ∈ Rn×m be a matrix with dimension n×m. For two vectors x and y, we denote

the vector (xT , yT )T as (x, y)T for simplicity. For a vector x ∈ Rn, its i-th entry is

denoted by xi. Moreover, if I ⊆ {1, . . . , n}, then xI corresponds to the subvector of

x with entries xi, i ∈ I. The n-dimensional vector of ones is given by en, that is,

en := (1, . . . , 1)T ∈ Rn. The identity matrix with dimension n is En ∈ Rn×n. For a

matrix A, we write A � 0 to denote A is symmetric and positive semidefinite. The

notation #J denotes the number of elements of a set J . We also denote by ‖ · ‖
the norm. For a function f and vectors x and y, we denote the subdifferential of

f(x, y) with respect to x as ∂xf(x, y). The effective domain of a function f is given

by domf . The convex hull of a set S is denoted by coS. Finally, δS : Rn → R∪{∞}
is an indicator function of a set S ⊆ Rn defined by

δS(x) :=

{
0 if x ∈ S,
∞ otherwise.

21
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2.2 Convex analysis

We summarize the definitions related to sets and functions in convex analysis as

follows.

Definition 2.1. (Convex Sets) A set S ⊆ Rn is convex if

αx+ (1− α)y ∈ S

holds for any x, y ∈ S and α ∈ [0, 1].

Definition 2.2. (Interior) A vector x ∈ S ⊆ Rn is an interior point of S if there

exists an ε > 0 such that

{y | ‖y − x‖2 ≤ ε} ⊆ S.

The set of all interior points of S is called the interior of S and is denoted by intS.

Definition 2.3. (Open and closed set) A set S ⊆ Rn is open if intS = S. A set

S ⊆ Rn is closed if its complement set: Rn \ S = {x ∈ Rn | x /∈ S} is open.

Definition 2.4. (Closure and boundary) The closure of a set S ⊆ Rn is denoted clS

and is defined as clS = Rn\ int(Rn \ S). The boundary of a set S ⊆ Rn is denoted

bdS and is defined as bdS = clS \ intS.

Definition 2.5. (Effective domain) The effective domain of a function f : Rn →
R ∪+∞ is defined by domf := {x | f(x) < +∞}.

Definition 2.6. (Convex function) A function f : Rn → R is convex if domf is

convex set and the following inequality holds:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for any x, y ∈ Rn and α ∈ [0, 1].

Definition 2.7. (Closed function) A function f : Rn → R is closed if the sublevel

set

{x ∈ domf | f(x) ≤ α}

for each α ∈ R is closed.
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2.2.1 Positively homogeneous function and its polar

Definition 2.8. (Positively homogeneous functions) A function ψ : Rn → R is pos-

itively homogeneous if the following inequality holds:

ψ(λx) = λψ(x) for all x ∈ Rn, λ ∈ R++.

Definition 2.9. (Polar positively homogeneous functions) Let ψ : Rn → R be a

positively homogeneous function. Then, ψ◦ : Rn → R ∪ {∞} defined by

ψ◦(y) := sup{xTy | ψ(x) ≤ 1} for all y ∈ Rn

is called the polar positively homogeneous function of ψ.

We observe that the `1-norm function is convex and positively homogeneous.

Note that the `p-norm function, 0 < p < 1, is positively homogeneous but nonconvex.

The polar of both the `1-norm and the `p-norm, 0 < p < 1, is the `∞-norm function.

2.2.2 Gauge function and its properties

Let X ⊆ Rn be a closed convex set. If g : X → R ∪ {∞} is a gauge function, then

g is convex, nonnegative, positively homogeneous, and satisfies g(0) = 0. It is clear

that the gauge function includes the usual norm such as the `p-norm, p ≥ 1.

All gauge functions are represented as a Mincowski function γC of some nonempty

convex set C as follows:

g(x) = γC := inf{λ ≥ 0 |x ∈ λC }. (2.2.1)

The polar of the gauge function g is defined by

g◦(y) := inf{µ > 0 |xTy ≤ µg(x),∀x }

From this definition, we obtain the following Cauchy-Schwartz-like inequality

xTy ≤ g(x)g◦(y), ∀x,∀y.

Note that if convex set C is a unit ball defined by C := {x | ‖x‖2 ≤ 1}, then

gauge function (2.2.1) becomes the `2-norm: g(x) = ‖x‖2. This is also the case

when the unit ball is defined by any norm function. We also note that set C could

not be symmetric like norms. In such cases, the gauge function calculate different

value at two points located symmetric to the origin.

We itemize some important properties of the gauge function and its polar [32].
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Proposition 2.1. The gauge function g : X → R ∪ {∞} satisfies the following

properties:

(i) g◦ is a closed gauge function

(ii) g◦◦ = cl g

(iii) g◦(y) = supx{xTy | g(x) ≤ 1 } for all y

(iv) dom g◦ = X if g is closed and g−1(0) = {0}

(v) epi g◦ = { (y, λ) | (y,−λ) ∈ (epi)◦ }

Proposition 2.2. Let g1 and g2 be gauges. Then g(x1, x2) := g1(x1) + g2(x2) is a

gauge, and its polar is represented as

g◦(y1, y2) = max{g◦1(y1), g◦2(y2)}.

2.3 Optimality conditions and duality

2.3.1 Lagrangian function and Lagrangian duality

We consider the following optimization problem in general form:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p,

(P0)

where f : Rn → R, gi, : Rn → R and hj : Rn → R. We define the domain of (P0) as

D = domf ∩
⋂m
i=1 domgi ∩

⋂p
j=1 domhj and assume that it is nonempty. Then the

Lagrangian function associated with problem (P0) is defined as

L(x, u, v) := f(x) +
m∑
i=1

uigi(x) +

p∑
j=1

vjhj(x),

where ui, i = 1, . . . ,m and vj, j = 1, . . . , p are called the Lagrangian multipliers

associated with the inequality and equality constraints, respectively. Note that

domL = D × Rm × Rp.

We also define the Lagrange dual function ω : Rm × Rp → R as

ω(u, v) := inf
x∈D
L(x, u, v),
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which is the minimum value of the Lagrangian function with respect to x.

The Lagrangian dual problem associated with problem (P0) is defined by

sup ω(u, v)

s.t. u ≥ 0
(D0)

Note that the objective function of problem (D0) is always concave even if the

primal problem (P0) is not convex.

We denote f ∗ and ω∗ are the optimal values of problems (P0) and (D0), respec-

tively. Then the following inequality holds:

ω∗ ≤ f ∗

even if problem (P0) is not convex. We refer to this property weak duality.

We call the difference of the two sides of the above inequality, which is ∆ :=

f ∗−ω∗, as the optimal duality gap. When ∆ = 0, we say that there exists no duality

gap. Note that the duality gap ∆ is always zero in the case of linear programming.

When ∆ = 0, i.e., the equality

ω∗ = f ∗

holds, we say that strong duality holds for problem (P0) and (D0).

Strong duality does not hold for general optimization problems. However, if

problem (P0) is convex described as

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

Ax = b, j = 1, . . . , p,

where f and gi, i = 1, . . . ,m are convex, strong duality holds under some conditions.

Such conditions are called constraint qualifications.

One of the constraint qualifications is Slater’s condition, which says that there

exist an x ∈ D such that

gi(x) < 0, i = 1, . . . ,m, Ax = b.

2.3.2 Karush-Kuhn-Tucker conditions

For problem (P0), we assume f , gi, hj are differentiable but not necessarily convex.
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Let x∗, and (u∗, v∗) be optimal solutions with zero duality gap for problem (P0)

and (D0), respectively. Then, the Karush-Kuhn-Tucker (KKT) conditions are de-

scribed as follows:

∇xL(x∗, u∗, v∗) = f(x∗) +
∑m

i=1 u
∗
i gi(x

∗) +
∑p

j=1 v
∗
jhj(x

∗) = 0,

gi(x
∗) ≤ 0, i = 1, . . . ,m

u∗i ≥ 0, i = 1, . . . ,m

gi(x
∗)u∗i = 0, i = 1, . . . ,m

hj(x
∗) = 0, j = 1, . . . , p

The KKT conditions are the necessary optimality conditions for any optimization

problem. Note that the KKT conditions are also sufficient optimality conditions if

the primal problem is convex and satisfies the Slater’s condition.

2.3.3 Gauge duality

Consider the following GO problem in general form:

min g(x)

s.t. x ∈ X ,
(2.3.1)

where X ⊆ Rn is a closed convex set and g : Rn → R ∪ {∞} is a gauge function.

The gauge dual of problem (2.3.1) is defined as follows:

min g◦(y)

s.t. y ∈ X̄ ,
(2.3.2)

where g◦ is the polar function of g and X̄ is the anti-polar set of X defined by

X̄ := {y ∈ Rn | yTx ≥ 1 for all x ∈ Rn}. (2.3.3)

We also consider the following GO problem in a specific form:

min
x∈X

g(x)

s.t. h(b− Ax) ≤ σ,
(2.3.4)

where X is a finite-dimensional Euclidean space, g and h are gauge functions, σ is

a scalar, and b and A are , respectively, a vector and a matrix with appropriate

dimensions. The gauge dual of (2.3.4) are described as follows:

min
y∈X

g◦(ATy)

s.t. yT b− σh◦(y) ≥ 1.
(2.3.5)
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2.4 Global optimization algorithm

Global optimization algorithms focus on finding global optimal solutions of an op-

timization problem. Those algorithms are broadly classified into deterministic ap-

proaches and stochastic ones [27,28]. Some of the deterministic approach are branch-

and-bound algorithms [2,3,68,101], cutting plane methods [91,101], difference of con-

vex functions and reverse convex methods [90], and primal-dual methods [28,29,95].

The stochastic approach includes simulated annealing [50], genetic algorithms [37],

for instance.

Here we provide the details of the branch-and-bound procedure, which we use

to solve AVO (1.1.5). The branch-and-bound procedure is one of the popular and

widely-used global optimization algorithms which provides exact global optimal so-

lutions to NP-hard optimization problems. The method consists of branching and

bounding procedures. In the branching procedure, we divide the feasible region of

the original problem into some subregions to generate subproblems. On the other

hand, in the bounding procedure, we check if a current subproblem can be discarded

or not, by implementing some fathoming tests. The general branch-and-bound pro-

cedure for an optimization problem

min f(x)

s.t. x ∈ X

are described as follows. Note that P refers to the above problem and x̂ denotes an

incumbent solution in the following description of the algorithm.
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General Branch-and-Bound Algorithm

• Step 0. Set A := {P} and initialize x̂.

• Step 1. Choose a subproblem P̂ from the set A to explore.

– Step 1-a. If P̂ is solved and a solution x̂′ satisfying f(x̂′) < f(x̂) found,

set x̂ = x̂′. Set A := A \ {P̂} and go to Step 3.

– Step 1-b. If P can not pruned, go to Step 2.

• Step 2. Generate subproblems P1,P2, . . . ,Pn from P by dividing the feasible

region X. Set A := A ∪ {
⋃n
i=1 Pi} \ {P̂}, and return to Step 1.

• Step 3. If A = ∅, then terminate. The incumbent solution is an optimal

solution of the original problem. Otherwise, return to Step 1.



Chapter 3

Duality of optimization problems

with positively homogeneous

functions

3.1 Introduction

Recently, the so-called absolute value equations (AVEs) and absolute value opti-

mization (AVO) problems have been attracted much attention. The AVEs were

introduced in 2004 by Rohn [82]. Basically, if Ã, B̃ are given matrices, and b̃ is a

given vector, one should find a vector x that satisfies Ãx+ B̃|x| = b̃, where |x| is a

vector whose i-th entry is the absolute value of the i-th entry of x. It is known that

AVEs are equivalent to the linear complementarity problems (LCP) [40,64,77], which

include many real-world applications. As an extension of AVEs, Mangasarian [61]

proposed in 2007 the AVO problems, which have the absolute value of variables in

their objective and constraint functions. More precisely, the AVO problem consid-

ered is given by

min c̃Tx+ d̃T |x|
s.t. Ãx+ B̃|x| = b̃,

H̃x+ K̃|x| ≥ p̃,

where Ã, B̃, H̃, K̃ are given matrices, and c̃, d̃, b̃, p̃ are vectors with appropriate di-

mensions. Since AVEs and LCP are equivalent, the AVO include the mathematical

programs with linear complementarity constraints [57], which are one of the formu-

lations of equilibrium problems. As another application of AVO, Yamanaka and

29
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Fukushima [107] presented facility location problems and Qian et al. [78] showed a

scheduling problem about automated vehicles.

Since 2007, some methods for solving AVEs have been presented in the litera-

ture. For example, Rohn [83] considered an iterative algorithm using the sign of

variables for the case that Ã and B̃ are square matrices. For more general Ã and B̃,

Mangasarian [61] provided a method involving successive linearization techniques.

Other methods include a concave minimization approach, given by Mangasarian [60],

and Newton-type methods, proposed by Caccetta et al. [16], Mangasarian [62], and

Zhang and Wei [112]. Some generalizations of AVEs were also proposed. For ex-

ample, Hu et al. [41] considered an AVE involving the absolute value of variables

associated with the second-order cones. Miao et al. [66] investigated an AVE with

the so-called circular cones. In both papers, quasi-Newton based algorithms were

used.

As for AVO problems, Yamanaka and Fukushima [107] proposed to use a branch-

and-bound technique. In the branching procedure, two subproblems are generated

by fixing the sign of a variable as nonnegative or nonpositive. In the bounding pro-

cedure, the dual information are considered. However, to the best of our knowledge,

there are no other methods that can find a global solution of AVO. When comparing

to AVEs, the research associated with AVO problems is insufficient and one of these

reasons is the difficulty for obtaining feasible solutions of the problems. In fact, their

constraints include AVEs, which are known to be NP-hard [61].

Another optimization problem that is related to AVO was recently investigated

by Friedlander et al. [32] and Aravkin et al. [6]. It is called gauge optimization, which

basically consists of an optimization problem with the so-called gauge function.

However, differently from AVO, this problem does not consider multiple constraints,

but only one gauge constraint. In [6,32], the authors showed that the Lagrange dual

of gauge optimization problems can be written in a closed-form by using the polar

of the gauge functions.

In this chapter, similarly to [6,32], we introduce a generalized AVO problem, and

show that it has a wider practical application compared to AVO problems. It is also

more general than gauge optimization problems, because multiple constraints can

be considered here. The generalization is done by replacing the absolute value func-

tions with positively homogeneous functions. Therefore, the problem uses not only

absolute value terms but also, for instance, p-norm functions with p ∈ (0,∞]. This

generalized problem is referred here as positively homogeneous optimization (PHO).
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Here, we introduce the PHO dual problem and compare it with the Lagrange

dual. We also show that the weak duality theorem holds, similarly to the AVO

problems [61]. In addition, we investigate the relation between the positively ho-

mogeneous duality and the Lagrange duality, proving that these dual problems are

equivalent under some conditions. In this case, the Lagrange dual of a positively

homogeneous problem can be written in a closed-form. We point out that the gauge

functions are special cases of positively homogeneous functions, which are not nec-

essarily convex, differently from the gauge. Moreover, the proposed problems here

have linear and positively homogeneous terms in their objective functions and con-

straints, which is different from the problem considered in [6, 32] that has only one

gauge term. Here, we also give some applications for the positively homogeneous

problems, which include p-order cone optimization, sum of norms optimization, and

group Lasso-type optimization problems, and we show that their Lagrange dual can

be written in a closed-form even without convexity assumptions.

This chapter is organized as follows. In Section 3.2.1, we give the definition of

positively homogeneous functions as well as their dual, showing some of their proper-

ties. In Section 3.2.2, we define the PHO problems, and we prove that weak duality

holds. In Section 3.2.3, the relation between the Lagrangian dual and the positively

homogeneous dual is discussed. We give some applications for PHO problems in

Section 3.3.

3.2 Positively homogeneous optimization

problems and their duality

3.2.1 Positively homogeneous functions

In this section, we first introduce the definitions of positively homogeneous and

vector positively homogeneous functions. Then, we define their dual, which will be

used to describe the dual of PHO problems. Moreover, we show some properties

associated with these functions.

Definition 3.1. (Positively homogeneous functions) A function ψ : Rn → R is pos-

itively homogeneous if the following inequality holds:

ψ(λx) = λψ(x) for all x ∈ Rn, λ ∈ R++.
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Definition 3.2. (Vector positively homogeneous functions) A mapping Ψ: Rn →
Rm is a vector positively homogeneous function if the following property holds:

Ψ(x) =

 ψ1(xI1)
...

ψm(xIm)

 for all x ∈ Rn,

where ψi : Rni → R is a positively homogeneous function for all i = 1, . . . ,m, n =

n1 + · · ·+ nm, Ii ⊆ {1, . . . , n} is a set of indices satisfying

Ii ∩ Ij = ∅, i 6= j, and #Ii = ni,

and xIi ∈ Rni is a disjoint subvector of x.

The above definition basically says that Ψ is vector positively homogeneous if

its block components are all positively homogeneous. We now introduce the polar

function of ψ, which can be seen as a generalization of the dual norm. Similarly, we

also define the polar of vector positively homogeneous functions.

Definition 3.3. (Polar positively homogeneous functions) Let ψ : Rn → R be a

positively homogeneous function. Then, ψ◦ : Rn → R ∪ {∞} defined by

ψ◦(y) := sup{xTy | ψ(x) ≤ 1} for all y ∈ Rn

is called the polar positively homogeneous function of ψ.

Note that ψ◦ is convex by definition. In fact, for all y, z ∈ Rn and α ∈ (0, 1), we

have

ψ◦(αy + (1− α)z) = sup{xT (αy + (1− α)z) | ψ(x) ≤ 1}
≤ α sup{xTy | ψ(x) ≤ 1}+ (1− α) sup{xT z | ψ(x) ≤ 1}
= αψ◦(y) + (1− α)ψ◦(z).

Definition 3.4. (Polar vector positively homogeneous functions) Let Ψ: Rn → Rm

be a vector positively homogeneous function. A function Ψ◦ : Rn → Rm is a polar

vector positively homogeneous function associated with Ψ if the following property

holds:

Ψ◦(y) =

 ψ◦1(yI1)
...

