
Doctoral Thesis

Studies on Implicit Graph Enumeration

Using Decision Diagrams

Yu Nakahata

Graduate School of Informatics
Kyoto University

September 2021

Abstract

Graphs are ubiquitous objects in the real world. Especially, enumerating
subgraphs of a given graph is a fundamental task in computer science. Since
the number of subgraphs can be exponentially larger than the input graph
size, it is not practical to list all subgraphs one by one. To overcome the
difficulty, we focus on implicit enumeration algorithms. Such an algorithm
constructs a decision diagram (DD) representing the set of subgraphs instead
of explicitly enumerating the subgraphs. This thesis is devoted to designing
some implicit enumeration algorithms. We theoretically estimate their com-
plexity and experimentally confirm their efficiency. In this thesis, we mainly
use zero-suppressed binary decision diagrams (ZDDs) as DDs.

First, we focus on the evacuation planning problem. For this problem,
the existing method was limited to grid graphs. We generalize the definition
of convexity of regions and propose an algorithm to enumerate partitioning
patterns into such regions for general graphs. The efficiency of the proposed
algorithm is confirmed by the experiments using real-world map data.

Second, we move on to the balanced graph partitioning problem. We
propose an algorithm to enumerate all the graph partitions such that all
the weights of the connected components are at least a specified value. Our
algorithm uses not only ZDDs but also ternary decision diagrams (TDDs)
and realizes an operation, which seems difficult to be designed only by ZDDs.
Experimental results show that the proposed algorithm runs up to tens of
times faster than an existing state-of-the-art algorithm.

Next, we try to extend the types of subgraphs that can be enumerated by
ZDDs. We focus on the forbidden minor characterization of graphs and pro-
pose a method to enumerate subgraphs having such characterization. Such
graphs include planar, outerplanar, series-parallel, and cactus graphs. Ex-
perimental results show that our algorithm can find all planar subgraphs in a
given graph up to five orders of magnitude faster than a naive backtracking-

i

based method.
Finally, we deal with another decision diagram than ZDDs, Zero-suppressed

Sentential Decision Diagrams (ZSDDs). ZSDDs are generalizations of ZDDs
and can be substantially smaller than ZDDs when representing the same
family set. However, efficient algorithms to construct ZSDDs were known
only for specific types of subgraphs: matchings and paths. We propose a
novel framework to construct ZSDDs, which enables us to deal with several
types of subgraphs such as matchings, paths, cycles, and spanning trees. We
show that the sizes of constructed ZSDDs are bounded by the branch-width
of the input graph. Experiments show that proposed methods can construct
ZSDDs faster than ZDDs and that the constructed ZSDDs are smaller than
ZDDs representing the same sets of subgraphs.

ii

Acknowledgements

First of all, I would like to express my greatest appreciation to my supervi-
sor, Shin-ichi Minato. He always gives me insightful comments, which are
essential to improve my research. I am also deeply grateful to Jun Kawahara
for his help since my master’s course. I sincerely thank them and Akihiro
Yamamoto for reading this thesis and giving constructive comments.

I would like to thank all current and former members of Minato lab-
oratory. Especially, I am grateful to David Avis, François Le Gall, Yuni
Iwamasa, Ryosuke Matsuo, Shinsaku Sakaue, and Suguru Tamaki for their
valuable comments and exciting discussion. I also thank the secretaries of
our laboratory, Shinako Fukumura, Seiko Jinno, and Sachie Oomae.

I would like to sincerely thank my coauthors: Shuhei Denzumi, Takashi
Horiyama, Masakazu Ishihata, Shoji Kasahara, Yasuaki Kobayashi, Kazuhiro
Kurita, Masaaki Nishino, Kengo Ohsawa, Hirofumi Suzuki, Kunihiro Wasa,
Katsuhisa Yamanaka, and Kazuaki Yamazaki.

I appreciate the financial support by JSPS Research Fellowship for Young
Scientists. I am also grateful to JSPS KAKENHI(S) Discrete Structure Ma-
nipulation System Project and MEXT Algorithmic Foundations for Social
Advancement Project for fostering communications of researchers.

Finally, I would like to thank my family and friends for their kind support.

iii

iv

List of Publications

Publications Included in This Thesis

This thesis includes contents of the following four publications.

Refereed Journal Articles

1. Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shoji Kasahara.
Enumerating All Spanning Shortest Path Forests with Distance and
Capacity Constraints.
IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 101-A(9):1363–1374, 2018.

Refereed Conference Proceedings

1. Yu Nakahata, Jun Kawahara, and Shoji Kasahara.
Enumerating Graph Partitions Without Too Small Connected Compo-
nents Using Zero-suppressed Binary and Ternary Decision Diagrams.
In Proceedings of the 17th International Symposium on Experimental
Algorithms (SEA 2018), pp. 21:1–21:13, 2018.

2. Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shin-ichi Minato.
Implicit Enumeration of Topological-minor-embeddings and Its Appli-
cation to Planar Subgraph Enumeration.
In Proceedings of the 14th International Conference and Workshops on
Algorithms and Computing (WALCOM 2020), pp. 211–222, 2020.

3. Yu Nakahata, Masaaki Nishino, Jun Kawahara, and Shin-ichi Minato.
Enumerating All Subgraphs Under Given Constraints Using
Zero-suppressed Sentential Decision Diagrams.

v

In Proceedings of the 18th International Symposium on Experimental
Algorithms (SEA 2020), pp. 9:1–9:14, 2020.

Unrefereed Preprints

The author also addressed the following works, which are currently unrefereed
preprints and not included in this thesis.

1. Takashi Horiyama, Jun Kawahara, Shin-ichi Minato, and Yu Nakahata.
Decomposing a Graph into Unigraphs.
arXiv preprints, arXiv:1904.09438, 2019.

2. Yu Nakahata.
On the Clique-width of Unigraphs.
arXiv preprints, arXiv:1905.12461, 2019.

3. Yasuaki Kobayashi and Yu Nakahata.
A Note on Exponential-time Algorithms for Linearwidth.
arXiv preprints, arXiv:2010.02388, 2020.

4. Yu Nakahata, Takashi Horiyama, Shin-ichi Minato, and Katsuhisa Ya-
manaka.
Compiling Crossing-free Geometric Graphs with Connectivity Con-
straint for Fast Enumeration, Random Sampling, and Optimization.
arXiv preprints, arxiv:2001.08899, 2020.

vi

Contents

1 Introduction 1

1.1 Background . 1

1.2 Related Work . 2

1.3 Our contribution . 3

1.4 Organization . 5

2 Preliminaries 7

2.1 Notations . 7

2.2 Zero-suppressed binary decision diagram 8

2.3 Frontier-based search . 10

3 Evacuation Planning for General Graphs 15

3.1 Introduction . 15

3.2 Preliminaries . 17

3.2.1 Notation . 17

3.2.2 Formulation . 18

3.3 Structural and distance constraints 20

3.3.1 Basic algorithm . 21

3.3.2 More memory-efficient algorithm 24

3.4 Shelter-capacity constraint . 25

3.5 Experimental results . 27

3.5.1 Dataset . 28

3.5.2 Preprocessing . 29

3.5.3 Results . 29

3.5.4 Discussion . 30

3.6 Conclusion . 31

vii

4 Balanced Graph Partition 39

4.1 Introduction . 39

4.2 Preliminaries . 41

4.2.1 Notation . 41

4.2.2 Ternary decision diagram 41

4.3 Algorithms . 42

4.3.1 Overview of the proposed algorithms 42

4.3.2 Constructing ZS . 46

4.3.3 Constructing TS± . 46

4.3.4 Constructing ZS↑ . 49

4.4 Experimental results . 49

4.5 Conclusion . 52

5 Planar Subgraph Enumeration 59

5.1 Introduction . 59

5.2 Preliminaries . 63

5.2.1 Topological minors and characterization of graphs . . . 63

5.2.2 Edge-colored graphs and tuples 63

5.2.3 (c+ 1)-decision diagram 64

5.2.4 Colorful frontier-based search (CFBS) 65

5.3 Algorithms . 65

5.3.1 Implicit enumeration of TM-embeddings 66

5.3.2 Constraints for forbidden topological minors 70

5.3.3 Enumerating subgraphs having
FTM-characterizations 71

5.4 Computational experiments 72

5.4.1 Settings . 72

5.4.2 Comparing several methods to enumerate planar sub-
graphs . 73

5.4.3 Applying our framework to several types of subgraphs . 73

5.5 Conclusion . 75

5.6 Appendix for this chapter . 76

5.6.1 Proofs omitted from Section 5.3 76

5.6.2 Smoothed profile of S(K4 − e) 81

5.6.3 Details of backtracking-based method 82

viii

6 Frontier-Based Search for ZSDDs 85
6.1 Introduction . 85
6.2 Preliminaries . 86

6.2.1 (X,Y)-partition and vtree 86
6.2.2 Zero-suppressed Sentential Decision Diagrams 88

6.3 A novel framework of top-down ZSDD construction 88
6.4 Subroutines for several constraints 90

6.4.1 Cardinality . 91
6.4.2 Degree . 93
6.4.3 Spanning tree . 95

6.5 Experiments . 98
6.6 Conclusion . 100

7 Conclusions and Future Directions 103

ix

Chapter 1

Introduction

1.1 Background

Graphs are widely used to model real-world objects such as communication
networks, distribution networks, and road networks. When dealing with
graphs, enumerating subgraphs of a given graph under some constraint is
a fundamental task. There are enumeration algorithms for several types of
subgraphs such as cliques [1], paths [2], and spanning trees [3]. These algo-
rithms list all subgraphs one by one in a small amount of time per subgraph.
However, such algorithms take at least linear time and space to the number of
subgraphs. Since the number of subgraphs can be exponentially larger than
the size of the input graph, it is trouble when applied to practical problems.

To overcome the difficulty, we focus on implicit enumeration algorithms [4,
5, 6]. Such an algorithm constructs a decision diagram (DD) [7, 8] represent-
ing the set of subgraphs instead of explicitly enumerating the subgraphs.
In this thesis, we consider the edge-induced subgraphs, which means each
subgraph can be identified by a subset of the graph edges. DDs are known
as efficient data structures for representing set families. We use a DD to
represent a set of subgraphs, each of which is a subset of the edges. The
efficiency of an implicit enumeration algorithm does not directly depend on
the number of subgraphs but rather on the size of the output DD [4]. The
size of a DD can be much (exponentially in some cases) smaller than the
number of subgraphs, and thus, in such cases, we can expect that the im-
plicit algorithms will work much faster than explicit ones. Using DDs, we
can perform several useful queries on the set of subgraphs. For example, we

1

CHAPTER 1. INTRODUCTION

can count the number of subgraphs, randomly sample a subgraph, find an
optimal subgraph with respect to a linear function [5].

1.2 Related Work

Enumeration. Enumeration algorithms have been studied for several types
of subgraphs such as paths [2, 9, 10], cycles [10, 11, 12] spanning trees [3,
10, 13], matchings [14, 15, 16, 17], and cliques [1, 18, 19]. There are general
methods to design enumeration algorithms such as binary partition [17], gray
code [20], and reverse search [21]. These algorithms explicitly enumerate so-
lutions one by one. As a result, they need at least proportional time and
memory to the number of solutions, which can be exponentially larger than
the input size. Therefore, in this thesis, we focus on implicit enumeration
using decision diagrams (DDs).

Decision diagrams (DDs). Binary decision diagrams (BDDs) were intro-
duced by Lee [22] and Akers [23]. Later, Bryant [7] found that reduced and
ordered BDDs (ROBDDs) have a canonical representation. Using this prop-
erty, he proposed Apply operations, which enables the synthesis of BDDs. His
paper leads to wide applications of BDDs such as logic synthesis [24, 25, 26],
model checking [27], and logic optimization [28]. There are several techniques
to implement BDDs efficiently, for example, variable ordering [29, 30, 31, 32],
hash table [33], attributed edges [34], and shared-BDD [34].

ZDDs were proposed by Minato [8] as a variant of BDDs. ZDDs tend to be
smaller than BDDs when representing sparse set families. By this property,
ZDDs have been applied to wide areas such as data mining [35, 36, 37], game
theory [38], graph optimization [39], and combinatorial optimization [40, 41,
42]. BDDs and ZDDs are well surveyed in Knuth’s book [5].

There are several variations of BDDs/ZDDs: Sequence BDDs (SeqB-
DDs) [43] for sets of sequences, πDDs [44], rot-πDDs [45], and Group Decision
Diagrams (GDDs) [46] for sets of permutations, and multi-valued decision
diagrams (MDDs) [47] for multi-valued logic functions. For logic functions
or set families, there are variants of BDDs/ZDDs. Sentential Decision Di-
agrams (SDDs) [48] are generalizations of BDDs. Zero-suppressed SDDs
(ZSDDs) [49] are generalizations of ZDDs and the zero-suppressed variant of
SDDs. There is a trade-off between succinctness and types of queries sup-
ported by DDs. Darwiche and Marquis studied this trade-off as a knowledge

2

1.3. OUR CONTRIBUTION

compilation map [50].

