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Preface

The concept of smart cities has been evolving. While the evolving concept

of smart cities does not have a fully shared and globally accepted definition,

it is possible to describe the most common characteristics of smart cities as

implementing the latest technologies to obtain benefits in a wide range of do-

mains. Technological fields such as device networks, sensing, and information

analysis enable smart cities to provide various services. As smart city relates

to different fields of services, it brings challenges for smart cities, one of which

is information networking. As the information networking towards smart cities

should satisfy requirements from heterogeneous services, the metrics on which

the information networking based should be able to describe requirements

from different types of services. However, conventional metrics for informa-

tion networking are insufficient for smart cities because they are quantized

in the network layer, and thus they do not always describe requirements for

various services. Therefore, information networking that quantifies the impor-

tant attributes of requirements of various services in the service layer, which

is called “importance-aware information networking” in this thesis, is essential

for smart cities. This thesis studies three specific problems on information

networking for smart cities based on data importance, each of which focuses

on a typical application scenario.

Firstly, this thesis proposes a system for device sharing based on importance

extracted from online social relationships between a device owner and user.

For smart city services, users provide sensing ability, computation capacity, or

network connectivity of their personal devices to smart city services by sharing

their devices with other users. When device owners share the limited resources

on their devices, they generally want to reduce their costs when they share their

devices with someone who is less socially close to them. The proposed system

iii



Preface

in this work automatically determines how much resources the user can use

by acquiring and evaluating online social relationships between a device owner

and user as a metric of the importance of transmitted data among devices.

This work presents a prototype implementation and a large-scale simulation

using a dataset of a real social network. The results show that the proposed

system limits resource usage for guest users who are not as close to the device

owners. The overhead of the authentication process in the system does not

interfere with the resource sharing with guest users close to the device owners.

Secondly, this thesis proposes an Internet of Things (IoT) device control

system that uses the importance of data to reduce the amount of transmit-

ted data for input of a machine learning model while maintaining prediction

accuracy. Predicting real-time spatial information from data collected by mo-

bile IoT devices is one of the most common structures of smart city services.

Mobile IoT devices for real-time spatial information prediction generate an ex-

tremely high volume of data, making it impossible to collect all of it through

mobile networks. Simply reducing the volume of transmitted data does not

ensure the prediction accuracy of real-time spatial information. This work

presents an IoT device control system that reduces the amount of transmitted

data used as input for real-time prediction while maintaining prediction accu-

racy. In this work, the proposed system is evaluated with a real-world vehicle

mobility dataset in two practical scenarios using the random forest model, an

extensively used machine learning model. The results show that the proposed

system reduces the amount of transmitted input data for real-time prediction

while achieving the same level of prediction accuracy as benchmark methods.

Thirdly, this thesis proposes a framework that periodically updates a ma-

chine learning model used to reconstruct the partially collected data by evalu-

ating the importance of the data in terms of both inference and re-training and

prioritizing collecting important data. Sparse mobile crowdsensing is a crowd-

sensing paradigm that reduces the sensing cost while ensuring data quality by

collecting data sparsely and reconstructing desired data using inference algo-

rithms, including machine learning algorithms. However, real-time inference of

spatial information with sparse mobile crowdsensing has not sufficiently con-

sidered the change of the nature of data over time. As a result, the accuracy

of the reconstructed data can deteriorate over time. This work presents a
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framework that periodically updates a machine learning model used for re-

constructing data by evaluating the importance of the data in terms of both

inference and re-training and prioritizing collecting important data. The eval-

uation results show that the proposed system with periodical model updates

performed better in accuracy than the benchmarks over time.

This thesis is organized as follows. Chapter 1 introduces the background

of importance-aware information networking towards smart cities. Chapter 2

introduces related technologies to this work. Chapter 3 develops device sharing

based on social importance. Chapter 4 introduces prioritized transmission

of sensing data based on data importance for inference by machine learning

model. Chapter 5 presents a periodic update of a machine learning model for

sensing data analysis based on data importance for learning. Finally, Chapter

6 concludes this thesis.
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Chapter 1

Introduction

1.1 Background

1.1.1 Concept of smart cities

The concept of a smart city has become popular worldwide over the past several

years. One of the most common characteristics of a smart city is focusing on

providing social benefits, economic growth, and creating new opportunities by

adopting the latest technology for the benefit of a wide range of domains [1]. A

smart city provides various services for various domains employing technologies

from many different scientific fields.

Several definitions of a smart city have been defined at different times by

various organizations and stakeholders. There is no unified definition of a

smart city because a smart city involves various domains and provides various

services. In 1993, the first idea of a smart city was presented by Singapore

city when Singapore city announced itself as an “intelligent city” [2]. Between

2000 and 2010, the concept of ”digital city” appeared. The concept of a digital

city is closely related to a smart city. One study defined a digital city as an

open, complex, and adaptive system based on computer networks and urban

information resources that form a virtual digital space for the city [3]. An-

other study defined a digital city as one that collects and organizes the digital

information of the corresponding city and provides a public information space

for the people living in and visiting it [4]. The digital city can be considered
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as a precedent for future ideas of a smart city. In 2007, one of the first ideas

of the term smart city was presented, which defined a smart city as a city that

is well-performing in a forward-looking way in the industry, education, citizen

participation, and technical infrastructure fields [5]. After 2010, as smart cities

begin to gain interest rapidly, the number of definitions has been increasing

significantly. One known definition was published by the IBM company. IBM

defined a smart city as an instrumented, interconnected, and intelligent city [6].

In other words, a smart city collects real-world data from both physical and

virtual sensors in real-time, aggregates and shares those collected data among

the various city services, and performs practical analysis and visualization to

improve operational business processes. Another known definition presents

a smart city as a sustainable and efficient city that functions by integrating

all infrastructures and services and using intelligent devices to monitor and

control the city [7].

Several international organizations have developed international standards

to establish definitions and methodologies for the research and development

of smart cities. The following organizations are involved in such standard-

ization: the international organization for standardization (ISO), the interna-

tional electrotechnical commission (IEC), the international telecommunication

union (ITU), and the institute of electrical and electronics engineers (IEEE).

ISO 37122:2019 (Sustainable Cities and Communities – Indicators for Smart

Cities) specifies and establishes definitions and methodologies in various do-

mains to provide a complete set of indicators to measure progress towards a

smart city [8]. IEC has identified over 1800 standards that already impact

smart cities [9]. The SyC Smart City committee in IEC is actively promoting

the development of standards to assist in operating smart cities. The SyC

Smart City committee is currently developing a new standard, IEC 63152,

which provides city planners with a best practice tool to protect a variety of

city services from destruction caused by disasters [10]. ITU established groups

such as Study Group 20 and the united for smart sustainable cities (U4SSC)

initiative to encourage the use of information and communication technologies

(ICTs) and to develop a set of international key performance indicators (KPIs)

for smart sustainable cities (SSCs) [11]. IEEE established the IEEE Smart

Cities Community to bring together IEEE’s broad range of technical societies
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and organizations to promote state-of-the-art smart city technologies [12]. In

2017, IEEE P2784 (Smart City Planning Guide) was published [13]. This

standard includes a framework that provides a methodology for planning in-

novative, scalable, and sustainable solutions for smart cities.

1.1.2 Information networking for smart cities

As smart city relates to many fields of services, it brings challenges for smart

cities, one of which is information networking. As various services have been

provided by smart cities, networks for smart cities need to meet various re-

quirements and challenges of various services. One of the most common con-

ventional approaches for information networking is to use metrics based on the

quality of service (QoS) [14, 15]. Building QoS-based information networking

architecture consists of three steps; analysis, quantification, and mapping [16].

First, in the analysis step, service requirements are analyzed in the service

layer, where the QoS category will be extracted as a result of the analysis.

Second, in the quantification step, attributes of service requirements are quan-

tified in the network layer according to the QoS category. Third, in the map-

ping step, the QoS requirements are mapped to the network attributes so that

the network will select the proper mechanism for networking. For example,

for a mobile streaming service where videos gathered by mobile cameras are

transferred to a remote server through a mobile network, the three steps are

as follows. First, continuous transmission of large data is a requirement for

the service. Second, acceptable bandwidth, latency, and jitter are quantified

from the service requirement. Third, these metrics are mapped to a packet

transmission strategy.

1.2 Issue of information networking for smart

cities

As the information networking towards smart cities should satisfy various re-

quirements from various services, the metrics on which the information net-

working based should be able to describe various requirements for various

services.
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However, conventional QoS-based information networking is insufficient for

smart cities because the quantification of QoS attributes in the network layer

does not always describe various requirements for various services. Users of

networks for smart city services can be roughly categorized into two; humans

and machines. For humans, social activities such as sharing their data or

resources with others have become a fundamental aspect of services [17–20].

For these social activities, the importance of social relationships among the

users is a key metric. On the other hand, for machines, the efficiency of

communication and accuracy of results of data analysis is one of the major

requirements [21–23]. To satisfy these requirements, how important a part of

transmitted data is for a service is a key metric. Quantifications to obtain

these metrics can be performed in the service layer but not in the network

layer.

Therefore, information networking that quantifies the important attributes

of requirements of various services in the service layer, which is called “importance-

aware information networking” in this thesis, has become an essential require-

ment for smart cities.

1.3 Problem statements

This thesis studies three specific problems about importance-aware information

networking for smart cities, each of which includes a question that has not been

addressed and is answered in this thesis.

1.3.1 Device sharing based on social importance

Device network is one of the key technological factors for smart cities. Device

sharing is one of the applications that are provided on top of a device network.

When people share devices, they would be concerned about costs such as

battery or bandwidth. In addition, device owners generally want to reduce

their costs when they share their devices with someone who is less socially

close to them [24–28]. Device sharing systems need to meet demands in which

device owners want to restrict less socially close users from using the resources

of the owners’ devices.
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A question arises: is there any system for device sharing that respects social

relationships among device owners and users? This question has not been

addressed, and is studied in Chapter 3.

1.3.2 Prioritized transmission of sensing data based on

data importance for inference by machine learning

model

Sensing and information analysis of data collected by sensing are key enablers

of smart cities. Advances in technologies such as wireless communications and

mobile Internet of Things (IoT) sensors made it possible to obtain sensor data

almost everywhere and at any time. The collected sensor data is uploaded

to servers and processed using machine learning models to infer valuable in-

formation for smart city services. Mobile IoT sensors generate an extremely

high volume of data, making it impossible to collect all of it through mobile

networks. Although reducing the total volume of transmitted data is essential,

reducing the data transmitted to servers may lead to poor inference accuracy.

A question arises: is there any system that reduces the amount of trans-

mitted sensor data used as input for inference while maintaining the inference

accuracy by transmitting only an important part of sensor data that contributes

to the inference accuracy? This question has not been addressed, and is studied

in Chapter 4.

1.3.3 Periodic update of machine learning model for

sensing data analysis based on data importance

for learning

Sensing combined with information analysis of sensed data is one of the most

common architecture for smart city services. Sensors collect data and transmit

the collected data to the server, and then the server aggregates the collected

data and performs inference on the collected data. As the nature of data

changes over time, the accuracy of the inference results can deteriorate over

time unless the inference model is re-trained using the newly collected training

data. The data for re-training, as well as the data for inference, consumes
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Chapter 2: related technologies

Importance-aware information networking towards smart cities

Device network

Sensing

Information analysis

(inference)

Information analysis

(learning)

Importance for 

humans

Importance for 

machines

Chapter 3

Chapters 4

and 5

Chapter 4

Chapter 5

Chapter 6: conclusions

Chapter 1: background and problem statements

Figure 1.1: Chapter overview of this thesis.

sensing costs. The problem stated in Section 1.3.2 only considers how to col-

lect the data for inference efficiently while maintaining the inference accuracy,

which means it does not consider how to collect the data for re-training.

A question arises: is there any framework that efficiently collects both the

data important for re-training the inference model and the data important for

inference in order to maintain long term accuracy of the inference? This ques-

tion has not been addressed, and is studied in Chapter 5.

1.4 Overview and contributions of this thesis

Figure 1.1 shows the chapter overview of this thesis. Chapter 2 introduces

related technologies to this work.

Chapter 3 proposes a system for device sharing based on importance ex-

tracted from online social relationships between a device owner and user. The

proposed system in this work automatically determines how much resources

the user is allowed to use by acquiring and evaluating online social relationships
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between a device owner and user as a metric of the importance of transmitted

data among devices. This work presents a prototype implementation and a

large-scale simulation using a dataset of a real social network. The results

show that the proposed system limits resource usage for guest users who are

not as close to the device owners. The overhead of the authentication process

in the system does not interfere with the resource sharing with guest users

close to the device owners.