ψ◦m(yIm)

 , i = 1, . . . ,m, for all y ∈ Rn

where ψ◦i : Rni → R is the polar of positively homogeneous function ψi for each

i = 1, . . .m.
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In this paper, we assume two conditions for positively homogeneous functions.

Assumption 3.1. Let Ψ: Rn → Rm be a vector positively homogeneous function as

in Definition 3.2. Then, for all i = 1, . . . ,m, the positively homogeneous function

ψi satisfies the following conditions:

1. ψi(xIi) ≥ 0 for all xIi ∈ Rni,

2. If xIi 6= 0, then ψi(xIi) > 0.

From the definition of positively homogeneous functions, we observe that ψi(0) =

0. In fact, if x = 0 then 0 = ψ(λx)−λψ(x) = (1−λ)ψi(0) for all λ ∈ R++. Moreover,

the second condition of the above assumption shows that zero is the only point that

satisfies ψi(x) = 0. We also observe that if ψi is taken as the usual vector norm,

then it satisfies these assumptions. Note that under the above assumption, the polar

function ψ◦i always takes finite values.

We now show an important property satisfied by vector positively homogeneous

functions and their polar.

Proposition 3.1. Let Ψ and Ψ◦ be a vector positively homogeneous function and

its polar, respectively. Suppose that Assumption 3.1 holds. Then, the following

inequalities hold:

Ψ◦(y) ≥ 0,

Ψ(x)TΨ◦(y) ≥ xTy

for any x, y ∈ Rn.

Proof. For simplicity, we take an arbitrary index i and denote ψi and xIi as ψ and x,

respectively. From Definition 3.1, we have ψ(0) = 0. Using this result and Definition

3.3, we obtain

ψ◦(y) = sup{xTy | ψ(x) ≤ 1} ≥ 0 for all y ∈ Rn.

This shows that Ψ◦(y) ≥ 0 for all y ∈ Rn from Definition 3.4.

If x = 0, then the second inequality of this proposition clearly holds. If x 6= 0,

then ψ(x) > 0 from Assumption 3.1 and so

ψ

(
x

ψ(x)

)
=

1

ψ(x)
ψ(x) = 1
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holds once again from Definition 3.1. Therefore, we obtain

ψ◦(y) ≥
(

x

ψ(x)

)T
y for all y ∈ Rn.

Then, for all x, y ∈ Rn, we have

ψ(x)ψ◦(y) ≥ xTy,

which indicates that

Ψ(x)TΨ◦(y) =
m∑
i=1

ψIi(x)ψ◦Ii(y) ≥
m∑
i=1

xTIiyIi = xTy.

3.2.2 Positively homogeneous optimization problems

We consider the following positively homogeneous optimization (PHO) problem:

min cTx+ dTΨ(x)

s.t. Ax+BΨ(x) = b,

Hx+KΨ(x) ≥ p,

(PPHO)

where c ∈ Rn, d ∈ Rm, b ∈ Rk, p ∈ R`, A ∈ Rk×n, B ∈ Rk×m, H ∈ R`×n and

K ∈ R`×m are given constant vectors and matrices, and Ψ: Rn → Rm is a vector

positively homogeneous function satisfying Assumption 3.1.

Now we give the Lagrangian dual of the problem (PPHO) as follows:

sup
u
v≥0

ω(u, v), (DLPHO)

where ω : Rk × R` → R is given by

ω(u, v) := inf
x
L(x, u, v), (3.2.1)

and L : Rn × Rk × R` → R is the Lagrangian function of (PPHO) defined by

L(x, u, v) := cTx+ dTΨ(x) + uT (b− Ax−BΨ(x)) + vT (p−Hx−KΨ(x))

= bTu+ pTv − (ATu+HTv − c)Tx+ (d−BTu−KTv)TΨ(x),

with u ∈ Rk and v ∈ R` as the Lagrange multipliers associated with the equality

and inequality constraints, respectively. Notice that it is difficult to write concretely
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the objective function of the problem (DLPHO) because it is, in general, not convex

with respect to x.

To obtain a closed-form dual problem, we consider a convex relaxation of the

original problem (PPHO) and its Lagrangian dual. For simplicity, we investigate

the case where Ψ(x) = |x| := (|x1|, . . . , |xn|)T , and (PPHO) has a linear objective

function and only inequality constraints. More precisely, we analyze the following

problem:

min cTx

s.t. Ax+B|x| ≥ b.
(Pa)

If we set x = x+ − x− and |x| = x+ + x−, where x+
i = max{0, xi} and x−i =

max{0,−xi}, then we can write (Pa) as

min [cT | − cT ]

[
x+

x−

]

s.t. [A| − A]

[
x+

x−

]
+ [B|B]

[
x+

x−

]
≥ b,

which is equivalent to the following problem:

min [cT | − cT ]

[
y1

y2

]

s.t. [A| − A]

[
y1

y2

]
+ [B|B]

[
y1

y2

]
≥ b,

y1, y2 ≥ 0,

yT1 y2 = 0,

where y1, y2 ∈ Rn. Notice that the above problem is not convex due to the com-

plementarity constraint yT1 y2 = 0. Therefore, we remove it from the problem and

obtain the following relaxed one:

min [cT | − cT ] y

s.t. [A+B| − A+B] y ≥ b,

y ≥ 0,

where y = (y1, y2)T . This problem is just a linear programming, then its Lagrangian
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dual can be written easily as

max bTu

s.t.

[
AT +BT

−AT +BT

]
u ≤

[
c

−c

]
,

u ≥ 0.

Observing that the first constraint is equivalent to |ATu− c|+BTu ≤ 0, we finally

obtain the following closed-form dual problem:

max bTu

s.t. |ATu− c|+BTu ≤ 0,

u ≥ 0.

(Da)

In fact, the problem (Da) is the AVO dual of (Pa) proposed by Mangasarian in [61],

and the weak duality clearly holds in this case.

Let us return to the general problem (PPHO). Inspired by the above AVO dual

problem (Da), we consider the following problem as the positively homogeneous dual

problem:

max bTu+ pTv

s.t. Ψ◦(ATu+HTv − c) +BTu+KTv ≤ d,

v ≥ 0,

(DPHO)

where Ψ◦ is the polar vector positively homogeneous function associated with Ψ.

Note that (DPHO) is a convex optimization problem since each component ψ◦i of Ψ◦

is a convex function.

The theorem below shows that the proposed dual problem (DPHO) is reasonable,

in the sense that the weak duality holds between (PPHO) and (DPHO).

Theorem 3.1. (Weak duality) For problems (PPHO) and (DPHO), the following

inequality holds:

cTx+ dTΨ(x) ≥ bTu+ pTv

for all feasible points x ∈ Rn and (u, v) ∈ Rk × R` of (PPHO) and (DPHO), respec-

tively.

Proof. Let x ∈ Rn and (u, v) ∈ Rk × R` be feasible for (PPHO) and (DPHO), respec-

tively. Then, we have

cTx+ dTΨ(x) ≥ cTx+ (Ψ◦(ATu+HTv − c) +BTu+KTv)TΨ(x)

= cTx+ Ψ◦(ATu+HTv − c)TΨ(x) + uTBΨ(x) + vTKΨ(x),
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where the inequality holds from the first constraint of (DPHO) and the nonnegativity

of Ψ. From the second inequality of Proposition 3.1, we also obtain:

cTx+ dTΨ(x) ≥ cTx+ (ATu+HTv − c)Tx+ uTBΨ(x) + vTKΨ(x)

= uT (Ax+BΨ(x)) + vT (Hx+KΨ(x)).

Finally, the constraints of (PPHO) gives

cTx+ dTΨ(x) ≥ bTu+ pTv,

which completes the proof.

The weak duality theorem itself is a powerful theoretical result, but it does not

mention how large the duality gap between (PPHO) and (DPHO) is. And the duality

gap can be large depending on problems, then the dual problem (DPHO) may be

useless. Therefore, in the next section, we investigate the relation between the

Lagrangian dual problem (DLPHO) and the one (DPHO) proposed here. As a result,

surprisingly, we find that (DLPHO) and (DPHO) are equivalent.

3.2.3 The positively homogeneous duality and

the Lagrangian duality

In this section, we consider the relation between the positively homogeneous duality

and the more traditional Lagrangian duality of problem (PPHO), investigating con-

ditions under which the Lagrangian dual problem (DLPHO) and the positively homo-

geneous dual problem (DPHO) are equivalent. Notice that the equivalence means the

optimal values and solutions of (DPHO) and (DLPHO) are the same. Recalling (3.2.1),

we first show a condition that makes ω(ū, v̄), the objective function of (DLPHO),

unbounded from below for some (ū, v̄).

Lemma 3.1. Let ψ◦i be the dual of the positively homogeneous functions ψi for

i = 1, . . . ,m. Suppose that Assumption 3.1 holds. Also, assume that (ū, v̄) with

v̄ ≥ 0 is not a feasible solution of problem (DPHO). Then, ω(ū, v̄) is unbounded from

below.

Proof. If (ū, v̄) with v̄ ≥ 0 is not feasible for problem (DPHO), then there exists an

index i0 satisfying

ψ◦i0(αIi0 ) > βi0 ,
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where α := AT ū+HT v̄ − c ∈ Rn, and β := d−BT ū−KT v̄ ∈ Rm.

We now denote ᾱ and ᾱ(λ) as follows:

ᾱ := (αI1 , αI2 , . . . , αIi0 , . . . , αIm) ∈ Rn,

ᾱ(λ) := (αI1 , αI2 , . . . , λx̂, . . . , αIm) ∈ Rn,

where λ ∈ R++ and x̂ ∈ Rni0 is defined as the supreme point of the following

problem:

sup{xTαIi0 | ψi0(x) ≤ 1}.

From the definition of x̂, we obtain ψi0(x̂) ≤ 1. Then, from Definition 3.3, we have

x̂TαIi0 = ψ◦i0(αIi0 ) ≥ ψi0(x̂)ψ◦i0(αIi0 ).

The above equality and the definition of the Lagrangian function give

L(ᾱ(λ), ū, v̄) = bT ū+ pT v̄ − ᾱT ᾱ(λ) + βTΨ(ᾱ(λ))

= bT ū+ pT v̄ −
∑
i 6=i0

αTIiαIi − λx̂
TαIi0

+
∑
i 6=i0

βiψi(αIi) + βi0ψi0(λx̂)

= γ − λx̂TαIi0 + βi0ψi0(λx̂)

≤ γ − λψi0(x̂)ψ◦i0(αIi0 ) + βi0ψi0(λx̂),

where γ := bT ū+ pT v̄ −
∑

i 6=i0 α
T
Ii
αIi +

∑
i 6=i0 βiψi(αIi) ∈ R is constant with respect

to λ. Moreover, Definition 3.1 shows that

L(ᾱ(λ), ū, v̄) = γ − λψi0(x̂)ψ◦i0(αIi0 ) + λβi0ψi0(x̂)

= γ + λψi0(x̂)(βi0 − ψ◦i0(αIi0 ))

≤ γ + λ(βi0 − ψ◦i0(αIi0 )).

Therefore, L(ᾱ(λ), ū, v̄) converges to minus infinity when λ increases. Finally, if we

set xk = ᾱ(λk) where λk → +∞ as k → +∞, then L(xk, ū, v̄)→ −∞, which shows

that ω(ū, v̄) is unbounded from below.

The above lemma indicates that a point (ū, v̄) is a feasible solution of (DPHO) if

ω(ū, v̄) with v̄ ≥ 0 is bounded.

We now show that the positively homogeneous dual problem (DPHO) and the

Lagrangian one (DLPHO) are equivalent under some conditions.
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Lemma 3.2. Suppose that Assumption 3.1 holds. Assume also that the positively

homogeneous dual problem (DPHO) has a feasible solution (ū, v̄) ∈ Rk×R`, and that

there exists x∗ ∈ Rn satisfying the following equality:

(d−BT ū−KT v̄)TΨ(x∗)− (AT ū+HT v̄ − c)Tx∗ = 0. (3.2.2)

Then, the positively homogeneous dual problem (DPHO) and the Lagrangian dual

problem (DLPHO) have the same optimal value.

Proof. From Lemma 3.1, the function ω is unbounded from below if there exists

an index i0 such that ψ◦i0(αIi0 ) > βi0 , where α := AT ū + HT v̄ − c ∈ Rn, and

β := d−BT ū−KT v̄ ∈ Rm. Therefore, the problem (DLPHO) is equivalent to

sup ω(u, v)

s.t. Ψ◦(ATu+HTv − c) ≤ d−BTu−KTv,

v ≥ 0.

(D̂LPHO)

Let (ū, v̄) ∈ Rk × R` be the feasible solution of (D̂LPHO). From the definition of the

Lagrangian function, we obtain:

L(x, ū, v̄) = cTx+ dTΨ(x) + ūT (b− Ax−BΨ(x)) + v̄T (p−Hx−KΨ(x))

= bT ū+ pT v̄ − (AT ū+HT v̄ − c)Tx+ (d−BT ū−KT v̄)TΨ(x).

Then, taking x∗ ∈ Rn that satisfies (3.2.2), we have

L(x∗, ū, v̄) = bT ū+ pT v̄.

Notice that x∗ is the solution of the problem

inf
x
L(x, ū, v̄),

because L(x, ū, v̄) ≥ bT ū + pT v̄ holds from Proposition 3.1. Therefore, (D̂LPHO) can

be described as follows:

sup bTu+ pTv

s.t. Ψ◦(ATu+HTv − c) ≤ d−BTu−KTv,

v ≥ 0,

which implies that the optimal value of the above problem is the same as that of

the positively homogeneous dual problem (DPHO).



40 CHAPTER 3. DUALITY OF PHO PROBLEMS

As a consequence of the above lemma, we obtain the following result.

Theorem 3.2. Suppose that the Lagrangian dual problem (DLPHO) has a feasible

solution. Assume also that the vector positively homogeneous function Ψ satisfies

Assumption 3.1. Then, the positively homogeneous dual problem (DPHO) and the

Lagrangian dual problem (DLPHO) have the same optimal value and solutions.

Proof. From Definition 3.1 and Assumption 3.1, we have Ψ(0) = 0. It means that

equation (3.2.2) holds at x∗ = 0. Thus, from Lemma 3.2, the problems (DPHO) and

(DLPHO) have the same optimal value.

Moreover, we denote SD and SDL as the sets of optimal solutions of prob-

lems (DPHO) and (DLPHO), respectively. Let us take (u∗, v∗) ∈ SD. Then, it is

clearly feasible for (DLPHO). It follows from Theorem 3.2 that the optimal values

of (DPHO) and (DLPHO) are the same, which is bTu∗ + pTv∗, and so (u∗, v∗) ∈ SDL .

Conversely, let us take (ū, v̄) ∈ SDL . Then, the point (ū, v̄) is feasible for (DLPHO).

Note that Lemma 3.1 indicates that if (u, v) is feasible for (DLPHO) and the objec-

tive function value of (DLPHO) at the point (u, v) is finite, then it is also feasible

for (DPHO). Thus, (ū, v̄) is feasible for (DPHO). Once again from Theorem 3.2, the

optimal values of (DPHO) and (DLPHO) are the same, which means that (ū, v̄) ∈ SD.

Consequently, we obtain SD = SDL .

The above theorem shows that the Lagrangian dual problem (DLPHO) can be

written in a closed-form when the function Ψ is positively homogeneous and satisfies

Assumption 3.1. The paper [61] does not show that the same property holds for the

AVO problem. We now give it as a direct consequence of Theorem 3.2.

Collolary 3.1. If the dual of an AVO problem has a feasible solution, then its

optimal value and optimal solutions are the same as those of the Lagrangian dual

problem (DLPHO).

Proof. It holds from Theorem 3.2 and the fact that the absolute value function is

positively homogeneous and satisfies Assumption 3.1.

Collolary 3.2. If the optimal values of an AVO primal problem and its Lagrangian

dual problem (DLPHO) are the same, then the strong duality holds between the AVO

primal and the AVO dual problem.

Proof. It holds straightforward from Corollary 3.1.
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From the results in Section 4, the positively homogeneous dual can be a tool for

investigating the Lagrangian dual. Let us consider the following integer problem:

min ‖Ax− b‖2

s.t. |x| = e,
(Pb)

where A and b are given matrix and vector and e is a vector of ones. The positively

homogeneous dual of (Pb) can be written as follows:

max eTu1 + bTu2

s.t.

 I −AT

I AT

0 0

( u1

u2

)
+

 0 0

0 0

0 1

( ‖u1‖2

‖u2‖2

)
=

 0

0

1

 . (Db)

By taking the positively homogeneous dual of (Db) we obtain

min ‖A(y − z)− b‖2

s.t. y + z = e

y, z ≥ 0,

(P̂b)

On the other hand, the equivalent reformulation of problem (Pb) is as follows:

min ‖A(x+ − x−)− b‖2

s.t. x+ + x− = e,

where x+
i = max{0, xi} and x−i = max{0,−xi}. The above problem is further

equivalent to

min ‖A(y − z)− b‖2

s.t. y + z = e

y, z ≥ 0

yT z = 0.

(P′b)

The above result shows that problem (P̂b) is obtained from problem (P′b) by remov-

ing the complementarity constraint xTy = 0. It means that the relaxed problem (P̂b)

can be obtained by using the positively homogeneous dual, which is actually the La-

grangian dual, and it is the limitation of using the Lagrangian dual. On the other

hand, we see the potential of the Lagrange dual from the following one-dimensional

nonconvex problems:

min x− 2|x|
s.t. |x| ≤ 1,

(Pc1)
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min x+ 2|x|
s.t. |x| ≥ 1.

(Pc2)

Problem (Pc1) has a nonconvex objective function and its optimal value is −3 at

x∗ = −1, and problem (Pc2) has a nonconvex constraint and its optimal value is 1 at

x∗ = −1. The positively homogeneous dual, which is equivalent to the Lagrangian

dual, of each problem can be written as

max −v
s.t. v ≥ 3,

(Dc1)

max v

s.t. v ≥ 0

v ≤ 1.

(Dc2)

Clearly, the optimal values of problems (Dc1) and (Dc2) are −3 and 1, respectively,

and no duality gap exists. The above result indicates that we may obtain zero duality

gap between a nonconvex problem and its Lagrangian dual. For this reason, we

expect that the positively homogeneous dual supports the potential of the Lagrange

dual for nonconvex problems.