DDs for graph problems. Sekine et al. [6] proposed an algorithm to
compute the Tutte polynomial of a graph using BDDs. This algorithm es-
sentially constructs a BDD representing all the spanning trees of the input
graph. Knuth [5] proposed an algorithm to construct a ZDD representing
all the paths in a given graph. These algorithms are generalized as frontier-
based search (FBS) by Kawahara et al [4]. The framework has been applied
for several problems. A prominent application is network reliability evalua-
tion [51, 52, 53, 54, 55], which is known to be #P-hard [56]. Other application
consists of NP-hard problems such as distribution loss minimization [57],
influence maximization [58], evacuation planning [59], political redistrict-
ing [60], longest one-way ticket problem [61], and link puzzles [62]. There are
libraries such as Graphillion [63] and TdZdd. The complexity of algorithms
based on FBS is measured by the path-width of the input graph [64].

1.3 Our contribution

In this thesis, we propose implicit enumeration algorithms for the following
problems:

1. Evacuation planning for general graphs

2. Balanced graph partition

3. Planar subgraph enumeration

4. FBS for zero-suppressed sentential decision diagrams (ZSDDs)

We summarize each contribution in the below:

1. Evacuation planning for general graphs: In this problem, we are given
a graph representing the road network of the target area. Every ver-
tex has a population near the vertex and some vertices are marked as
shelters and they have capacities. Our task is to partition a graph into
several regions so that each region contains exactly one shelter. There
are several constraints to this problem. Each region must be convex
to reduce intersections of evacuation routes, the distance between each
point to a shelter must be bounded so that inhabitants can quickly

3

CHAPTER 1. INTRODUCTION

evacuate from a disaster, and the number of inhabitants assigned to
each shelter must not exceed the capacity of the shelter. We formu-
late the convexity of connected components as a spanning shortest path
forest for general graphs and propose a novel algorithm to tackle this
multi-objective optimization problem. The algorithm not only obtains
a single partition but also enumerates all partitions simultaneously sat-
isfying the above complex constraints, which is difficult to be treated by
existing algorithms, using ZDDs as a compressed representation. The
efficiency of the proposed algorithm is confirmed by the experiments
using real-world map data. The results of the experiments show that
the proposed algorithm can obtain hundreds of millions of partitions
satisfying all the constraints for input graphs with a hundred edges in
a few minutes.

2. Balanced graph partition: Partitioning a graph into balanced compo-
nents is important for several applications. For multi-objective prob-
lems, it is useful not only to find one solution but also to enumerate all
the solutions with good values of objectives. We propose an algorithm
to enumerate all the graph partitions such that all the weights of the
connected components are at least a specified value. Our algorithm uti-
lizes not only ZDDs but also ternary decision diagrams (TDDs) and re-
alizes an operation, which seems difficult to be designed only by ZDDs.
Experimental results show that the proposed algorithm runs up to tens
of times faster than an existing state-of-the-art algorithm.

3. Planar subgraph enumeration: Given graphs G and H, we propose
a method to implicitly enumerate topological-minor-embeddings of H
in G using decision diagrams. We show a useful application of our
method to enumerating subgraphs characterized by forbidden topolog-
ical minors, including planar, outerplanar, series-parallel, and cactus
subgraphs. Computational experiments show that our method can find
all planar subgraphs in a given graph up to five orders of magnitude
faster than a naive backtracking-based method. We apply our method
also for outerplanar, series-parallel, and cactus subgraphs.

4. FBS for ZSDDs: ZSDDs [49] are recently proposed DD as generaliza-
tions of ZDDs. ZSDDs can be smaller than ZDDs when representing
the same set of subgraphs [65]. In addition, like ZDDs, ZSDDs support

4

1.4. ORGANIZATION

several poly-time queries such as counting, random sampling, and Ap-
ply operations [49]. However, efficient algorithms to construct ZSDDs
are known only for specific types of subgraphs: matchings and paths.
In the chapter, we propose a novel framework of top-down construction
algorithms for ZSDDs. To design a top-down construction algorithm
using our framework, one only has to prove a recursive formula for the
desired set of subgraphs. Using the recursive formula, we can theoreti-
cally show the correctness and the complexity of the algorithm, which
was difficult with the existing method. We apply our framework to
the three fundamental constraints used in ZDDs: the number of edges,
degrees of vertices, and connectivity of vertices. We show that the
sizes of constructed ZSDDs are bounded by the branch-width of the
input graph. Experiments show that proposed methods can construct
ZSDDs faster than ZDDs and that the constructed ZSDDs are smaller
than ZDDs representing the same sets of subgraphs.

1.4 Organization

The rest of this thesis is organized as follows. Chapter 2 presents preliminar-
ies commonly used in this thesis. Chapter 3 develops a ZDD-based algorithm
for evacuation planning problem. In Chapter 4, we propose an efficient al-
gorithm for implicit enumeration of balanced graph partitions. We propose
implicit enumeration algorithms for planar and related subgraphs in Chap-
ter 5. In Chapter 6, we propose implicit enumeration algorithms using ZS-
DDs. Finally, we conclude this thesis in Chapter 7.

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Preliminaries

In this chapter, we give preliminaries commonly used in the thesis. We
introduce notations in Section 2.1. In Section 2.2 and Section 2.3, we explain
a zero-suppressed binary decision diagram (ZDD) and frontier-based search,
respectively.

2.1 Notations

Let Z be the sets of integers. Z+ and N denote the set of positive and non-
negative integers, respectively. For k ∈ Z+, we define [k] = {1, . . . , k}. R
denotes the set of real numbers and we use R+ to represent the set of positive
real numbers.

Let G = (V,E) be an undirected graph where V is the vertex set and
E is the edge set. |V | and |E| denote the number of vertices and edges,
respectively. For vertex subset U ⊆ V , the vertex-induced subgraph G[U] is
the subgraph (U,E[U]), where E[U] is the set of edges whose endpoints are
both in U . For edge subset S ⊆ E, the edge-induced subgraph G[S] is the
subgraph (V [S], S), where V [S] ⊆ V is the set of vertices to which an edge in
S is incident. We often identify U with G[U] and S with G[S]. For S ⊆ E and
u ∈ V , the degree degS(u) of u in S is the number of edges incident to u in S.
Graphs G and H are isomorphic if there exists a bijection ψ : V (G)→ V (H)
such that, for all u, v ∈ V (G), {u, v} ∈ E(G)⇔ {ψ(u), ψ(v)} ∈ E(H).

7

CHAPTER 2. PRELIMINARIES

Figure 2.1: The ZDD representing the family {{1, 3}, {2, 3}, {3}}. A square
represents a terminal node. A circle is a non-terminal node and the number
in it is a label. A solid arc is a 1-arc and a dashed arc is a 0-arc.

2.2 Zero-suppressed binary decision diagram

A zero-suppressed binary decision diagram (ZDD) [8] is a directed acyclic
graph Z = (NZ , AZ) representing a family of sets. Here NZ is the set of
nodes and AZ is the set of arcs (directed edges).1 For an arc (α, β) ∈ AZ ,
we call α head and β tail. NZ contains two terminal nodes > and ⊥. The
other nodes than the terminal nodes are called non-terminal nodes. Each
non-terminal node α has the 0-arc, the 1-arc, and the label corresponding to
an item in the universe set. For x ∈ {0, 1}, we call the tail of the x-arc of a
non-terminal node α the x-child of α, denoted by αx. We denote the label of
α by l(α) and assume that l(α) ∈ Z+∪{∞} for any α ∈ NZ . For convenience,
we let l(>) = l(⊥) =∞. For each arc (α, β) ∈ AZ , the inequality l(α) < l(β)
holds, which ensures that Z is acyclic. There is exactly one node whose in-
degree is zero, called the root node and denoted by rZ . The number of the
non-terminal nodes of Z is called the size of Z and denoted by |Z|.

A ZDD Z represents the family of sets in the following way. Let PZ
be the set of all the directed paths from rZ to >. For a directed path
p = (n1, a1, . . . , nk, ak,>) ∈ PZ with ni ∈ NZ , ai ∈ AZ , and n1 = rZ , we
define Sp = {l(ni) | ai ∈ AZ,1, i ∈ [k]}, where AZ,1 is the set of the 1-
arcs of Z. We interpret that Z represents the family {Sp | p ∈ PZ}. In
other words, a directed path from rZ to > corresponds to a set in the family
represented by Z. For example, Fig. 2.1 shows a ZDD representing the set
family {{1, 2}, {1, 3}, {2, 3}}. In the figure, a dashed arc (99K) and a solid

1To avoid confusion, we use the words “vertex” and “edge” for input graphs and “nodes”
and “arcs” for decision diagrams.

8

2.2. ZERO-SUPPRESSED BINARY DECISION DIAGRAM

(a) Node deletion. (b) Node sharing.

Figure 2.2: Reduction rules for the ZDD.

arc (→) are a 0-arc and a 1-arc, respectively. On the ZDD in Fig. 2.1, there
are three directed paths from the root node to >: 1 → 2 → >, 1 → 2 99K
3→ >, and 1 99K 2→ 3→ >, which correspond to {1, 2}, {1, 3}, and {2, 3},
respectively.

In general, there are multiple ZDDs representing the same set family. To
reduce the size of ZDDs, we apply the following two reduction rules:

• Node deletion: Delete a node α if α1 = ⊥ and, for all arcs whose tail
is α, replace it by α0. (Fig. 2.2(a))

• Node sharing: Merge two nodes α and β if `(α) = `(β), α0 = β0, and
α1 = β1. (Fig. 2.2(b))

A ZDD is called reduced if we can no longer apply reduction rules to the
ZDD. The reduced ZDD has a canonical and minimum form [8]. The ZDD
in Fig. 2.1 is reduced. We denote the reduced ZDD representing a family F
by ZF . The size of the reduced ZDD depends on the variable ordering, i.e.,
the order of labels. Finding an optimal variable ordering is NP-complete [66].

ZDDs support several useful queries about set families. For example, we
can count the number of sets in the family, randomly sample a set, optimize
a linear function, in O(|Z|) time [5]. In addition, there are binary operations
between ZDDs. Given two ZDDs ZF and ZG respectively representing set
families F and G, we can construct ZF∪G, ZF∩G, and ZF\G, in O(|ZF | |ZG|)
time [67]. There are more involved operations. For set families F and G, the
restriction of F by G is defined as F B G = {X | X ∈ F ,∃Y ∈ G, X ⊇ Y }.
Similarly, the permission of F by G is defined as F C G = {X | X ∈ F ,
∃Y ∈ G, X ⊆ Y }. Given two ZDDs ZF and ZG, there are algorithms
to construct ZFBG and ZFCG [5]. However, these algorithms do not have

9

CHAPTER 2. PRELIMINARIES

Table 2.1: Binary operations between set families

Name Operator Formula Result
union ∪ F ∪ G {X | X ∈ F or X ∈ G}

intersection ∩ F ∩ G {X | X ∈ F and X ∈ G}
difference \ F \ G {X | X ∈ F , X /∈ G}
restriction B F B G {X | X ∈ F ,∃Y ∈ G, X ⊇ Y }
permission C F C G {X | X ∈ F ,∃Y ∈ G, X ⊆ Y }

polynomial-time guarantee. For ∪,∩ and \, we can use efficient recursive
algorithms called Apply operation [7]. In contrast, algorithms for B and C
are doubly recursive (for example, the recursion of B calls the recursion of
∪ inside), which makes theoretical analysis difficult. Table 2.1 shows the list
of binary operations between set families that are supported by ZDDs and
we use in this thesis. We refer [5] for other binary operations between ZDDs
and the details of algorithms of binary operations.

2.3 Frontier-based search

Frontier-based search [4, 5, 6] (FBS) is a framework of algorithms that effi-
ciently construct a decision diagram representing the set of subgraphs satisfy-
ing given constraints of an input graph. We explain the general framework of
FBS. Given a graph G = (V,E), letM be a class of subgraphs we would like
to enumerate (for example,M is the set of all the s-t paths on G). Frontier-
based search constructs the ZDD representing the family M of subgraphs.
By fixing G, a subgraph is identified with the edge set the subgraph has,
and thus the ZDD represents the family of edge sets actually. Non-terminal
nodes of ZDDs constructed by frontier-based search have labels e1, . . . , em.
We identify ei with the integer i. We assume that it is determined in advance
which edge in G has which index i of ei.

We directly construct the ZDD in a breadth-first manner. We first create
the root node of the ZDD, make it have label e1, and then we carry out the
following procedure for i = 1, . . . ,m. For each node ni with label ei, we
create two nodes, each of which is either a terminal node or a non-terminal
node whose label is ei+1 (if i = m, the candidate is only a terminal node), as
the 0-child and the 1-child of ni.

Which node the x-arc of a node ni with label ei points at is determined by

10

2.3. FRONTIER-BASED SEARCH

(a) Node merging. (b) Pruning.

Figure 2.3: Procedures of FBS.

a function, called MakeNewNode, of which we design the detail according
toM, i.e., what subgraphs we want to enumerate. Here we describe the gen-
eralized nature that MakeNewNode must possess. The node ni represents
the set of the subgraphs, denoted by G(ni), corresponding to the set of the
directed paths from the root node to ni. Each subgraph in G(ni) contains
only edges in {e1, . . . , ei−1}. Note that G(>) is the desired set of subgraphs
represented by the ZDD after the construction finishes. To decide which node
the x-arc of ni points at without traversing the ZDD (under construction),
we make each node ni have the information ni.conf (called configuration),
which is shared by all the subgraphs in G(ni). The content of ni.conf also
depends on M (for example, in the case of s-t paths, we store degrees and
components of the subgraphs in G(ni) into ni.conf). MakeNewNode cre-
ates a new node, say nnew, with label ei+1 and must behave in the following
manner.