Chapter 4 proposes an IoT device control system that uses the importance

of data to reduce the amount of transmitted data for input of a machine

learning model while maintaining the prediction accuracy. This work presents

an IoT device control system that reduces the amount of transmitted data used

as input for real-time prediction while maintaining prediction accuracy. In

this work, the proposed system is evaluated with a real-world vehicle mobility

dataset in two practical scenarios using the random forest model, an extensively

used machine learning model. The results show that the proposed system

reduces the amount of transmitted input data for real-time prediction while

achieving the same level of prediction accuracy as benchmark methods.

Chapter 5 proposes a framework that periodically updates a machine learn-

ing model used for reconstructing the partially collected sensor data by eval-

uating the importance of the data in terms of both inference and re-training

and giving priority to collecting important data. This work presents a frame-

work that periodically updates a machine learning model used to reconstruct

data by evaluating the importance of the data in terms of both inference and

re-training and prioritizing collecting important data. The evaluation results

show that the proposed system with periodical model updates performed bet-

ter in accuracy than the benchmarks over time.

Finally, Chapter 6 concludes this thesis and discusses the future works to

extend this work.
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Related technologies

2.1 Importance estimation from network graph

models

This section presents several common metrics that help us estimate network

graphs.

Social relationships among people are one of the most common examples

of a network graph. Communities on most social networking services (SNSs)

can be explicitly created by users. For example, such communities are called

“groups” on Facebook. However, communities can be detected from the net-

work topology by using community-detection algorithms. Link communities

[29] detect communities that users belong to by hierarchically clustering the

links between users. The most remarkable feature of this algorithm is that it

allows users to belong to multiple communities.

One-to-one relationships between two nodes can also be used to analyze

social relationships. The one-to-one relationship between nodes x and y can

be represented by E(x, y).
The E(x, y) in common neighbors [30] is given as

E(x, y) = |Γ(x) ∩ Γ(y)|, (2.1)

where Γ(z) is the set of neighbors of a node z. It is assumed that two users

who share many common neighbors are likely to have a stronger relationship.
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The E(x, y) in the Jaccard Index [31] is given as

E(x, y) = |Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| . (2.2)

It is assumed that two users have a stronger relationship when the set of their

common neighbors matches well.

The E(x, y) in the Adamic-Adar Index [32] is given as

E(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log kz
, (2.3)

where kz is the degree of a node z. It formalizes the intuitive notion that rare

features are more important.

The E(x, y) in the Katz Index [33] is given as

E(x, y) =
∞∑

l=1

βl · |paths⟨l⟩xy | (2.4)

= βAxy + β
2(A2)xy + β

3(A3)xy + · · · , (2.5)

where paths⟨l⟩xy is the set of all paths with length l connecting x and y, β is

a free parameter controlling the path weights, and A is the adjacency matrix:

Axy = 1 if x and y are directly connected and Axy = 0 otherwise. Note that,

(Al)xy is equal to the number of paths of length l from x to y. It gives the

shorter paths greater weight.

2.2 Importance estimation from machine learn-

ing models

2.2.1 Feature selection

Feature selection was originally considered as a method for selecting a set of

variables (features) from the input that can efficiently describe the input data

while reducing effects from noise or irrelevant variables and still provide good

prediction results [34]. Feature selection methods can reduce computation

time, improve prediction performance, and provide a better understanding

of the data in machine learning or pattern recognition applications. Feature
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selection differs from other dimension reduction methods such as principal

component analysis (PCA) in that it does not create new features since it uses

the input features themselves to reduce their number.

Existing methods of feature selection can be roughly categorized into three:

filter methods, wrapper methods, and embedded methods [34]. Each group of

methods is described and characterized as follows.

Filter methods use variable ranking techniques as the primary criterion for

variable selection by ordering. Filter methods act as preprocessing to rank the

features in advance before machine learning. Filter methods measure feature

relevance to filter out the less relevant variables. Feature relevance is a metric

of the feature’s usefulness in describing data. There are two criteria for un-

derstanding the relevance of a feature. Pearson correlation coefficient is one

of the simplest criteria for filter methods [35]. Ranking based on correlation

is simple but can only detect linear dependencies between input variable and

output. Another criterion is mutual information (MI), which is used to mea-

sure dependency between two input variables in information theory [36]. This

method is also simple but can result in poor performance because inter-feature

MI is not considered [37]. The advantages of filter methods are that they are

computationally light and avoid overfitting since they do not rely on learning

algorithms. On the other hand, in filter methods, features that are less in-

formative on their own could be discarded even if they are informative when

combined with other features.

Wrapper methods use the predictor as a black box and the prediction ac-

curacy as the objective function to evaluate the subset of variables. Since ex-

haustive search methods for all subsets of variables in large datasets requires

enormous computational resources, simplified search algorithms are employed

to find suboptimal subsets. Two search algorithms are used for wrapper meth-

ods: sequential selection algorithms and heuristic search algorithms. The se-

quential selection algorithms start with an empty or complete set of variables

and repeatedly add or remove variables until the objective function is maxi-

mized [38]. The heuristic search algorithms such as genetic algorithm (GA) [39]

or particle swarm optimization (PSO) [40] are used to find a local optimum

for prediction accuracy as the objective function. The main disadvantage of

the wrapper method is the large number of computations required to obtain
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the resulting feature subset. The predictor needs to be trained and evaluated

iteratively with each subset of features. Another drawback is that the predic-

tors are prone to overfitting [41]. When prediction accuracy is used for feature

selection, the output feature subset may have high accuracy for known data

but only low generalization ability for unknown data.

Embedded methods [35, 42] perform feature selection in the training pro-

cess. Compared to wrapper methods, embedded methods reduce the compu-

tation time taken for repeated training and evaluation for different subsets

in wrapper methods. Weights method and impurity method are the most

common among embedded methods. Weights method calculates the feature

importance from the trained neural network model using a saliency measure.

Weights method can be applied to neural-network-based models including a

multilayer perceptron (MLP) and a long short-term memory (LSTM) model.

The impurity method calculates the feature importance from a metric called

“impurity”, which is used during the training of decision tree models. At each

node of the decision tree, m elements are randomly selected out of all the fea-

tures, and the division method that best divides the m elements is selected.

At each node t of the binary tree, the optimal splitting is searched for using

impurity i(t) [43]. Impurity is a measure of how well the potential division at

that node divides the sample into two classes. This means that the impurity

reflects the importance of the elements used in the splittings. The impurity

method can be applied to decision-tree-based models, including the random

forest model [44].

There are feature selection methods that do not belong to any of the above

three categories but are commonly used. The perturb method evaluates the

effect on the output when the value of each input is slightly changed in machine

learning models [45]. The method changes the input values of one variable and

measures the effect on the output. The accuracy of the output deteriorates

more when the changed variable is more important. The perturb method is

straightforward and applicable to a wide variety of machine learning models.

Another common method is feature selection ensemble. Feature selection en-

semble is an ensemble-based method that aims to construct a group of feature

subsets and then produce an aggregated result from the group [46]. Feature

selection ensemble improves the robustness of feature selection because the per-

12



Section 2.2

formance variance can be reduced compared to that of a single result obtained

from a single approach.

2.2.2 Importance estimation using prediction errors

This section introduces methods that calculate weights or perform data sam-

pling using the error between the real values and the predicted values by ma-

chine learning models.

Generalization error can be used for sampling the training data for neural

network models [47]. This method filters out a larger amount of data if the

data has a lower generalization error. Low generalization error means that the

model already performs well for that data. Thus that data can be considered

to have a small contribution as training data for updating the model.

Boosting, which is a popular technique of machine learning, uses prediction

error for weighting each data [48]. Boosting is an ensemble learning method

that aggregates multiple results from multiple prediction models to create a

better model [49]. When the models are trained, one prediction model uses

training data which is weighted by the prediction error of another prediction

model. The prediction models trained by boosting method can compensate

for weak points of each other and the prediction accuracy can be improved.
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Shared-resource management

using online social relationship

metric for altruistic device

sharing

3.1 Overview

Over the past several years, we have witnessed great progress in wireless com-

munications and digital electronics. These advances have enabled an increasing

number of devices, such as tablets, sensors, wearable devices, robots, and au-

tonomous cars, to be connected to the Internet. Due to the spread of the IoT

paradigm, even everyday items, such as food packaging, furniture, and paper

documents, will be Internet nodes by 2025 [50]. In addition to this change,

a global trend toward peer-to-peer sharing of personal assets has been sug-

gested. This trend is called the “sharing economy” and is demonstrated in

services such as Airbnb, Uber, and Freecycle. The sharing economy was nom-

inated by Time in 2011 as one of “10 ideas that will change the world” [51].

Furthermore, the global annual revenue of the sharing economy, which was $15

billion in 2015, has been estimated to grow to $335 billion by 2025 [52].

Due to the confluence of the above two paradigms, i.e., IoT and sharing

economy, various devices owned by a person will be shared with others. For
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example, members of a global WiFi sharing community called FON [53] share

their WiFi routers with other members. Another example is mobile cloud

[54] [55]. By sharing computing resources with mobile devices, mobile cloud

attains more powerful computing than stand-alone computing and enables

mobile devices to offload computing tasks with low levels of latency. Sens-

ing devices in wireless sensor networks (WSNs) are also shared for various

purposes. SenseWeb is an infrastructure for shared sensing, which provides

greater understanding by collecting sensing data from multiple different net-

works [56]. Sharing airborne sensors enables efficient use of their spare sensing

resources [57] [58]. A system called eShare enables energy exchange among

shared sensors [59].

When a device owner decides how much or how long her or his device can

be shared with others, it is a good idea to consider how close these others are

to the device owner. There are two reasons for this. First, social closeness has

a strong relationship with our daily mobility patterns. We have more chance

to encounter someone if she or he is socially close to us. Eagle et al. introduced

a system to collect data from mobile phones and studied the relation between

the logged data and social nature of the subjects [60]. They revealed that

social closeness between people is strongly correlated with their contact logs.

Hui et al. presented a delay-tolerant network (DTN) based on social metrics

[61]. To infer human communities and select forwarding paths, they measured

the social closeness between two people by the number of contacts and how

long they spend together. Second, the social closeness between people has a

correlation with how altruistic someone will be to others [24] [25] [26] [27] [28].

For example, when devices are shared among people, the owners do not want

to share their devices with strangers, while they are more willing to share their

devices with their socially closer friends or families. The less socially close the

guest user is to the device owner, the less altruistic the device owner becomes.

Device-sharing systems need to meet demands in which device owners want

to restrict less socially close users from using the resources of the owners’

devices. A typical example of altruistic device sharing, which this work will

focus on in Section 3.3, is ‘tethering’ in cellular networks: an owner who uses a

personal device such as a smartphone, which has direct connectivity to cellular

networks such as 3G, long-term evolution (LTE), or LTE-Advanced (LTE-A),
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relays data from/to base stations (BSs) for others who do not have direct

connectivity to cellular networks but connect their personal computers (PCs)

or tablets to the owner’s device via WiFi [62]. Tethering incurs costs such as

those imposed by battery life or bandwidth [63]. When device owners offer

tethering, they want to save the costs to guest users who are not as close to

them because they are less altruistic to such users. However, conventional

device-sharing services do not meet such demand. They do not allow device

owners to vary the authorized level of resource usage of guest users or only allow

device owners to manually manage the authorized level of resource usage of

users, which imposes a great burden on device owners.

This chapter proposes a system that uses online social relationships to meet

device owners’ demands for resource management to enable altruistic device

sharing. When a shared device receives a connection request from a guest user,

the shared device first sends a request to the authentication server. Then, the

authentication server evaluates online social relationships and determines how

much of a resource on the shared device can be used by a guest user. This

work also presents a prototype implementation and a large-scale simulation

using a dataset of a real social network to verify that i) the proposed system

limits the resource usage for guest users who are not as close to the device

owners, and ii) the overhead of the authentication process in the system does

not interfere with the resource sharing with guest users who are close to the

device owners.