3.3 Examples of positively homogeneous

optimization problems

In this section, we present several applications that are formulated as PHO, and

show their closed-form dual problems.

First, we observe that any p-norm function with p ∈ [1,∞) is positively homo-

geneous. So, if ψ is the p-norm, then ψ◦ becomes the q-norm, where 1/p+ 1/q = 1.

Therefore, if ψ is taken as ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞, then ψ◦ becomes ‖ · ‖∞, ‖ · ‖2, ‖ · ‖1,

respectively. Moreover, in the case that p ∈ (0, 1), the dual function ψ◦ is equal to

‖ · ‖∞ for all p ∈ (0, 1), which is proved in Proposition 6 of Appendix A. From the

result, we can consider any p-norm functions as ψ in PHO problems. And, even if

such functions are nonconvex with p ∈ (0, 1), the Lagrangian dual problem can be

written in a closed-form from Theorem 3.2.

We now show some positively homogeneous problems using these p-norm func-

tions. The first example is the so-called linear second-order cone optimization prob-

lem [4], which is one of the famous convex optimization problems.
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Example 3.1. Let x = (x1, x2)T ∈ R×Rn−1. Then, we consider the linear second-

order cone optimization problem written by

min cTx

s.t. Ax = b,

x1 − ‖x2‖2 ≥ 0,

(P1)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. The above problem can be written in PHO

form as

min cTx+ 0TΨ(x)

s.t. Ax+ 0Ψ(x) = b,

Hx+KΨ(x) ≥ 0,

with H = (1, 0, . . . , 0) ∈ R1×n, K = (0,−1) ∈ R1×2 and Ψ: Rn → R2,Ψ(x) =

(|x1|, ‖x2‖2)T . Then, recalling (DPHO), its dual problem is given by

max bTu

s.t. Ψ◦(ATu+HTv − c) +KTv ≤ 0,

v ≥ 0,

where Ψ◦ is identical to Ψ in this case. Then, from the definition of Ψ, we have

max bTu

s.t. |(ATu)1 + v − c1| ≤ 0,

‖(ATu)2 − c2‖2 ≤ v,

v ≥ 0,

with (ATu)1 as the first component of ATu, (ATu)2 is the rest of it, and c =

(c1, c2)T ∈ R× Rn−1. The first constraint of the above problem shows that

v = c1 − (ATu)1,

and v ≥ 0 automatically holds from the second constraint. Then, we obtain

max bTu

s.t. ‖(ATu)2 − c2‖2 ≤ c1 − (ATu)1

as the dual problem of (P1). In fact, the above problem is the standard dual of the

linear second-order cone optimization problem [4].
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Although we use the 2-norm in the above example, any p-norm function with

p ∈ (0,∞] can be considered. In this case, if p ∈ [1,∞], then the primal and dual

problems are p-order cone and q-order cone optimization problems, respectively,

where 1/p+ 1/q = 1 [106]. If p ∈ (0, 1), then the dual is ∞-order cone optimization

problem.

In the next example, we consider a gauge optimization problem, which is also a

convex problem with multiple gauge functions in its objective and constraint func-

tions. Here, we recall that f is a gauge function if and only if it is nonnegative,

convex, positively homogeneous and satisfies f(0) = 0 [30]. For such a problem, we

introduce its dual in PHO form.

Example 3.2. Let x ∈ Rn. We consider the following problem:

min
s∑
i=1

αifi(Aix− ai)

s.t. gj(Bjx− bj) ≤ βj, j = 1, . . . , t,

(P2)

where αi, βj ∈ R+, Ai ∈ Rmi×n, Bj ∈ Rkj×n, ai ∈ Rmi and bj ∈ Rkj are given for

all i = 1, . . . , s and j = 1, . . . , t, and fi : Rmi → R and gj : Rkj → R are gauge

functions. Letting yi := Aix− ai and zj := Bjx− bj, (P2) can be written as

min
s∑
i=1

αifi(yi)

s.t. gj(zj) ≤ βj, j = 1, . . . , t,

Aix− yi = ai, i = 1, . . . , s,

Bjx− zj = bj, j = 1, . . . , t.

The above problem does not have a gauge function defined for the variable x, so we

introduce such a gauge function x 7→ ψ(x) and rewrite the problem in the following

way:

min 0× ψ(x) +
s∑
i=1

αifi(yi) + 0×
t∑

j=1

gj(zj)

s.t. 0× ψ(x) ≤ 0,

0× fi(yi) ≤ 0, i = 1, . . . , s,

gj(zj) ≤ βj, j = 1, . . . , t,

Aix− yi = ai, i = 1, . . . , s,

Bjx− zj = bj, j = 1, . . . , t.

Note that ψ : Rn → R is a dummy gauge function with x as its domain.
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Let

x̂ := (x, y1, . . . , ys, z1, . . . , zt) ∈ Rn+
∑s

i=1mi+
∑t

j=1 kj

and

Ψ(x̂) := (ψ(x), f1(y1), . . . , fs(ys), g1(z1), . . . , gt(zt))
T .

Then the above problem can be rewritten as

min dTΨ(x̂)

s.t. KΨ(x̂) ≤ p,

Âx̂ = b̂,

where d = (0, α1, . . . , αs, 0, . . . , 0)T ∈ R1+s+t, p = (0, . . . , 0, β1, . . . , βt)
T ∈ R1+s+t,

K =

[
0 0

0 Et

]
, Â =



A1 −Em1

...
. . . 0

As −Ems

B1 −Ek1
... 0

. . .

Bt −Ekt


,

and

b̂ =



a1

...

as

b1

...

bt


.

Moreover, its positively homogeneous dual problem is given by

max b̂Tu− pTv
s.t. Ψ◦(ÂTu)−KTv ≤ d,

v ≥ 0.

For simplification, let u = (u11, . . . , u1s, u21, . . . , u2t)
T with u1i ∈ Rmi , i = 1, . . . , s
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and u2j ∈ Rkj , j = 1, . . . , t. Then the above problem is rewritten as

max
s∑
i=1

aTi u1i +
t∑

j=1

bTj u2j −
t∑

`=1

β`v1+s+`

s.t.
s∑
i=1

ATi u1i +
t∑

j=1

BT
j u2j = 0,

f ◦i (−u1i) ≤ αi, i = 1, . . . , s,

g◦j (−u2j) ≤ v1+s+j, j = 1, . . . , t.

(D2)

Notice that the last constraint implies v ≥ 0 because g◦j is also a gauge function.

Moreover, (D2) does not include the polar function ψ◦ of the dummy gauge function

ψ.

Note that the objective and constraint functions fi and gj in the above exam-

ple can be more general positively homogeneous functions. Thus, we can consider

problems that have different positively homogeneous functions in their objective and

constraint functions.

The next example is the group Lasso-type problems [65, 111], which is a special

case of (P2) and consist of unconstrained minimizations of the sum of certain norms.

Such problems have many applications, in particular they appear in compressed

sensing area [24,88], where the sparsity of solutions are important. As an example,

we consider a primal problem with p1-norm and p2-norm where p1, p2 ∈ R+, which

are used in the regularization terms.

Example 3.3. Let x ∈ Rn and p1, p2 ∈ R+. We consider the following problem:

min ‖Ax− b‖2 + λ1

m′∑
i=1

‖xIi‖p1 + λ2

m∑
i=m′+1

‖xIi‖p2 (P3)

where λ1, λ2 ∈ R+, b ∈ Rm, A ∈ Rm×n and 0 < m′ < m.

Notice that the first term of the objective function of group Lasso-type problems

are usually the square of 2-norm functions. However, it is not positively homoge-

neous, so we removed the square and considered just the 2-norm functions.

We obtain the above problem by setting, in (P2), s = m+ 1,

αi =


λ1, if i = 1, . . . ,m′,

λ2, if i = m′ + 1, . . . ,m,

1, if i = m+ 1,
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Ai =

{
EIi , if i = 1, . . . ,m,

A, if i = m+ 1,

where EIi is a submatrix of En with Ej, j ∈ Ii as its rows,

ai =

{
0, if i = 1, . . . ,m,

b, if i = m+ 1,

and

fi(·) =


‖ · ‖p1 , if i = 1, . . . ,m′,

‖ · ‖p2 , if i = m′ + 1, . . . ,m,

‖ · ‖2, if i = m+ 1.

Then, recalling (P2) and (D2), the dual of (P3) can be written as

max bTu1(m+1)

s.t.
m∑
i=1

ET
Ii
u1i + ATu1(m+1) = 0,

‖ − u1i‖q1 ≤ λ1, i = 1, . . . ,m′,

‖ − u1i‖q2 ≤ λ2, i = m′ + 1, . . . ,m,

‖ − u1(m+1)‖2 ≤ 1,

where qi, i = 1, 2 are obtained by

qi =


pi

pi − 1
, if pi > 1,

∞, if pi ∈ (0, 1],
(3.3.1)

from Proposition 3.2 of Appendix A. Notice that the first equality constraint can be

rewritten as

u1i + (AT )Iiu1(m+1) = 0, i = 1, . . . ,m.

Then, the above problem is described as

max bTu

s.t. ‖(AT )Iiu‖q1 ≤ λ1, i = 1, . . . ,m′,

‖(AT )Iiu‖q2 ≤ λ2, i = m′ + 1, . . . ,m,

‖ − u‖2 ≤ 1,

where we denote u1(m+1) as u for simplicity.

The next example is also a Lasso-type problem. In this case, the objective

function is a gauge, because the sum of gauge functions is also gauge. In order to
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obtain the dual of a gauge optimization problem, the polar of the objective function

should be considered [6,32]. However, it may be difficult to obtain the polar of a sum

of gauge functions. To overcome this drawback, we use here the PHO framework.

Example 3.4. Let x ∈ Rn and p1, p2 ∈ R+. We consider the following problem:

min λ1‖x‖p1 + λ2‖x‖p2
s.t. ‖Ax− b‖2 ≤ β,

(P4)

where λ1, λ2, β ∈ R+, A ∈ Rm×n and b ∈ Rm. The above problem can be obtained

if we set, in (P2), s = 2, t = 1, α1 = λ1, α2 = λ2, A1 = A2 = En, a1 = a2 = 0,

B1 = A, b1 = b, f1(·) = ‖ · ‖p1, f2(·) = ‖ · ‖p2, g1(·) = ‖ · ‖2. Then, recalling (D2),

the dual of (P4) is written by

max bTu21 − βv4

s.t. u11 + u12 + ATu21 = 0,

‖ − u11‖q1 ≤ λ1,

‖ − u12‖q2 ≤ λ2,

‖ − u21‖ ≤ v4,

which is finally rewritten as

max bTu2 − βv
s.t. ‖u1 + ATu2‖q1 ≤ λ1,

‖ − u1‖q2 ≤ λ2,

‖ − u2‖ ≤ v,

where we set u12, u21 and v4 as u1, u2 and v, respectively, and q1 and q2 are defined

in (3.3.1).

In order to control the sparsity of the solutions of the above Lasso-type problems,

we can use any combination of p-norm functions, with p ∈ (0,∞], as the regular-

ization terms. Especially, it is reported that the p-norm functions with p ∈ (0, 1) in

(P3) is useful because they give sparser solutions than 1-norm functions [17,18,69].

We now give another example: the sum of norms optimization problems, which

are generally nonconvex. Such problems have applications, for example, in facility

location, where locations of new facilities should be decided by analyzing the distance

between the new and the existing facilities [100]. Moreover, the problem of the

following example can be applied not only to the minimization of the distance but

also maximization of it by taking the constant λi as −λi. Such a situation can be

found, for instance, in locating obnoxious facilities in residential areas.
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Example 3.5. Let x ∈ Rn. We consider the following problem:

min
s∑
i=1

λifi(Aix− ai),

s.t. Bx ≤ b,

(P5)

where λi ∈ R, Ai ∈ Rmi×n, B ∈ Rk×n, ai ∈ Rmi and b ∈ Rk are given, and fi : Rmi →
R, i = 1, . . . , s are positively homogeneous functions. We now introduce its positively

homogeneous dual by taking almost the same procedure as in Example 3.2. Let

yi := Aix− ai, then (P5) is equivalent to

min
s∑
i=1

λifi(yi)

s.t. Aix− yi = ai, i = 1, . . . s,

Bx ≤ b.

By introducing additional constraints, we consider the following problem:

min
s∑
i=1

λifi(yi)

s.t. Aix− yi = ai, i = 1, . . . s,

Bx ≤ b,

cifi(yi) ≤ di, i = 1, . . . s,

where ci and di are strictly positive constants. Notice that the additional constraints

ensure the boundedness of the each term of the objective function especially when λi

is strictly negative. Without such constraints, (P5) can be unbounded depending on

the linear constraint, and then its dual becomes infeasible. Note that the additional

constraints do not change solutions, when we choose ci and di so that the constraint

cifi(yi) ≤ di will include reasonable solutions.

Let x̂ := (x, y1, . . . , ys)
T ∈ Rn+

∑s
i=1mi and

Ψ(x̂) := (ψ(x), f1(y1), . . . , fs(ys))
T ∈ R1+s,

where ψ(·) is a dummy positively homogeneous function. Then the above problem

can be described as
min dTΨ(x̂)

s.t. Âx̂ = â,

Hx̂+KΨ(x̂) ≥ p,
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where d = (0, λ1, . . . , λs)
T , â = (a1, . . . , as)

T , p = (−b,−d1, . . . ,−ds)T ,

Â =

 A1 −Em1 0
...

. . .

As 0 −Ems

 , H =

[
−B 0

0 0

]
,

and

K =


0 0

−c1

0
. . .

−cs

 .
Then, recalling the positively homogeneous dual (DPHO), the dual of the above prob-

lem can be written as

max âTu+ pTv

s.t. Ψ◦(ÂTu+HTv) ≤ d−KTv,

v ≥ 0,

which is rewritten by

max
s∑
i=1

aTi ui − bTv1 −
s∑
i=1

dTi vi+1

s.t.
s∑
i=1

ATi ui −BTv1 = 0,

f ◦i (−ui) ≤ λi + ci, , i = 1, . . . s,

v ≥ 0,

where v = (v1, . . . , vs+1)T .

3.4 Conclusion

In this chapter, we proposed optimization problems with positively homogeneous

functions, which we call positively homogeneous optimization problems. We also

introduced their dual problems and showed the weak duality theorem between these

problems. Moreover, we gave sufficient conditions for the equivalency between the

proposed dual and the Lagrangian dual problems. Finally, we presented some exam-

ples of positively homogeneous problems to show their value in real-world applica-

tions. One natural future work will be to propose methods that obtain approximate

solutions of positively homogeneous optimization problems. We believe the theoret-

ical results described here are essential for that.
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3.5 Appendix

The following proposition shows that the dual of the `p-norm function is the `∞-norm

even when p is less than 1.

Proposition 3.2. Suppose that p ∈ (0, 1). Then, the dual of the p-norm function

is equal to the ∞-norm.

Proof. Let y ∈ Rn be an arbitrary vector. If y = 0, this proposition clearly holds.

If y 6= 0, from Definition 3.3, we obtain

‖y‖◦p = sup{xTy | ‖x‖p ≤ 1}
≤ sup{|xTy| | ‖x‖p ≤ 1}

≤ sup

{ n∑
i=1

|xi||yi| | ‖x‖p ≤ 1

}

≤ max
j
|yj|

(
sup

{ n∑
i=1

|xi| | ‖x‖p ≤ 1

})

= max
j
|yj|
(

sup{‖x‖1 | ‖x‖p ≤ 1}
)
.

Since p ∈ (0, 1), we note that ‖x‖1 ≤ ‖x‖p holds [51]. Then, we have

‖y‖◦p ≤ max
j
|yj|
(

sup{‖x‖p | ‖x‖p ≤ 1}
)

= max
j
|yj| = ‖y‖∞.

Now, take an arbitrary i0 ∈ argmaxi|yi|, and define x̄i as follows:

x̄i =

{
sign(yi), if i = i0,

0, otherwise,

where

sign(yi) =


1, if yi > 0,

0, if yi = 0,

−1, if yi < 0.

Then, ‖x̄‖p = 1 and we have

‖y‖◦p = sup{xTy | ‖x‖p ≤ 1} ≥ x̄Ty = max
i
|yi| = ‖y‖∞,

which completes the proof.
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Chapter 4

Duality of optimization problems

with gauge functions

4.1 Introduction

The gauge optimization (GO) problem is in general described as follows [6, 30–32]:

min
x∈X

g(x), (PGO)

where X ⊆ Rn is a closed convex set and g : Rn → R∪{∞} is a gauge function. Here,

we say that g is a gauge function if g is convex, nonnegative, positively homogeneous

and satisfies g(0) = 0. Note that GO problems are convex because gauge functions

are also convex. Freund [30] first introduced (PGO), proposed a dual formulation

called the gauge dual (which differs from the usual Lagrangian dual), and proved

some duality results. He also showed that the class of gauge optimization problems

includes the well-known linear programming, p-norm optimization problems with

p ∈ [1,∞], and convex quadratic optimization problems [30].

Recently, Friedlander et al. [32] considered a specific form of the GO problem in

which X is described as X := {x ∈ Rn | h(b−Ax) ≤ σ}, where h is a gauge function,

σ is a scalar, b ∈ Rm and A ∈ Rm×n. They gave a closed form of its gauge dual.

Afterwards, Friedlander and Macêdo [31] applied this gauge duality to solve low-

rank spectral optimization problems. Aravkin et al. [6] presented some theoretical

results for the GO problem. In particular, they gave optimality conditions and a

way to recover a primal solution from the gauge dual. In that paper, they also

extended their results to a more general convex optimization problem, where g and

53
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h were not necessarily gauge functions. In addition, they proposed the perspective

duality, which is an extension of the gauge duality.