1. For all edge sets S ∈ G(nnew), if there is no edge set S ′ ⊆ {ei+1, . . . , em}
such that S ∪ S ′ ∈ M, the function discards nnew and returns ⊥ to
avoid redundant expansion of nodes. (pruning) In other words, if any
subgraph represented by nnew cannot be extended to a solution, we no
longer expand nnew. (Fig. 2.3(a))

2. Otherwise, if i = m, the function returns >, which indicates the sub-
graphs represented by nm are in solutions.

3. Otherwise, the function calculates nnew.conf from ni.conf. If there is
a node ni+1 such that whose label is ei+1 and nnew.conf = ni+1.conf,
the function abandons nnew and returns ni+1. (node merging) This
is needed to merge nodes corresponding to the same state and avoid

11

CHAPTER 2. PRELIMINARIES

(a) Input graph. (b) Intermediate
solution 1.

(c) Intermediate so-
lution 2. (d) Configuration.

Figure 2.4: Intermediate solutions with the same configuration for spanning
forests. Bold, dashed, and solid edges indicate adopted, unadopted, and un-
processed edges, respectively. The vertices inside the ellipses are the frontier.

constructing redundant nodes. If there is no node with the same state,
the function returns nnew. (Fig. 2.3(b))

We make the x-arc of ni point at the node returned by MakeNewNode.
As for ni.conf, in the case of several kinds of subgraphs such as paths

and cycles, it is known that we only have to store states relating to the
vertices to which both an edge in {e1, . . . , ei−1} and an edge in {ei, . . . , em}
are incident into each node [5] (in the case of s-t paths, we store degrees
and components of such vertices into each node). The set of the vertices
is called the frontier. More precisely, the i-th frontier is defined as Fi =
(
⋃i−1
j=1{{u, v} | ej = {u, v}}) ∩ (

⋃m
k=i{{u, v} | ek = {u, v}}). Since we have

assumed that the edge ordering is determined in advance, the i-th frontier is
uniquely determined for every i. For convenience, we define F0 = Fm = ∅.
States of vertices in Fi−1 are stored into ni.conf. By limiting the domain
of the information to the frontier, we can reduce memory consumption and
share more nodes, which leads to a more efficient algorithm.

For example, when we want to enumerate spanning forests, i.e., subgraphs
with no cycles, we have to maintain the connectivity of the vertices in the
frontier as configuration. We consider the input graph in Fig. 2.4(a). Now
we processed e1 and e2 and there are two intermediate solutions. The two
intermediate solutions are different as edge subsets. However, they are equiv-
alent in the sense that they will be spanning forests unless we adopt all edges
from e3, e4, and e5. Thus, the ZDD nodes corresponding to these interme-
diate solutions can be merged. This can be detected by the configuration
in Fig. 2.4(d). The current frontier is {v2, v3} and there are two connected
components containing v2 and v3.

12

2.3. FRONTIER-BASED SEARCH

The efficiency of an algorithm based on FBS is often evaluated by the
width of a ZDD constructed by the algorithm. The width WZ of a ZDD Z
is defined as WZ = max{|Ni| | i ∈ [m]}, where Ni denotes the set of nodes
whose labels are ei. Using WZ , the number of nodes in Z can be written as
|Z| = O(mWZ) and the time complexity of the algorithm is O(τ |Z|), where
τ denotes the time complexity of MakeNewNode for one node.

A ZDD constructed by FBS may not be reduced. To obtain the reduced
ZDD, we have to apply reduction rules [5].

13

CHAPTER 2. PRELIMINARIES

14

Chapter 3

Evacuation Planning for
General Graphs

3.1 Introduction

In this chapter, we consider the following variant of the graph partition-
ing problem, called the evacuation planning problem: We are given a graph
G = (V,E) representing an area and a set S ⊆ V of shelters (or evacua-
tion centers). Each vertex has an integer value representing the population
and each shelter has an integer value, called shelter-capacity, that means the
number of evacuees that the shelter can accommodate. The goal is to find
a partition of G such that each connected component contains exactly one
shelter in S. There are several constraints we must consider in the problem:
the structural, distance and shelter-capacity constraints. The structural con-
straint requires that each component is convex to reduce intersections of
evacuation routes. The distance constraint is that the distances from ver-
tices to the assigned shelters should be short. In addition, for fairness, it
is not preferable that evacuees are assigned to a far shelter even though
another shelter exists near them. The shelter-capacity constraint is about
the capacities of shelters: the number of evacuees assigned to each shelter
should not exceed its shelter-capacity. In practice, it is often that the to-
tal shelter-capacity of shelters is insufficient to accommodate all inhabitants
in an area. Thus, although we allow a shelter to accommodate evacuees
more than its shelter-capacity, we want to reduce the ratio of the number
of evacuees assigned to a shelter to its shelter-capacity. This multi-objective

15

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

property makes it difficult to define what is the best partition. Therefore,
it is useful not only to find one partition but also to enumerate partitions
which satisfy the constraints. Once we enumerate partitions, administrators
can evaluate enumerated partitions from various perspectives and select one
of them.

Takizawa et al. [59] proposed an algorithm for a special case of the prob-
lem in the following way. They first split a target area into square cells and
enumerated all partitions such that each connected component contains ex-
actly one shelter. They consider the convexity constraint first introduced
by Chen et al. [68]. In their definition, a component containing a shelter s
is called convex if the component can be written as the union of rectangles
each of which contains s. However, their definition of convexity is limited to
square cells.

In this chapter, we reformulate the convexity for general graphs from the
definition for grid graphs (the case in Takizawa et al. [59]). We formulate
the convexity of connected components as a spanning shortest path forest, in
short, SSPF. An SSPF has good properties to avoid intersections of evacua-
tion routes.

Our approach is as follows: First, we construct ZDDs representing a set
of partitions satisfying the structural and distance constraints. As we discuss
in Section 3.4, it seems computationally difficult to directly construct a ZDD
representing a set of partitions simultaneously satisfying all the constraints.
Hence we divide the process of construction of the ZDD into some steps. To
construct a ZDD efficiently, we propose algorithms based on frontier-based
search[6, 5, 4], which is a framework to construct a ZDD representing a
set of constrained subgraphs in a given graph. In particular, we propose a
novel algorithm to enumerate all SSPFs in a given graph with the distance
constraint. The efficiency of frontier-based search is usually evaluated in
terms of the width of a ZDD constructed by the algorithm, which is a rough
indication of the computation time and memory usage. As for the general
graph partitioning problem, the algorithm with the width of a ZDDO(Bf2

f2)
is known [60], where Bf is the f -th Bell number and f is the maximum
frontier size, which is a parameter of a frontier-based search-like algorithm.
Our algorithm exploits the property of SSPFs and achieves the width of a
ZDD O(Bf2

rf), where r is the number of shelters. This bound is tighter
than O(Bf2

f2) when r is smaller than f .
Second, we obtain a ZDD representing a set of partitions satisfying all

the constraints by operations between ZDDs. Here we propose an algorithm

16

3.2. PRELIMINARIES

to deal with the population constraint. Our algorithm first constructs a
ZDD representing a set containing all the minimal patterns violating the
population constraint, and then extract solutions using operations between
ZDDs. To construct the ZDD, we also devise a new algorithm based on
frontier-based search. The width of a ZDD constructed by our algorithm
is O(BfP) where P is the total population over vertices, while that of the
previous method [60] is O(BfP

f).

To evaluate our proposed algorithm, we conduct numerical experiments
using real-world map data. Our algorithm constructs a ZDD representing a
set of solutions of input graphs with a hundred of edges in a few minutes.

This chapter is organized as follows. In Section 3.2, we give some prelim-
inaries and formulate our problem. We propose our algorithm in Sections 3.3
and 3.4. Section 3.5 gives experimental results.

3.2 Preliminaries

3.2.1 Notation

In this subsection, the input graph is a vertex and edge weighted graph
G = (V,E, popu, w). Assume that G is simple, connected and undirected.
Here, V = {1, 2, . . . , n} is a vertex set and E ⊆ {{u, v} | u, v ∈ V } is an edge
set. The function popu : V → Z+ is a vertex weight function. For a vertex v,
popu(v) indicates the population of v. The function w : E → R+ is an edge
weight function. For an edge e, w(e) means the length of e. Hereinafter, we
sometimes drop popu and w from (V,E, popu, w) and write G = (V,E) for
simplicity. Let S = {1, 2, . . . , r} ⊆ V be a set of shelters. Note that r = |S|
and ∀s ∈ S,∀v ∈ V \ S, s < v. We are also given cap : S → Z+. For a
shelter s ∈ S, cap(s) denotes the shelter-capacity of s.

We give some additional notation for this chapter. For a vertex v and a
subgraph E ′ ⊆ E, let CE′(v) be the set of the vertices that are connected
to v in E ′, containing v. Intuitively, CE′(v) means the connected component
including v in E ′. When there is no ambiguity, we omit E ′ and write C(v).
We denote the shortest distance between vertices u and v in G as dG(u, v).
Let d∗(v) be the shortest distance from v to the nearest shelter in G, that is,
d∗(v) = min{dG(s, v) | s ∈ S}. Bf denotes the f -th Bell number, which is
the number of partition of f items.

17

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Figure 3.1: Example of a shortest path tree.

Figure 3.2: Example of a spanning shortest path forest.

3.2.2 Formulation

We introduce the constraints on the structure of components in a partition,
distances from each vertex to a shelter, and the shelter-capacity of shelters.

It is required that each component should be connected and that inter-
sections of evacuation routes are avoided. We assume that each evacuee on
a vertex evacuates to a shelter along the shortest path from the vertex to
the shelter. To impose the constraint, we represent a partition as a spanning
shortest path forest, in short, SSPF. To define an SSPF, we give the definition
of a shortest path tree, in short, SPT.

Definition 3.1 (Shortest path tree (SPT)). We say that T = (U,E ′), U ⊆
V,E ′ ⊆ E, is a shortest path tree (an SPT) of G = (V,E) rooted at s ∈ S
if T is a spanning tree of G[U], s ∈ T and dT (s, u) = dG(s, u) for all u ∈ U .

Fig. 3.1 shows an example of an SPT. In the figure, the colored vertex
is a shelter and thick edges compose the tree. The numbers near the edges

18

3.2. PRELIMINARIES

are edge weights. Each number in a vertex is the shortest distance from the
shelter to itself. Next, an SSPF is defined as follows.

Definition 3.2 (Spanning shortest path forest (SSPF)). We say that F =
(V,E ′), E ′ ⊆ E, is a spanning shortest path forest (an SSPF) of G = (V,E)
if every connected component in F has exactly one shelter s ∈ S, and is an
SPT rooted at s.

Fig. 3.2 shows an example of an SSPF. In the figure, colored vertices are
shelters. Suppose that an SSPF F is given. We say that s ∈ S is the assigned
shelter of v if s is the root of the SPT containing v in F . In F , for all vertices
v ∈ V , evacuees on v can go to the assigned shelter in the shortest distance
without passing through edges in other trees. This property leads to less
intersections of evacuation routes. We call the condition that a partition is
represented as an SSPF the structural constraint. In what follows, we identify
a partition with an SSPF.

Next, we discuss the rest of the constraints. We introduce two parameters
D,R ∈ R+. D is an upperbound of the distance from any vertex to the
assigned shelter. That is, for all v ∈ V, dG(v, sv) ≤ D must hold, where sv
is the assigned shelter to v in an SSPF F . In addition to restricting the
maximum distance of evacuation routes, we would like to avoid assigning
a vertex to a far shelter even though there is another shelter close to the
vertex. We impose the restriction that any vertex must not be assigned to
a shelter R times farther than the nearest shelter. That is, for all v ∈ V ,
dG(v, sv) ≤ R · d∗(v) must hold. We call the above constraint the distance
constraint. In addition, we introduce a parameter K ∈ R+, which is the
maximum acceptable ratio of the number of evacuees assigned to a shelter
to its shelter-capacity, that is,

∀s ∈ S,
∑

v∈CF (s)

popu(v) ≤ K · cap(s), (3.1)

which we call the shelter-capacity constraint. Note that we cannot assign a
vertex to the nearest shelter s′ when the total population on the vertices near
s′ is too much.

As a summary, our problem is defined as follows.

Input

• A vertex and edge weighted graph G = (V,E, popu, w), where

19

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

– vertex set V = {1, 2, . . . , n},
– edge set E = {e1, e2, . . . , em},
– vertex weight function (population) popu : V → Z+,

– edge weight function (distance) w : E → R+.

• A set of shelters S = {1, 2, . . . , r} ⊆ V ,

• Capacities of shelters cap : S → Z+,

• Parameters D,R,K ∈ R+.

Solution

• An SSPF F of G (the structural constraint) satisfying the following
constraints:

1. The distance constraint :

∀v ∈ V, d(v, sv) ≤ min{D,R · d∗(v)}, (3.2)

where sv is the nearest shelter to v in F .

2. The shelter-capacity constraint :

∀s ∈ S,
∑

v∈CF (s)

popu(v) ≤ K · cap(s). (3.3)

3.3 Structural and distance constraints

Let us describe an overview of our proposed method. Because dealing with
all the constraints at the same time seems computationally difficult as we
show in Section 3.4, we divide the procedure into three steps:

1. Construct ZDD Z1 representing the set of all the SSPFs satisfying the
distance constraint.

2. Construct ZDD Z2 representing a set containing all the minimal trees
violating the shelter-capacity constraint.

3. Obtain ZDD Z3 representing the set of all the SSPFs satisfying all the
constraints by operations between Z1 and Z2.

In the rest of this section, we explain Step 1. First, we explain a basic algo-
rithm for explanation, and then we show a more memory-efficient algorithm.