Several studies have been carried out that are similar to this work. Shankar

et al. presented and demonstrated an architecture called SBone, which allows

personal devices to seamlessly and securely share their resources and state

with each other by using a social network for authentication, naming, discov-

ery, and access control [64]. They suggested that SBone would be applicable

to situations in which a device owner provided her or his Internet connectivity

to others who were friends with her or him in online social networks. Another

similar effort has been in communication with social-aware device-to-device,

which directly share data between mobile devices used by people who have

social relationships without using infrastructure networks such as cellular net-

works [65] [66] [67]. However, these prior studies did not consider how shared

resources were to be managed on the basis of social closeness between owners
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and users.

The rest of this chapter is organized as follows. Section 3.2 presents the

architecture and resource management procedures for the proposed system.

Section 3.3 provides a prototype implementation and simulation results that

validate the performance and effectiveness of the proposed system. Finally,

Section 3.4 concludes this chapter.

3.2 Proposed system design

3.2.1 System architecture

The proposed system architecture (Fig. 3.1) consists of four components: (a)

an authentication server, (b) shared devices, (c) owners, and (d) guest users.

The authentication server manages the shared devices and the online social

account information of the owners and guest users. The authentication server

determines which guest user can access which function or resource of the shared

devices according to the relationship between the owners and guest users. A

centralized architecture is adopted for the authentication server, so it can easily

manage online social relationships between the owners and guest users. The

shared devices are devices that can be accessed by guest users, such as tablets,

sensors, wearable devices, robots, and autonomous cars. Each shared device

belongs to one owner. The guest users are granted access to the shared devices

according to the online social relationship with the owner of the shared devices.

3.2.2 Owner-related procedures

Device registration

An owner registers her or his personal devices on the authentication server be-

fore the owner starts to share the devices. When an owner registers a device,

the authentication server issues a unique ID to the device. The authentica-

tion server associates the device ID with the owner’s online social account

information and records them in a database (DB).
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Social-closeness evaluation from extracted social relationships

The proposed system requires i) a data source from which the proposed sys-

tem obtains online social relationships and ii) a metric by which the proposed

system quantitatively analyzes the online social relationships to use those re-

lationships between owners and guest users to manage resources.

One of the most common and familiar examples of online social relation-

ships is found in online social networks (OSNs) [68]. OSNs are offered by SNSs

such as Facebook, Twitter, Google+, and LinkedIn. OSNs consist of nodes

and edges. Nodes represent users (more specifically, online social accounts of

users) of OSNs, while edges represent social interactions among these users.

Note, in this section, users mean not device users but SNS users. The most

basic social interactions that are represented by edges are friendships. Al-

though some OSNs adopt undirected friendships and others adopt directed

friendships, both types of friendships are included in online social relation-

ships. Comments, messages, and reactions to other users are also examples of

online social relationships, apart from friendships.

Several common metrics can be used to analyze the social closeness between

users, as described in Section 2.1. By using communities and one-to-one rela-

tionships between two users, the proposed system defines the social closeness

between x and y as

SC(x, y) =



0 if x and y are not friends, or

they do not belong to the same

community

E(x, y) otherwise

, (3.1)

where E(x, y) is an index that represents the one-to-one relationships between

x and y, as defined in Section 2.1.

3.2.3 User-related procedures

The authentication flow of the proposed system is illustrated in Fig. 3.2.

Details of each message in Fig. 3.2 are described in Table 3.1. Authentication

consists of two phases: identification and authorization. The authentication
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server identifies guest users in the identification phase (1.1–1.4) by using their

online social accounts. The authentication server acquires the online social

relationships between the owner and guest user, then the shared devices control

the access for the guest user based on the relationships in the authorization

phase (2.1–2.4).

Identification

(1.1) A guest user requests access to the shared device. (1.2) The shared device

requests the guest user to sign in to the authentication server. (1.3) The guest

user signs in to the authentication server with the guest user’s online social

account. (1.4) The authentication server notifies the shared device that the

guest user has completed signing in to the authentication server.

Authorization

(2.1) The shared device requests the authentication server to authorize the

guest user. (2.2) The authentication server acquires online social relationships

between the owner and guest user. The authentication server creates access

control information based on these relationships that define whether the guest

user can access the shared device and the authorized level of resource usage for

the guest user. (2.3) The authentication server issues the resource-management

information to the shared device. (2.4) The shared device controls access for

the guest user based on the received information.

3.2.4 Advantages and disadvantages

With the proper use of online social relationships, services that meet the de-

mand of smart cities can be developed. By combining information acquired

from social relationships with free WiFi and business support, the proposed

system can be extended to a smart city product. For example, Bumbee Labs

in Sweden has offered free WiFi to tourists to acquire their mobility logs and

analyze them to increase B to B sales [69]. Combining online social relation-

ships with those data will help such services offer more valuable and interesting

analysis.
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Online social relationships

Shared devices

Owner
Guest users

Authentication
server

DB

Figure 3.1: Proposed system architecture. (©2018 IEEE.)
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(1.3) identification_request
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(2.3) authorization_response

(2.4) share_response

Figure 3.2: Authentication flow. (©2018 IEEE.)
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Table 3.1: Details of exchanged messages.

Message name Content data name Details

(1.1) share request guest id ID to identify guest user

(1.2) redirect authentication url

Uniform resource locator
(URL) of authentication
server’s endpoint

(1.3) identification
request

guest id See above

shared device id
ID to identify shared
device

social account id
ID of a social account
of guest user

social account pass
password of social
account of guest user

(1.4) identification
response access token

Secret key to access
online social relationships

(2.1) authorization
request

access token See above

owner id ID to identify owner

guest id See above

(2.3) authentication
response resource management info

Information to control
access from guest users
e.g., authorized
connection time

(2.4) share response resource management info See above
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However, it should also be noted that online social relationships may lead

to privacy issues. A major concern is that one user may be able to infer some

private information of another user. As future work, the problem of how the

social relationships are prone to raise such a risk will be investigated.

3.3 Performance evaluation

In this performance evaluation, a tethering scenario is assumed, in which a

device owner relays data to cellular networks, such as LTE, for other guest

users who connect their PCs or tablets to the owner’s mobile device, such

as a smartphone, via WiFi [62]. Section 3.3.1 introduces an implementation

of a prototype system and the performance measurement of the prototype

system to confirm that the authentication overhead is within a realistic range.

Using the authentication overhead actually measured (Section 3.3.2) presents

a simulation with large scale and real social network data to verify i) and ii)

mentioned in Section 3.1.

For the rest of this section, authorized connection time is used as an index

of the authorized level of resource usage. The authorized connection time is

the duration in which guest users are permitted to connect to shared devices.

3.3.1 Prototype implementation

Overview

The architecture of the implemented prototype system is illustrated in Fig.

3.3. This prototype system selects the WiFi access point (AP) as a shared

device and uses the number of common neighbors on Facebook as an indica-

tor of social closeness. The number of common neighbors [30] is used as a

metric, as described in Section 3.2.2 to control the authorized connection time

for guest users to access the Internet through the AP. To delegate guest-user

identification management to Facebook accounts, the OAuth protocol is used.

In addition, the implemented prototype system adopts a system called Pack-

etFence to control the packet flow through the AP. PacketFence communicates

with the authentication server and guest device and performs access control

on behalf of the shared WiFi AP.

23



Chapter 3

Authentication network

The 
Internet

Guest
device

Owner device
(WiFi AP)

Router

Authentication
server

DB Facebook
API

Figure 3.3: Implemented prototype system. (©2018 IEEE.)

The authentication flow is composed of the identification and authorization

phases. In the identification phase, the guest user requests access to the shared

device and signs in to the authentication server with the guest user’s Facebook

account. The authentication server identifies the guest user by receiving the

guest user’s information from Facebook. The authentication server and Pack-

etFence communicate with each other to exchange the guest user’s pieces of

information such as the guest user’s name or email address. In the authoriza-

tion phase, the authentication server obtains the number of common friends

between the owner and guest user and determines the authorized connection

time for the guest user to access the WiFi AP.

Under this configuration, the implemented prototype system allows the

guest users to connect to the Internet through the AP without entering complex

WiFi passwords as long as they have a Facebook account.

Details

Facebook API Facebook offers one of the largest OSNs in the world [70] and

offers rich application programming interfaces (APIs). Facebook APIs allow

the implemented prototype system to use various data on Facebook easily.

The number of common neighbors is an example of various data offered by

Facebook through the APIs. These indicators represent the social closeness

among users well; therefore, they are suitable for controlling the authorized

connection time for each user.
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OAuth OAuth is a protocol that enables a third-party application to access

resources on a hypertext transfer protocol (HTTP) service on behalf of a re-

source owner [71]. The OAuth protocol flow consists of the following three

main parts. (1) The resource owner is identified by the HTTP service and

approves the third-party application’s access to the resource. (2) The third-

party application receives an access token from the authorization server of the

HTTP service. (3) The third-party application requests the protected resource

on the resource server of the HTTP service by presenting the access token.

In the implemented prototype system, Facebook, online social relationships

on Facebook, and the authentication server of the implemented prototype sys-

tem represent the HTTP service, resource, and third-party application, respec-

tively. By using the OAuth protocol, the implemented prototype system gains

two benefits. First, the implemented prototype system can delegate the iden-

tification of users to Facebook. This saves the system the trouble of managing

passwords or user accounts on its own. Second, the implemented prototype

system can acquire online social relationships from Facebook for access control

on behalf of the users.

PacketFence The packet flow through the AP is controlled by a system

called PacketFence, which is a free and open source network access control

solution [72] that can be deployed under the following three types of enforce-

ment: inline, out-of-band, and hybrid. The implemented prototype system

adopts inline enforcement, which is the most basic and simple enforcement

among the three. Under inline enforcement, the PacketFence server is placed

between a router connected to the Internet and an authentication network

that includes the shared AP and guest user devices. Therefore, all packets

exchanged between the authentication network and Internet must go through

the PacketFence server. When a packet from an authorized guest user device

attempts to go through the PacketFence server to outside the authentication

network, the PacketFence server behaves like a normal router and allows the

packet to pass. On the other hand, when a packet from an unauthorized guest

user device attempts to do the same thing, the PacketFence blocks the packet

and displays a captive portal that prompts the guest user to sign in.

The flexible design of PacketFence allows the implemented prototype sys-

25



Chapter 3

tem to add a module to exchange authentication information with the authen-

tication server.

Performance measurement

Metric This section adopts the time required for authentication as a metric

of authentication overhead. However, the time consumed while the user en-

ters her or his username and password on the sign-in page of Facebook should

not be included in the measurement because it varies from person to person.

Therefore, it is assumed that the user usually uses Facebook with a browser on

the user’s device, i.e., the user has already signed in to Facebook and a Face-

book credential has been stored in a browser cookie. Under this assumption,

the sign-in procedure is completed as soon as the user visits the sign-in page

of Facebook, and the time taken to enter the username and password is not

included in the measurement.

Experimental setup The details of the experimental setup are listed in Ta-

ble 3.2. PacketFence was installed on a CentOS machine. The authentication

server was implemented as a Ruby on Rails web server and deployed on one

of the most popular platform as a service (PaaS) called Heroku.

The time required for authentication was extracted from timestamps in a

log file of the authentication server. In this measurement, the time required

for authentication is defined as the length of a period that begins with the first

request to the server and ends with the last response from the server.

Reference setup The reference system does not take into account the online

social relationships between a device owner and guest users. The authentica-

tion server in the reference system does not acquire and evaluate online social

relationships on Facebook and allows all guest users to use the WiFi AP for a

fixed duration.

Results Table 3.3 shows the duration required for authentication, which was

measured using the prototype system. In the table, the 5th shortest, median,

and 20th shortest values obtained from 25 measurements are shown for evalu-

ating the distribution of the measured duration. The median of the duration
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Table 3.2: Details of experimental setup.

OS CentOS 6.8

Memory 8 GB

CPU Core i7-860 2.8 GHz × 8

No. of measurements 25

PacketFence version 6.3.0

Guest device iPhone 7 iOS 11.2.2

Browser on guest device Google Chrome

Authentication server Ruby 2.3.1, Rails 4.2.7, on Heroku

Table 3.3: Time required for authentication.

5th (s) median (s) 20th (s)

Reference 4.786 5.086 6.216

Proposed 5.196 5.408 5.800

required for authentication in the proposed system was slightly longer than

that in the reference system. This is because the proposed system acquires and

evaluates online social relationships on Facebook, while the reference system

does not. However, this duration was not dominant in the entire authentication

process. These results verified that the proposed system works sufficiently in

terms of the overhead for authentication compared with the reference system.