The gauge optimization problems in these previous works [6, 30–32] do not in-

volve linear terms in their objective functions. Therefore, these GO frameworks can-

not directly handle linear conic optimization problems. More recently, Yamanaka

and Yamashita [108] considered the following positively homogeneous optimization

(PHO) problem:

min cTx+ dTΨ(x)

s.t. Ax+BΨ(x) = b,

Hx+KΨ(x) ≤ p,

x ∈ domΨ,

(PPHO∗)

where c ∈ Rn, d ∈ Rm, b ∈ Rk, p ∈ R`, A ∈ Rk×n, B ∈ Rk×m, H ∈ R`×n and

K ∈ R`×m are given constant vectors and matrices, Ψ: Rn → (R∪{∞})m is defined

by Ψ(·) := (ψ1(·), . . . , ψm(·))T where each function ψi : Rni → R,
∑m

i=1 ni = n

is nonnegative and positively homogeneous, and T denotes transpose. Moreover,

domΨ denotes the effective domain of Ψ, defined by domΨ := {x ∈ Rn | ψi(xi) <
∞, i = 1, . . . ,m} where xi ∈ Rni is a disjoint subvector of x. Problem (PPHO∗) is

not necessarily convex, and it includes (PGO) with X = {x ∈ Rn | h(b − Ax) ≤ σ}
since gauge functions are nonnegative and positively homogeneous. Note that PHO

can handle linear terms in its objective and constraint functions. Here, we explicitly

include x ∈ domΨ in the constraints of (PPHO∗). This is because we want to consider

more general PHO problems than the ones used in the previous work [108], where

domΨ = Rn is assumed. Then we can adopt the indicator function of some cones as

ψi. We will later show that the same results as in [108] can be obtained even when

domΨ 6= Rn.

When ni = 1 and ψi(xi) = |xi|, (PPHO∗) is reduced to the absolute value op-

timization problem proposed by Mangasarian [61]. The other examples of PHO

problems are p-order cone optimization problems [4, 106] with p ∈ (0,∞], group

Lasso-type problems [65,111], and sum of norms optimization problems [100].

Yamanaka and Yamashita [108] proposed a closed-form dual formulation of the

PHO, which they call the positively homogeneous dual, and showed that weak du-

ality holds. They also investigated the relation between the positively homogeneous

dual and the Lagrangian dual of (PPHO∗), and proved that those problems are equiv-

alent under some conditions. The result indicates that the Lagrangian dual of a PHO

problem can be written in closed form even if it is nonconvex. Although the PHO
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problem has the above nice features, the theoretical analysis is still insufficient. In

particular, the paper [108] does not discuss strong duality and primal recovery.

In this paper, we mainly study the following gauge optimization problem with

possible linear functions:

min cTx+ dTG(x)

s.t. Ax = b,

Hx+KG(x) ≤ p,

x ∈ domG,

(PGO∗)

where c, d, b, p, A,H,K are the same as in (PPHO∗), and G : Rn → (R ∪ {∞})m is

defined by G(·) := (g1(·), . . . , gm(·))T with gi : Rni → R as a gauge function for all i.

Note that there is no nonlinear term in the equality constraints, and problem (PGO∗)

is convex when all elements of d and K are nonnegative. Problem (PGO∗) includes

the convex GO problems considered in [6, 30–32], and it is possible to explicitly

handle linear terms. In this paper, we call (PGO∗) the gauge optimization problem

when it is clear from the context.

In particular, we are interested in theoretical properties of problem (PGO∗) and

its dual. We first define a dual problem of (PGO∗) as in [108], and then, give

conditions under which weak and strong dualities hold for problem (PGO∗) and its

dual. Moreover, we present necessary and sufficient optimality conditions for (PGO∗),

that does not use differentials of gi as in the Karush-Kuhn-Tucker (KKT) conditions.

We further give sufficient conditions under which we can obtain a primal solution

from a KKT point of the dual formulation. Finally, we show that the theoretical

results for problem (PGO∗) can be extended to general convex optimization problems

by considering the so-called perspective functions.

This chapter is organized as follows. In Section 4.2, we recall some important

properties of (PPHO∗) in [108]. We show that some of them hold even if domΨ 6= Rn.

Section 4.3 presents the dual of problem (PGO∗), and gives some relations of (PGO∗)

and its dual. In particular, we show weak and strong duality results, the optimality

conditions for the problem, as well as the recovery of primal solutions by solving

the dual problem. In Section 4.4, we discuss how to extend the obtained results

to general convex optimization problems. Section 6 concludes the paper with final

remarks and future works.

We use the following notations throughout the paper. We denote by R++ the

set of positive real numbers. Let x ∈ Rn be an n-dimensional column vector, and

A ∈ Rn×m be a matrix with dimension n×m. For two vectors x and y, we denote
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the vector (xT , yT )T as (x, y)T for simplicity. For a vector x ∈ Rn, its i-th entry is

denoted by xi. Moreover, if I ⊆ {1, . . . , n}, then xI corresponds to the subvector of

x with entries xi, i ∈ I. The n-dimensional vector of ones is given by en, that is,

en := (1, . . . , 1)T ∈ Rn. The identity matrix with dimension n is En ∈ Rn×n. For a

matrix A, we write A � 0 to denote A is symmetric and positive semidefinite. The

notation #J denotes the number of elements of a set J . We also denote by ‖ · ‖ a

norm function. For a function f and vectors x and y, we denote the subdifferential of

f(x, y) with respect to x as ∂xf(x, y). The effective domain of a function f is given

by domf . The convex hull of a set S is denoted by coS. Finally, δS : Rn → R∪{∞}
is an indicator function of a set S ⊆ Rn defined by

δS(x) :=

{
0 if x ∈ S,
∞ otherwise.

4.2 Positively homogeneous optimization

problems and their duality

In this section, we recall positively homogeneous optimization problems and their

properties in [108]. The positively homogeneous and vector positively homogeneous

functions are defined respectively, as follows.

Definition 4.1. (Positively homogeneous functions) A function ψ : Rn → R∪ {∞}
is positively homogeneous if ψ(λx) = λψ(x) for all x ∈ Rn and λ ∈ R++.

Definition 4.2. (Vector positively homogeneous functions) A mapping Ψ: Rn →
(R ∪ {∞})m is a vector positively homogeneous function if it is defined as

Ψ(x) :=

 ψ1(xI1)
...

ψm(xIm)


with positively homogeneous functions ψi : Rni → R ∪ {∞}, i = 1, . . . ,m, where

n = n1 + · · · + nm, Ii ⊆ {1, . . . , n} is a set of indices satisfying Ii ∩ Ij = ∅ for all

i 6= j, and #Ii = ni.

The polar of a positively homogeneous function ψ and similarly the polar of

a vector positively homogeneous function Ψ are defined as follows. Note that the

paper [108] calls such polar positively homogeneous functions dual functions.
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Definition 4.3. (Polar positively homogeneous functions) Let ψ : Rn → R ∪ {∞}
be a positively homogeneous function. Then, ψ◦ : Rn → R ∪ {∞} defined by

ψ◦(y) := sup{xTy | ψ(x) ≤ 1}

is called the polar positively homogeneous function of ψ.

Note that a polar positively homogeneous function is positively homogeneous

and convex. Moreover, when ψ is a norm, ψ◦ is the dual norm of ψ.

Definition 4.4. (Polar vector positively homogeneous functions) Let Ψ: Rn → (R∪
{∞})m be a vector positively homogeneous function. A function Ψ◦ : Rn → (R ∪
{∞})m is the polar vector positively homogeneous function associated with Ψ if Ψ◦

is given as

Ψ◦(y) =

 ψ◦1(yI1)
...

ψ◦m(yIm)


with the polar ψ◦i : Rni → R ∪ {∞} of positively homogeneous function ψi, i =

1, . . .m.

Yamanaka and Yamashita [108] assumed the nonnegativity of positively homo-

geneous functions for the weak duality of PHO problems as follows.

Assumption 4.1. Each positively homogeneous function ψi in Ψ is nonnegative,

that is, ψi(xIi) ≥ 0 for all xIi ∈ Rni.

Note that we have to show the following lemma that corresponds to [108, Propo-

sition 2.1] in which domΨ = Rn is assumed, because we consider domΨ 6= Rn in this

chapter.

Lemma 4.1. Let Ψ and Ψ◦ be a vector positively homogeneous function and its

polar, respectively. Then, we have

Ψ◦(y) ≥ 0.

In addition, suppose that Assumption 4.1 holds. Then,

Ψ(x)TΨ◦(y) ≥ xTy

holds for all x ∈ domΨ and y ∈ domΨ◦.
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Proof. Since the first inequality has been shown in [108, Proposition 2.1] by using

Definitions 4.1, 4.3 and 4.4, we prove only the second inequality. Clearly, it is enough

to show that ψi(xIi)ψ
◦
i (yIi) ≥ xTIiyIi . For simplicity, we denote ψi and xIi as ψ and

x, respectively.

If ψ(x) = 0, then we can show that xTy ≤ 0 for all y ∈ domψ◦ as follows.

Suppose to the contrary that there exists y ∈ domψ◦ such that xTy > 0, and hence

txTy → ∞ as t → ∞. Moreover, since ψ(tx) = tψ(x) = 0 for all t > 0, we have

ψ◦(y) ≥ sup{txTy | ψ(tx) ≤ 1} = ∞, which contradicts the fact that y ∈ domψ◦.

Consequently, we obtain ψ(x)ψ◦(y) = 0 ≥ xTy.

Next, we consider the case where ψ(x) > 0. Note that x ∈ domΨ, and hence

ψ(x) <∞. Let z = x/ψ(x). Since ψ is positively homogeneous, we obtain

ψ(z) = ψ

(
x

ψ(x)

)
=

1

ψ(x)
ψ(x) = 1.

Therefore, we have

ψ◦(y) = sup{ξTy | ψ(ξ) ≤ 1} ≥ zTy =
1

ψ(x)
xTy,

which shows the second inequality.

Yamanaka and Yamashita [108] proposed the following dual of (PPHO∗):

max bTu− pTv
s.t. Ψ◦(ATu−HTv − c) +BTu−KTv ≤ d,

v ≥ 0,

(DPHO∗)

where (u, v) ∈ Rk×R`. Note that if (u, v) is feasible for (DPHO∗), then ATu−HTv−
c ∈ domΨ◦. For problems (PPHO∗) and (DPHO∗), the following weak duality holds.

Theorem 4.1. (Weak duality) Suppose that Assumption 4.1 holds. Let x ∈ Rn and

(u, v) ∈ Rk × R` be feasible solutions of (PPHO∗) and (DPHO∗), respectively. Then,

the following inequality holds:

cTx+ dTΨ(x) ≥ bTu− pTv.

Proof. Using Lemma 4.1, we can show the weak duality as in the proof of [108,

Theorem 3.1].
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In the following, we show that the optimal values and solutions of problems

(DPHO∗) and the Lagrangian dual of (PPHO∗) are the same. We now define the

Lagrangian function L : domΨ× Rk × R` → R of (PPHO∗) by

L(x, u, v) := cTx+ dTΨ(x) + uT (b− Ax−BΨ(x)) + vT (Hx+KΨ(x)− p),

and consider the following problem:

inf
x∈domΨ

sup
u∈Rk, v∈R`

+

L(x, u, v). (PLPHO)

Note that problem (PLPHO) is equivalent to the original problem (PPHO∗) because the

following relation holds:

inf
x∈domΨ

sup
u∈Rk, v∈R`

+

L(x, u, v)

= inf
x∈domΨ

{
cTx+ dTΨ(x) if Ax+BΨ(x) = b and Hx+KΨ(x) ≤ p,

+∞ otherwise.

(4.2.1)

We also note that the Lagrangian dual of problem (PLPHO) is described as

sup
u∈Rk, v∈R`

+

ω(u, v), (DLPHO)

where ω : Rk × R` → R is defined by

ω(u, v) := inf
x∈domΨ

L(x, u, v),

and we explicitly require x ∈ domΨ in the Lagrangian dual problem (DLPHO).

Note that Yamanaka and Yamashita [108] further assumed a condition on posi-

tively homogeneous functions for the equivalence between (DPHO∗) and (DLPHO). The

condition is that each component ψi of Ψ vanishes only at zero and domΨ = Rn. For

example, a usual norm satisfies the condition, but neither an indicator function for

a cone nor the function ψi(xIi) = max{0, xIi} satisfies it. Therefore, the condition

is rather restrictive. Here, we suppose the following weaker assumption.

Assumption 4.2. For each i, one of the following conditions hold:

(a) di ≥ 0, Bji = 0 and Kji ≥ 0 for all j,

(b) domψi = Rni and there exists x̂Ii such that ψi(x̂Ii) 6= 0.
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Note that if problem (PPHO∗) satisfies the first condition (a) of Assumption 4.2

for all i and all ψi are gauge functions, then it becomes a convex gauge optimization

problem (PGO∗).

We prove the following key lemma for the equivalence between (DPHO∗) and

(DLPHO). Note that it is an extension of [108, Lemma 4.1] to the case where domψi 6=
Rni .

Lemma 4.2. Let ψ◦i be the polar positively homogeneous functions of ψi for i =

1, . . . ,m. Suppose that Assumptions 4.1 and 4.2 hold. Assume also that (ū, v̄) with

v̄ ≥ 0 is not a feasible solution of problem (DPHO∗). Then ω(ū, v̄) = −∞.

Proof. Suppose that (ū, v̄) with v̄ ≥ 0 is not a feasible solution of (DPHO∗). Then,

there exists an index j such that

ψ◦j (αIj) > βj, (4.2.2)

where α := AT ū−HT v̄−c ∈ Rn, and β := d−BT ū+KT v̄ ∈ Rm. Let x̄ := (0, . . . , 0,

x̄Ij , 0, . . . , 0). Then we have Ψ(x̄) = (0, . . . , 0, ψj(x̄Ij), 0, . . . , 0) and

L(x̄, ū, v̄) = −αTIj x̄Ij + βjψj(x̄Ij) + bT ū+ pT v̄. (4.2.3)

Now we consider three cases: ψ◦j (αIj) ∈ (0,∞), ψ◦j (αIj) =∞, and ψ◦j (αIj) = 0.

First, we study the case where ψ◦j (αIj) ∈ (0,∞). Recall that ψ◦j (αIj) is defined

as

ψ◦j (αIj) = sup
xIj

{xTIjαIj | ψj(xIj) ≤ 1}. (4.2.4)

Therefore, for all ε > 0, there exists x̄Ij(ε) such that

ψ◦j (αIj)− ε ≤ αTIj x̄Ij(ε), ψj(x̄Ij(ε)) ≤ 1. (4.2.5)

Let ε̄ be a scalar such that ε̄ := min{ψ◦j (αIj)− βj, ψ◦j (αIj)}/2 > 0. Then ψ◦j (αIj) >

ε̄ > 0. Moreover, we show that there exists x̄Ij such that

ψ◦j (αIj)− ε̄ ≤ αTIj x̄Ij , ψj(x̄Ij) = 1. (4.2.6)

Since ψ◦j (αIj) > ε̄, the inequality (4.2.5) implies αTIj x̄Ij(ε̄) > 0, and hence x̄Ij(ε̄) 6= 0.

If ψj(x̄Ij(ε̄)) 6= 0, then we set x̄Ij = x̄Ij(ε̄)/ψj(x̄Ij(ε̄)). This vector x̄Ij satisfies

conditions (4.2.6) as shown below.

ψ◦j (αIj)− ε̄ ≤ αTIj x̄Ij(ε̄) ≤ αTIj
x̄Ij(ε̄)

ψj(x̄Ij(ε̄))
= αTIj x̄Ij ,
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ψj(x̄Ij) = ψj

(
x̄Ij(ε̄)

ψj(x̄Ij(ε̄))

)
=

1

ψj(x̄Ij(ε̄))
ψj(x̄Ij(ε̄)) = 1,

where the second inequality holds from Assumption 4.1 and (4.2.5). If ψj(x̄Ij(ε̄)) =

0, then ψj(tx̄Ij(ε̄)) = tψj(x̄Ij(ε̄)) = 0 for all t > 0 because ψj is positively homoge-

neous. From (4.2.4), we have ψ◦j (αIj) ≥ tx̄Ij(ε̄)
TαIj . Since αTIj x̄Ij(ε̄) > 0, we obtain

ψ◦j (αIj) → ∞ as t → ∞, which is a contradiction. Therefore, there exists x̄Ij such

that (4.2.6) holds.

We now denote t̄ = (0, . . . , 0, tx̄Ij , 0, . . . , 0) for t > 0. Then, we have from (4.2.3)

L(t̄, ū, v̄) = −tαTIj x̄Ij + βjψj(tx̄Ij) + bT ū+ pT v̄

≤ −t(ψ◦j (αIj)− ε̄− βjψj(x̄Ij)) + bT ū+ pT v̄

= −t(ψ◦j (αIj)− ε̄− βj) + bT ū+ pT v̄,

where the second inequality and the third equality hold from (4.2.6). Since ε̄ ≤
(ψ◦j (αIj)− βj)/2, we obtain

L(t̄, ū, v̄) ≤ −t(ψ◦j (αIj)− ε̄− βj) + bT ū+ pT v̄

≤ −t
(
ψ◦j (αIj)− βj

2

)
+ bT ū+ pT v̄,

which concludes limt→∞ L(t̄, ū, v̄) = −∞.

Next, we consider the case where ψ◦j (αIj) = ∞. From (4.2.4), there exists a

sequence {x̄kIj} ⊂ domψj such that ψj(x̄
k
Ij

) ≤ 1 and (x̄kIj)
TαIj →∞ as k →∞. Let

x̄k = (0, . . . , 0, x̄kIj , 0, . . . , 0). Then, it follows from (4.2.3) that

L(x̄k, ū, v̄) = −αTIj x̄
k
Ij

+ βjψj(x̄
k
Ij

) + bT ū+ pT v̄,

and hence limk→∞ L(x̄k, ū, v̄) = −∞.

We finally study the case where ψ◦j (αIj) = 0. Note that 0 > βj from (4.2.2).

When the first condition (a) of Assumption 4.2 holds, it then follows from v̄ ≥ 0

that βj = dj − (BT ū)j + (KT v̄)j ≥ 0, which is a contradiction. Now, suppose that

the second condition (b) of Assumption 4.2 holds. If αIj 6= 0, then there exists ε̄ > 0

such that 1 ≥ ψj(ε̄αIj) = ε̄ψj(αIj). Therefore we have

ψ◦j (αIj) = sup
xIj

{xTIjαIj | ψj(xIj) ≤ 1} ≥ ε̄αTIjαIj > 0,

which is a contradiction. Now we consider the case where αIj = 0. From Assump-

tion 4.2 (b), there exists x̂Ij such that ψj(x̂Ij) > 0. Let x̂(t) = (0, . . . , 0, tx̂Ij , 0, . . . , 0)
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with t > 0. Then, it follows from (4.2.3) that

L(x̂(t), ū, v̄) = −αTIj x̂Ij(t) + βjψj(tx̂Ij) + bT ū+ pT v̄

= tβjψj(x̂Ij) + bT ū+ pT v̄,

and we conclude that limt→∞ L(x̂(t), ū, v̄) = −∞.