20

3.3. STRUCTURAL AND DISTANCE CONSTRAINTS

3.3.1 Basic algorithm

Before explaining the algorithm, we examine the properties of SPTs. Con-
sider an SSPF F . Let T ⊆ F be an SPT rooted at s ∈ S. If an edge
e = {u, v} is an element of T , one of Eqs. (3.4) and (3.5) is satisfied:

dG(s, u) + w(e) = dG(s, v), (3.4)

dG(s, v) + w(e) = dG(s, u). (3.5)

Conversely, if either Eqs. (3.4) or (3.5) holds for s ∈ S, e can be an element
of an SPT rooted at s. Since w(e) > 0 for all e ∈ E, Eqs. (3.4) and (3.5)
are never satisfied simultaneously. In T , we orient e in the direction u → v
if Eq. (3.4) is satisfied, which implies u is a parent in T , and v → u if Eq.
(3.5) is satisfied. Then T can be seen as a directed tree; the in-degree of s in
T is zero and those of others in T are one.

Based on the above discussion, we explain the configuration we use in
frontier-based search for our problem. In the following, we show the algo-
rithm and explain the correctness at the same time. In what follows, we
describe the configuration stored into a ZDD node, say N , having a label
ei = {u, v}. Recall that the node N corresponds to a set of subgraphs, which
we denote G. The values of the configuration stored into N represent the
characteristic of any subgraph in G, and conversely, by the merge process
described in Section 2.3, two nodes are merged only when the values of the
configuration of the two nodes are completely the same. Thus, we pick up a
subgraph, say G′, in G as a representative and associate G′ with the values
of the configuration stored into N . We define the configuration as a tuple
(cmp, indeg, valid) of three arrays. We explain each arrays in the following.

First, to deal with connected components, for each x ∈ Fi, we introduce
and store a function (or an array) cmp[x] into N in the same way as in
Section 2.3. Recall that the value cmp[x] is maintained so that for y, z ∈
Fi, cmp[y] = cmp[z] if and only if y and z belong to the same connected
component in G′. Here, we maintain the value cmp[x] as cmp[x] = min{y ∈
Fi | y ∈ C(x)}, noting that C(x) means the connected component of G′

containing x, including x. Since ∀s ∈ S,∀x ∈ V \ S, s < x by definition in
Section 3.2, we can detect whether C(x) contains a shelter or not using cmp,
that is, if C(x) contains some shelter s, cmp[x] = s ≤ r = |S|. Otherwise
r < cmp[x]. Hereinafter, we regard the value of cmp[x] in the same light as
C(x) in G′.

21

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Second, we introduce indeg[s][x] for x ∈ Fi and s ∈ S. Consider the
connected component C(x) of G′ such that C(x)∩S = ∅. If some of ei, . . . , em
are added to G′ and C(x) is connected to s, C(x) becomes a part of the SPT
rooted at s. Recall that since N has the label ei, G

′ has edges only in
{e1, . . . , ei−1}. Then, each edge in C(x) is oriented in the SPT (rooted at
s). We maintain the value of indeg[s][x] so that indeg[s][x] represents the
in-degree of x assuming that C(x) is a part of the SPT rooted at s. That is,

indeg[s][x] =

∣∣∣∣{e ∈ C(x)

∣∣∣∣ e = {y, x},
dG(s, y) + w(e) = dG(s, x)

}∣∣∣∣ . (3.6)

Third, when there is an edge e in a connected component C in G′ contain-
ing no shelter such that neither Eqs. (3.4) nor (3.5) holds for e and s ∈ S, s
cannot join C. Therefore, to detect the situation, for each connected compo-
nent containing no shelter, we store a Boolean value which indicates whether
or not each shelter can join the connected component into N as valid[s][C].
For all s ∈ S and a connected component C > r, valid[s][C] = true if s
can join C, and valid[s][C] = false if not.

We explain how to deal with the structural constraint. Consider the
destination of the 1-arc of N (described above). This means that we add the
edge ei = {u, v} to G′. Without loss of generality, we can assume the cases
are of the following:

(a) C(u) = C(v).

(b) C(u) 6= C(v) and C(u) contains a shelter su and C(v) contains a shelter
sv.

(c) C(u) 6= C(v) and C(u) contains a shelter su and C(v) contains no
shelter.

(d) C(u) 6= C(v) and neither C(u) nor C(v) contains any shelter.

In case (a), if we add ei to G′, we can no longer obtain the solution because
a cycle is generated in G′ ∪ {ei}. Therefore case (a) should be pruned. We
also have to prune case (b) because we will connect different shelters su and
sv. In case (c), if valid[su][C(v)] = false, we should prune the case. In
case pruning does not occur in all the cases above, the rest of the cases are
(d) and the following (c’):

22

3.3. STRUCTURAL AND DISTANCE CONSTRAINTS

(c’) C(u) 6= C(v), C(u) contains a shelter su, C(v) contains no shelter, and
valid[su][C(v)] = true.

Since we add ei to G′, the connected components C(u) and C(v) are merged
in G′ ∪ {ei}. Let C(uv) be the generated connected component, that is,
C(uv) = C(u) ∪ C(v).

Consider how to update the configuration of a ZDD node in cases (c’)
and (d) (we call making a node N ′ as the destination of an arc of N and
setting the configuration of N ′ “updating the configuration”). Suppose that
we are making a node N ′ as the destination of the 1-arc of N .

We describe updating valid. In case (c’), valid[su][C(v)] = true is
ensured because pruning by the condition valid[su][C(v)] = false does not
occur in case (c’), so we do not have to do anything. In case (d), for all s ∈ S,
we set valid[s][C(uv)] in N ′ to be true if and only if valid[s][C(u)] = true

and valid[s][C(v)] = true in N . If valid[s][C(uv)] is false for all s ∈ S
after updating, any shelter can no longer join C(uv). Therefore we prune
this case.

Next, we describe updating not only valid but also indeg. In case (c’),
we have the following two situations.

(c’1) Equation (3.4) is satisfied for ei and su.

(c’2) Otherwise.

Case (c’1) means that if ei will be included in the SPT rooted at su in the
future, the orientation of ei in tree must be u→ v. Hence, if case (c’1) holds,
adding ei to G′ increases the in-degree of v in the SPT (under construction)
rooted at su. Therefore, in case (c’1), if indeg[su][v] = 1 holds, we cannot
add ei to G′. Therefore we prune this case. Otherwise (indeg[su][v] = 0)
we substitute 1 for indeg[su][v] and go on the procedure. In case (c’2), we
cannot add ei to G′ and prune this case. In case (d), for each s, the following
three cases are considered:

(d1) Equation (3.4) is satisfied for ei and s.

(d2) Equation (3.5) is satisfied for ei and s.

(d3) Neither Eqs. (3.4) nor (3.5) is satisfied for ei and s.

Similarly to the above discussion, in case (d1), if indeg[s][v] = 1 in N ,
we cannot add ei to G′. Therefore, in such cases, we substitute false for

23

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

valid[s][C(v)] in N ′, otherwise 1 for indeg[s][v] in N ′. Case (d2) is almost
the same as case (d1). In case (d3), we substitute false for valid[s][C(uv)]
in N ′. The difference between (c’) and (d) is that now we do not perform
pruning immediately but updating valid. Similarly to the discussion in case
(c’), if valid[s][C(uv)] is false in N ′ for all s ∈ S, we prune the case.

We can deal with the distance constraint by initializing valid[s][{v}] for
all s ∈ S when a vertex v appears on a frontier. Let valid[s][{v}]← true if
d(s, v) ≤ min{D,R · d∗(v)}, otherwise valid[s][{v}]← false.

3.3.2 More memory-efficient algorithm

In Section 3.3.1, we store indeg into ZDD nodes because we want to know
in-degrees of vertices on a frontier in the SPT (under construction) rooted at
each s ∈ S. Here, for reducing the memory consumption, we propose not to
store indeg; we can know in-degrees of vertices in the SPTs from other stored
values. In the algorithm of Section 3.3.1, a connected component C can be
a part of the SPT rooted at s ∈ S if valid[s][C] = true. In other words,
when valid[s][C] = true, we can see C as a part of a directed tree rooted at
s. Moreover, the directions of the edges in C in the tree can be determined
according to Eqs. (3.4) and (3.5): u→ v holds if dG(s, u) < dG(s, v). Thus,
we have the only one vertex v such that indeg[s][v] = 0 in the directed tree of
C, which is nearest to s in C. Other vertices u in C have indeg[s][u] = 1. We
can find v by comparing dG(s, u) among vertices u in C. Note that dG(s, u)
does not change throughout the construction of the ZDD, and thus we can
replace individual indeg in all ZDD nodes by common dG(s, u), which can
be managed globally. Using this idea, we can realize the same algorithm as
Section 3.3.1 without storing indeg into ZDD nodes. This reduces memory
consumption. Pseudocode is presented in Algorithms 3.1–3.5.

Let us consider the width of a ZDD constructed by our algorithm. As
configurations, we store cmp and valid in each ZDD node. There are Bf

different states for cmp among ZDD nodes with the same label, and 2rf for
valid (Recall that r is the number of shelters). Thus, we obtain the following
lemma.

Lemma 3.1. The width of a ZDD constructed by Algorithms 3.1–3.5 is
O(Bf2

rf).

In the algorithm in Section 3.3.1, we store an array cmp and matrices
valid and indeg into each ZDD node. cmp has f elements and valid and

24

3.4. SHELTER-CAPACITY CONSTRAINT

indeg have rf elements respectively, and thus we store (2r + 1)f values
into each ZDD node in the algorithm in Section 3.3.1. By contrast, in the
algorithm proposed in this subsection, we store only (r+1)f values into each
ZDD node because we do not store indeg.

3.4 Shelter-capacity constraint

In this section, we propose how to deal with the shelter-capacity constraint
efficiently. Kawahara et al. [60] have been proposed an algorithm for the
shelter-capacity constraint. Their approach is to store the total population
of each connected component into ZDD nodes as an additional configuration.
Let A be an algorithm to construct a ZDD for a set of constraints C, where
C is a set of constraints without the shelter-capacity constraint. Then, their
approach makes the algorithm B to construct a ZDD for C and the shelter-
capacity constraint. However, when the width of a ZDD constructed by A
is O(g(f)), that of B is O(g(f)P f), where P is the total population over
vertices. This can desperately increase the number of ZDD nodes, which is
likely to limit the sizes of solvable instances.

Based on the above observation, we devise a new method to deal with
the shelter-capacity constraint. Our idea is that we construct a ZDD repre-
senting a set containing all the forbidden minimal patterns. In particular, we
construct a ZDD Z2 with the following properties:

1. ∀G′ ∈ Z2, G
′ is a tree containing exactly one shelter s,

2. ∀G′ ∈ Z2, the total population over vertices in G′ exceeds cap(s),

3. Z2 contains all the minimal trees violating the shelter-capacity con-
straint.

Once we construct such Z2, we can obtain a ZDD Z3 representing all the
solutions satisfying all the constraints using operations between Z1 and Z2,
obtained in Section 3.3, as we describe later in this section.

We propose an algorithm to construct Z2 based on frontier-based search.
For simplicity, we first consider the case K = 1. We now store two configura-
tions into each ZDD node: cmp and sm popu. The configuration cmp is almost
the same as described in Section 3.3.1. However, here we use the new value
−1. cmp[v] = −1 indicates v has not been adopted yet. We say v is adopted
if at least one edge incident to v is adopted. sm popu is the total populations

25

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

of adopted vertices. Using these configurations, frontier-based search can be
performed as follows: Consider the situation we make a new ZDD node N ′ as
a descendant of 1-arc of a ZDD node N with the label ei = {u, v}. Similarly
to Section 3.3.1, we pick up a subgraph G′ as a representative of a set of sub-
graphs represented by N . If cmp[x] = −1 holds for x ∈ ei in N , x is adopted.
Therefore we set cmp[x] ← x in N ′, to initialize x as an isolated vertex1.
Because x is adopted, the total population of adopted vertices is updated as
sm popu← sm popu+ popu(x) in N ′. After calculating sm popu in N ′, if the
current value of sm popu in N ′ is never that of a minimal tree, we can prune
such a case. To detect this, we calculate two grobal variables in advance:
cap max = max{cap(v) | v ∈ S} and popu max = max{popu(v) | v ∈ V }. If
sm popu > cap max + popu max holds in N ′, the solution can never be the
minimal tree violating the shelter-capacity constraint. Such a case can be
pruned. We should prune the case cmp[u] = cmp[v] 6= −1 holds in N ′ because
adding ei to G′ in this case yields a cycle. If all the above pruning did not
occur, then we merge two connected components C(u) and C(v) and update
cmp.

Next, we consider the situation we make a new ZDD node as a descendant
of x-arc (x ∈ {0, 1}) of a ZDD node N with the label ei = {u, v}. First, if
there exists only one connected component C in the frontier, C contains a
shelter s, and sm popu > cap(s) in N ′, then C satisfies 1 and 2. So we should
make 1 as a new node. Second, if there exists a connected component C
leaving the frontier inN ′, C leaves the frontier before violating the population
constraint, and therefore we should make 0. In the case i = m, which
indicates G′ has no edges, we should also make 0.

In order to extend the algorithm to cases such that K > 1, we only
have to set cap(s) ← K · cap(s) for all s ∈ S before running the algorithm.
Pseudocode is presented in Algorithm 3.6.