3.3.2 Simulation with real data

Evaluation scenario

In the previous section, measuring the authentication overhead is discussed. In

this section, using the measured overhead, a simulation is conducted to verify

i) and ii) mentioned in Section 3.1. In the simulation, each user is assumed to

have a tethering device and move around cities based on the check-in data of

an actual location-based social network.

Figure 3.4 illustrates the evaluation scenario. The simulation takes into
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account tethering in cellular networks: guest users who are not directly con-

nected to cellular networks send/receive data via a device owner’s smartphone.

The system in the simulation determines the authorized connection time by

evaluating the social closeness defined in Section 3.2.2 in an undirected friend-

ship network from an SNS. Requests are sometimes blocked due to the limit

of the request queue size or the number of connections to the owner’s device.

Figure 3.5 shows the flow of the simulation. (1) When the owner and a

guest user are located within a feasible communication range, the guest user

sends a connection request to the owner’s device. (2) The owner’s device adds

the request to a request queue. (3) The owner’s device sends a request to the

authentication server. (4) The authentication server determines the authorized

connection time according to the social closeness between the guest user and

owner of the tethering device.

Evaluation model

The parameters of the simulation are listed in Table 3.4. The detailed expla-

nations of the parameters and components of the simulation are as follows.

Owner
Guest user

Community

R[m]

Communication range

Tethering

Figure 3.4: Evaluation scenario. (©2018 IEEE.)
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Figure 3.5: Simulation flow. (©2018 IEEE.)

Authentication server The authentication server receives connection re-

quests from the users and determines the authorized connection time for each

user. When the authentication server receives a request, it adds the request

to the request queue. The size of the request queue is limited to M. If the

authentication server receives a request when the request queue is full, the

request will be blocked.

The authentication latency is defined as L. In this simulation, the actual

measured value mentioned in Section 3.3.1 is used for L.

Shared device The tethering devices are shared with users and allow guest

devices of authorized users to transmit a certain amount of data through it.

The tethering devices can be accessed by up to N guest devices at the same

time. Once the number of connected devices reaches N, all subsequent requests

will be blocked until the authorized connection time of one of the connected

devices expired.

Owner The relationships with the owner of the WiFi AP determine the au-

thorized connection time for users, and 10% of the users in the dataset are

randomly selected as candidates for owners. The simulation was conducted

repeatedly for each owner selected from the candidates. The owners are as-

sumed to stay in the i-th check-in location for min(T, ti+1 − ti) minutes before

she or he moves to the next check-in location, where ti and ti+1 are the i-th
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and (i + 1)-th check-in times for the owner, respectively.

Guest users The guest users create connection requests and transmit data

through the tethering device when authorized. The guest users are assumed

to stay in the same location for a certain period as well as the owners.

Communication range A communication range is a range within a radius

R from the current location of the owner. As the owner and guest users move

around, when a guest user enters the communication range of the owner, the

guest user makes a connection request to the owner’s tethering device. On the

other hand, when the owner or guest user leaves the current check-in location

and the guest user is no longer within the communication range of the owner,

all connection requests and connections to the owner are canceled at that point.

Authorized connection time The system determines the authorized con-

nection time for each guest user according to the social closeness between the

guest user and owner and the communities they belong to. If a guest user

Ug is not blocked due to the limit of the request queue size or the number of

connections at the owner’s tethering device, the authorized connection time

for Ug is defined as τ(Ug) = SC(Uo,Ug)β, where Uo is the owner, SC(Ui,U j)
is the social closeness between users Ui and U j , as defined in (3.1), and β is

a coefficient. In this simulation, the common neighbors, Jaccard Index, and

Adamic-Adar Index defined in (2.1) in Section 2.1 are used as E(Uo,Ug). The
value for β is selected so that τ(Ug) does not exceed T for almost all user pairs.

Dataset

In this simulation, Brightkite datasets [73] were used as the data source of

online social relationship. Brightkite is a popular online location-based social

network. The friendship network of Brightkite was originally directed but

was reconstructed as a network with undirected edges by only considering bi-

directional edges [74]. To simplify the simulation, users who have at least

one check-in in Japan are extracted. Friendships among the extracted users

and communities detected by the Link communities algorithm [29] are used

30



Section 3.3

Table 3.4: Simulation parameters.

Parameter Value

Simulation period Apr. 2008 – Oct. 2010

Radius of communication range (R) 100 m
Max. duration for users to stay
at same location (T) 60 minutes

Max. no. of simultaneous connections (N) 5
Authentication latency (L),
measured in Sect. 3.3.1 5.408 seconds

No. of guest users (V) 3,013

Max. size of request queue (M) 10
Mean of requested time
in compared system (m) 60 minutes

to evaluate social relationships between device owners and guest users. The

statistics about the extracted users are as follows.

Figure 3.6 shows the cumulative distribution function (CDF) curve of con-

tact duration per contact. A contact starts when a guest user enters the

communication range of the owner and ends when the guest user leaves it.

The figure shows that about 50% of contacts were longer than 800 seconds.

The maximum contact duration was limited to 3600 seconds because it cannot

exceed T . Figure 3.7 shows the CDF curve of the number of devices connected

to the tethering device over time. The maximum number of connected de-

vices was limited to N. For about 70% of the time, the tethering device was

connected by one guest user. Figure 3.8 shows the CDF curve of intervals of

user check-ins. This figure illustrates that about 60% of check-ins were created

within 6 hours from a previous check-in. Figure 3.9 is a double logarithmic

chart that shows the number of users against the number of check-ins with a

fitted curve having a slope of -0.79. When the number of check-ins was smaller

than 100, the number of users decreased along the fitted curve as the number

of check-ins increased, whereas when the number of check-ins was greater than

100, the number of users decreased faster than the fitted curve. Figure 3.10

is a double logarithmic chart that shows the number of user pairs against the
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number of common neighbors for all (V − 1)V/2 user pairs with a fitted curve

having a slope of -1.94. When the number of common neighbors was smaller

than 60, the number of user pairs decreased along the fitted curve as the num-

ber of common neighbors increased, whereas when the number of common

neighbors was greater than 60, the number of user pairs decreased faster than

the fitted curve.

0 1000 2000 3000
Contact duration (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 3.6: Contact duration per contact. (©2018 IEEE.)

Comparison system

The proposed system is compared with a system that does not evaluate online

social relationships when it authenticates users. The authorized connection

time is generated according to exponential distributions whose average is m.

The guest user is allowed to access the tethering device for the same duration

as the guest user requested until she or he leaves the communication range of

the owner, regardless of the social closeness between the owner and guest user.

The proposed system was compared with the comparison system based on the

average actual connected duration per connection request.

32



Section 3.3

1 2 3 4 5
No. of connected devices

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Figure 3.7: No. of connected devices. (©2018 IEEE.)
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Figure 3.8: Check-in interval. (©2018 IEEE.)
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Figure 3.9: No. of users vs. no. of check-ins. (©2018 IEEE.)
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Figure 3.10: No. of user pairs vs. no. of common neighbors. (©2018 IEEE.)
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Results
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Figure 3.11: Avg. actual connected duration vs. social closeness (common

neighbors, β = 1). (©2018 IEEE.)

The following two points can be observed from the results; i) the proposed

system limits the resource usage for guest users who are not as close to the

device owners, and ii) the overhead of the authentication process in the system

does not interfere with the resource sharing with guest users who are close to

the device owners.

Figures 3.11, 3.12 and 3.13 plot the average actual connected duration per

connection requests against the number of common neighbors, Jaccard Index,

and Adamic-Adar Index, respectively. According to the linear approximate

line, as the number of common neighbors increased, the average actual con-

nected duration on the proposed system also increased, while there was no

significant change on the comparison system.

In Fig. 3.11, when the number of common neighbors was smaller than 90,
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Figure 3.12: Avg. actual connected duration vs. social closeness (Jaccard

Index, β = 150). (©2018 IEEE.)
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the guest users had a shorter actual connected duration on the proposed system

than the comparison system. As seen in Fig. 3.6, about 50% of contacts were

longer than 800 seconds. However, according to the linear approximate line,

the average actual connected duration of the proposed method was shorter

than 800 seconds. This is because the average actual connected duration was

properly limited by τ(Ug). This indicates that the proposed system properly

limited the authorized level of resource usage for unfamiliar guest users. On

the other hand, when the number of common neighbors was greater than 90,

the guest users had longer actual connected duration on the proposed system

than the comparison system. This is because the authentication latency L,
which was set to the actual measured value mentioned in Section 3.3.1, was

much shorter than the average connected duration. Therefore, the proposed

system allowed socially close guest users to use the shared devices with only a

little interference by its authentication overhead. As a result, points i) and ii)

mentioned earlier in this section can be observed from Fig. 3.11.

Figures 3.12 and 3.13 show the same trend as in Fig. 3.11. According to

the linear approximate line, when Jaccard Index or Adamic-Adar Index was

small, the guest users had a shorter actual connected duration on the proposed

system than the comparison system. On the other hand, when Jaccard Index

or Adamic-Adar Index was large, the average actual connected duration of the

proposed system was longer than that of the comparison system. Therefore,

points i) and ii) can also be observed from Figs. 3.12 and 3.13.

3.4 Chapter summary

This chapter proposed a system that uses online social relationships to meet

device owners’ demand for resource management for altruistic device sharing.

The proposed system enables device owners to reduce their costs of device

sharing with users according to the social closeness between the device owners

and guest users. A prototype system was implemented to confirm that the

proposed system can be fully implemented as an actual working system and

measure the authentication overhead of the proposed system. A simulation

was conduced using this overhead measured on the prototype and a large-scale

dataset of a real social network. The simulation verified that i) the proposed
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Figure 3.13: Avg. actual connected duration vs. social closeness (Adamic-

Adar Index, β = 5). (©2018 IEEE.)
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system limits the resource usage for guest users who are not as close to the

device owners, and ii) the overhead of the authentication process in the system

does not interfere with the resource sharing with guest users who are close to

the device owners.
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Prioritization of mobile IoT

data transmission based on data

importance extracted from

machine learning model

4.1 Overview

The increasing impact of social problems related to road traffic is a major

concern facing our future society. Traffic accidents are still a major problem

in many societies today. According to a report on road safety by the world

health organization (WHO), road traffic injuries are currently estimated to

be the ninth leading cause of death across all age groups globally and are

predicted to become the seventh leading cause of death by 2030 [75]. It also

states that 3% of the global gross domestic product (GDP) is estimated to

be lost as a result of road traffic deaths and injuries. Road traffic congestion

is another serious problem in many countries. A report by the Centre for

Economics and Business Research suggests that the total economy-wide cost

across four advanced countries (the UK, France, Germany, and the USA) was

$200.7 billion in 2013, and is forecasted to rise to $293.1 billion by 2030 [76].

Predicting real-time spatial information from data collected by mobile IoT

sensors is one solution to solve the social problems related to road traffic [77].
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Mobile IoT devices such as smart cars (including autonomous cars), smart-

phones, wearable devices, and unmanned aerial vehicles (UAVs) play a major

role in such an application: namely, they work to collect data. Some studies

have discussed algorithm design for collecting data from sensors on vehicles

using mobile crowdsensing [78] [79]. The data collected by mobile IoT de-

vices are uploaded to edge servers, which process the uploaded data and apply

machine learning techniques to predict real-time spatial information such as

road-traffic volume, optimal travel path, and precise positions of pedestrians

and cyclists. Real-time spatial information prediction is in demand for many

services. An example service is the autonomous driving support system, which

gathers real-time data from onboard sensors and provides exact location and

relation to other road users [80]. The cyber-physical system (CPS), in which

the real-time spatial information prediction system is included, is increasingly

in demand. The market was worth $18 billion in 2017 and is likely to grow by

8.7% annually for the next ten years [81].

However, mobile IoT devices for real-time spatial information prediction

collect an enormous amount of upstream data — much more than can be col-

lected through the uplink bandwidth in mobile networks. Mobile IoT devices

collect images, videos, or light detection and ranging (LiDAR) [82] data con-

tinuously, and it is impossible to collect all of such data through the uplink

bandwidth of LTE or LTE-A networks today. Even with 5G networks, it is

impossible to collect all of the high-resolution images, videos, and LiDAR data.