Consequently, ω(ū, v̄) is unbounded from below.

The next theorem shows that problems (DPHO∗) and (DLPHO) are equivalent,

which means that their optimal values and solutions of those problems are the same.

Theorem 4.2. Suppose that the Lagrangian dual problem (DLPHO) has a feasible

solution. Suppose also that Assumptions 4.1 and 4.2 hold. Then, the optimal value

and optimal solutions of problem (DPHO∗) are the same as those of (DLPHO).

Proof. The result can be proved by using Lemma 4.2 as in the proof of [108, Theo-

rem 4.1].

The next proposition shows the positively homogeneous dual of problem (DPHO∗),

which is similar to (PPHO∗).

Proposition 4.1. Suppose that problem (DPHO∗) is feasible. Then, the positively

homogeneous dual of (DPHO∗) can be written as

min cTx+ dTy

s.t. Ax+By = b,

Hx+Ky ≤ p,

Ψ◦◦(x) ≤ y,

(P′PHO∗)

where Ψ◦◦ denotes the polar of Ψ◦, i.e., Ψ◦◦ = (Ψ◦)◦.

Proof. First, note that problem (DPHO∗) can be written as

min −bTu+ pTv

s.t. Ψ◦(w) +BTu−KTv ≤ d,

w = ATu−HTv − c,
−v ≤ 0.

This problem is further reformulated as

min ĉT θ

s.t. K̂Ψ̂◦(θ) + Ĥθ ≤ p̂,

Âθ = c,

(4.2.7)
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where θ = (u, v, w)T ∈ Rk+`+n, ĉ = (−b, p, 0)T ∈ Rk+`+n, p̂ = (d, 0)T ∈ Rn+`,

Â = (AT ,−HT ,−En) ∈ Rn×(k+`+n),

K̂ =

[
0 0 En

0 0 0

]
∈ R(n+`)×(k+`+n), Ĥ =

[
BT −KT 0

0 −E` 0

]
∈ R(n+`)×(k+`+n),

and Ψ̂◦ is defined by Ψ̂◦(θ) := (‖u‖2, ‖v‖2,Ψ
◦(w))T . Note that ‖u‖2 and ‖v‖2 in Ψ̂◦

are dummy functions, and they do not affect the primal problem.

Moreover, the positively homogeneous dual of (4.2.7) can be described as

max cTx− p̂Ty
s.t. Ψ̂◦◦(ÂTx− ĤTy − ĉ)− K̂Ty ≤ 0,

y ≥ 0.

Let y = (y1, y2)T with y1 ∈ Rn and y2 ∈ R`. Then, the above problem can be

rewritten as
min −cTx+ dTy1

s.t. ‖Ax−By1 + b‖2 ≤ 0,

‖ −Hx+Ky1 + y2 − p‖2 ≤ 0,

Ψ◦◦(−x)− y1 ≤ 0,

y ≥ 0.

(4.2.8)

The first two inequality constraints are equivalent to

−Ax+By1 = b,

−Hx+Ky1 + y2 = p.

Since y2 ≥ 0 in (4.2.8), the second equality is further reduced to −Hx + Ky1 ≤ p.

Consequently, we can reformulate (4.2.8) as

min −cTx+ dTy1

s.t. −Ax+By1 = b,

−Hx+Ky1 ≤ p,

Ψ◦◦(−x) ≤ y1,

which is precisely (P′PHO∗) by denoting −x and y1 as x and y, respectively.

In Lagrangian duality theory (see e.g. [34, p. 138]), it is well-known that the

Lagrangian dual of (DLPHO) is exactly the problem (PLPHO). Therefore, we obtain the

following result.
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Collolary 4.1. Suppose that problem (DPHO∗) is feasible. Suppose also that As-

sumptions 4.1 and 4.2 hold. Then, problem (P′PHO∗) is equivalent to the original

problem (PPHO∗).

Proof. From equality (4.2.1), problem (PPHO∗) is equivalent to problem (PLPHO).

Then, from Theorem 4.2, problem (DPHO∗) is equivalent to (DLPHO). Moreover,

from Theorem 4.2, the positively homogeneous dual and the Lagrangian dual are

equivalent under Assumptions 4.1 and 4.2. Therefore, the positively homogeneous

dual of (DPHO∗) is equivalent to the Lagrangian dual of (DLPHO), which is (PLPHO)

and it is equivalent to (PPHO∗).

4.3 Gauge optimization problems and

their duality

In this section, we discuss the following gauge optimization problem:

min cTx+ dTG(x)

s.t. Ax = b,

Hx+KG(x) ≤ p,

x ∈ domG.

(PGO∗)

We call G a vector gauge function defined as G := (g1(·), . . . , gm(·))T with gi : Rni →
R∪{∞} as a gauge function for all i. Since (PGO∗) is a special case of (PPHO∗), the

PHO dual of (PGO∗) is written as follows:

max bTu− pTv
s.t. G◦(ATu−HTv − c)−KTv ≤ d,

v ≥ 0,

(DGO∗)

where G◦ is the polar function associated with G. Here, problem (DGO∗) is a convex

optimization problem since each component g◦i of G◦ is convex.

The next proposition is a corollary of Lemma 4.1. Note that since gauge functions

are nonnegative, Assumption 4.1 automatically holds.

Proposition 4.2. Let G and G◦ be a vector gauge function and its polar, respectively.

Then, we have

G◦(y) ≥ 0,

G(x)TG◦(y) ≥ xTy
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for any x ∈ domG and y ∈ domG◦.

Proof. The proof follows from Lemma 4.1.

We have the weak duality theorem for problems (PGO∗) and (DGO∗), and the

equivalence between (DGO∗) and the Lagrangian dual of (PGO∗) from Proposition 4.2

and Theorem 4.2. Throughout the paper, we denote the Lagrangian dual of (PGO∗)

as (DLGO∗).

Collolary 4.2. (Weak duality) For problems (PGO∗) and (DGO∗), the following

inequality holds:

cTx+ dTG(x) ≥ bTu− pTv

for all feasible points x ∈ Rn and (u, v) ∈ Rk × R` of (PGO∗) and (DGO∗), respec-

tively.

Proof. The proof directly follows from Proposition 4.2.

Collolary 4.3. Suppose that the Lagrangian dual problem (DLGO∗) has a feasible

solution. Suppose also that Assumption 4.2 holds. Then, the optimal value and

solutions of problem (DGO∗) are the same as (DLGO∗).

Proof. The proof is a direct consequence of Theorem 4.2.

We now discuss the strong duality, necessary and sufficient optimality conditions,

and the primal recovery for problem (PGO∗). To this end, we need (PGO∗) to be

convex. Thus, from now on, we suppose the following assumption.

Assumption 4.3. All elements of d and K of problem (PGO∗) are nonnegative.

Note that if Assumption 4.3 holds, then Assumption 4.2 holds for (PPHO∗) with

Ψ = G. Moreover, we assume the following condition on each function gi.

Assumption 4.4. Each function gi of G is lower semi-continuous on Rni.

We now show that the dual of (DGO∗) becomes (PGO∗) under Assumptions 4.3

and 4.4.

Collolary 4.4. Suppose that Assumptions 4.3 and 4.4 hold. Assume also that prob-

lem (DGO∗) is feasible. Then, the positively homogeneous dual of (DGO∗) is equiva-

lent to (PGO∗).



66 CHAPTER 4. DUALITY OF GAUGE OPTIMIZATION

Proof. Since gi is a gauge function for all i and satisfies Assumption 4.4, we have

G◦◦ = G by [81, Theorem 15.1]. Then, it follows from Proposition 4.1 that the dual

of (DGO∗) becomes

min cTx+ dTy

s.t. Ax = b,

Hx+Ky ≤ p,

G(x) ≤ y.

(P′GO∗)

We show that the optimal value of (PGO∗) is the same as that of (P′GO∗). Let x∗

be an optimal solution of (PGO∗). Then, (x̄, ȳ) := (x∗,G(x∗)) is feasible for (P′GO∗),

and hence cTx∗+dTG(x∗) ≥ cT x̄+dT ȳ. This shows that the optimal value of (P′GO∗)

is less than or equal to that of (PGO∗).

Next, let (x̂, ŷ) be an optimal solution of (P′GO∗). From Assumptions 4.3 and

the fact that G(x̂) ≤ ŷ, we have cT x̂ + dTG(x̂) ≤ cT x̂ + dT ŷ and Hx̂ + KG(x̂) ≤
Hx̂ + Kŷ ≤ p. Therefore, (x̂,G(x̂)) is also optimal for (P′GO∗). Moreover, x̂ is a

feasible solution of (PGO∗) and cT x̂+dTG(x̂) ≤ cT x̂+dT ŷ. The result indicates that

the optimal value of (PGO∗) is less than or equal to that of (P′GO∗).

The above discussion shows that the optimal values of (PGO∗) and (P′GO∗) are

the same. Furthermore, if x∗ is optimal for (PGO∗), then (x∗,G(x∗)) is optimal

for (P′GO∗). Conversely, if (x̂, ŷ) is an optimal solution of (P′GO∗), then x̂ is optimal

for (PGO∗).

4.3.1 Strong duality

We now focus on the strong duality between problems (PGO∗) and (DGO∗). As seen

below, we require a certain constraint qualification for this purpose. Note that the

Slater’s constraint qualification of problem (PGO∗), which we use in the following

theorem, indicates that there exists x0 such that

x0 ∈ {x | Ax = b,Hx+KG(x) < p, x ∈ domG}.

Theorem 4.3. (Strong duality) Suppose that Assumption 4.3 holds. Suppose also

that the Slater constraint qualification holds for (PGO∗). Then, the strong duality

holds for problems (PGO∗) and (DGO∗), i.e., if (PGO∗) has an optimal solution x∗,

then (DGO∗) also has an optimal solution (u∗, v∗), and the duality gap between (PGO∗)

and (DGO∗) is zero, that is, cTx∗ + dTG(x∗) = bTu∗ − pTv∗.

Proof. Suppose that (PGO∗) has a solution. Since (PGO∗) is convex from Assump-

tions 4.3, and the Slater constraint qualification holds for (PGO∗), the strong duality
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holds between problems (PGO∗) and (DLGO∗). This means that (DLGO∗) also has an

optimal solution and the duality gap between (PGO∗) and (DLGO∗) is zero. It then

follows from Corollary 4.3 that the optimal value of (DGO∗) is the same as that

of (PGO∗). Moreover, since an optimal solution of (DLGO∗) is that of (DGO∗), (DGO∗)

has an optimal solution.

Note that the constraint qualification is necessary for the strong duality. How-

ever, there exist a gauge optimization problem that holds the strong duality without

the constraint qualification as seen below.

Example 4.1. Consider the following one dimensional gauge optimization problem:

min |x− 1|
s.t. |x| ≤ 0.

(Pa)

Then, the dual of (Pa) is described as

max u

s.t. |u| ≤ v

| − u| ≤ 1

v ≥ 0,

(Da)

where u, v ∈ R. Clearly, the feasible region of (Pa) is {0} and the Slater constraint

qualification fails. However, the optimal solutions of (Pa) and (Da) are x∗ = 0 and

(u∗, v∗) = (1, c), c ≥ 1, respectively, and the optimal values of (Pa) and (Da) are the

same.

4.3.2 Optimality conditions

The most well-known optimality conditions in the optimization field are Karush-

Kuhn-Tucker (KKT) conditions. These KKT conditions use gradients and/or sub-

gradients of the functions involved in the problem. We now present alternative

optimality conditions that do not require gradient information.

We first give sufficient optimality conditions for problems (PGO∗) and (DGO∗).

Note that we do not assume the Slater constraint qualification and Assumption 4.3

here.

Theorem 4.4. (Sufficient optimality conditions) Points x∗ and (u∗, v∗) are optimal

for (PGO∗) and (DGO∗), respectively, if the following conditions hold:
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(i) Hx∗ +KG(x∗) ≤ p, Ax∗ = b, x∗ ∈ domG,

(ii) G◦(ATu∗ −HTv∗ − c)−KTv∗ ≤ d, v∗ ≥ 0,

(iii)
[
d+KTv∗ − G◦(ATu∗ −HTv∗ − c)

]
i
gi(x

∗
Ii

) = 0, i = 1, . . . ,m,

(iv) [p−Hx∗ −KG(x∗)]i v
∗
i = 0, i = 1, . . . ,m,

(v) G◦(ATu∗ −HTv∗ − c)TG(x∗) = (ATu∗ −HTv∗ − c)Tx∗,

where (i) and (ii) describe the primal and dual feasibility, respectively, items (iii)

and (iv) represent complementarity, and (v) is the so-called alignment condition.

Proof. From the complementarity conditions (iii) and (iv), we obtain

0 =
[
d+KTv∗ − G◦(ATu∗ −HTv∗ − c)

]T G(x∗) + [p−Hx∗ −KG(x∗)]T v∗

= dTG(x∗)− G◦(ATu∗ −HTv∗ − c)TG(x∗) + pTv∗ − (Hx∗)Tv∗.

It then follows from the alignment condition that we have

dTG(x∗)− G◦(ATu∗ −HTv∗ − c)TG(x∗) + pTv∗ − (Hx∗)Tv∗

= dTG(x∗)− (ATu∗ −HTv∗ − c)Tx∗ + pTv∗ − (Hx∗)Tv∗

= cTx∗ + dTG(x∗)− bTu∗ + pTv∗,

which indicates that the objective function values of the primal and the dual prob-

lems are the same for the feasible points x∗ and (u∗, v∗). From the weak duality

theorem, x∗ and (u∗, v∗) are optimal for (PGO∗) and (DGO∗), respectively.

Note that condition (v) in Theorem 4.4, called the alignment condition, is not

standard, and seems to be strange at first glance. This is actually used in the

previous work [6] about gauge duality, which is different from the duality considered

here. Moreover, as it can be seen below, the alignment condition is one of the

necessary conditions for optimality.

When the Slater constraint qualification for problem (PGO∗) and Assumption 4.3

hold, the sufficient optimality conditions in Theorem 4.4 become necessary.

Theorem 4.5. (Necessary conditions for optimality) Suppose that Assumption 4.3

holds. Suppose also that the Slater constraint qualification holds for (PGO∗). Let x∗

and (u∗, v∗) be optimal solutions of (PGO∗) and (DGO∗), respectively. Then condi-

tions (i)–(v) in Theorem 4.4 hold.
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Proof. Since x∗ and (u∗, v∗) are optimal solutions of (PGO∗) and (DGO∗), respectively,

the feasibility conditions (i) and (ii) clearly hold. Moreover, since strong duality

holds for x∗ and (u∗, v∗) under the assumptions, we have

0 = cTx∗ + dTG(x∗)− bTu∗ + pTv∗

= dTG(x∗)− (ATu∗ −HTv∗ − c)Tx∗ + pTv∗ − (Hx∗)Tv∗

≥ dTG(x∗)− G◦(ATu∗ −HTv∗ − c)TG(x∗) + pTv∗ − (Hx∗)Tv∗

=
[
d+KTv∗ − G◦(ATu∗ −HTv∗ − c)

]T G(x∗) + [p−Hx∗ −KG(x∗)]T v∗

≥ 0,

where the second equality follows from the fact that Ax∗ = b, the third inequality

follows from Proposition 4.2, and the last inequality follows from (i) and (ii). Thus,

the above inequalities hold with equalities, and hence we obtain conditions (iii), (iv)

and (v).

We show an example of optimality conditions (i)-(v) for the Ridge-type prob-

lem [36].

Example 4.2. Consider the following Ridge-type optimization problem:

min
x∈Rn

‖Ax− b‖2 + σ‖x‖2, (Pb)

where A ∈ Rm×n and σ > 0, and transform the problem into the standard gauge

optimization form (PGO∗) as follows:

min
x,y

‖y‖2 + σ‖x‖2

Ax− y = b,
(P′b)

Then, the dual of (P′b) is described as

max bTu

s.t. ‖ATu‖2 ≤ σ

‖ − u‖2 ≤ 1.

(Db)

Note that we remove the constraint v ≥ 0 from (Db) because it does not effect

the optimal solutions and optimal value of (Db). The optimality conditions for

problems (P′b) and (Db) are described as follows:

(i) Ax− y = b,
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(ii) ‖ATu‖2 ≤ σ, ‖ − u‖2 ≤ 1,

(iii) (σ − ‖ATu‖2)‖x‖2 = 0, (1− ‖ − u‖2)‖y‖2 = 0,

(v) ‖ATu‖2‖x‖2 + ‖ − u‖2‖y‖2 = uTAx− uTy.

From the above items (i), (iii) and (v), we obtain

σ‖x‖2 + ‖Ax− b‖2 = bTu.

Then, the optimality conditions for problems (P′b) and (Db) are{
‖ATu‖2 ≤ σ, ‖ − u‖2 ≤ 1,

σ‖x‖2 + ‖Ax− b‖2 = bTu.

Note that the above conditions are necessary and sufficient optimality condi-

tions because Assumption 4.3 and the Slater constraint qualifications clearly hold for

problems (P′b) and (Db). We also note that the left hand side of the above equality

condition, which is an alignment condition, is the objective function of the original

problem (Pb). Therefore, the alignment condition in this example indicates that the

strong duality holds for problems (Pb) and (Db).