Let us consider the width of a ZDD constructed by Algorithm 3.6. Algo-
rithm 3.6 stores cmp and sm popu into ZDD nodes as configurations. There
are O(Bf) different states for cmp among ZDD nodes with the same label
and O(P) for sm popu2. Therefore we obtain the following lemma.

1Since we adopt ei, x is actually not an isolated vertex (at least it is connected with
the other vertex in ei). However, we update cmp later (in lines 11–14 in Algorithm 3.6),
and thus we can simply set cmp[x]← x here without loss of correctness.

2In practice, if P is big, we can round the values of population. Then the complexity
O(P) changes to O(P ′), where P ′ is the total population of rounded values.

26

3.5. EXPERIMENTAL RESULTS

Lemma 3.2. The width of a ZDD constructed by Algorithm 3.6 is O(BfP).

Now we have ZDDs Z1 and Z2. We can obtain the ZDD Z3 representing
the set of all the solutions satisfying all the constraints by

Z3 = Z1 ↘ Z2 = {α ∈ Z1 | ∀β ∈ Z2, α 6⊇ β}. (3.7)

This operation is known as nonsupset [5]. The operation can be realized as
follows by using set difference and restrict operation defined in Section 2.2:

Z3 = Z1 \ (Z1 B Z2). (3.8)

When we construct Z1 B Z2, the smaller number of nodes of Z2 leads to
faster calculation. However, as we show in Section 3.5, the number of nodes
of Z2 is sometimes considerably larger than that of Z1. Thus we give a more
efficient procedure. The key point is that some tree in Z2 may not be an SPT
or, even so, it may not satisfy the distance constraint. If we eliminate such
trees from Z2 in advance, the number of nodes of Z2 may become smaller.
Although we can realize this by modifying Algorithm 3.6, it makes the time
complexity of the algorithm worse. Therefore we use an operation between
ZDDs instead. We use permit operation and modify Eq. (3.8) as follows:

Z3 = Z1 \ (Z1 B Z ′2), (3.9)

where

Z ′2 = Z2 C Z1. (3.10)

3.5 Experimental results

We conducted numerical experiments to confirm the efficiency of our pro-
posed algorithm in terms of time and memory. We used a machine with an
Intel Xeon Processor E7-8870 (2.4GHz) CPU and a 2 TB memory (Oracle
Linux 6.7) for the experiments. All code was implemented in C++ (g++4.4.7
with the -O3 optimization). We used the TdZdd library [69] to implement
algorithms based on frontier-based search. To perform operations between
ZDDs, we adopted the SAPPOROBDD library.

27

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Figure 3.3: The map data of the target area. The red circles are the shelters.
(© OpenStreetMap contributors)

3.5.1 Dataset

We applied our algorithm to real-world map data. A target area is Hi-
gashishiga, Kita Ward, Nagoya City in Japan. We first obtained map data
of the target area from openstreetmap.org3, and then created graphs rep-
resenting road networks within specified ranges of latitude and longitude.
The number of vertices is 165 and that of edges is 212 in this graph. We set
w(e) ← dxee for all edges e, where xe is the original length (meter) of e in
the map and, for a real number a, dae is the smallest integer which is not
less than a. The locations of shelters are obtained from the official web site
of Nagoya City4. We assumed that each shelter s is located on the intersec-
tion closest to s in the road network. The map data and the locations of
shelters are shown in Fig. 3.3. We assumed that popu(v) = 1 for all v ∈ V
and set the capacities of shelters proportional to the real capacities so that
their summation equals to the number of vertices in the graph, as shown in
Table 3.1.

3https://www.openstreetmap.org
4http://www.city.nagoya.jp/bosaikikikanri/cmsfiles/contents/0000090/90892/

ura 03kita.pdf (in Japanese)

28

3.5. EXPERIMENTAL RESULTS

3.5.2 Preprocessing

To enable us to deal with larger networks, we preprocessed graphs and re-
duced the numbers of vertices and edges. We conducted three types of pre-
processing. First, edges which is never contained in a shortest path from
any shelter to any vertex can be deleted because such edges can never be
contained in any SPT. Therefore, for e = {u, v} ∈ E, if ∀s ∈ S, |d(s, u) −
d(s, v)| 6= w(e), we delete e. Second, because of the distance constraint, there
may be some vertex v′ such that v′ can only be assigned to the shelter closest
to v′. We can contract such v′ to the shelter closest to v′ before running the
proposed algorithm. Third, a vertex v whose degree is one must be in the
same connected component as a vertex u which is adjacent to v. Therefore
we can contract v to u. We repeat this until the graph does not have a vertex
whose degree is one.

3.5.3 Results

We show the results in Table 3.2. D, R and K are the parameters described in
Section 3.2.2, and n and m are the number of vertices and edges in the graph
after preprocessing. Groups of columns Z1, Z2 and Z3 show experimental
results about constructing ZDDs described in Sections 3.3 and 3.4. Columns
“# node” indicate the numbers of ZDD nodes after reduction and “Time” is
the time to construct ZDDs including the time to reduce ZDDs (in seconds).
The last column “# solution” shows the number of partitions satisfying all
the constraints for each parameter.

For all the graphs, our algorithm succeeded in constructing the final ZDD
Z3 within a few minutes. The time to construct Z1 is always shorter than
that to Z2. This is because less merging of nodes occur in the construction
of Z2, where we maintain the total population of adopted vertices. The time
to construct Z3 from Z1 and Z2 is lower than that to construct Z1 and Z2.
For each graph, although the number of obtained solutions is over 108, the
number of nodes in Z3 is a few thousands. This shows that our approach,
constructing ZDDs, successfully enumerated partitions as a compressed rep-
resentation. Using the constructed ZDD and operations between ZDDs, we
can deal with more constraints and find good solutions.

29

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

3.5.4 Discussion

We have some additional discussions in this subsection. First, we discuss the
relationship between the number of ZDD nodes and the time to construct
ZDDs. In Table 3.2, it seems that there is no relationship between the number
of nodes of Z2 and its construction time. However, note that the number of
nodes in Table 3.2 is that of nodes after reduction. The time to construct
Z2 mainly depends on its number of nodes before reduction. We show the
numbers of nodes of Z2 before reduction in Table 3.3. According to Table 3.3,
it is clear that the larger the number of nodes of Z2 before reduction is, the
longer it takes to construct Z2.

Next, we discuss the relationship between the time to construct Z3 and
the numbers of nodes of Z1 and Z2. We show the number of nodes of Z ′2,
which is calculated by Eq. (3.10), in Table 3.4. Although the number of
nodes of Z2 is sometimes more than six million, that of Z ′2 is less than a
thousand. This leads to the efficient construction of Z3 in Eq. (3.9).

Finally, we compare our algorithm with the others. We can extend the
algorithm of Takizawa et al. [59] in the following way: For each shelter s,
we first enumerate SPTs rooted at s satisfying the distance and the shelter-
capacity constraints by reverse search [21]. Then we construct ZDDs repre-
senting the set of the SPTs and combine ZDDs for each shelter using oper-
ations between ZDDs. Note that there are two SPTs which have the same
vertex set but different edge sets. The algorithm based on that of Takizawa
et al. cannot distinguish two SPTs with the same vertex sets and different
edge sets. In contrast, our approach can distinguish SPTs as edge sets, which
is useful to design evacuation routes. Therefore we first enumerate SPTs for
a shelter as edge sets and then convert them into vertex sets and eliminate
duplication. The reverse search for SPTs rooted at s can be designed by
defining the root node of the search tree by the empty edge set and the par-
ent of E ′ ⊆ E,E ′ 6= ∅ as E ′ \ {ei}, where i is the maximum index such that
E ′ \ {ei} is an SPT rooted at s. The algorithm takes O(m2) time to output
one edge set. However, there may be an exponential number of SPTs with
the same vertex set and different edge sets. Therefore the time per SPTs
distinguished by vertex sets is not bounded by a polynomial of m.

We implemented the above algorithm based on reverse search. We run
the algorithm and measured the total time to enumerate SPTs for all the
shelters in each input graph. The timeout is set to 100 hours. We show the
results in Table 3.5. In the table, the unit of time is hour and the value

30

3.6. CONCLUSION

is rounded down to the second decimal place. The enumeration finished
within 100 hours only in G1 and G4. The time for them exceeds 40 hours.
In contrast, our approach based on frontier-based search enumerates SSPFs
implicitly and thus succeeds in enumerating all the solutions in a few minutes
in spite of the big solution space.

3.6 Conclusion

In this chapter, we have dealt with the evacuation planning problem. We
reformulate the convexity of components as spanning shortest path forests
(SSPFs) to deal with general graphs and have proposed an algorithm to con-
struct a ZDD representing a set of SSPFs. We have also proposed algorithms
to deal with the distance and capacity constraints efficiently. As shown in
experimental results using real-world map data, the proposed algorithm can
construct ZDDs in a few minutes for input graphs with hundreds of edges. As
future work, it is important to consider new constraints such as the reliability
of roads.

31

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Algorithm 3.1: MakeNewNode1(N, i, take)

1 Let ei = {u, v}.
2 Copy N to N ′.
3 if take = 1 then
4 if cmp[u] = cmp[v] then
5 return 0 // A cycle is generated.

6 else if cmp[u] ≤ r and cmp[v] ≤ r then
7 return 0 // connect shelters

8 else if cmp[u] ≤ r and r < cmp[v] and
valid[cmp[u]][cmp[v]] = false then

9 return 0

10 else if cmp[v] ≤ r and r < cmp[u] and
valid[cmp[v]][cmp[u]] = false then

11 return 0

12 if UpdateState(N ′, i) returns false then
13 return 0

14 if ei is the last edge adjacent to C and C does not contain any
shelter then

15 return 0 // A connected component without any shelter

is generated.

16 for x ∈ ei such that x /∈ Fi and cmp[x] > r do
17 for s ∈ S do
18 if IsNearestInCmp(N ′, x, s) returns true then

// a vertex with in-degree zero leaves the

frontier before it connects to any shelter.

19 valid[s][cmp[x]]← false

20 if valid[s][cmp[x]] returns false for all s ∈ S then
21 return 0 // cmp[x] can no longer be connected to any

shelter.

22 if i = m then
23 return 1 // All the constraints are satisfied.

24 return N ′

32

3.6. CONCLUSION

Algorithm 3.2: UpdateState(N ′, i)

// update information of node N ′ when we adopt ei
1 if CheckIndeg(N ′, i) returns false then
2 return false

3 if UpdateValid(N ′, i) returns false then
4 return false

// update cmp

5 Cmin = min{cmp[u], cmp[v]}
6 Cmax = max{cmp[u], cmp[v]}
7 for x ∈ Fi−1 ∪ ei such that cmp[x] = Cmax do
8 cmp[x]← cmin

9 return true

33

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Algorithm 3.3: CheckIndeg(N ′, i)

// check if we can adopt ei in N ′ with respect to the

constraint of in-degrees

1 if cmp[u] > r and cmp[v] ≤ r then
2 swap u and v.

3 if cmp[u] ≤ r and cmp[v] > r then
// cmp[u] contains a shelter and cmp[v] contains no

shelter.

4 s← cmp[u]
5 if d(s, u) + w(ei) 6= d(s, v) then
6 return false

7 else if IsNearestInCmp(N ′, v, s) returns false then
8 return false // the in-degree of v is not zero.

9 else
// Neither cmp[u] nor cmp[v] contains any shelter.

10 for s ∈ S do
11 if d(s, v) + w(ei) = d(s, u) then
12 swap v and u.

13 if d(s, u) + w(ei) = d(s, v) then
14 if IsNearestInCmp(N ′, v, s) returns false then
15 valid[s][cmp[v]]← false

16 else
17 valid[s][cmp[u]]← false

18 valid[s][cmp[v]]← false

19 return true

34

3.6. CONCLUSION

Algorithm 3.4: UpdateValid(N ′, i)

// update valid of the new connected component when we

adopt ei
1 Cmin ← min{cmp[u], cmp[v]}
2 Cmax ← max{cmp[u], cmp[v]}
3 if Cmin > r then

// merges connected components containing shelters

4 for s ∈ S do
5 valid[s][Cmin]← valid[s][Cmin] and valid[s][Cmax]

6 if valid[s][Cmin] = false for all s ∈ S then
7 return false // Cmin can no longer be connected to

any shelter

8 return true

Algorithm 3.5: IsNearestInCmp(N ′, x, s)

// check if x is the nearest vertex in cmp[x] to s
1 for y 6= x such that cmp[y] = cmp[x] do
2 if d(s, y) ≤ d(s, x) then
3 return false

4 return true

35

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Algorithm 3.6: MakeNewNode2(N, i, take)

1 Let ei = {u, v}.
2 Copy N to N ′.
3 if take = 1 then
4 for x ∈ ei such that cmp[x] = −1 do
5 cmp[x]← x
6 sm popu← sm popu + popu(x)

7 if sm popu > cap max + popu max then
8 return 0

9 if cmp[u] = cmp[v] 6= −1 then
10 return 0

// update cmp

11 Cmin = min{cmp[u], cmp[v]}
12 Cmax = max{cmp[u], cmp[v]}
13 for x ∈ Fi−1 ∪ ei such that cmp[x] = cmax do
14 cmp[x]← cmin

15 if C is the only connected component on the frontier and C contains
a shelter s and sm popu > cap(s) then

16 return 1

17 if there exists a connected component leaves the frontier or i = m
then

18 return 0

19 return N ′

Table 3.1: Capacities of shelters.

shelter shelter-capacity
s1 37
s2 71
s3 51
s4 4

36

3.6. CONCLUSION

T
ab

le
3.