Cluster-based data aggregation reduces data transmission by clustering

wireless sensors and aggregating raw data from each cluster before transmitting

them to destined targets [83] [84] [85] [86]. Sensors clustered into one cluster

are usually located nearby each other, so collected data from these sensors are

correlated and thus redundant to some extent. Cluster-based data aggregation

eliminates this redundancy, thereby reducing the volume of data transmission.

This approach focuses mainly on redundancy in data; no previous work has

successfully reduced the volume of transmitted data used as input for real-

time prediction while maintaining the prediction accuracy of real-time spatial

information.

This chapter proposes an IoT device control system that reduces the volume

of transmitted data used as input for real-time prediction while maintaining
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the prediction accuracy of real-time spatial information. The main contribu-

tion of this chapter is that the proposed system prioritizes the transmissions

of data collected by mobile IoT devices on the basis of the “importance of

data” extracted from the machine learning model for prediction. The impor-

tance of data is a metric of how much the data collected by mobile sensors will

contribute to the prediction accuracy of real-time spatial information. Fea-

ture selection has been widely used to extract the importance of data from

the machine learning model. Feature selection methods were originally used

to reduce computation time, improve prediction performance, or provide a

better understanding of the data in machine learning or pattern recognition

applications. Feature selection methods were also used to reduce communica-

tion overhead in distributed learning [87]. Unlike those conventional usages,

the proposed system uses feature selection methods to control the data trans-

mission of mobile IoT devices with priority. In this work, two performance

evaluations are performed using real-world datasets, with each one assuming a

different scenario. These evaluations use a random forest regressor [44] as the

machine learning model for prediction and the impurity method [43] and per-

turb method [45] as feature selection methods. The results of these evaluations

show that the proposed system reduces the volume of input data transmission

for real-time prediction compared with benchmark methods while achieving

the same prediction accuracy.

The rest of this chapter is organized as follows. Section 4.2 presents the

problem formulation of this study and the details of the proposed system.

Sections 4.3 and 4.4 provide performance evaluations with scenarios of road-

traffic volume prediction and mobility demand prediction, respectively. This

chapter is concluded in Section 4.5 with a brief summary.

4.2 Proposed system design

The proposed system prioritizes the transmissions of data collected by mobile

IoT devices on the basis of the importance of data extracted from the machine

learning model for prediction using feature selection. The importance of data

extracted from the machine learning model using feature selection is a met-

ric of how much the collected data by mobile sensors will contribute to the
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Figure 4.1: System overview. (©2019 IEEE.)

prediction accuracy of real-time spatial information. Reducing transmission

of less important data according to the importance of data obtained from fea-

ture selection methods enables the proposed system to reduce the volume of

transmitted data used as input for real-time prediction while maintaining the

prediction accuracy.

4.2.1 Application scenario

The overview of the proposed system is shown in Fig. 4.1. This work assumes

a system that provides users with real-time spatial information based on data

collected from mobile IoT devices. The proposed system prioritizes data on

mobile IoT devices on the basis of data importance extracted from the machine

learning model for prediction, which enables it to reduce the total data traffic

for real-time prediction while maintaining prediction accuracy.

The proposed system consists of two main components: mobile IoT devices

and an edge server. Mobile IoT devices (such as probe vehicles, smartphones,
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and UAVs) prioritize collected data and send high importance input data for

prediction to the edge server. The edge server aggregates the data received

from mobile IoT devices, complements the missing parts of the data, and

performs prediction.

Note that the machine learning model has been trained in advance with

all the available data collected by mobile IoT devices. This assumption is

acceptable because this work aims to reduce the volume of data used as input

for real-time prediction. Furthermore, since the time requirement of training

data is not strict, they can be collected as a background process through mobile

networks during the off-peak period or through other communication networks

with sufficient bandwidth.

4.2.2 System model

A detailed view of the proposed system is shown in Fig. 4.2.

Mobile IoT device Mobile IoT devices (such as probe vehicles, smart-

phones, and UAVs) continuously collect data at a specific sampling interval.

Part of the collected data is sent to an edge server for prediction. To decide

whether a data should be sent or not, the controller fetches the importance

of the block where the mobile IoT device is currently located. The controller
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Table 4.1: Notations.

Description

D(Ī) Set of data received from mobile IoT devices under data importance

threshold Ī
S(·) Size of data

A(·) Prediction accuracy

Ā Required prediction accuracy

X Input variable of the machine learning model for prediction (T × NB

matrix)

y Output variable of the machine learning model for prediction (vector

of NB elements)

T No. of time slots used in one prediction

NB No. of blocks

Ft,b Feature importance of (t, b) element of the input variable

Ib Importance of the block b
Ī Threshold for importance of transmitted data

orders the transmitter to send the data or not based on the importance of the

current block received from the edge server.

Edge server The edge server receives collected data from mobile IoT de-

vices, aggregates and preprocess the data, and predicts the real-time spatial

information of the next time slot. The aggregator and pre-processor on the

edge server receive data from the transmitters of several mobile IoT devices,

pre-process the data, and complete the missing parts of the data. The predic-

tor predicts real-time spatial information. The importance extractor extracts

the importance of blocks from the pre-trained machine learning model for pre-

diction. The responder sends the importance of blocks to each mobile IoT

device.

4.2.3 Control methods

The control procedure of the proposed system consists of five processes: 1)

pre-training of the machine learning model, 2) calculation of the importance
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of blocks, 3) control of data transmission, 4) aggregation of transmitted data,

and 5) prediction. 1) and 2) are preprocessing, which is performed once before

the first time slot begins. 3), 4), and 5) are performed in each time slot. Table

4.1 lists the notations in this chapter.

Pre-training of machine learning model

The machine learning model is trained on the edge server in advance before

the first time slot begins.

The proposed system considers the prediction of future real-time spatial

information as a regression task. Regression, in general, is a type of task that

estimates a numerical value given some input [88]. To solve the task, the

learning algorithm is asked to learn a function that maps an input variable to

an output variable. The proposed system uses a supervised machine learning

model to solve the task. Supervised learning algorithms, in general, deal with

a training dataset that contains a set of data and a label or target associated

with each of the data [88].

In the proposed system, the machine learning model for prediction receives

the aggregated past sensor data collected from mobile IoT devices in each

block as an input and calculates the future real-time spatial information as

output. The machine learning model for prediction receives an input variable

X, which consists of aggregated sensing data collected in the last few time

slots, and predict output variable y, which is the real-time spatial information

of each block in the next time slot. The input variable X of the machine

learning model for prediction is a T × NB matrix, where T is the number of

time slots used in one prediction and NB is the number of blocks. Each row of

the input matrix represents the aggregated sensor data collected in NB blocks

at T,T − 1, . . . ,1 slots ago, respectively. The output y of the machine learning

model for prediction is a vector of NB elements. Each element of the output

vector represents the real-time spatial information of each block in the next

time slot.

As mentioned in Section 4.1, to train a machine learning model for predic-

tion, an adequate amount of past sensing data should be collected from mobile

IoT devices as training data, but it does not necessarily need to be collected
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in real time. Thus, the training data can be collected when the network is

off-peak, such as at night or when cars or drones are stopped in parking lots

or depots.

Calculation of importance of blocks

The importance of a block is calculated from the pre-trained machine learning

model for prediction on the edge server using a feature selection method. The

importance of block Ib is defined as Ib =
∑T

t=1 Ft,b, where Ft,b is the feature

importance of the (t, b) element of the input matrix. Ft,b is calculated from the

pre-trained model using the feature selection method.

Control of data transmission

In each time slot, mobile IoT devices decide whether to transmit the data ob-

served in the time slot based on the importance of the data. The importance of

data corresponds to the importance of the block where the data was observed.

Mobile IoT devices transmit the data if Ib ≥ Ī, where Ib is the importance of

the block that includes the current location of the device and Ī is a constant

that defines the minimum importance for the data to be transmitted. Ib and

Ī are obtained from the edge server.

The proposed system can control the volume of the transmitted data and

prediction accuracy through Ī. The volume of the transmitted data in a single

time slot can be described as∑
d∈D(Ī)

S(d), (4.1)

where D(Ī) is the set of transmitted data from mobile IoT devices and S(d) is
the size of data d. D(Ī) includes data from a mobile IoT device if and only if

Ib ≥ Ī, where Ib is the importance of the block in which that device is located.

The prediction accuracy in a time slot can be described as

A(D(Ī)), (4.2)

where A(·) is the prediction accuracy when given a set of sensing data from

mobile IoT devices. The prediction accuracy depends on the data received

from mobile IoT devices in the time slot.
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Aggregation of transmitted data

The data collected from mobile IoT devices are aggregated to form an input

matrix X for the machine learning model for prediction. The aggregation

is needed because the proposed system does not always collect exactly one

data from each block. The number of data collected from each block varies

depending on the importance of the block and the number of mobile IoT

devices in the block. An example of the aggregation process can be found in

Section 4.3.2.

Prediction

The proposed system uses the pre-trained model to predict future spatial-

information. In each time slot, the model takes the aggregated sensing data

as an input X and predicts the real-time spatial information of the next time

slot as an output y.

4.3 Performance evaluation by road-traffic vol-

ume prediction

4.3.1 Evaluation scenario

An evaluation was performed to verify the effectiveness of the proposed system

described in Section 4.2, which reduces the total traffic for real-time predic-

tion transmitted from mobile IoT devices while maintaining the prediction

accuracy. This evaluation examines the relationship between the amount of

transmitted data and prediction accuracy described in Eqs. (4.1) and (4.2)

respectively for several Ī.

This performance evaluation focuses on a specific application that provides

human or robotic drivers with road-traffic information predicted from sensing

data collected by onboard cameras or LiDARs on probe vehicles. Parameters

used in this evaluation are listed in Table 4.2.
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Table 4.2: Parameters for performance evaluation by road-traffic volume pre-

diction.

Parameter Value

Sampling interval (∆T) 1 (minute)

Sampling intervals in one time slot (T) 60

Radius in which probe vehicles can detect cars (R) 50 (m)

Size of block (∆B) 1000× 1000, 500× 500

(m2)

No. of blocks (NB) 144, 576

Percentage of probe vehicles (P) 20 (%)

No. of estimators in random forest (NE) 100
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4.3.2 Evaluation model

Figure 4.3 shows the evaluation model used for this evaluation. It consists of

mobile IoT devices and an edge server.

Pre-training of machine learning model

The random forest regressor model in the scikit-learn library [89] is used as

the machine learning model for prediction for this evaluation. The input X of

the model is T ×NB matrix, where T is the number of data samples in one time

slot and NB is the number of blocks. Each element xi j in the matrix represents

the aggregated road-traffic in block j at time slot t − i, where t is the current

sampling time. The output y of the model is the road-traffic of each block at

sampling time t.
The model is trained with road-traffic data of all 536 taxies before the

evaluation. The road-traffic data of all 25 days is split into the first 20 days

and the last five days for training and evaluation, respectively. The details on

the dataset are described in Section 4.3.3.

Calculation of importance of blocks

Two feature selection methods are used to calculate the importance of blocks:

the impurity method and the perturb method. The impurity method calcu-

lates feature importance on the basis of the ‘impurity’ index used in decision

tree models [43]. The impurity method in this evaluation is implemented by

the feature importances function of the random forest regressor of scikit-

learn. By applying this function, the importance of each input feature, i.e.,

the importance of each element xi j , is obtained. To simplify the evaluation,

the importance of blocks are calculated by taking the sum for i. The per-

turb method calculates feature importance by adding noise to the subset of

input features and examining the increase of error [45]. The perturb method

calculates the importance of block j using root mean square error (RMSE) by

(RMSE(ŷ′, y) − RMSE(ŷ, y))2, (4.3)

where y is the number of cars in blocks, ŷ is the predicted value of y, and ŷ′ is

the predicted value when the input values of block j in the training data are
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multiplied by 1.5.

Control of data transmission

In each time slot, probe vehicles transmit the collected sensing data if and only

if Ib ≥ Ī, where Ib is the importance of the block in which a probe vehicle is

currently located. Probe vehicles know the Ib of each block in advance.

The number of cars can be detected from sensing data collected by onboard

cameras or LiDARs using an object detection algorithm at the pre-processor

on the edge server. In this evaluation, this process is streamlined and the

number of cars is obtained directly from an existing dataset.