4.3.3 Primal recovery

Let us now discuss the recovery of a primal optimal solution from a KKT point of the

dual problem (DGO∗). For simplicity, we denote Φ(u, v) := G◦(ATu−HTv − c) and

φi(u, v) := g◦i (A
T
Ii
u−HT

Ii
v− cIi), i = 1, . . . ,m. Then, the KKT conditions of (DGO∗)

can be described as

p+ V Tλ−Kλ− µ = 0, V ∈ ∂vΦ(u∗, v∗), (4.3.1)

−b+ UTλ = 0, U ∈ ∂uΦ(u∗, v∗), (4.3.2)

d− Φ(u∗, v∗)−KTv∗ ≥ 0, λ ≥ 0, λT (d− Φ(u∗, v∗)−KTv∗) = 0, (4.3.3)

v∗ ≥ 0, µ ≥ 0, v∗Tµ = 0, (4.3.4)

where λ ∈ Rm and µ ∈ R` are Lagrangian multipliers. Let Ai = AIi and Hi = HIi

for all i = 1, . . . ,m in the subsequent discussion. Moreover, we divide the matrices

U and V as

U =

 U1,
...

Um

 , V =

 V1,
...

Vm

 ,
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where Ui ∈ R1×k and Vi ∈ R1×` for all i = 1, . . . ,m.

We now give the concrete formulae for the subdifferentials ∂vΦ and ∂uΦ. First,

for given u ∈ Rk and v ∈ R`, let us denote Xi(u, v) as the set of optimal solutions

of the following problem:

sup
xIi

uTAixIi − vTHixIi − cTIixIi

s.t. gi(xIi) ≤ 1.
(Pi)

Moreover, we assume the following condition to show some key properties of the

set Xi(u, v).

Assumption 4.5. For all i, gi vanishes only at 0, that is, gi(x̄Ii) = 0 if and only if

x̄Ii = 0.

Lemma 4.3. Suppose that Assumptions 4.4 and 4.5 hold. Then, the set Xi(u, v) is

nonempty, convex and compact for all u ∈ Rk and v ∈ R`.

Proof. The feasible region of (Pi) is nonempty since gi is a gauge function, and

xIi = 0 is a feasible solution of problem (Pi). In addition, the feasible region is convex

and closed because each function gi is convex and closed from Assumption 4.4.

Moreover, Assumption 4.5 implies that the feasible region is bounded. To see this, let

Bi := {z ∈ Rni | ‖z‖ = 1} and ρ := infz∈Bi
gi(z). Then ρ > 0 from Assumption 4.5.

If ρ = +∞, that is, dom gi = {0}, then Xi(u, v) = {0} and this lemma holds.

Now, suppose that ρ <∞. Then, the feasible region is included in the compact set

B̄i := {z | ‖z‖ ≤ 1/ρ} since for any s 6∈ B̄i we have ‖s‖ > 1/ρ and

gi(s) = gi(‖s‖s/‖s‖) = ‖s‖gi(s/‖s‖) >
1

ρ
ρ = 1,

which shows that s is not a feasible solution of (Pi). Consequently, the feasible

region of (Pi) is nonempty, convex and compact.

Since (Pi) is a convex problem with a nonempty, compact and convex feasible

region, the optimal solution set of (Pi) is nonempty, convex and compact.

We now describe the concrete formulae for ∂vΦ and ∂uΦ by using Xi(u, v) as

follows.

Lemma 4.4. Suppose that Assumptions 4.4 and 4.5 hold for function G. Then, we

have

φi(u, v) = uTAix̄Ii − vTHix̄Ii − cTIix̄Ii for all x̄Ii ∈ Xi(u, v), (4.3.5)
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∂uφi(u, v) = {x̄TIiA
T
i | x̄Ii ∈ Xi(u, v)} (4.3.6)

and

∂vφi(u, v) = {−x̄TIiH
T
i | x̄Ii ∈ Xi(u, v)}. (4.3.7)

Proof. The first equation directly follows from the definitions of g◦i and Xi(u, v).

Since the set Xi(u, v) is nonempty, convex and compact from Lemma 4.3, we obtain

∂uφi(u, v) = co{x̄TIiA
T
i | x̄Ii ∈ Xi(u, v)} = {x̄TIiA

T
i | x̄Ii ∈ Xi(u, v)},

∂vφi(u, v) = co{−x̄TIiH
T
i | x̄Ii ∈ Xi(u, v)} = {−x̄TIiH

T
i | x̄Ii ∈ Xi(u, v)},

which are the desired formulae.

Finally, we present the main result of this subsection, which shows that it is

possible to obtain a primal solution from a KKT point of problem (DGO∗).

Theorem 4.6. (Primal recovery) Suppose that Assumptions 4.3, 4.4 and 4.5 hold

for the function G. Assume also that (u∗, v∗, λ, µ) ∈ Rk × R` × Rm × R`, V ∈
∂vΦ(u∗, v∗) and U ∈ ∂uΦ(u∗, v∗) satisfy the KKT conditions (4.3.1)–(4.3.4) for the

dual problem (DGO∗). Then there exist x̄Ii ∈ Xi(u
∗, v∗) for all i = 1, . . . ,m such

that Ui = (Aix̄Ii)
T and Vi = −(Hix̄Ii)

T . Moreover, suppose that gi(x̄Ii) = 1 for i

such that λi 6= 0. Let x∗Ii = λix̄Ii for all i = 1, . . . ,m. Then, x∗ = (x∗I1 , . . . , x
∗
Im

)T is

an optimal solution of (PGO∗).

Proof. From the definitions of Φ and G◦, we have

Φ(u∗, v∗) = G◦(ATu∗ −HTv∗ − c) =

 g◦1(AT1 u
∗ −HT

1 v
∗ − cI1)

...

g◦m(ATmu
∗ −HT

mv
∗ − cIm)



=

 φ1(u∗, v∗)
...

φm(u∗, v∗)

 .

Moreover, since

U ∈ ∂uΦ(u∗, v∗) ⊆

 ∂uφ1(u∗, v∗)
...

∂uφm(u∗, v∗)

 ,

we have Ui ∈ ∂uφi(u
∗, v∗). In a similar way, we have Vi ∈ ∂vφi(u

∗, v∗). It then

follows from (4.3.6) and (4.3.7) in Lemma 4.4 that, for all i = 1, . . . ,m, there exist

x̄Ii ∈ Xi(u
∗, v∗), such that Ui = (Aix̄Ii)

T and Vi = −(Hix̄Ii)
T .
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Now let x∗Ii = λix̄Ii , i = 1, . . . ,m, and x∗ = (x∗I1 , . . . , x
∗
Im

)T . We show that x∗

and (u∗, v∗) satisfy the sufficient conditions (i)–(v) in Theorem 4.4. Note that the

dual feasibility (ii) clearly holds. Moreover, since the assumption on gi(x̄Ii) implies

gi(x
∗
Ii

) = gi (λix̄Ii) = λigi(x̄Ii) = λi,

we obtain

G(x∗) = λ. (4.3.8)

We first show that the alignment condition (v) holds. From (4.3.5) in Lemma 4.4,

we have

g◦i (A
T
i u
∗ −HT

i v
∗ − cIi) = φi(u

∗, v∗) = (u∗)TAix̄Ii − (v∗)THix̄Ii − cTIix̄Ii .

It then follows from (4.3.8) that

g◦i (A
T
i u
∗ −HT

i v
∗ − cIi)Tgi(x∗Ii) = λi((u

∗)TAix̄Ii − (v∗)THix̄Ii − cTIix̄Ii)
= (u∗)TAix

∗
Ii
− (v∗)THix

∗
Ii
− cTIix

∗
Ii

= (ATi u
∗ −HT

i v
∗ − cIi)Tx∗Ii ,

which shows that condition (v) holds.

Next we prove the primal feasibility (i). From the definition of x∗, we obtain

Ax∗ =
m∑
i=1

λiAix̄Ii =
m∑
i=1

λiU
T
i = UTλ = b,

where the second equality follows from (4.3.6) in Lemma 4.4 and the last equality

is due to the KKT condition (4.3.2). Moreover, we have from (4.3.7) in Lemma 4.4

that

Hx∗ =
m∑
i=1

λiHix̄Ii = −
m∑
i=1

λiV
T
i = −V Tλ. (4.3.9)

It then follows from (4.3.8) that

Hx∗ +KG(x∗) = −V Tλ+Kλ = p− µ ≤ p,

where the equality and the inequality follow from the KKT conditions (4.3.1) and

(4.3.4), respectively. Consequently, x∗ is a feasible solution of (PGO∗).

Finally, we show that the complementarity conditions (iii) and (iv) hold. First

we consider condition (iii) as follows. If λi = 0, then x∗Ii = 0 and gi(x
∗
Ii

) = 0, and
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hence (iii) holds. If λi 6= 0, then
[
d+KTv∗ − G◦(ATu∗ −HTv∗ − c)

]
i

= 0 from the

KKT condition (4.3.3) and the definition of Φ. Therefore, (iii) also holds.

Next we prove that condition (iv) is satisfied. If v∗i = 0, then (iv) clearly holds.

For this reason, we consider the case where v∗i 6= 0. In such a case, µi = 0 from the

KKT condition (4.3.4), and hence
[
p+ V Tλ−Kλ

]
i

= 0 from the KKT condition

(4.3.1). It then follows from (4.3.8) and (4.3.9) that

0 =
[
p+ V Tλ−Kλ

]
i

= [p−Hx∗ −Kλ]i = [p−Hx∗ −KG(x∗)]i .

Therefore, the complementarity condition (iv) holds.

From the previous discussion, we conclude that x∗ and (u∗, v∗) satisfy all sufficient

conditions for optimality, and hence x∗ is an optimal solution of (PGO∗).

Observe that the assumption that gi(x̄Ii) = 1 for all i such that λi 6= 0 seems to

be rather restrictive. One sufficient condition for the assumption is that the effective

domain of gi is Rni and ATi u
∗−HT

i v
∗− cIi 6= 0 for all i. Under these conditions, the

solution set Xi(u
∗, v∗) is included in the boundary of the feasible set of (Pi), and

thus gi(x̄Ii) = 1 for all x̄Ii ∈ Xi(u
∗, v∗).

We now show an example of the primal recovery by using the Ridge-type opti-

mization problem considered in Example 4.2.

Example 4.3. Consider the following problem:

max bTu

s.t. ‖ATu‖2 ≤ σ

‖u‖2 ≤ 1,

(Dc)

where we assume b 6= 0. The problem is the positively homogeneous dual of the

reformulated Ridge-type optimization problem (P′b). Note that the second constraint

slightly changes comparing to (Db) because ‖−u‖2 = ‖u‖2. The Lagrangian function

of (Dc) is

L(u) = −bTu+ λ1(‖ATu‖2 − σ) + λ2(‖u‖2 − 1),

where λ1, λ2 ∈ R are the Lagrangian multipliers. Then, the KKT conditions are



4.3. GO PROBLEMS AND THEIR DUALITY 75

obtained as follows:

−b+ λ1
AATu

‖ATu‖2

+ λ2
u

‖u‖2

= 0, (4.3.10)

‖ATu‖2 − σ ≤ 0, (4.3.11)

‖u‖2 − 1 ≤ 0, (4.3.12)

λ1(‖ATu‖2 − σ) = 0, (4.3.13)

λ2(‖u‖2 − 1) = 0, (4.3.14)

λ1, λ2 ≥ 0. (4.3.15)

For simplicity, we denote that the point (u∗, v∗) satisfying the above conditions as

(u, v). Note that we implicitly assume u 6= 0 and ATu 6= 0 in equation (4.3.10). We

obtain u 6= 0 from the assumption that b 6= 0. If rank(A) = m, we have ATu 6= 0

for any u 6= 0. However, if rank(A) < m, there exists û 6= 0 such that AT û = 0.

For the latter case, we have to describe equation (4.3.10) by using the subgradient.

Then, equation (4.3.10) becomes more complicated and we might fail to recover a

primal solution.

Then, problems (Pi), i = 1, 2 are described as

sup
x

uTAx

s.t. ‖x‖2 ≤ 1,
(P1)

and
sup
y
−uTy

s.t. ‖y‖2 ≤ 1,
(P2)

respectively. Here the variables x and y in problems (P1) and (P2) are those of

problem (P′b). Then, we obtain

X1(u) =

{
ATu

‖ATu‖2

}
, X2(u) =

{
− u

‖u‖2

}
,

and we observe that there exist x̄ ∈ X1(u) and ȳ ∈ X2(u) such that

UT
1 = Ax̄ =

AATu

‖ATu‖2

, UT
2 = −Emȳ =

u

‖u‖2

.

We also observe that

g1(x̄) = ‖x̄‖2 =

∥∥∥∥ ATu

‖ATu‖2

∥∥∥∥
2

= 1, g2(ȳ) = ‖ȳ‖2 =

∥∥∥∥ −u‖u‖2

∥∥∥∥
2

= 1.
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Then, we consider four cases with respect to the Lagrangian multipliers λ1 and λ2.

If λ1 = λ2 = 0, then we have b = 0 from equation (4.3.10) which is a contradiction to

the assumption here. If λ1 6= 0 and λ2 = 0, then we have ‖ATu‖2 = σ from (4.3.13)

and

λ1AA
Tu = σb

from (4.3.10). By multiplying uT , we obtain

λ1u
TAATu = λ1‖ATu‖2

2 = λ1σ
2 = σuT b,

which results in

λ1 =
uT b

σ
.

Therefore, an optimal solution of problem (P′b), that is (x∗, y∗), is obtained by

(x∗, y∗) = (λ1x̄, λ2ȳ) =

(
uT b

σ2
ATu, 0

)
.

If λ1 = 0 and λ2 6= 0, then we have ‖u‖2 = 1 from (4.3.14) and λ2u = b

from (4.3.10). By multiplying uT , we obtain λ2 = uT b. Therefore, the optimal

solution is (x∗, y∗) = (0,−uT bu).

If λ1 6= 0 and λ2 6= 0, then we have ‖ATu‖2 = σ and ‖u‖2 = 1 from (4.3.14) and

(4.3.15). Then from (4.3.10), we obtain

−b+
λ1

σ
AATu+ λ2u = 0,

and by multiplying uT we have

−uT b+ λ1σ + λ2 = 0.

Thus, we obtain

(x∗, y∗) =

(
λ1

ATu

‖ATu‖2

, (λ1σ − uT b)
u

‖u‖2

)
=

(
λ1

σ
ATu, (λ1σ − uT b)u

)
.

Note that, for the original problem (Pb), if σ is sufficiently large, then an optimal

solution x∗ becomes zero. If σ is small, then x∗ 6= 0. The property can be described

by using the dual problem (Dc) as follows. If σ is sufficiently large, then the first

constraint of (Dc): ‖ATu‖2 ≤ σ tend to be inactive, which indicates λ1 = 0, and

thus x∗ = 0. On the other hand, if σ is sufficiently small, then the second constraint

of (Dc): ‖u‖2 ≤ 1 tend to be inactive, which indicate λ1 6= 0 and λ2 = 0, and thus

x∗ 6= 0.
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4.4 Duality for general optimization problems

In this section we extend the previous results for gauge optimization to more general

optimization problem:

min cTx+ dTF (x)

s.t. Ax = b,

Hx+KF (x) ≤ p,

(PF )

where F is an nonnegative vector convex function, that is, each component function

fi is an nonnegative convex function. Note that problem (PF ) is convex if d ≥ 0

and (K)ij ≥ 0.

To this end, we first decompose general convex function of the problem, which is

not necessarily nonnegative, into a linear and a nonnegative convex functions. Then,

we consider the so-called perspective [6,8] for the nonnegative convex function. The

perspective function is a gauge one essentially equivalent to the original nonnegative

convex function. Consequently, we reformulate the general convex function into a

sum of a linear function and a gauge one. The reformulation enables us to apply

the results in the previous section for a general convex optimization problem.

4.4.1 Reformulation of a general convex function into sum

of linear and gauge functions

Let us first observe that a convex function f : Rn → R ∪ {∞} can be written as a

sum of a linear function and a nonnegative convex one. Let z ∈ domf be a fixed

vector, and let η ∈ ∂f(z). We can write

f(x) = f(x)− f(z)− ηT (x− z) + f(z) + ηT (x− z). (4.4.1)

Note that f(x) − f(z) − ηT (x − z) is convex and nonnegative with respect to x,

because f satisfies the subgradient inequality [81, p. 214]: f(x) ≥ f(z) + ηT (x− z).

Moreover, the remaining term: f(z) + ηT (x − z) is linear with respect to x. Thus,

function f can be split into a nonnegative convex function and a linear one.

Next, we reformulate a nonnegative convex function into a gauge function using

the so-called perspective of a nonnegative convex function. Recall that for any

nonnegative convex function h : Rn → R+ ∪ {∞}, its perspective hp : Rn+1 → R ∪



78 CHAPTER 4. DUALITY OF GAUGE OPTIMIZATION

{∞} is described as

hp(x, ζ) :=


ζh(ζ−1x) if ζ > 0,

δ{0}(x) if ζ = 0,

∞ if ζ < 0,

and its closure can be written by

hπ(x, ζ) :=


ζh(ζ−1x) if ζ > 0,

h∞(x) if ζ = 0,

∞ if ζ < 0,

(4.4.2)

where h∞ is the recession function of h [81, p. 66]. Note that if h is a proper convex

function, then hπ is a positively homogeneous proper convex function [81, Theorem

8.5]. In addition, hπ(0, 0) = 0 by definition, and hence hπ becomes gauge. Therefore,

h is represented as the gauge function hπ(x, ζ) with ζ = 1. Consequently, f can

be described as a sum of the linear function f(z) + ηT (x− z) and a gauge function

hπ(x, 1), where h(x) = f(x)−f(z)−ηT (x−z). We present an example of perspective

and its polar.

Example 4.4. Let f : Rn → R be defined as f(x) := 1
2
xTAx, where A is an n ×

n symmetric positive definite matrix. Then, the perspective and its polar of the

quadratic function f are described as follows:

fπ(x, ζ) =


1

2ζ
xTAx if ζ > 0,

δ{0}(x) if ζ = 0,

∞ otherwise,

f \(y, η) =


− 1

2η
yTA−1y if η < 0,

δ{0}(y) if η = 0,

∞ otherwise.

Proof. Proof. The perspective fπ directly follows from definition (4.4.2). Note that

A is positive definite, hence f∞ = δ{0} [81, p. 68]. The polar of fπ is defined by

f \(y, η) = sup
x,ζ

{
xTy + ζη | fπ(x, ζ) ≤ 1

}
. (4.4.3)

We first consider the case where η > 0. Since fπ(0, ζ) = 0 for ζ ≥ 0, f \(y, η) ≥
ζη for ζ ≥ 0. Then f \(y, η) → ∞ as ζ → ∞. Next suppose that η = 0 and
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y 6= 0. Let x(t) := ty with t > 0, and let ζ(t) := 1
2
x(t)TAx(t). Since A is positive

definite, ζ(t) = 1
2
x(t)TAx(t) > 0. Then fπ(x(t), ζ(t)) = 1 for all t. Consequently

f \(y, 0) ≥ x(t)Ty + ζ(t) · 0 = t‖y‖2, and hence f \(y, 0)→∞ as t→∞.