2:
E

x
p

er
im

en
ta

l
re

su
lt

s
fo

r
re

al
-w

or
ld

m
ap

d
at

a.

Z
1

Z
2

Z
3

G
ra

p
h

N
am

e
D

R
K

n
m

#
n
o
d
e

T
im

e
#

n
o
d
e

T
im

e
#

n
o
d
e

T
im

e
#

so
lu

ti
on

G
1

70
0

2
5

83
11

7
18

88
12

.0
0

53
0

76
.7

5
11

59
0.

00
17

13
17

52
0

G
2

70
0

2.
5

4
10

0
13

9
19

72
0.

34
49

0
3.

33
11

40
0.

00
12

43
72

83
2

G
3

70
0

3
3

11
7

15
7

71
23

3.
63

63
14

17
5

10
9.

44
22

07
1.

74
59

67
88

04
4

G
4

90
0

2
5

83
11

7
18

06
11

.6
2

53
0

76
.8

5
10

63
0.

01
17

53
09

20
0

G
5

90
0

2.
5

4
10

0
13

9
18

06
0.

32
49

0
3.

33
10

53
0.

00
12

57
34

04
0

G
6

90
0

3
3

11
8

15
8

79
08

4.
09

65
48

95
5

11
3.

16
27

34
2.

57
68

03
39

40
4

37

CHAPTER 3. EVACUATION PLANNING FOR GENERAL GRAPHS

Table 3.3: The numbers of nodes of Z2 before reduction.

Graph Name # node
G1 25307155
G2 1970112
G3 41740598
G4 25307155
G5 1970112
G6 43108192

Table 3.4: The numbers of nodes of Z ′2.

Graph Name # node
G1 212
G2 223
G3 341
G4 212
G5 223
G6 644

Table 3.5: The time to enumerate shortest path trees by reverse search.

Graph Name Time
G1 46.29 h
G2 > 100 h
G3 > 100 h
G4 43.91 h
G5 > 100 h
G6 > 100 h

38

Chapter 4

Balanced Graph Partition

4.1 Introduction

Partitioning a graph is a fundamental problem in computer science and has
several important applications such as evacuation planning, political redis-
tricting, VLSI design, and so on. In some applications among them, it is
often required to balance the weights of connected components in a parti-
tion. For example, the task of the evacuation planning is to design which
evacuation shelter inhabitants escape to. This problem is formulated as a
graph partitioning problem, and it is important to obtain a graph partition
consisting of balanced connected components (each of which contains a shel-
ter and satisfies some conditions). Another example is political redistricting,
the purpose of which is to divide a region (such as a prefecture) into several
balanced political districts for fairness.

For balanced graph partitioning, Kawahara et al. [60] proposed an algo-
rithm to construct a ZDD representing the set of balanced graph partitions
by frontier-based search [4, 5, 6], which is a framework to directly construct a
ZDD, and applied it to political redistricting. However, their method stores
the weights of connected components, represented as integers, into the ZDD,
which generates a not compressed ZDD. As a result, the computation is
tractable only for graphs only with less than 100 vertices. Nakahata et al. [70]
proposed an algorithm to construct the ZDD representing the set of partitions
such that all the weights of connected components are bounded by a given
upper threshold (and applied it to evacuation planning). Their approach
enumerates connected components with weight more than the upper thresh-

39

CHAPTER 4. BALANCED GRAPH PARTITION

old as a ZDD, say forbidden components, and constructs a ZDD representing
partitions not containing any forbidden component as a subgraph by set op-
erations, which are performed by so-called apply-like methods [7]. However,
it seems difficult to directly use their method to obtain balanced partitions
by letting connected components with weight less than a lower threshold be
forbidden components because partitions not containing any forbidden com-
ponent as a connected component (i.e., one of parts in a partition coincides
a forbidden component) cannot be obtained by apply-like methods.

In this chapter, for a ZDD ZA and an integer L, we propose a novel al-
gorithm to construct the ZDD representing the set of graph partitions such
that the partitions are represented by ZA and all the weights of the con-
nected components in the partitions are at least L. The input ZDD ZA
can be the sets of spanning forests used for evacuation planning (e.g., [70]),
rooted spanning forests used for power distribution networks (e.g., [57]), and
simply connected components representing regions (e.g., [60]), all of which
satisfy complex conditions according to problems. We generically call these
structures “partitions.” Roughly speaking, our algorithm excludes parti-
tions containing any forbidden component as a connected component from
ZA. We first construct the ZDD, say ZS , representing the set of forbidden
components, each of which has weight less than L. Then, for a component in
ZS , we consider the cutset that separates the input graph into the component
and the rest. We represent the set of pairs of every component in ZS and
its cutset as a ternary decision diagram (TDD) [71], say TS± . We propose
a method to construct the TDD TS± from ZS by frontier-based search. By
using the TDD TS± , we show how to obtain partitions each of which belongs
to ZA, contains all the edges in a component of a pair in TS± and contains
no edge in the cutset of the pair. Finally, we exclude such partitions from
ZA and obtain the desired partitions. By numerical experiments, we show
that the proposed algorithm runs up to tens of times faster than an existing
state-of-the-art algorithm.

This chapter is organized as follows. In Section 4.2, we give preliminaries.
We describe an overview of our algorithm in Section 4.3.1, and the detail in
the rest of Section 4.3. Section 6.5 gives experimental results.

40

4.2. PRELIMINARIES

4.2 Preliminaries

4.2.1 Notation

In this chapter, we deal with a vertex-weighted undirected graphG = (V,E, p),
Assume that G is simple and connected. where V = [n] is the vertex set and
E = {e1, e2, . . . , em} ⊆ {{u, v} | u, v ∈ V } is the edge set. The functions
p : V → Z+ and w : E → R+ give the weights of the vertices and those of the
edges, respectively. We often drop p from (V,E, p) when there is no ambigu-
ity. For an edge set E ′ ⊆ E, we call the subgraph (V,E ′) a graph partition.
We often identify the edge set E ′ with the partition (V,E ′) by fixing the
graph G. For edge sets E ′, E ′′ with E ′′ ⊆ E ′ ⊆ E and a vertex set V ′′ ⊆ V ,
we say that (V ′′, E ′′) is included in the partition (V,E ′) as a subgraph. The
subgraph (V ′′, E ′′) is called a connected component in the partition (V,E ′) if
V ′′ = dom(E ′′) holds, there is no edge in E ′\E ′′ incident with a vertex in V ′′,
and for any two distinct vertices u, v ∈ V ′′, there is a u-v path on (V ′′, E ′′),
where dom(E ′′) is the set of vertices which are endpoints of at least one edge
in E ′′. In this case, we say that (V ′′, E ′′) is included in the partition (V,E ′)
as a connected component. We denote the neighborhood of a vertex v in a
partition E ′ ⊆ E by N(E ′, v) = {u | {u, v} ∈ E ′}. For i ∈ [m], E≤i denotes
the set of edges whose indices are at most i. We define E<i, E≥i and E>i in
the same way.

For a set U , let U+ = {+e | e ∈ U}, U− = {−e | e ∈ U} and U± =
U+ ∪ U−. A signed set is a subset of U± such that, for all e ∈ U , the
set contains at most one of +e and −e. For example, when U = [3], both
{+1,−2} and {−3} are signed sets but {+1,−1,+3} is not. A signed family
is a family of signed sets. In particular, when U = E, we sometimes call a
signed set a signed subgraph and call a signed family a set of signed subgraphs.
For a signed set S±, we define abs(S±) = {e | (+e ∈ S±) ∨ (−e ∈ S±)}.

4.2.2 Ternary decision diagram

A ternary decision diagram (TDD) [71] is a directed acyclic graph T =
(NT , AT) representing a signed family. A TDD shares many concepts with a
ZDD, and thus we use the same notation as a ZDD for a TDD. The difference
between a ZDD and a TDD is that, while a node of the former has two arcs,
that of the latter has three, which are called the ZERO-arc, the POS-arc,
and the NEG-arc.

41

CHAPTER 4. BALANCED GRAPH PARTITION

Figure 4.1: The TDD representing the signed family
{{+1,−2}, {+1,−3}, {−2,+3}}. A dashed arc is a ZERO-arc, a solid
single arc is a POS-arc and a solid double arc is NEG-arc. For simplicity, ⊥
and the arcs pointing at it are omitted.

T represents the signed family in the following way. For a directed path
p = (n1, a1, n2, a2, . . . , nk, ak,>) ∈ PT with ni ∈ NZ , ai ∈ AT and n1 = rT ,
we define S±p = {+l(ni) | ai ∈ AT,+, i ∈ [k]} ∪ {−l(ni) | ai ∈ AT,−, i ∈
[k]}, where AT,+ and AT,− are the set of the POS-arcs of T and the set of
the NEG-arcs of T , respectively. We interpret that T represents the signed
family {S±p | p ∈ PT}. We illustrate the TDD representing the signed family
{{+1,−2}, {+1,−3}, {−2,+3}} in Fig. 4.1 for example. In the figure, a
dashed arc (99K), a solid single arc (→), and a solid double arc (⇒) are a
ZERO-arc, a POS-arc, and a NEG-arc, respectively. In the figure, ⊥ and the
arcs pointing at it are omitted for simplicity. The TDD in the figure has three
directed paths from the root node to >: 1→ 2⇒ >, 1→ 2 99K 3⇒ >, and
1 99K 2 ⇒ 3 → >, which correspond to {+1,−2}, {+1,−3}, and {−2,+3},
respectively.

4.3 Algorithms

4.3.1 Overview of the proposed algorithms

In this section, for a ZDD ZA and L ∈ Z+, we propose a novel algorithm
to construct the ZDD representing the set of graph partitions such that
the partitions are represented by ZA and each connected component in the
partitions has weight at least L. In general, there are two techniques to obtain
ZDDs having desired conditions. One is frontier-based search, described in
the previous section. The method proposed by Kawahara et al. [60] directly

42

4.3. ALGORITHMS

stores the weight of each component into ZDD nodes (as conf) and prunes
a node when it is determined that the weight of a component is less than
L. However, for two nodes, if the weight of a single component on the one
node differs from that on the other node, the two nodes cannot be merged.
Consequently, node merging rarely occurs in Kawahara et al.’s method and
thus the size of the resulting ZDD is too large to construct it if the input
graph has more than a hundred of vertices.

The other technique is the usage of the recursive structure of a ZDD.
Methods based on the recursive structure are called apply-like methods [7].
For each node α of a ZDD, the nodes and arcs reachable from α compose
another ZDD, whose root is α. For a ZDD Z and x ∈ {0, 1}, let cx(Z) be
the ZDD composed by the nodes and arcs reachable from the x-child of the
root. For (one or more) ZDDs F (and G), an apply-like method constructs a
target ZDD by recursively calling itself against c0(F) and c1(F) (and c0(G)
and c1(G)). For example, the ZDD representing F ∩ G can be computed
from c0(F) ∩ c0(G) and c1(F) ∩ c1(G). Apply-like methods support various
set operations [7, 5].

Nakahata et al. [70] developed an algorithm to upperbound the weights of
connected components in each partition, i.e., to construct the ZDD represent-
ing the set A of partitions included in a given ZDD and the weights of all the
components in the partitions are at most H ∈ Z+. Their algorithm first con-
structs the ZDD ZS representing the set of forbidden components (described
in the introduction) with weight more than H by frontier-based search. Then,
the algorithm constructs the ZDD representing {A ∈ A | ∃S ∈ S, A ⊇ S},
written as ZA.restrict(ZS), which means the set of all the partitions each of
which includes a component in S as a subgraph, in a way of apply-like meth-
ods. Finally, we extract subgraphs not in ZA.restrict(ZS) from ZA by the
set difference operation ZA \ (ZA.restrict(ZS)) [8], which is also an apply-like
method.

In our case, lowerbounding the weights of components, it is difficult to
compute desired partitions by the above approach because a partition in-
cluding a forbidden component (i.e., weight less than L) as a subgraph can
be a feasible solution. We want to obtain a partition including a forbidden
component as a connected component. Although we can perform various set
operations by designing apply-like methods, it seems difficult to obtain such
partitions by direct set operations.

Our idea in this section is to employ the family of signed sets to represent
the set of pairs of every forbidden component and its cutset. We use the

43

CHAPTER 4. BALANCED GRAPH PARTITION

Figure 4.2: Graph partition and its connected component.

following observation.

Observation 4.1. Let A be a graph partition of G = (V,E) and S ⊆ E
be an edge set such that (dom(S), S) is connected. The partition A contains
(dom(S), S) as a connected component if and only if both of the following
hold.

1. A contains all the edges in S.

2. A does not contain any edge e in E \ S such that e has at least one
vertex in dom(S).

Based on Observation 4.1, we associate a signed subgraph S± with a
connected subgraph (dom(S), S):

S± = S+ ∪ S−, (4.1)

S+ = {+e | e ∈ S}, (4.2)

S− = {−e | (e = {u, v} ∈ E \ S) ∧ ({u, v} ∩ dom(S) 6= ∅)}. (4.3)

S± is a signed subgraph such that abs(S+) and abs(S−) are sets of edges
satisfying Conditions 1 and 2 in Observation 4.1, respectively. Note that
abs(S−) is a cutset of G, that is, removing the edges in abs(S−) separates
G into the connected component (dom(abs(S+)), abs(S+)) and the rest. In
addition, abs(S−) is minimal among such cutsets. In this sense, we say that
S± is a signed subgraph with minimal cutset for S.