Aggregation of transmitted data

It is assumed that an aggregator on the edge server receives raw sensing data

from probe vehicles and a pre-processor on the edge server identifies cars that

are running around each probe vehicle. The number of detected cars in the

block at the sampling time is defined as the size of the set plus 1. If multiple

probe vehicles are in the block at the sampling time, this number is defined

as the size of the union of sets of cars plus the number of probe vehicles. If

no probe vehicles are in the block at the sampling time, zero-filling is used to

complete the missing parts of data.

Prediction

Prediction is performed in each time slot using the pre-trained model described

in Section 4.3.2.

4.3.3 Dataset

A trace set of the mobility data of taxi cabs in San Francisco [90] is used in

this evaluation. The dataset includes the location logs of 536 taxies for 25

days. NB blocks in total are positioned in a rectangle area, as shown in Fig.

4.4. Since the logs are not necessarily recorded every ∆T minutes, taxies are

assumed to travel straight with constant velocity, and locations at every ∆T

minute are interpolated. Probe vehicles are selected randomly from a total of
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Figure 4.4: Layout of blocks (∆B = 1000 × 1000 (m2)). (©2019 IEEE.)

536 taxies at a ratio of P. The number of cars detected by probe vehicles in

each block at each sampling time is calculated as described in the previous

section. A block that contains the taxi company depot is ignored because the

block does not seem to generate data appropriate for evaluation. Figure 4.5

shows the average number of detected cars in each block.

4.3.4 Metrics and benchmarks

This evaluation verifies that the proposed system reduces the amount of trans-

mitted data used as input for real-time prediction compared with three bench-

mark methods when they achieve the same prediction accuracy by examining

the relationship between the amount of transmitted data and prediction accu-

racy described in Eqs. (4.1) and (4.2) respectively. The prediction error and

the total amount of data transmission are calculated for each Ī.
To evaluate the prediction error, the root mean squared log error (RMSLE)

[91] function is used. RMSLE is given by

RMSLE =

√√√
1

NB

NB∑
b=1

(log(yb + 1) − log(ŷb + 1))2, (4.4)
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b
a

Figure 4.5: Average no. of detected cars in each block. (©2019 IEEE.)

where yb is the number of cars running in block b and ŷb is the predicted value

of yb.

To evaluate the total amount of data transmission, the normalized total

amount of transmitted data is used. The normalized total amount of trans-

mitted data r is the ratio of the total amount of sensing data transmitted to

the total amount of sensing data collected by probe vehicles.

This evaluation uses three benchmark methods: random, uniform, and

volume-based. The random method selects which block to use at random.

This is a reasonable method because, in general, the data transmitted by

mobile IoT sensors are usually dropped randomly when network capacity is

limited. The uniform method selects nB blocks out of the total NB blocks

uniformly. To select blocks uniformly, the uniform method spirally assigns

numbers 0 ≤ k < NB to each block. The set of numbers of selected blocks

is decided by {k = ⌊(nNB)/nB⌋ | 0 ≤ ∃n < nB}. The volume-based method

selects blocks with the top nB largest average road-traffic volume in the training

dataset.

54



Section 4.3

b
a

Figure 4.6: Extracted importance of each block for road-traffic volume predic-

tion (impurity). (©2019 IEEE.)

b
a

Figure 4.7: Extracted importance of each block for road-traffic volume predic-

tion (perturb). (©2019 IEEE.)
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Figure 4.8: Prediction error vs. normalized total amount of transmitted data

for road-traffic volume prediction (∆B = 1000 × 1000 (m2)). (©2019 IEEE.)
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Figure 4.9: Prediction error vs. normalized total amount of transmitted data

for road-traffic volume prediction (∆B = 500 × 500 (m2)). (©2019 IEEE.)
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4.3.5 Results

Figures 4.6 and 4.7 show the importance of each block extracted from the

random forest regressor by using the impurity and perturb feature selection

methods, respectively. Compared with the average number of detected cars

in each block in Fig. 4.5, blocks with a large road-traffic volume tend to

be important. However, the blocks whose adjacent blocks have large road-

traffic volume (e.g., a, b) tend to be less important compared to their own

road-traffic volume. This is because the data from two adjacent blocks are

redundant to some extent. In general, the road-traffic volumes of two adjacent

blocks correlate with each other. The impurity and perturb methods reflect

this principle and avoid assigning high importance to two adjacent blocks in

order to eliminate that redundancy.

Figure 4.8 shows the prediction error against the normalized total amount

of transmitted data when the block size is ∆B = 1000× 1000. RMSLE is larger

as r is smaller for all the methods. This describes the trade-off between the

amount of data available for prediction and the accuracy of prediction. RMSLE

of the random and uniform methods fluctuates as r changes. This is because

only a small number of blocks mainly contribute to the prediction accuracy,

and thus RMSLE of the random and uniform methods depends greatly on

whether those blocks are selected or not. In contrast, RMSLE of the impurity

and perturb methods is stably small for a wide range of r. This is because

the proposed system with the impurity or perturb methods always prioritizes

the data from probe vehicles in important blocks, which contributes to the

prediction accuracy. RMSLE of the impurity and perturb methods is better

than that of the volume-based method for a wide range of r. This is because,
as observed in Figs. 4.5 – 4.7, blocks with high average road-traffic volume

do not always have high importance. Prioritizing the transmissions on the

basis of the average road-traffic volume of each block leads to redundant data

transmission. By using the importance of blocks, the impurity and perturb

methods avoid redundant data transmission, and thus the proposed system

can achieve better RMSLE than that of the volume-based method.

Figure 4.9 shows the prediction error against the normalized total amount

of transmitted data when the block size is ∆B = 500 × 500. The same obser-
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Table 4.3: Parameters for performance evaluation by mobility demand predic-

tion.

Parameter Value

Sampling interval (∆T) 1 (minute)

Sampling intervals in one time slot (T) 60

Size of block (∆B) 1000 × 1000, 500 × 500 (m2)

No. of blocks (NB) 144, 576

No. of estimators in random forest (NE) 100

vations can basically be obtained as in Fig. 4.8, while the scale of RMSLE

of Fig. 4.9 is smaller as a whole than that of Fig. 4.8. This is because, in

general, the prediction error tends to be small when the scale of predicted

values is small. The scale of predicted values in this evaluation was smaller

when ∆B = 500× 500 than when ∆B = 1000× 1000 because smaller blocks have

smaller road-traffic volume.

4.4 Performance evaluation by mobility demand

prediction

4.4.1 Evaluation scenario

This evaluation focuses on a specific application in which the system predicts

the number of pickups by taxis on the basis of people detection from sensing

data collected by probe vehicles. The purpose of this evaluation is the same

as that of performance evaluation in Section 4.3. Parameters used are listed

in Table 4.3.

4.4.2 Evaluation model

Pre-training of machine learning model

The random forest regressor model in the scikit-learn library [89] is used as

the machine learning model for prediction for this evaluation. The shape of

input X of the model is the same as the input described in Section 4.3, except
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that each element xi j in the matrix represents the number of pickups in block

j at time slot t − i, where t is the current sampling time. The output y of the

model is the number of pickups of each block at sampling time t.
The random forest regressor is trained with the pickup log data of 536 taxies

before the evaluation. The data is split into the first 20 days for training and

last five days for evaluation. The details of the dataset are described in Section

4.4.3.

Calculation of importance of blocks

The impurity and perturb methods described in Section 4.3.2 are also used as

feature selection methods for the proposed system in this evaluation.

Control of data transmission

The number of pickups by taxis can be detected from sensing data collected by

onboard cameras or LiDARs using an object detection algorithm at the pre-

processor on the edge server. In this evaluation, this process is streamlined

and the number of pickups is obtained directly from an existing dataset as in

Section 4.3.

The same as in Section 4.3.2, probe vehicles decide whether or not to

transmit the collected data in each time slot.

Aggregation of transmitted data

It is assumed that an aggregator on the edge server receives raw sensing data

and pickup logs from taxies and a pre-processor on the edge server extracts

useful information to predict mobility demand. From the extracted informa-

tion and pickup logs, the aggregator counts the number of pickups in each

block at each time slot. If no probe vehicles are in the block at the sampling

time, zero-filling is used to complete the missing parts of data.

Prediction

Prediction is performed in each time slot using the pre-trained model described

in Section 4.4.2.
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b
a

Figure 4.10: Average no. of pickups in each block per minute. (©2019 IEEE.)

4.4.3 Dataset

A trace set of the mobility data of taxi cabs in San Francisco is used in this

evaluation, the same as in 4.3. The mobility log includes occupancy data

that represents whether or not a taxi has passengers. This evaluation uses

the occupancy of taxies as well as the mobility traces of taxies included in the

dataset. This evaluation considers that a pickup occurred when the occupancy

value of the log changed from 0 (not-occupied) to 1 (occupied).

The evaluation area is split into NB blocks, as described in Section 4.3, and

the location of taxies is interpolated every ∆T minute. Figure 4.10 shows the

average number of pickups in each block.

4.4.4 Metrics and benchmarks

This evaluation uses the same metrics and benchmark method as Section 4.3.

4.4.5 Results

Figures 4.11 and 4.12 show the importance of each block extracted from the

random forest regressor by using the impurity method and the perturb method,
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b
a

Figure 4.11: Extracted importance of each block for mobility demand predic-

tion (impurity). (©2019 IEEE.)

b
a

Figure 4.12: Extracted importance of each block for mobility demand predic-

tion (perturb). (©2019 IEEE.)
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respectively. As observed in Section 4.3.5, there is a difference between the

number of pickups in Fig. 4.10 and the importance of blocks in Figs. 4.11 and

4.12.

Figures 4.13 and 4.14 show the prediction error against the transmission

rate when the block size is ∆B = 1000× 1000 and ∆B = 500× 500, respectively.

RMSLE is larger when the transmission rate is smaller for all the methods,

which is the same as the trend observed in Figs. 4.8 and 4.9. In Figs. 4.13

and 4.14, when r < 0.2, RMSLE of the proposed system has a relatively larger

value than RMSLE in other ranges of the transmission rate r. In contrast,

in Figs. 4.8 and 4.9, when r < 0.1, RMSLE of the proposed system has a

relatively larger value than RMSLE in other ranges of r. This is presumably

because the number of relatively important blocks is smaller in the road-traffic

volume dataset compared to the mobility demand dataset. In the road-traffic

dataset in Section 4.3, only a small number of blocks have high importance and

many other blocks have low importance. In the road-traffic dataset, RMSLE

has a large value especially when r < 0.1 because those small numbers of

important blocks are dropped when r < 0.1. In contrast, in the mobility

demand dataset, since the number of relatively important blocks is larger,

RMSLE of the proposed system has a relatively large value when r < 0.2.

4.5 Chapter summary

To reduce the volume of transmitted data used as input for real-time spatial

information prediction while maintaining the prediction accuracy, this chapter

proposed an IoT device control system that uses the importance of data ex-

tracted from the machine learning model used for prediction. Importance of

data is obtained by measuring how much the collected data by mobile sensors

will contribute to the prediction accuracy of real-time spatial information. The

proposed system extracts the importance of data by applying feature selection

methods. This enables the mobile IoT devices in the proposed system to avoid

transmitting less important data (in terms of how much the data contributes

to the prediction accuracy) to an edge server. Performance evaluations with

road-traffic and mobility-demand prediction scenarios demonstrated that the

proposed system reduces the volume of data transmission for real-time predic-
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Figure 4.13: Prediction error vs. transmission rate for mobility demand pre-

diction (∆B = 1000 × 1000 (m2)). (©2019 IEEE.)
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Figure 4.14: Prediction error vs. transmission rate for mobility demand pre-

diction (∆B = 500 × 500 (m2)). (©2019 IEEE.)
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tion while achieving the same level of prediction accuracy as the benchmark

methods.
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Data importance aware periodic

machine learning model update

for sparse mobile crowdsensing

5.1 Overview

Sparse mobile crowdsensing has been actively studied as a means of collecting

data for real-time inference of spatial information [92, 93]. In sparse mobile

crowdsensing for real-time inference of spatial information, first participants

collect data and transmit the data to the server, and then the server aggregates

the collected data and performs inference of spatial information. Participants

include mobile IoT devices such as smartphones, autonomous cars, wearable

devices, and unmanned aerial vehicles. Inferred spatial information can be

road traffic, taxi demand, air quality or temperature. Inference algorithms in-

clude K-nearest neighbors (KNN) [94], compressive sensing [95], and machine

learning algorithms such as LSTM [96] and 3D convolutional neural network

(CNN) [97]. Studies on sparse mobile crowdsensing have addressed the trade-

off between the quality of resulted spatial information and sensing cost (e.g.,

smartphone energy consumption, network bandwidth, and incentives). These

studies have achieved accurate inference of spatial information under the lim-

ited sensing cost by evaluating how valuable each data is and collecting only

part of data that is evaluated to be valuable.