Next, we study the case where y = 0 and η ≤ 0. If (y, η) = (0, 0), then f \(y, η) =

0. Note that fπ(x, ζ) ≤ 1 implies ζ ≥ 0, and fπ(0, 0) ≤ 1. Therefore, when y = 0

and η < 0 we have f \(y, η) = 0.

Finally, we investigate the case where y 6= 0 and η < 0. We now set

x∗ = −1

η
A−1y, ζ∗ =

1

2η2
yTA−1y, (4.4.4)

and

λ∗ = −η 2(ζ∗)2

(x∗)TAx∗
. (4.4.5)

Since x∗ 6= 0 and ζ∗ > 0, λ∗ is well-defined and λ∗ > 0. Moreover, we have

from (4.4.4)
1

2
(x∗)TAx∗ =

1

2η2
yTA−1y = ζ∗.

It then follows from (4.4.5) that

η = −λ
∗

ζ∗
. (4.4.6)

Then, equations (4.4.4) and (4.4.6) give

−y +
λ∗

ζ∗
Ax∗ = 0. (4.4.7)

We note that the following conditions also hold:

1

2ζ∗
x∗TAx∗ − 1 ≤ 0, λ∗ ≥ 0, (4.4.8)

λ∗
(

1

2ζ∗
x∗TAx∗ − 1

)
= 0. (4.4.9)

Note also that fπ(x, ζ) = 1
2ζ
xTAx. Conditions (4.4.5), (4.4.7), (4.4.8) and (4.4.9) are

the KKT conditions of the convex optimization problem in the right-hand of (4.4.3).

Therefore, the point (x∗, ζ∗) is its global optimal solution. Consequently, we obtain

f \(y, η) = (x∗)Ty + ζ∗η = − 1

2η
yTA−1y,

which completes the proof.
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We now consider a vector function F : Rn → (R ∪ {∞})m, which is defined

by F (·) := (f1(·), . . . , fm(·)) with nonnegative convex functions fi : Rni → R ∪
{∞}, i = 1, . . . ,m. We then define its perspective F π : Rn+m → (R ∪ {∞})m as

F π(·) := (fπ1 (·), . . . , fπm(·)) with fπi : Rni+1 → R ∪ {∞}. For simplicity, we denote

F π(x, ζ) = (fπ1 (x1, ζ1), . . . , fπm(xm, ζm)) for any x ∈ Rn and ζ ∈ Rm. We also

denote the polar of F π as F \(·) := (F π)◦(·) = ((fπ1 )◦(·), . . . , (fπm)◦(·)). Note that

F π(x, em) = (fπ1 (x1, 1), . . . , fπm(xm, 1)) = F (x) by definition. We also observe that

F π is a vector gauge function if fi is an nonnegative proper convex function for all i.

4.4.2 Perspective dual problems

We now consider problem (PF ). By using the perspective function of F , we refor-

mulate (PF ) into a gauge optimization:

min ĉT z + dTF π(z)

s.t. Âz = b̂,

Ĥz +KF π(z) ≤ p,

(Pπ)

where F π : Rn+m → Rm is the perspective of F , z = (xI1 , ζ1, . . . , xIm , ζm)T ∈ Rn+m,

ĉ = (cI1 , 0, . . . , cIm , 0)T ∈ Rn+m, b̂ = (b, 1, . . . , 1)T ∈ R2m, Ĥ = [HI1 , 0, . . . , HIm , 0] ∈
R`×(n+m) and

Â =


AI1 0 · · · AIm 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

 ∈ R2m×(n+m),

where AIi is a submatrix of A with Aj, j ∈ Ii as its columns.

We obtain the PHO dual of (Pπ) as follows:

max bTu− pTv + eTmw

s.t. F \


(AI1)

Tu− (HI1)
Tv − cI1

w1

...

(AIm)Tu− (HIm)Tv − cIm
wm

−K
Tv ≤ d,

v ≥ 0.

(Dπ)

We call problem (Dπ) as the perspective dual of (PF ).
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Example 4.5. We now consider the following convex quadratic optimization prob-

lem as an example of (PF ).

min
1

2
xTA0x+ bT0 x

s.t.
1

2
xTA1x+ bT1 x ≤ c1,

(PQP)

where A0 and A1 are symmetric and positive definite matrices. The problem can be

rewritten as

min
1

2
xTA0x+ bT0 x

s.t.
1

2
yTA1y + bT1 y ≤ c1,

x− y = 0.

Let z := (x, y)T and F (z) := (f0(x), f1(y))T = (1
2
xTA0x,

1
2
yTA1y)T . Then the prob-

lem is described as follows:

min (bT0 , 0)z + (1, 0)F (z)

s.t. (0, bT1 )z + (0, 1)F (z) ≤ c1,

(I,−I)z = 0.

Let w := (x, ζ1, y, ζ2) ∈ R2n+2 and F π(w) := (fπ0 (x, ζ1), fπ1 (y, ζ2)). Then, a gauge

optimization (Pπ) equivalent to (PQP) is written as

min (bT0 , 0, 0, 0)w + (1, 0)F π(w)

s.t. (0, 0, bT1 , 0)w + (0, 1)F π(w) ≤ c1, I 0 −I 0

0 1 0 0

0 0 0 1

w =

 0

1

1

 . (PQP
π )

Let F \ := (f \0, f
\
1) be the polar of F π. Then the PHO dual of (PQP

π ) is given as

max (0, 1, 1)u− c1v

s.t. F \




I 0 0

0 1 0

−I 0 0

0 0 1

u−


0

0

b1

0

 v −

b0

0

0

0


−

[
0

1

]
v ≤

[
1

0

]
,

v ≥ 0.
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Let u = (u1, u2, u3)T ∈ Rn ×R×R. Then the dual problem can be further rewritten

as
max u2 + u3 − c1v

s.t. f \0(u1 − b0, u2) ≤ 1,

f \1(−u1 − b1v, u3) ≤ v,

v ≥ 0.

(DQP
π )

Recall that the functions f \0 and f \1 are described as in Example 4.4. It is easy to see

that (u, v) with u2 > 0 or u3 > 0 is not feasible for (DQP
π ).

The following lemma indicates the first two constraints in (DQP
π ) can be repre-

sented as semidefinite constraints.

Lemma 4.5. Let f(x) = 1
2
xTAx, where A is an n × n symmetric and positive

definite matrix. Then,

f \(y, η) ≤ γ, γ ≥ 0 (4.4.10)

if and only if [
Aγ y

yT −2η

]
� 0. (4.4.11)

Proof. Proof. First we suppose that (4.4.10) holds. The inequality f \(y, η) ≤ γ

implies (y, η) = (0, 0) or η < 0 from the definition of f \ in Example 4.4. If (y, η) =

(0, 0), then (4.4.11) holds since A is positive definite and γ ≥ 0. If η < 0, then

(4.4.10) can be written as

− 1

2η
yTA−1y ≤ γ, γ ≥ 0.

If γ = 0, then we have y = 0, and hence (4.4.11) holds. When γ > 0, we obtain

−2η − 1

γ
yTA−1y ≥ 0, γ ≥ 0, (4.4.12)

which results in (4.4.11) by using the Schur complement [11].

Next, we assume that (4.4.11) holds. Then, we have η ≤ 0 and γ ≥ 0. If η = 0,

then y = 0 from (4.4.11). It then follows from Example 4.4 that f \(y, η) = δ{0}(0) =

0 ≤ γ, and hence (4.4.10) holds. If γ = 0, then y = 0 once again. Then we obtain

f \(y, η) = 0 = γ, which indicates (4.4.10) holds. If η < 0 and γ > 0, then the Schur

complement of (4.4.11) gives (4.4.12), which results in (4.4.10).
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From Lemma 4.5, the perspective dual problem (DQP
π ) of problem (PQP) is equiv-

alent to the following semidefinite programming [94]:

max u2 + u3 − c1v

s.t.

[
A0 u1 − b0

(u1 − b0)T −2u2

]
� 0,[

A1v u1 + b1v

(u1 + b1v)T −2u3

]
� 0.

In this section, we discussed the reformulation of a quadratic optimization prob-

lem into a gauge optimization problem and discuss the duality proposed in the

previous section. On the other hand, it may be natural to apply the well-known

Lagrangian duality directly to the convex optimization problem. We surely write

the Lagrangian dual of a convex problem in a closed-form when the problem has a

special structure like quadratic programming. However, for the more complicated

problems, we could fail to write their Lagrangian dual in a closed-form. Therefore,

we believe that the results here can support such issues.
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4.5 Conclusion

In this chapter, we provided the details of optimization problems with both gauge

functions and linear ones in their objective and constraint functions. Using the

positively homogeneous framework given in [108], we proved that weak and strong

duality results hold for such gauge problems. We also discussed both necessary and

sufficient optimality conditions associated with these problems, showing that it is

possible to obtain a primal solution by solving the dual problem. We also extended

the results for gauge problems to general optimization problems. Important future

works are to develop an efficient algorithm by using the theoretical results described

here and to apply the results to real world problems, which includes location prob-

lems with a norm as a distance function and regularized regression problem such as

Lasso, Ridge and their variants.



Chapter 5

Branch-and-bound method for

absolute value optimization

problems

5.1 Introduction

In recent years, the absolute value equations (AVEs) [16,41,60,62,64,77,82,83,112]

has attracted a growing attention. The absolute value optimization (AVO) is an

extension of AVEs, which contains the absolute values of variables in its objective

function and constraints. Formally, the AVO is stated as follows:

min cTx+ dT |x|
s.t. Ax+B|x| = b,

Hx+K|x| ≥ p,

(PAVO)

where c, d ∈ Rn, b ∈ Rm, p ∈ R`, A,B ∈ Rm×n, H,K ∈ R`×n, and |x| denotes

the vector |x| = (|x1|, |x2|, . . . , |xn|)T ∈ Rn. Although this problem is a noncon-

vex optimization problem in general, Mangasarian [61] showed an interesting weak

duality result and a sufficient optimality condition for the problem. In addition,

the AVEs that appears in the constraints of the AVO is shown to be equivalent to

a linear complementarity problem [64, 77]. This result indicates that the AVO is

equivalent to a linear program with linear complementarity constraints, which is a

special case of the mathematical program with equilibrium constraints (MPEC) [57].

MPEC has many applications in various areas such as economics, engineering, and

transportation. However, MPEC is in general difficult to deal with, since its feasible

85
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region is necessarily nonconvex and even disconnected. The study on AVO is in its

infancy and, to the authors’ knowledge, there have been no works except for the

above-mentioned duality results of Mangasarian [61].

In this paper, we first propose an algorithm for the AVO, which is based on

the branch-and-bound method. In the branching procedure, we generate two sub-

problems by restricting the sign of a component of the variable x in (PAVO) to be

nonnegative or nonpositive. In the bounding procedure, we utilize the duality results

in AVO to obtain a lower bound for each subproblem. Furthermore, to examine the

effectiveness of the proposed algorithm, we apply it to solve facility location prob-

lems (FLPs). By using the `1 norm as a distance function, an FLP can naturally be

formulated as an AVO. In particular, we can use the AVO formulation to deal with

a nonconvex region in which facilities are located. We stress that such a problem

is considerably difficult to solve compared with the conventional FLPs that assume

the convexity of the region.

5.2 Absolute value optimization problems

and their duality

The dual problem of AVO (PAVO) is defined as follows [61]:

max bTu+ pTv

s.t. |ATu+HTv − c|+BTu+KTv ≤ d,

v ≥ 0.

(DAVO)

Note that the inequality constraint can be represented as

|ATu+HTv − c| ≤ d−BTu−KTv

⇐⇒ −d+BTu+KTv ≤ ATu+HTv − c ≤ d−BTu−KTv

⇐⇒

{
(−A+B)Tu+ (−H +K)Tv ≤ d− c,
(A+B)Tu+ (H +K)Tv ≤ d+ c.

Therefore, the dual problem (DAVO) can be rewritten as follows:

max bTu+ pTv

s.t. (−A+B)Tu+ (−H +K)Tv ≤ d− c,
(A+B)Tu+ (H +K)Tv ≤ d+ c,

v ≥ 0.
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Notice that the dual problem (DAVO) is always a convex optimization problem, or

more precisely, a linear program, although the primal problem (PAVO) is not convex

in general. Moreover, a weak duality theorem and a sufficient optimality condition

for AVO are shown in [61], which will be useful in our algorithm.

Theorem 5.1. [10] If x and (u, v) are feasible solutions of (PAVO) and (DAVO),

respectively, then the following inequality holds:

cTx+ dT |x| ≥ bTu+ pTv.

This theorem says that we can get a lower bound of the optimal value of (PAVO)

by solving the dual problem (DAVO). The next theorem gives a sufficient optimality

condition for (PAVO).

Theorem 5.2. [10] Let x̄ be feasible in the primal AVO (PAVO) and (ū, v̄) be feasible

in the dual AVO (DAVO) with equal primal and dual objective values, that is,

cT x̄+ dT |x̄| = bT ū+ pT v̄.

Then x̄ and (ū, v̄) are optimal solutions of (PAVO) and (DAVO), respectively.

5.3 Branch-and-bound method for

absolute value optimization problem

In this section, we propose a branch-and-bound method for AVO. The branch-and-

bound method is one of fundamental global optimization methods for nonconvex op-

timization problems [38] and combinatorial optimization problems [44]. The method

consists of branching and bounding procedures. In the branching procedure, we di-

vide the feasible region of the original problem into some subregions to generate

subproblems. On the other hand, in the bounding procedure, we check if a current

subproblem can be discarded or not, by implementing some fathoming tests. We

now give the details of the branching and bounding procedures used in the proposed

branch-and-bound method for solving AVOs.

A subproblem is constructed from (PAVO) by restricting some variables to be
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either nonpositive or nonnegative:

P(I,J ) min cTx+ dT |x|
s.t. Ax+B|x| = b,

Hx+K|x| ≥ p,

xi ≥ 0 (i ∈ I),

xi ≤ 0 (i ∈ J ),

where I and J are subsets of {1, 2, . . . , n} such that I ∩ J = ∅. Note that

(PAVO)= P(∅, ∅). The branching procedure can conveniently be explained by using

the enumeration tree, where each node corresponds to a subproblem. An example

of the enumeration tree with n = 2 is shown in Fig. 5.1. At each node of the tree,

branching means that we choose a variable xi and restrict it to be nonnegative or

nonpositive in the corresponding subproblem. The deepest nodes in the tree corre-

spond to 2n linear programs, which contain no absolute values of the variables. The

branch-and-bound method maintains the set of subproblems that can be selected to

apply a branching procedure. Such subproblems are said to be active, and the set

of the current active subproblems is denoted by A. For example, if we generate two

subproblems P({1}, ∅) and P(∅, {1}) at the root node P(∅, ∅) in the enumeration

tree of Fig. 5.1, then we have A = {P({1}, ∅),P(∅, {1})}.

Fig. 5.1: Enumeration tree (n = 2)

In the bounding procedure, we consider the dual problem of P(I,J ) in order

to get a lower bound of P(I,J ). For convenience, let hi := σiei ∈ Rn for each
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i ∈ I ∪J , where ei ∈ Rn is the ith column of the n× n identity matrix, and σi = 1

if i ∈ I and σi = −1 if i ∈ J . Then, the nonnegativity and nonpositivity constraints

on variables xi in P(I,J ) are represented as

hTi x ≥ 0 (i ∈ I ∪ J ).

Therefore, we can rewrite P(I,J ) as follows:

P(I,J ) min cTx+ dT |x|
s.t. Ax+B|x| = b,

H̃x+ K̃|x| ≥ p̃,

where H̃ ∈ R(`+|I|+|J |)×n, K̃ ∈ R(`+|I|+|J |)×n, p̃ ∈ R(`+|I|+|J |) are defined by

H̃ :=


H
...

hTi
...

 , K̃ :=


K
...

0
...

 , p̃ :=


p
...

0
...

 .
Moreover, the dual problem of P(I,J ) is written as

D(I,J ) max bTu+ p̃Tv

s.t. |ATu+ H̃Tv − c|+BTu+ K̃Tv ≤ d,

v ≥ 0,

which can further be rewritten as a linear program. Based on the result of solving

the dual problem, the subproblem P(I,J ) can be fathomed if one of the following

conditions holds:

(i) D(I,J ) is unbounded.

(ii) The optimal value of D(I,J ) is greater than the objective value of the incum-

bent solution, i.e., the best feasible solution of (PAVO) found so far.

(iii) There is no duality gap between P(I,J ) and D(I,J ).

We now give more details about the bounding operations based on the above

three conditions.

If the dual problem D(I,J ) is unbounded, then the primal problem P(I,J ) is

infeasible from the weak duality theorem. In this case, any subproblem generated
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from the current subproblem by restricting the sign of some of its variables cannot

be feasible. Hence we can discard the current subproblem P(I,J ).

If the optimal value of D(I,J ), which is a lower bound of the optimal value

of P(I,J ) by Theorem 5.1, is greater than the objective value of the incumbent

solution, we have no chance to obtain an optimal solution of (PAVO) by generating

subproblems from P(I,J ) further. Thus, we can discard the current subproblem.

If we find out that there is no duality gap between P(I,J ) and D(I,J ), then this

means the subproblem P(I,J ) is just solved. For this reason, we need not generate

new subproblems from P(I,J ) further, and we can discard the current subproblem.

Moreover, if the optimal solution of P(I,J ) is better than the incumbent solution,

then we replace the incumbent solution by the optimal solution of P(I,J ). We

may check if there is no duality gap between P(I,J ) and D(I,J ) by solving the

following system of absolute value equations and inequalities:

cTx+ dT |x| = f ∗D,

Ax+B|x| = b, (S1)

H̃x+ K̃|x| ≥ p̃,

where f ∗D is the optimal objective value of the dual problem D(I,J ). If the system

(S1) has a solution, then P(I,J ) and D(I,J ) have no duality gap. Moreover, by

Theorem 5.2, it is an optimal solution of P(I,J ).