Hereinafter, we call edges in abs(S+) positive edges, abs(S−) negative
edges and the other edges zero edges. Fig. 4.2 shows an example of a graph

44

4.3. ALGORITHMS

Figure 4.3: Signed subgraph with the minimal cutset. Bold, solid, and double
lines indicate positive, zero, and negative edges.

partition A and its connected component S. In the figures, bold lines are
edges contained in the partition or the subgraph. Values in vertices are
its weights. A contains S as a connected component. The weight of S is
1+2+3+4 = 10, and thus, when L > 10, A does not satisfy the lower bound
constraint. Fig. 4.3 shows S± associated with S in Fig. 4.2. In the figure, thin
single lines, bold single lines, and doubled lines are zero edges, positive edges,
and negative edges, respectively. The partition A in Fig. 4.2 indeed contains
all the edges in abs(S+) and does not contain any edges in abs(S−). For a
graph partition E ′ ⊆ E, when the weights of all the connected components
of E ′ is at least L, we say that E ′ satisfies the lower bound constraint. To
extract partitions not satisfying the lower bound constraint from an input
ZDD, we compute the set of partitions each of which has all the edges in
abs(S+) and no edge in abs(S−) for some S ∈ S.

The overview of the proposed method is as follows. In the following, let
A be the set of graph partitions represented by the input ZDD and B be
the set of graph partitions each of which belongs to A and satisfies the lower
bound constraint.

1. We construct the ZDD ZS representing the set S of forbidden com-
ponents, where S is the set of the connected components of G whose
weights are less than L.

2. Using ZS , we construct the TDD TS± , where S± is a set of signed
subgraphs with minimal cutset corresponding to S by a way of frontier-
based search.

45

CHAPTER 4. BALANCED GRAPH PARTITION

3. Using TS± , we construct the ZDD ZS↑ , where S↑ is the set of partitions
each of which contains at least one forbidden component in S as a
connected component.

4. We obtain the ZDD ZB by the set difference operation ZA \ ZS↑ [8].

In the rest of this section, we describe each step from 1 to 3.

4.3.2 Constructing ZS

We describe how to construct ZS , which represents the set S of forbidden
subgraphs whose weights are less than L. In this subsection, we consider
only forbidden components with at least one edge. Note that a component
with only one vertex cannot be distinguished by sets of edges because all
such subgraphs are represented by the empty edge set. We show how to deal
with components having only one vertex in Section 4.3.4. In this and the
following sections, we show the algorithm and explain the correctness at the
same time.

We can construct ZS using frontier-based search.We design an algorithm
in a similar way as Algorithm 3.6, which deal with the upper-bound con-
straint. To construct ZS , in the frontier-based search, it suffices to ensure
that every enumerated subgraph has only one connected component and its
weight is less than L. The former can be dealt by storing the connectivity
of the vertices in the frontier as comp. The latter can be checked by manag-
ing the total weight of vertices such that at least one edge is incident to as
weight.

Let us analyze the width of ZS . For nodes with the same label, there
are O(Bf) different states for comp [60], where, for k ∈ Z+, Bk is the k-th
Bell number and f = max{|Fi| | i ∈ [m]}. As for weight, when weight

exceeds L, we can immediately conclude that the subgraphs whose weights
are less than L are generated no more. If we prune such cases, there are
O(L) different states for weight. As a result, we can obtain the following
lemma on the width of ZS .

Lemma 4.1. The width of ZS is O(BfL), where f = max{|Fi| | i ∈ [m]}.

4.3.3 Constructing TS±

In this subsection, we propose an algorithm to construct TS± . First, we show
how to construct the TDD representing the set of all the signed subgraphs

46

4.3. ALGORITHMS

with minimal cutset, including a disconnected one. Next, we describe the
method to construct TS± using ZS .

Let S± = S+∪S− be a signed subgraph. Our algorithm uses the following
observation on signed subgraphs with minimal cutset.

Observation 4.2. A signed subgraph S± is a signed subgraph with minimal
cutset if and only if the following two conditions hold:

1. For all v ∈ V , at most one of a zero edge or a positive edge is incident
to v.

2. For all the negative edges {u, v}, a positive edge is incident to at least
one of u and v.

Conditions 1 and 2 in Observation 4.2 ensure that abs(S−) is a cutset such
that removing it leaves the connected component whose edge set is abs(S+)
and the minimality of abs(S−). This shows the correctness of the observation.
We design an algorithm based on frontier-based search to construct a TDD
representing the set of all the signed subgraphs satisfying Conditions 1 and
2 in Observation 4.2.

In a similar way to ZDDs, we define configurations to merge equivalent
TDD nodes. Here, we define the configuration as a tuple (colors, reserved)
of two arrays. We explain each array in the following.

First, we consider Condition 1. To ensure Condition 1, we store an array
colors : V → 2{0,+,−} into each TDD node. For all v ∈ Fi−1, we manage
ni.colors[v] so that it is equal to the set of types of edges incident to v.
For example, if a zero edge and a positive edge are incident to v and no
negative edges are, colors[v] must be {0,+}. We can prune the case such
that Condition 1 is violated using colors, which ensures Condition 1.

Next, we consider Condition 2. Let {u, v} be a negative edge. When
u and v leave the frontier at the same time, we check if Condition 2 is
satisfied from colors[u] and colors[v] and, if not, we prune the case. When
one of u or v leaves the frontier (without loss of generality, we assume the
vertex is u), if no positive edges are incident to u, at least one positive edge
must be incident to v later. To deal with this situation, we store an array
reserved : V → {0, 1} into each TDD node. For all v ∈ Fi−1, we manage
reserved[v] so that reserved[v] = 1 if and only if at least one positive
edge must be incident to v later. We can prune the cases such that v ∈ V is
leaving the frontier and both reserved[v] = 1 and + /∈ colors[v] hold, which

47

CHAPTER 4. BALANCED GRAPH PARTITION

violate Condition 2. We show MakeNewNode function and its subroutine
Reserve in Algorithms 4.1 and 4.2, respectively.

We give the following lemma on the width of a ZDD constructed by
Algorithms 4.1 and 4.2.

Lemma 4.2. The width WT of a TDD constructed by Algorithms 4.1 and 4.2
is WT = O(6f).

Proof. We analyze the number of different non-terminal nodes which are re-
turned by MakeNewNode function and have the label ei. To this end, we
analyze the number of a pair (colors[w], reserved[w]) for each w ∈ Fi−1.
Because of Lines 4–5 in MakeNewNode, + and 0 are never in colors[w] to-
gether. In addition, colors[w] is never empty because, when MakeNewN-
ode returns a non-terminal node, there are at least one processed edge inci-
dent to w and its type has been added into colors[w] in Line 16. Therefore,
there are at most five different states for colors[w]: {0}, {−}, {+}, {0,−},
and {−,+}. As for reserved[w], it may be 1 only when colors[w] = {−}
because of Lines 3–4 in Reserve. Thus, there are at most six different states
for (colors[w], reserved[w]). There are at most f vertices in the frontier,
and therefore WT = O(6f).

Next, we show how to construct TS± using ZS . We can achieve this
goal using subsetting technique [69] with Algorithms 4.1 and 4.2. Subsetting
technique is a framework to construct a decision diagram corresponding to
another decision diagram. We ensure that, for all S± = S+ ∪ S− ∈ S±,
there exists S ∈ S such that abs(S+) = S in the construction of TS± using
subsetting technique. For this purpose, we store another configuration ref,
which is a node of ZS , into each TDD node. We manage nT .ref in a node
nT of TS± , so that, for any path pT from rT to nT ,

(a) there exists a path pZ from rZ to nT .ref in ZS such that SpZ =
abs(S+

pT
), and

(b) the label of nT .ref is equal to that of nT .

To achieve this, we insert the following procedure between Lines 2 and 3 of
Algorithm 4.1. We update n′i.ref by either of two children of n′i.ref to ensure
(b). Let the new value of n′i.ref be α. If s = 1, to ensure (a), α must be the
1-child of n′i.ref because s = 1 implies that we add ei as a positive edge into
all the signed sets represented by n′i. Otherwise (when s ∈ {0, 2}), α must

48

4.4. EXPERIMENTAL RESULTS

be the 0-child because s ∈ {0, 2} implies that we do not add ei as a positive
edge into any signed set represented by n′i. If α = ⊥, we return ⊥ because we
cannot ensure (a) anymore. Otherwise, we go on to Line 3 of Algorithm 4.1.
Storing ref into each TDD node makes the width of the output TDD larger.
The numbers of ref in TDD nodes with the same labels are bounded by the
width of ZS , so the width of TS± is bounded by O(WZ6f), where WZ is the
width of ZS .

4.3.4 Constructing ZS↑

In this subsection, we show how to construct ZS↑ and how to deal with
forbidden components consisting only of one vertex whose weight is less than
L, which was left as a problem in Section 4.3.2. From Observation 4.1 and
Eqs. (4.1)–(4.3), S↑ can be written as

S↑ = {E ′ ⊆ E | ∃S± ∈ S±, (∀+e ∈ S±, e ∈ E ′)∧(∀−e ∈ S±, e /∈ E ′)}. (4.4)

Using TS± , we can construct ZS by the algorithm of Kawahara et al. [72].

Finally, we show how to deal with a graph partition containing a single
vertex v such that p(v) < L as a connected component, i.e., a partition has
an isolated vertex with small weight. Let Fv be the set of graph partitions
containing ({v}, ∅) as a connected component. A graph partition E ′ ⊆ E
belongs to Fv if and only if E ′ does not contain any edge incident to v.
Using this, we can construct the ZDD Zv representing Fv in O(m) time. For
each v ∈ V such that p(v) < L, we construct Zv and update ZS↑ ← ZS↑ ∪Zv.
In this way, we can deal with all the graph partitions containing a connected
component whose weight is less than L.

4.4 Experimental results

We conducted computational experiments to evaluate the proposed algorithm
and to compare it with the existing state-of-the-art algorithm of Kawahara
et al [60]. We used a machine with an Intel Xeon Processor E5-2690v2 (3.00
GHz) CPU and a 64 GB memory (Oracle Linux 6) for the experiments. We
have implemented the algorithms in C++ and compiled them by g++ with
the -O3 optimization option. In the implementation, we used the TdZdd

49

CHAPTER 4. BALANCED GRAPH PARTITION

library [69] and the SAPPORO BDD library.1 The timeout is set to be an hour.

We used graphs representing some prefectures in Japan for the input
graphs. The vertices represent cities and there is an edge between two cities if
and only if they have the common border. The weight of a vertex represents
the number of residents living in the city represented by the vertex. As
for the input ZDD ZA, we adopted three types of graph partitions: graph
partitions such that each connected component is an induced subgraph [60],
which we call induced partition, forests, and rooted forests. There is a one-to-
one correspondence between induced partitions and partitions of the vertex
set. A rooted forest is a forest such that each tree in the forest has exactly
one specified vertex. We chose special vertices for each graph randomly. A
summary of input graphs and input graph partitions is in Table 4.1. In the
table, we show graph names and the prefecture represented by the graph,
the number of vertices (n), edges (m) and connected components (k) in
graph partitions. The groups of columns “Induced partition”, “Forest”, and
“Rooted forest” indicate the types of input graph partitions. Inside each of
them, we show the size (the number of non-terminal nodes) of ZA and the
cardinality of A.

The lower bounds of weights are determined as follows. Let k be the
number of connected components in a graph partition and r be the maximum
ratio of the weights of two connected components in the graph partition.
From k and r, we can derive the necessary condition that the weight of every
connected component must be at least L(k, r) = P/(r(k − 1) + 1), where
P =

∑
v∈V p(v) [60]. We used L(k, r) as the lower bound of weights in the

experiment. For each graph, we run the algorithms in r = 1.1, 1.2, 1.3, 1.4,
and 1.5.

We show the experimental results in Table 4.2. In the table, we show the
graph name, the value of r and L(k, r), and the execution time of Alg. N, the
proposed algorithm, and Alg. K, the algorithm of Kawahara et al. The size
of ZB and the cardinality of B are also shown. “OOM” means out of memory
and “-” means both algorithms failed to construct the ZDD (due to timeout
or out of memory). We marked the values of the time of the algorithm which
finished faster as bold.

First, we analyze the results for induced partitions. For the input graphs
from G1 to G4, both Alg. N and Alg. K succeeded in constructing ZB, except

1Although the SAPPORO BDD library is not released officially, you can see the code in
https://github.com/takemaru/graphillion/tree/master/src/SAPPOROBDD.

50

4.4. EXPERIMENTAL RESULTS

when r = 1.1 in G4 for Alg. K. In cases where both algorithms succeeded
in constructing ZB, the time for Alg. N to construct the ZDD is 2–32 times
shorter than that for Alg. K. In addition, Alg. N succeeded in constructing
the ZDD when r = 1.1 in G4, where Alg. K failed to construct the ZDD
because of out of memory. These results show the efficiency of our algorithm.
In contrast, for G5, although both algorithms failed to construct the ZDD
when r = 1.1, 1.2, 1.3 and 1.4, only Alg. K succeeded when r = 1.5. In this
case, the size of the ZDD constructed by Alg. N did stay in the limitation of
memory while, in our algorithm, the size of ZS↑ exceeded the limitation of
memory.