67



Chapter 5

However, real-time inference of spatial information with sparse mobile

crowdsensing using machine learning has not sufficiently considered the change

of the nature of data over time. For example, when inferring a road-traffic vol-

ume map from mobility logs, newly available roads or facilities can drastically

change how people make their way to their destinations. In this case, the in-

ference model that was trained previously only knows the patterns of traffic

before the new roads or facilities opened. This leads to the decreased accuracy

of the resulting road-traffic volume map unless the inference model is re-trained

using the newly collected mobility logs as training data.

The challenge for re-training of the inference model is to collect new training

data as well as inference data efficiently. The data for re-training, as well as

the data for inference, consumes sensing costs. Both data for re-training and

inference should be collected efficiently. However, data that contributes to

the improvement of the accuracy does not necessarily contribute to re-training

model.

This chapter proposes a framework that periodically updates the model by

evaluating the importance of the data in terms of both inference and re-training

and giving priority in collecting important data. The proposed framework con-

siders the importance of data for inference in conjunction with the importance

of data for re-training. The importance of data for inference is a metric of

how much that data will contribute to the inference accuracy. The impor-

tance of data for re-training is a metric of how much that data will contribute

to re-train the inference model. The proposed framework collects important

data with higher priority and periodically re-trains the inference model using

the collected data. By considering both importances and collecting important

data with higher priority, the proposed framework enables re-training of the

inference model to follow the change of the nature of collected data and re-

sulting spatial information, and thus improves long term accuracy of real-time

inference of spatial information.

The rest of this chapter is organized as follows. Section 5.2 reviews the

prior efforts on sparse mobile crowdsensing and related studies. Section 5.3

presents the details of the proposed framework and the problem formulation.

Section 5.4 provides performance evaluation with practical scenarios and real-

world datasets. Section 5.5 concludes this chapter.
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5.2 Sparse mobile crowdsensing

Sparse mobile crowdsensing is a crowdsensing paradigm that reconstructs or

predicts desired data from the data sensed in different sub-areas to reduce the

required number of sensing tasks allocated, thus lowering overall sensing cost

(e.g., smartphone energy consumption, network bandwidth, and incentives)

while ensuring data quality. While sparse mobile crowdsensing studies achieve

higher data quality with lower sensing costs, they do not sufficiently consider

the change of the nature of data over time.

There have been sparse mobile crowdsensing studies that employ compres-

sive sensing for reconstructing the desired data from sparsely collected data

and active learning for choosing the best data for sensing [98–101].

5.2.1 Compressive sensing

Compressive sensing theory is a powerful tool to reconstruct a sparse vector

or matrix [95]. Many compressive sensing algorithms align sensing data into a

sparse spatiotemporal matrix and reconstruct the matrix by matrix completion

techniques. KNN and singular value decomposition (SVD) are commonly used

as matrix completion methods for compressive sensing.

KNN method is used to interpolate the missing values in the collected

matrix [94]. To interpolate the missing values, KNN uses a weighted average

of the values of the K nearest neighbors. When interpolating a matrix, KNN

can be performed on rows or columns, which are called spatial KNN (KNN-S)

or temporal KNN (KNN-T), respectively.

SVD is a standard method for matrix completion based on low-rank approx-

imation [102]. Given a partially collected sensing matrix C, SVD reconstructs

the full sensing matrix S̄ based on the low-rank property:

min rank(S̄) (5.1)

s.t. C = S̄ ◦ B, (5.2)

where B is a cell collection matrix that indicates whether a cell is collected or

not. Directly solving this problem is hard because it is known as a nonconvex

problem. A common practice for solving SVD problem is to change the rank
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minimization to minimizing the sum of L and R’s Frobenius norms:

min λ(| |L | |2F + | |R| |2F) + | |LRT ◦ B − C | |2F, (5.3)

where λ is used to control the trade-off between rank minimization and ac-

curacy fitness [95]. To get the optimal S̄, a procedure called alternate least

squares can be used, which estimates L and R iteratively [103].

5.2.2 Active learning

To solve the problem of choosing the best cells for sensing, the recent techniques

on active learning for matrix completion [104–106], which employ different

criteria to actively choose the entry in a matrix, are all applicable.

Query by committee (QBC) [104] is one of the common active matrix com-

pletion methods. ‘Committee’ here refers to a set of several matrix completion

algorithms. The QBC method quantifies the prediction uncertainty based on

the level of disagreement among the committee members. Each matrix com-

pletion algorithms in a committee are applied to the partially collected data

matrix to infer the missing values. The variance of prediction among the com-

mittee members of each missing entry is taken as a measure of uncertainty of

that entry. Based on the uncertainty measured by QBC, sensing tasks for the

missing entries with higher uncertainty can have higher priority.

5.3 Proposed framework

5.3.1 System model

The proposed framework performs real-time inference of spatial information

from collected data while periodically updating the model by evaluating the

importance of the data in terms of both inference and re-training and giving

priority to collecting important data. Fig. 5.1 illustrates the system model of

the proposed framework.

To formally explain and discuss the proposed framework, this work first

defines several terms that describe concepts on mobile crowdsensing in this
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chapter. Time slot t ∈ {1, . . . ,T} is the unit time in which the proposed frame-

work performs operations such as sensing, inference, and importance calcula-

tion. Location l ∈ {1, . . . , L} is the geographical unit area where participants

collect sensing data. Collected matrix C is a matrix whose rows correspond

to time slots and columns correspond to locations. Each element Ct,l records

either actual data collected by a participant if the data in location l at time

slot t is sensed and collected, or zero otherwise. Sensing matrix S is a matrix

whose shape is the same as a collected matrix and records the ground truth

data in each of its element St,l . Inferred sensing matrix S̄t,l is a matrix whose

shape is the same as a sensing matrix and records inferred value of St,l in each

of its element S̄t,l . Binary index matrix B is a matrix whose shape is the same

as a sensing matrix. Each element Bt,l indicates whether the data of location

l at time slot t is collected or not. Bt,l = 0 indicates the data is missing and

Bt,l = 1 indicates the data is collected. Thereby, a collected matrix C is an

incomplete sensing matrix S, which can be presented using the element-wise

product of S and B as:

C = S ◦ B. (5.4)

Cell is a spatio-temporal unit that refers to a geographical location in a specific

time slot. A cell corresponds to an element in a collected matrix, sensing

matrix, inferred sensing matrix, and binary index matrix. Allocating a task

means the server asks a participant in a specific cell to collect data and transmit

it to the server.

The objective of the proposed framework is to minimize the error between

the inferred spatial information and the real spatial information with a limited

number of tasks allocated to the participants. That is,

min error(S̄,S) (5.5)

s.t.
L∑

l=1

Bt,l ≤ Nt (∀t ∈ {1, . . . ,T}), (5.6)

S̄ = in f er(C), (5.7)

C = S ◦ B, (5.8)

where Nt is the limit of the number of tasks that can be allocated in time

slot t and in f er(·) is the missing data inference algorithm that calculates the
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Figure 5.1: System model.

inferred sensing matrix S̄ from the collected matrix C. The decision variable

of this formula is B.

5.3.2 Control procedure

The proposed framework repeats the following four key steps: task allocation,

missing data inference, inference model update, and data importance update.

Task allocation

The server evaluates the importance of each cell (t, l) and allocates tasks to the

cells in descending order of the evaluated importance of cells under the sensing

cost limit constraint described in (5.6).

The importance of cell (t, l), which is denoted as It,l , is defined as:

It,l = (1 − α)Ft,l + αEt,l, (5.9)

where Ft,l denotes the importance of cell (t, l) in terms of inference, Et,l denotes

the importance of cell (t, l) in terms of re-training, and α is a parameter that

adjusts weight between the importance for inference and re-training.

Ft,l is the inference importance of the cell (t, l). Ft,l can be calculated from

the inference model using feature selection methods [93,107]. Feature selection
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methods, in general, are used for selecting a set of variables (features) from

the input that can efficiently describe the input data while reducing effects

from noise or irrelevant variables and still provide good prediction results [34].

In this framework, feature selection methods are used to calculate inference

importance from the inference model. By calculating the inference importance

using feature selection methods, the proposed framework evaluates how much

that data will contribute to the inference accuracy. The details of the actual

feature selection methods used in performance evaluation can be found in

Section 5.4.2.

Et,l is the re-training importance of the cell (t, l). Et,l is calculated by the

inference error between the inferred sensing data and the ground truth sensing

data. The inference error of a cell implies how much the current inference

model can be potentially improved when the data of the cell is used for re-

training of the inference model. By calculating the re-training importance from

the inference error, the proposed framework evaluates how much the data of

each cell will contribute to the re-training of the inference model.

Details on the calculation and updating process of inference importance

and re-training importance are described in Section 5.3.2.

The following assumptions related to the task allocation are made to keep

the fundamental part of the framework simple. First, there is a sufficient

number of participants so that the server can find at least one participant

to allocate a sensing task in any location at any time slot. Second, every

participant can collect true sensing values when a task is allocated to her or

him. Third, every sensing can be completed in enough short period of time

compared to the length of a time slot. This ensures that every sensing is

completed in a single time slot and every participant who is allocated a task

does not move out of the current location during that time slot.

Missing data inference

The server infers the data of cells that are not allocated a task by using the

inference model (Fig. 5.2).

The inference model receives the collected sensing data in the last few

time slots as input X and infers the sensing data of the current time slot as
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Figure 5.2: Missing data inference.

output y. X is a matrix whose shape is Tin × L, where Tin denotes the number

of past time slots used for inference, and L denotes the total number of the

locations. Each element is a data from collected matrix: Xi,j = Ct ′−Tin+i−1,j (∀i ∈
{1, . . . ,Tin},∀ j ∈ {1, . . . , L}), where t′ denotes current time slot. y is a vector

whose size is L. yl is an inferred sensing data of location l in current time slot

t′. The infered data S̄t ′,l of a cell (t′, l) is complemented with either the inferred

data yl if Bt ′,l = 0 (i.e. sensed data is missing) or St ′,l otherwise.

Inference model update

The server re-trains the inference model in every Tu time slots, where Tu is

the update interval of the inference model. The inference model is re-trained

using the inferred data S̄ in the last Tr time slots, where Tr is the number of

time slots of data for re-training. Note that the proposed framework assumes

that the re-training can be completed during a time slot.

Data importance update

The server updates the inference importance Ft,l and the re-training importance

Et,l in every time slot respectively.

Ft,l is updated as:

Ft,l = f eature importance(t, l), (5.10)

where f eature importance(t, l) is a function that performs feature selection

and calculates the inference importance of the cell (t, l). The implementation
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of f eature importance(t, l) depends on the type of the inference model used in

the proposed framework. Some possible example implementation can be found

in Section 5.4.

Et,l is updated as:

Et,l =


error(S̄t,l,Ct,l) (if Bt,l = 1)
Et−1,l (otherwise)

, (5.11)

where error(·) is a function that measures the error between the inferred data

S̄t,l and the collected data Ct,l . Et,l is updated when Bt,l = 1 because the error

cannot be calculated unless the actual data Ct,l is collected and transmitted to

the server.

5.4 Performance evaluation

5.4.1 Evaluation scenario

The proposed framework is evaluated with the following two scenarios: road-

traffic volume inference and taxi demand inference.

Road-traffic volume inference

In the road-traffic volume inference scenario, autonomous cars are assumed

to collect the number of cars as a participant when allocated a task. The

autonomous cars are assumed to be able to count the number of cars in a

location at a time slot by using sensors such as onboard cameras or LiDAR

sensors. The server collects the data of the number of cars from part of cells

that are evaluated to be important. The server infers the missing part of the

data and outputs the full sensing data of the number of cars.

San Francisco cabs dataset [90] is used for the evaluation in the road-traffic

volume inference scenario. The dataset includes the location logs of 536 taxies

for 25 days. In this evaluation, the number of cars in the dataset is aggregated

in 20 × 20 location every 10 minutes. The size of each location is 100m ×
100m. Table 5.1 shows the details on the dataset. Following parameters are

used in this evaluation; Tin = 6, Tu = 144, and Tr = 2016. Figure 5.3 shows the
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Figure 5.3: Temporal correlation of San Francisco dataset.

temporal correlation of the average value in locations of San Francisco dataset.