We now formally state the algorithm.
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Branch-and-Bound Algorithm for AVO:

• Step 0. Let I := ∅ and J := ∅. Find a feasible solution of problem (PAVO)=

P(∅, ∅). Let it be the incumbent solution and let f ∗ be the objective value at

the incumbent solution. Set A := {P(∅, ∅)}.

• Step 1. Choose a subproblem P(I,J ) from the set A.

– Step 1-a. If the dual problem D(I,J ) of P(I,J ) is infeasible, then go

to Step 2. If D(I,J ) is unbounded, then fathom P(I,J ). Set A :=

A \ {P(I,J )} and go to Step 3.

– Step 1-b. Let f ∗D be the optimal objective value of the dual problem

D(I,J ). If it satisfies f ∗D > f ∗, then fathom P(I,J ). Set A := A \
{P(I,J )} and go to Step 3.

– Step 1-c. Solve the system (S1) of absolute value equations and inequal-

ities. If we fail to get a solution of (S1), then go to Step 2. If we get a

solution of (S1) and, in addition, the objective value at the solution, de-

noted f(I,J ), satisfies f(I,J ) ≥ f ∗, then P(I,J ) is fathomed immediately.

If f(I,J ) < f ∗, then set f ∗ := f(I,J ), update the incumbent solution, and

fathom P(I,J ). Set A := A \ {P(I,J )} and go to Step 3.

• Step 2. Choose a variable xi such that i /∈ I ∪ J as the branching variable,

and generate two subproblems P(I ∪ {i},J ) and P(I,J ∪ {i}) from P(I,J ).

Set A := A∪{P(I ∪{i},J ),P(I,J ∪{i})}\{P(I,J )}, and return to Step 1.

• Step 3. If A = ∅, then terminate. The incumbent solution is an optimal

solution of the original problem (PAVO). Otherwise, return to Step 1.

To get a feasible solution of (PAVO) in Step 0 and to solve (S1) in Step 1-c, we

can use the successive linearization algorithm (SLA) for the system of absolute value

equations and inequalities. This algorithm was first proposed by Mangasarian [64]

to solve AVEs. We extend the algorithm so as to deal with a system that also

contains absolute value inequalities (AVIs).

Here we describe the SLA for the system{
Ax+B|x| = b,

Hx+K|x| ≥ p,
(S2)
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which represents the constraints of (PAVO). The algorithm can similarly be applied

to solve the system (S1).

First, we give a result that relates the AVE-AVI system (S2) to the following

concave minimization problem constructed from (S2):

min
(x,t,s1,s2)∈Rn+n+m+`

ε(−eT |x|+ eT t) + eT s1 + eT s2

s.t. −s1 ≤ Ax+Bt− b ≤ s1,

−Hx−Kt+ p ≤ s2,

0 ≤ s2,

−t ≤ x ≤ t,

(5.3.1)

where ε > 0 and e is the vector of ones.

Proposition 5.1. If (S2) is solvable, then there exists some ε̄ > 0 such that, for

any ε ∈ (0, ε̄], any solution (x̄, t̄, s̄1, s̄2) of (5.3.1) satisfies

|x̄| = t̄,

Ax̄+B|x̄| = b,

Hx̄+K|x̄| ≥ p.

Proof. The proof is analogous to that of Proposition 3 in [64].

From this result, a solution of the AVE-AVI system (S2) may be obtained by

solving the concave minimization problem (5.3.1) with a sufficiently small ε > 0. We

now give the SLA for the AVE-AVI system (S2), which is an extension of the SLA

for AVEs [64]. Let z = (x, t, s1, s2)T . Denote the feasible region of problem (5.3.1)

by Z and its objective function by θ(z).
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SLA for AVE-AVI:

• Step 0. Choose a starting point z0 ∈ Z. Set k := 0.

• Step 1. Given zk, find zk+1 such that

zk+1 ∈ arg vertex min
z∈Z

(ξk)T (z − zk),

where ξk is a subgradient of θ(z) at zk, and arg vertex minz∈Z(ξk)T (z− zk) is

the set of vertex solutions of the linear program: minz∈Z(ξk)T (z − zk).

• Step 2. If (ξk)T (zk+1 − zk) = 0, then stop. Otherwise, return to Step 1 with

k increased by one.

In our numerical experiments, we compute a subgradient ξk of θ(z) at zk as

follows:

ξk =


−εgk

εe

e

e

 ∈ Rn+n+m+` with gki =


1 (xki > 0)

0 (xki = 0)

−1 (xki < 0)

, i = 1, · · · , n.

As is well-known, a concave minimization problem has at least one optimal solu-

tion at a vertex of the feasible region, provided a solution exists. Taking this fact into

account, the SLA tries to find an optimal solution of (5.3.1) by solving a sequence of

linear programs formed by linearizing the objective function of problem (5.3.1). The

sequence generated by the SLA finitely converges to a point that satisfies a necessary

optimality condition for the concave minimization problem [58,64]. Notice that the

solution obtained by this algorithm is not guaranteed to be a global optimal solu-

tion of (5.3.1). Nevertheless, we can easily check if the computed solution actually

satisfies (S2) by direct substitution.

We now show the way to generate subproblems in Step 2 of the branch-and-

bound algorithm. Recall that Step 2 is visited after either of the following two cases

occurs.

Case 1. In Step 1-a, D(I,J ) is infeasible.

Case 2. In Step 1-c, (S2) cannot be solved.
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If Case 1 occurs, then we generate two subproblems by choosing any variable xi such

that i /∈ I ∪ J as the branching variable. In Case 2, we fail to have a solution of

(S2), but a local optimal solution of problem (5.3.1) is obtained. In this case, we

choose as the branching variable a variable xi (i /∈ I ∪ J ) such that |xi| ≥ |xj| for

all j /∈ I ∪ J at the obtained local optimal solution of (5.3.1).

In Step 1, a certain rule should be used to choose an active subproblem P(I,J ) ∈
A. In the numerical experiments reported in the next section, we use the depth-first

search, which generally chooses an active subproblem corresponding to the farthest

node from the root node in the enumeration tree. In particular, when we return

to Step 1 after generating two subproblems, we choose one of these subproblems.

In this case, the choice depends on the above-mentioned two cases. If we generate

two subproblems in Step 2 after Case 1 occurs, then we choose any of the two

subproblems. In Case 2, as we mentioned above, we have a local optimal solution

of (5.3.1) at hand. In this case, if the branching variable xi in the local optimal

solution takes a positive value, then we choose subproblem P(I∪{i},J ). Otherwise,

we choose P(I,J ∪ {i}).

5.4 Numerical experiments

In this section, we consider facility location problems (FLPs) as an application

of AVO, and show some numerical results with the proposed branch-and-bound

algorithm applied to some examples of FLPs. All computations were carried out on

an Intel® CoreTM 2 Duo 3GHz machine with a MATLAB code. The CPLEX was

used to solve linear programs in the SLA.

FLP is the problem of finding optimal locations of facilities in a given area, and

it can be formulated as mathematical programs of different natures depending on

the type of constraints and optimization criteria [26]. Generally speaking, there are

two kinds of facilities from the residents’ standpoint. The first category is a desirable

facility such as schools, libraries, and fire stations. Such a facility should be located

as closely as possible to the residents. The other category is an undesirable facility,

which includes incineration plants, electric power stations, chemical factories, and

so on. These facilities should be located far from the residential area. From the

viewpoint of geography, there are three kinds of areas in which facilities can be

located, i.e., continuous spaces, discrete spaces, and networks. Furthermore, the

distance between two facilities or between a facility and a residential district can be
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measured by using various norms such as the Euclidean, the `1, and the `∞ norms.

In our numerical experiments, we consider two types of FLPs on a continuous

space with the `1 distance, which can be reformulated as AVOs. Note that the `1

distance between two points x and y can be represented as eT |x− y|.

5.5 Minimax Location Problem

A minimax multifacility location problem can be formulated as follows [26]:

min max { max
i∈I,j∈J

αije
T |xi − P j|, max

i,k∈I,i 6=k
βike

T |xi − xk| }

s.t. xi ∈ X (i ∈ I),
(5.5.1)

where xi ∈ R2 (i ∈ I) and P j ∈ R2 (j ∈ J) denote the locations of the new and the

existing facilities, respectively, I and J are finite index sets, αij and βik are positive

weighting factors, and X ⊂ R2 is the region in which the facilities are located.

The problem is to minimize the maximum weighted distance between new and

existing facilities, and between new facilities themselves. If each existing facility is

regarded as a residential district, then this problem represents a mathematical model

of locating desirable facilities, such as schools and fire stations, in a city. This kind

of problems has been well-studied for the past decades. In particular, using the `1

norm as the distance function, Konforty and Tamir [52] studied the minimax single

facility location problem with a forbidden region around each existing facility.

Problem (5.5.1) can be rewritten as the following problem by introducing a new

variable z ∈ R:

min
x,z

z

s.t. z ≥ αije
T |xi − P j| (i ∈ I, j ∈ J),

z ≥ βike
T |xi − xk| (i, k ∈ I, i 6= k),

xi ∈ X (i ∈ I).

(5.5.2)

If X is a convex polyhedron, problem (5.5.2) is easy to solve because it reduces to a

linear program. Here, we deal with the more general case where X is a nonconvex

region.

We now give the details of the problem that we solve in numerical experiments.

We define the region X as the set of points x = (x1, x2)T ∈ R2 that satisfy the
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following inequalities:

|x1|+ |x2|+ 0.2x1 + 0.4x2 ≤ 10,

|x1|+ 2|x2 + 12| − 0.5x1 ≥ 12,

|x1 + 2|+ 1.5|x2 + 1| − 0.3x1 − 0.5x2 ≥ 5.

(5.5.3)

The region X is nonconvex, as shown in Fig. 5.2. Notice that since the region X is

described by (5.5.3), problem (5.5.2) is an instance of AVO.

Fig. 5.2: Region X where the facilities are located.

In the numerical experiments, we let I = {1, 2}, J = {1, 2, 3} and set the

locations of the existing facilities as P 1 = (−7,−5), P 2 = (−2, 5), P 3 = (7,−1).

Moreover, we choose the positive weight β12 = 1.0, and use two data sets for the

weights αij given as follows:

(α11, α12, α13, α21, α22, α23) = (0.5, 1.0, 0.7, 0.5, 0.7, 1.0) (5.5.4)

and

(α11, α12, α13, α21, α22, α23) = (0.7, 1.0, 0.5, 0.5, 1.0, 0.7). (5.5.5)

The problems with αij’s given by (5.5.4) and (5.5.5) are called Minimax-1 and

Minimax-2, respectively. The branch-and-bound method was able to find solutions

of Minimax-1 and Minimax-2, which are given by x1 = (0, 1.5), x2 = (0.98,−1.9) and

x1 = (−3.42, 1.05), x2 = (−0.07, 1.55), respectively. The solutions are depicted in
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Fig. 5.3 and Fig. 5.4. For each problem, the CPU time, the numbers of subproblems

fathomed in Step 1-a, Step 1-b, Step 1-c, and the number of nodes explored are

summarized in Table 1.

Fig. 5.3: Solution of Minimax-1

Table 5.1: Results for minimax location problems

Time (sec) Step 1-a Step 1-b Step 1-c No. of nodes explored

Minimax-1 0.55 16 63 4 164

Minimax-2 2.7 230 96 30 710

5.6 Maximin Location Problem

A maximin multifacility location problem is generally formulated as follows [26]:

max min { min
i∈I,j∈J

αije
T |xi − P j|, min

i,k∈I,i 6=k
βike

T |xi − xk| }

s.t. xi ∈ X (i ∈ I),
(5.6.1)

where xi, P j, αij, βij and X represent the same stuffs as in problem (5.5.1). Un-

like the minimax location problem, this problem maximizes the minimum weighted

distances between new and existing facilities, and between new facilities themselves.
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Fig. 5.4: Solution of Minimax-2

The maximin location problem will be useful in locating competing facilities such

as convenience stores and gas stations.

Sayin [86] and Nadirler and Karasakal [70] reformulated a single facility maximin

location problem on a convex region with the `1 distance as a mixed integer program.

Tamir [89] proposed an algorithm for two-facility maximin location problems on a

convex region with the `1 distance. In these approaches, the region for locating

facilities is assumed to be convex. Here we solve multi-facility location problems on

a nonconvex region.

Problem (5.6.1) can be rewritten as the following problem by introducing a new

variable z ∈ R [89, 97]:

max
x,z

z

s.t. z ≤ αije
T |xi − P j| (i ∈ I, j ∈ J),

z ≤ βike
T |xi − xk| (i, k ∈ I, i 6= k),

xi ∈ X (i ∈ I).

(5.6.2)

Notice that, unlike the inequality constraints in (5.5.2), those in this problem are

nonconvex.

In the numerical experiments, we let the index sets of the new and the existing

facilities be I = {1, 2} and J = {1, 2, 3}, respectively. In addition, we set all the

positive weights αij and β12 to be 1. The region X is the nonconvex region described
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by (5.5.3). Moreover, the locations of the existing facilities are given in the following

two data sets:

P 1 = (−10,−1), P 2 = (−5, 2), P 3 = (2, 4) (5.6.3)

and

P 1 = (−9, 1), P 2 = (−1,−3), P 3 = (6,−2). (5.6.4)

The problems with the data sets (5.6.3) and (5.6.4) are called Maximin-1 and

Maximin-2, respectively. By using the proposed branch-and-bound method, we

obtained a solution x1 = (−2.42,−7.81), x2 = (6.27,−4.12) for Maximin-1 and a

solution x1 = (−5.12,−9.84), x2 = (0, 6.96) for Maximin-2. Those solutions are

shown in Fig. 5.5 and Fig. 5.6. For each problem, the CPU time, the numbers of

subproblems fathomed in Step 1-a, Step 1-b, Step 1-c, and the number of nodes

explored are shown in Table 2.

Fig. 5.5: Solution of Maximin-1

Table 5.2: Results for maximin location problems

Time (sec) Step 1-a Step 1-b Step 1-c No. of nodes explored

Maximin-1 7.9 753 492 13 2514

Maximin-2 14.1 1478 686 18 4362
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Fig. 5.6: Solution of Maximin-2

For each of the above examples Minimax-1, 2, and Maximin-1, 2, the AVO in

the form of (PAVO) has 27 variables and 22 constraints. From the results shown in

this section, we observe that a global optimal solution of each problem was found by

exploring only a small number of nodes compared with the number of all possible

nodes (227 − 1) in the enumeration tree. Although problems (5.5.2) and (5.6.2)

have the same number of variables and constraints, there is a significant difference

in the CPU time between these two types of problems, as shown in Table 1 and

Table 2. The reason for this phenomenon may be explained as follows. The minimax

location problem (5.5.1) has a convex objective function, although the feasible region

is nonconvex. On the other hand, the objective function of the maximin location

problem (5.6.1) is neither convex nor concave. Such a problem is considered to be

much more difficult to deal with in practice.
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5.7 Conclusion

In this chapter, we developed an algorithm for the absolute value optimization,

which is based on the branch-and-bound method. We have also carried out numer-

ical experiments for nonconvex multi-facility location problems with the `1-norm,

which can naturally be reformulated as absolute value optimization problems. The

numerical results demonstrate the validity of the proposed algorithm.
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Chapter 6

Conclusion

In this thesis, we first introduced an optimization problem that generalizes the so-

called absolute value optimization problem and investigated the theoretical proper-

ties of the generalized problem. We also proposed a more general gauge optimization

problem than the previous works and proved some important theoretical properties.

Then, we develop a global optimization algorithm for the absolute value optimiza-

tion by using a branch-and-bound method. The results in this thesis are summarized

as follows.

• In Chapter 4, we proposed optimization problems with positively homoge-

neous functions, which we call positively homogeneous optimization problems.

We also introduced their dual problems and showed the weak duality theo-

rem between these problems. Moreover, we gave sufficient conditions for the

equivalency between the proposed dual and the Lagrangian dual problems.

Finally, we presented some examples of positively homogeneous problems to

show their value in real-world applications. One natural future work will be to

propose methods that obtain approximate solutions of positively homogeneous

optimization problems. We believe the theoretical results described here are

essential for that.

• Chapter 5 provided the details of optimization problems with both gauge func-

tions and linear functions in their objective and constraint functions. Using

the positively homogeneous framework given in [108], we proved that weak and

strong duality results hold for such gauge problems. We also discussed both

necessary and sufficient optimality conditions associated with these problems,

showing that it is possible to obtain a primal solution by solving the dual prob-

103
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lem. We also extended the results for gauge problems to general optimization

problems. An important future work is to develop an efficient algorithm by

using the theoretical results described here.

• In Chapter 6, we developed an algorithm for the absolute value optimization,

which is based on the branch-and-bound method. We have also carried out

numerical experiments for nonconvex multi-facility location problems with the

`1-norm, which can naturally be reformulated as absolute value optimization

problems. The numerical results demonstrate the validity of the proposed

algorithm.

As we summarized above, we have contributed to the studies on absolute value

optimization problems and their generalization. In the following, we list some future

works for some unsolved issues.

• In Chapter 4, it is necessary to develop an algorithm for the PHO problem

and investigating the effectiveness of the algorithm. In particular, optimization

problems with the `p-norm, 0 < p < 1 could be one appropriate application

of the PHO. In sparse optimization, the `p-norm, 0 < p < 1 gives sparser

solutions than the `1-norm. However, it is usually avoided to use such `p-norm

because of its nonconvexity. If an algorithm for the PHO is developed by using

the theoretical results in this thesis, then sparse optimization problems with

the `p-norm, 0 < p < 1 can be solved efficiently.

• In Chapter 5, it is important to investigate the perspective transformation

in more concrete form. We provided the perspective of a convex quadratic

function and its polar as an example in this thesis. To make a list of the

perspectives of popular convex functions in a concrete form should be necessary

to apply the perspective framework for wider applications.

• In Chapter 6, to develop another global/local optimization algorithm could be

the future works. Not only the duality results, considering the more reason-

able problem than the general AVO by limiting the sign pattern of variables,

smoothing of the absolute value function, and some heuristic methods might

be useful.
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