Taxi demand inference

In the taxi demand inference scenario, the number of pickups is predicted on

the basis of people detection from sensing data collected by taxis.

Uber pickups dataset [108] is used for the evaluation in the taxi demand

inference scenario. The dataset includes the location of over 4 million Uber

taxi pickups for 183 days. In this evaluation, the number of cars in the dataset

is aggregated in 20 × 20 location every 10 minutes. The size of each location

is 100m × 100m. Table 5.1 shows the details on the dataset. Following pa-

rameters are used in this evaluation; Tin = 6, Tu = 144, and Tr = 2016. Figure

5.4 shows the temporal correlation of the average value in locations of Uber

pickups dataset.

5.4.2 Implementation of proposed method

RF-I

RF-I uses random forest for missing data inference algorithm and impurity

importance and inference error for optimal task allocation algorithm.

The impurity method calculates feature importance on the basis of the ‘im-

purity’ index used in decision tree models [43]. The impurity method in this
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Figure 5.4: Temporal correlation of Uber pickups dataset.

Table 5.1: Datasets for performance evaluation.

San Francisco cabs Uber pickups

Period
2008/05/17 –

2008/06/10

2014/04/01 –

2014/09/30

Total no. of logs 11,220,505 4,534,327

Training data length 14 days 14 days

Evaluation data length 11 days 169 days

Location size 100 (m) × 100 (m)

No. of locations 20 × 20

Time slot length 10 (minutes)
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evaluation is implemented by the feature importances function of the ran-

dom forest regressor of scikit-learn. By applying this function, the importance

of each input feature, i.e., the importance of each element xi j , is obtained. To

simplify the evaluation, the importance of blocks is calculated by taking the

sum for i. The perturb method calculates feature importance by adding noise

to the subset of input features and examining the increase of error [45].

RF-P

The perturb method calculates the importance of block j by:

(RMSE(ŷ′, y) − RMSE(ŷ, y))2, (5.12)

where y is the number of cars in blocks, ŷ is the predicted value of y, and ŷ′ is

the predicted value when the input values of block j in the training data are

multiplied by 1.5.

5.4.3 Benchmarks

KNN-S-Q

KNN-S-Q uses KNN-S for missing data inference algorithm and QBC for opti-

mal task allocation algorithm. The committee of QBC for KNN-S-Q includes

KNN-S, KNN-T, and SVD. Details on KNN-S and QBC are described in Sec-

tion 5.2.

KNN-T-Q

KNN-T-Q uses KNN-T for missing data inference algorithm and QBC for

optimal task allocation algorithm. The committee of QBC for KNN-T-Q in-

cludes KNN-S, KNN-T, and SVD. Details on KNN-T and QBC are described

in Section 5.2.

CS-Q

CS-Q uses SVD for missing data inference algorithm and QBC for optimal

task allocation algorithm. The committee of QBC for CS-Q includes KNN-S,

KNN-T, and SVD. Details on SVD and QBC are described in Section 5.2.
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Figure 5.5: RMSE vs. sensing coverage (San Francisco dataset).

Zero-R

Zero-R uses zero filling for missing data inference algorithm and random se-

lection for optimal task allocation algorithm. It fills non-collected cells with

zero and collects data from Nt cells randomly in time slot t.

RF-I with no update, RF-P with no update

RF-I with no update and RF-P with no update are the same as RF-I and RF-P

described in Section 5.4.2, respectively, except that RF-I with no update and

RF-P with no update omit model update.

5.4.4 Results

Figure 5.5 shows the inference accuracy in RMSE versus the sensing coverage.

Note that sensing coverage refers to the ratio of the number of allocated tasks

to the number of total cells. The unit of the value of RMSE is the same as the

unit of predicted values, which is the number of cars for the results on the San

Francisco dataset. Zero-R, KNN-S-Q, KNN-T-Q, CS-Q, RF-I (no-update),

RF-P (no-update), and the proposed framework with RF-I and RF-P are plot-

ted. The result shows that basically, as the sensing coverage increases, RMSE
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Figure 5.6: RMSE vs. time (San Francisco dataset).

10 3 10 2 10 1 100

0.38

0.40

0.42

0.44

R
M

SE

RF-I (no update)
RF-I (proposed)
RF-P (no update)
RF-P (proposed)
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Figure 5.8: RMSE vs. sensing coverage (Uber pickups dataset).

decreases because simply, the spatial coverage of collected data contributes to

the improvement of the inference accuracy. As seen in this figure, the proposed

framework performed better in RMSE than the benchmarks.

Figure 5.6 shows RMSE versus time when sensing coverage is 0.25, which

is an important observation because this chapter addresses periodical update

of inference models. As seen in this figure, RMSE is time-varying. However,

the superiority of the proposed frameworks is ensured over the time.

Figure 5.7 shows how the coefficient α affects the performance when sensing

coverage is 0.25. When α = 1, the proposed framework works in accordance

with only the importance of data for re-training without considering the one

for inference. On the contrary, when α is set small, the proposed framework

works in accordance with only the importance of data for inference without

considering the one for re-training. The proposed framework worked optimally

in RMSE when α was set to 10−2 and RF-I is used as the feature selection

method.

Figures 5.8, 5.9, and 5.10 show the results of the inference accuracy in

RMSE versus the sensing coverage, RMSE versus time, and how the coefficient

α affects the performance, with Uber pickups dataset, respectively. The unit

of the value of RMSE is the same as the unit of predicted values, which is

the number of cars for the results on the Uber pickups dataset. As observed
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Figure 5.9: RMSE vs. time (Uber pickups dataset).
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in Figs. 5.5 and 5.6, Figs. 5.8 and 5.9 show that the proposed framework

performed better in RMSE than the benchmarks. Figure 5.10 shows that the

proposed framework worked optimally in RMSE when α was set to 10−2 and

RF-I is used as the feature selection method.

5.5 Chapter summary

This chapter proposed a framework that evaluates the importance of the data

and gives priority in collecting important data for the periodical update of

the inference model. The proposed framework collects important data with

higher priority and periodically re-trains the inference model using the col-

lected data. The numerical evaluation using two datasets validated the pro-

posed framework; by considering both importance and collecting important

data with higher priority, the proposed framework enables re-training of the

inference model to follow the change of the nature of collected data and works

for improving long term accuracy of real-time inference of spatial information.
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Conclusions

As smart city relates to many fields of services, it makes information network-

ing for smart cities more challenges. As the information networking towards

smart cities should satisfy various requirements from various services, the met-

rics on which the information networking based should be able to describe

various requirements from various services. This thesis studied three specific

problems about importance-aware information networking for smart cities.

Firstly, this thesis proposed a system for device sharing based on impor-

tance extracted from online social relationships between a device owner and

user. For some types of smart city services, users provide sensing ability, com-

putation capacity, or network connectivity of their personal devices to smart

city services by sharing their devices with other users. When device owners

share the limited resources on their devices, they generally want to reduce their

costs when they share their devices with someone who is less socially close to

them. This thesis answered a question: is there any system for device sharing

that respects social relationships among device owners and users? The pro-

posed system in this work automatically determines how much resources the

user is allowed to use by acquiring and evaluating online social relationships

between a device owner and user as a metric of the importance of transmit-

ted data among devices. This work presented a prototype implementation

and a large-scale simulation using a dataset of a real social network. Numer-

ical results observed that the proposed system limits resource usage for guest

users who are not close to the device owners. The resource sharing with guest
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users who are close to the device owners is not affected by the overhead of

the authentication process in the proposed system. The results also showed

that using online social relationships as the importance for humans enables

information networking for device sharing.

Secondly, this thesis proposed an IoT device control system that uses the

importance of data to reduce the amount of transmitted data for input of a

machine learning model while maintaining the prediction accuracy. Predicting

real-time spatial information from data collected by mobile IoT devices is one

of the most common structures of smart city services. Mobile IoT devices for

real-time spatial information prediction generate an extremely high volume of

data, making it impossible to collect all of it through mobile networks. Simply

reducing the volume of transmitted data does not ensure the prediction accu-

racy of real-time spatial information. This thesis answered a question: is there

any system that reduces the amount of transmitted sensor data used as input

for prediction while maintaining the inference accuracy by transmitting only

an important part of sensor data that contributes to the inference accuracy?

This work presented an IoT device control system that reduces the amount

of transmitted data used as input for real-time prediction while maintaining

prediction accuracy. In this work, the proposed system was evaluated with

a real-world vehicle mobility dataset in two practical scenarios using the ran-

dom forest model, an extensively used machine learning model. Numerical

results via simulation indicated that the proposed system achieves the same

level of prediction accuracy as benchmark methods while reducing the amount

of transmitted input data for real-time prediction. The results also suggested

that how much the data contributes to prediction accuracy can be used to

achieve efficient information networking.

Thirdly, this thesis proposed a framework that periodically updates a ma-

chine learning model used to reconstruct the partially collected data by evalu-

ating the importance of the data in terms of both inference and re-training and

prioritizing collecting important data. Sparse mobile crowdsensing is a crowd-

sensing paradigm that reduces the sensing cost while ensuring data quality by

collecting data sparsely and reconstructing desired data using inference algo-

rithms, including machine learning algorithms. However, real-time inference of

spatial information with sparse mobile crowdsensing has not sufficiently con-
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sidered the change of the nature of data over time. As a result, the accuracy

of the reconstructed data can deteriorate over time. This thesis answered a

question: is there any framework that efficiently collects both the data impor-

tant for re-training the inference model and the data important for inference in

order to maintain long term accuracy of the inference? This work presented a

framework that periodically updates a machine learning model used to recon-

struct data by evaluating the importance of the data in terms of both inference

and re-training and prioritizing collecting important data. Evaluation results

suggested that the proposed system, which updates the model periodically,

achieves better accuracy compared to benchmarks over time. The results also

indicated that how much the data contributes to re-training can be used to

build information networking that provides a service with long term prediction

accuracy.

The proposed models and a framework studied three typical application sce-

narios of information networking for smart cities considering the corresponding

properties, respectively. Firstly, this thesis studied altruistic device sharing

based on the importance of social relationships between device owners and

users. Secondly, this thesis studied an IoT device control system that evalu-

ates the importance of data to reduce the amount of transmitted data while

maintaining prediction accuracy. Thirdly, this thesis studied a framework that

considers both importance for inference and importance for re-training to pe-

riodically update the inference model to maintain long term accuracy of the

inference. Network operators or designers of networks for smart cities can se-

lect appropriate approaches according to the specific requirements of services

to achieve efficient information networking for smart cities.

For future works, there can be three directions to extend the proposed

systems. Firstly, we can consider the issues of privacy risk. The privacy issues

for smart cities have been discussed since the typical services of smart cities

rely on data provided by the general public. It is expected that the proposed

systems can reduce privacy risk by respecting the social relationship among

users or collecting only a limited part of data that is important for prediction.

Secondly, we can extend this thesis to consider human-machine coexistence

environments. Human-machine interaction and cooperation for smart cities

have been actively studied. This thesis studied the importance for humans
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and machines independently. Considering importance for both humans and

machines will help humans and machines coexist in networks for smart cities.

Thirdly, we can extend this thesis to consider multiple services on networks

for smart cities. Smart cities typically provide multiple services. This thesis

studied information networking for one service at a time. Considering multiple

services enables more practical information networking for smart cities.
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“Tendencies of technologies and platforms in smart cities: A state-of-

the-art review,” Wireless Communications and Mobile Computing, vol.

2018, Aug. 2018.

[2] T. M. Heng and L. Low, “The intelligent city: Singapore achieving the

next lap: Practitoners forum,” Technology Analysis & Strategic Manage-

ment, vol. 5, no. 2, pp. 187–202, Jun. 1993.

[3] Q. Li and S. Lin, “Research on digital city framework architecture,” in

2001 International Conferences on Info-Tech and Info-Net: A Key to

Better Life, ICII 2001 - Proceedings, vol. 1. Institute of Electrical and

Electronics Engineers Inc., Oct. 2001, pp. 30–36.

[4] T. Ishida, H. Ishiguro, and H. Nakanishi, “Connecting digital and phys-

ical cities,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), vol. 2362. Springer Verlag, Oct. 2002, pp. 246–256.

[5] R. Giffinger, C. Fertner, H. Kramar, R. Kalasek, N. Milanović, and
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