Second, we investigate the results for forests. Both Alg. N and Alg. K
succeeded in constructing ZB for the input graph from G1 to G4. In all those
cases, Alg. N was faster than Alg. K. Comparing the results with those of
induced partitions, we found that the execution time of Alg. K depends on
the input partitions more than Alg. N does. For example, for G1, while the
execution time of Alg. N is almost irrelevant to the types of input ZDDs,
that of Alg. K differ up to about five times. This is because the efficiency of
Alg. K strongly depends on the sizes of input ZDDs. This makes the sizes of
output ZDDs constructed by Alg. K large, which implies the increase in the
execution time of Alg. K. In contrast, the execution time of Alg. N does not
depend on the sizes of input ZDDs in many cases because Alg. N uses the
input ZDD only in the set difference operation, which is executed in the last
of the algorithm (by the existing apply-like method). As we show later, the
bottleneck of Alg. N is the construction of ZS↑ . Therefore, in many cases,
the sizes of input ZDDs do not change the execution time of Alg. N.

Third, we examine the results when the input graph partitions are rooted
forests. There are 13 cases such that Alg. K was faster than Alg. N. In the
cases, the sizes of input ZDDs and output ZDDs are small, that is, thousands,
or even zero. These results show that Alg. K tends to be faster when the
sizes of input ZDDs and output ZDDs are small.

In order to assess the efficiency of our algorithm in each step, we show
detailed experimental results for G3 and G4 when the input graph partitions
are induced partitions in Table 4.3. In the table, we show the time to con-
struct decision diagrams, the size of decision diagrams, and the cardinality of
the family represented by ZDDs. The cardinality of S± is omitted because it
is equal to that of S. The size and cardinality for ZA \ ZS↑ are also omitted
because they are the same as |ZB| and |B|, which are shown in Table 4.2. For
both G3 and G4, the time to construct ZS and TS± are within one or two

51

CHAPTER 4. BALANCED GRAPH PARTITION

seconds. The most time-consuming parts are the construction of ZS↑ in G3

and ZS↑ or ZA \ ZS↑ in G4. The set difference operation in G4 took a lot of
time because the sizes of ZA and ZS↑ are large, that is, more than a hundred.
The reason why the construction of ZS↑ takes a lot of time is the increase in
the sizes of decision diagrams. While the size of TS± is only 2–7 times larger
than that of ZS , that of ZS↑ is about 10–276 times larger than that of TS± .
This also made the execution of the algorithm in G5 impossible.

4.5 Conclusion

In this chapter, we have proposed an algorithm to construct a ZDD repre-
senting all the graph partitions such that all the weights of its connected
components are at least a given value. As shown in the experimental results,
the proposed algorithm has succeeded in constructing a ZDD representing a
set of more than 1012 graph partitions in ten seconds, which is 30 times faster
than the existing state-of-the-art algorithm. Future work is devising a more
memory efficient algorithm that enables us to deal with larger graphs, that
is, graphs with hundreds of vertices. It is also important to seek for efficient
algorithms to deal with other constraints on weights such that the ratio of
the maximum and the minimum of weights is at most a specified value.

52

4.5. CONCLUSION

Algorithm 4.1: MakeNewNode(ni, i, s) for constructing a TDD
representing the set of signed subgraphs with minimal cutset.

// This function returns s(∈ {0,+,−})-child of ni whose label
is ei.

1 Let ei = {u, v}.
2 Copy ni to n′i.
3 foreach x ∈ {u, v} do

// violates Condition 1 in Observation 4.2
4 if 0 ∈ n′i.colors[x] and s = + then return ⊥
5 if + ∈ n′i.colors[x] and s = 0 then return ⊥
6 if n′i.colors[x] = {−} and s = 0 then

// Reserve the vertices in the frontier which are
connected to x by the processed edges.

7 n′i ← Reserve(n′i, N(E<i, x) ∩ (Fi−1 ∪ Fi))
8 if n′i = ⊥ then return ⊥
9 if 0 ∈ n′i.colors[x] and s = − then

10 n′i ← Reserve(n′i, ei \ {x})
11 if n′i = ⊥ then return ⊥
12 if n′i.reserved[x] = 1 and s = 0 then
13 return ⊥
14 if n′i.reserved[x] = 1 and s = + then
15 n′i.reserved[x]← 0 // The reservation is archived.

16 n′i.colors[x]← n′i.colors[x] ∪ {s}
17 foreach x ∈ {u, v} do
18 if x /∈ Fi then

// x is leaving the frontier.
19 if n′i.reserved[x] = 1 and + /∈ n′i.colors[x] then

// Although x is reserved, no positive edges are
incident to x.

20 return ⊥
21 if n′i.colors[x] = {−} then

// Reserve the vertices in the frontier which are
connected to x by the processed edges.

22 n′i ← Reserve(n′i, N(E≤i, x) ∩ (Fi−1 ∪ Fi))
23 if n′i = ⊥ then return ⊥

// Delete the information about the vertices leaving
the frontier.

24 n′i.colors[x]← {}
25 n′i.reserved[x]← 0

26 if i = m then
27 return > // All the constraints are satisfied.

28 return n′i

53

CHAPTER 4. BALANCED GRAPH PARTITION

Algorithm 4.2: Reserve(n′, X)

// This function reserves the vertices in X ⊆ V in a TDD
node n′ and returns the node n′′ who has an updated
state from n′.

1 Copy n′ to n′′.
2 for x ∈ X do

// We cannot reserve x if there is a zero edge
incident to x.

3 if 0 ∈ n′′.colors[x] then return ⊥
// Reserve x if there are no positive edges incident

to x.
4 if + /∈ n′′.colors[x] then n′′.reserved[x]← 1

5 return n′′

54

4.5. CONCLUSION

T
ab

le
4.

1:
S
u
m

m
ar

y
of

in
p
u
t

gr
ap

h
s

an
d

in
p
u
t

gr
ap

h
p
ar

ti
ti

on
s.

In
d

u
ce

d
p

ar
ti

ti
on

F
or

es
t

R
o
ot

ed
fo

re
st

N
am

e
n

m
k

|Z
A
|

|A
|

|Z
A
|

|A
|
|Z
A
|

|A
|

G
1

(G
u

m
m

a)
37

80
4

10
23

6
1.

25
×

10
8

26
36

1
1.

01
×

10
1
9

89
57

1.
66
×

10
1
6

G
2

(I
b

ar
ak

i)
44

95
7

17
10

7
6.

38
×

10
1
3

15
55

3
6.

14
×

10
2
3

32
38

1.
94
×

10
1
9

G
3

(C
h

ib
a)

60
13

4
14

30
19

46
6.

69
×

10
2
2

21
37

73
4.

86
×

10
3
3

15
74

1
5.

04
×

10
2
5

G
4

(A
ic

h
i)

69
17

3
17

15
98

21
3

9.
26
×

10
2
9

87
93

61
1.

78
×

10
4
2

43
46

5
3.

10
×

10
3
0

G
5

(N
ag

an
o)

77
18

5
5

13
20

3
2.

77
×

10
1
7

44
80

4
2.

95
×

10
4
3

26
47

6
7.

66
×

10
3
9

55

CHAPTER 4. BALANCED GRAPH PARTITION

T
ab

le
4.2:

E
x
p

erim
en

tal
resu

lts
for

th
ree

ty
p

es
of

in
p
u
t

grap
h

p
artition

s.

In
d
u
ced

p
artition

F
orest

R
o
oted

forest
r

L
(r,k

)
A

lg.
N

A
lg.

K
|Z
B |

|B|
A

lg.
N

A
lg.

K
|Z
B |

|B|
A

lg.
N

A
lg.

K
|Z
B |

|B|

G
1

1.1
458947

4
.2

2
12.07

4912
1.74×

10
4

4
.0

3
50.84

29502
8.24×

10
1
2

3
.9

5
14.96

17920
3.52×

10
1
1

1.2
429016

2
.0

6
10.50

3500
5.40×

10
4

2
.0

4
47.30

21364
3.10×

10
1
3

2
.0

2
13.34

6331
1.68×

10
1
2

1.3
402750

1
.1

5
7.49

2986
9.02×

10
4

1
.1

8
36.10

18113
7.42×

10
1
3

1
.1

7
10.54

4655
4.44×

10
1
2

1.4
379514

0
.9

9
5.72

3115
2.52×

10
5

1
.0

3
24.41

20605
3.84×

10
1
4

1
.0

3
6.97

7677
3.18×

10
1
3

1.5
358813

0
.9

0
5.12

3562
2.99×

10
5

0
.8

9
23.29

20367
7.19×

10
1
4

0
.8

8
6.52

6719
6.17×

10
1
3

G
2

1.1
383928

3
.7

0
29.48

27927
1.91×

10
6

3
.6

0
35.28

47461
2.56×

10
1
3

3.53
2
.1

9
391

4.32×
10

6

1.2
355836

3
.0

3
23.03

83053
1.25×

10
8

2
.9

2
25.59

143455
2.11×

10
1
5

2.95
1
.8

1
3103

3.72×
10

9

1.3
331574

1
.7

3
16.25

92334
1.02×

10
9

1
.7

0
18.09

154449
1.41×

10
1
6

1
.6

0
1.74

5861
1.36×

10
1
1

1.4
310410

1
.2

1
12.45

105507
4.54×

10
9

1
.3

0
14.03

179186
1.02×

10
1
7

1
.2

8
1.55

5710
1.54×

10
1
2

1.5
291785

0
.7

3
8.88

98231
1.25×

10
1
0

0
.7

4
9.38

149403
3.06×

10
1
7

0
.7

0
1.21

5855
6.74×

10
1
2

G
3

1.1
377742

8
3
.7

6
1008.11

0
0

7
7
.1

9
811.03

0
0

78.68
6
6
.9

6
0

0
1.2

348159
3
2
.8

7
852.47

6641
2.32×

10
5

2
7
.1

2
657.89

17252
1.34×

10
1
3

2
7
.2

7
89.75

0
0

1.3
322874

2
3
.3

3
626.94

261978
3.12×

10
1
0

2
0
.8

7
452.10

768876
1.53×

10
1
9

3
6
.2

0
36.30

0
0

1.4
301013

1
2
.0

8
386.91

328581
4.92×

10
1
1

1
0
.8

8
266.19

917102
3.23×

10
2
0

9
.7

0
22.14

0
0

1.5
281924

1
0
.8

1
315.40

405816
3.02×

10
1
2

9
.2

9
205.90

1062331
9.94×

10
2
0

7
.6

4
19.44

606
2.88×

10
1
0

G
4

1.1
402370

1
5
5
.0

5
O

O
M

190520
1.54×

10
1
0

6
4
.1

2
1032.53

374111
5.43×

10
1
8

51.95
0
.6

5
0

0
1.2

370499
8
6
.9

1
628.93

739356
1.98×

10
1
4

2
4
.0

9
317.44

1374522
1.41×

10
2
3

20.82
0
.9

6
0

0
1.3

343307
1
2
5
.0

6
408.97

1148330
1.98×

10
1
6

1
4
.8

3
190.25

2005760
7.27×

10
2
4

11.69
1
.4

8
0

0
1.4

319833
1
0
8
.2

5
281.81

1465722
6.32×

10
1
7

1
2
.1

8
134.15

2495000
1.87×

10
2
6

8.31
3
.0

9
5645

2.19×
10

1
1

1.5
299363

2
9
.1

3
190.59

1761682
1.65×

10
1
9

9
.6

0
85.84

2434632
4.02×

10
2
7

5.55
3
.4

6
15587

9.56×
10

1
4

G
5

1.1
388844

>
1

h
O

O
M

-
-

>
1

h
O

O
M

-
-

>
1

h
<

0
.0

1
0

0
1.2

362027
>

1
h

O
O

M
-

-
>

1
h

O
O

M
-

-
>

1
h

<
0
.0

1
0

0
1.3

338670
O

O
M

O
O

M
-

-
>

1
h

O
O

M
-

-
>

1
h

<
0
.0

1
0

0
1.4

318145
O

O
M

O
O

M
-

-
O

O
M

O
O

M
-

-
O

O
M

<
0
.0

1
0

0
1.5

299965
O

O
M

1
9
6
0
.2

8
393178

9.20×
10

1
3

O
O

M
O

O
M

-
-

O
O

M
<

0
.0

1
0

0

56

4.5. CONCLUSION

T
ab

le
4.

3:
D

et
ai

le
d

ex
p

er
im

en
ta

l
re

su
lt

s
fo

r
G

3
an

d
G

4
.

Z
S

T
S
±

Z
S
↑

Z
A
\Z
S
↑

r
ti

m
e

n
o
d

e
ca

rd
ti

m
e

n
o
d

e
ti

m
e

n
o
d

e
ca

rd
ti

m
e

G
3

1.
1

1.
90

54
74

5
4.

24
×

10
8

0.
93

99
05

7
75

.8
8

21
17

87
4

2.
17

53
2
×

10
4
0

5.
05

1.
2

1.
01

39
84

5
1.

67
×

10
8

0.
69

75
58

1
27

.9
4

97
78

40
2.

17
52

8
×

10
4
0

3.
23

1.
3

0.
58

31
03

0
6.

62
×

10
7

0.
51

60
03

4
18

.8
3

81
45

38
2.

17
49

8
×

10
4
0

3.
41

1.
4

0.
34

24
06

6
3.

30
×

10
7

0.
38

48
81

8
8.

49
49

07
53

2.
17

49
0
×

10
4
0

2.
87

1.
5

0.
25

19
87

7
1.

42
×

10
7

0.
34

40
34

0
7.

23
41

01
52

2.
17

48
6
×

10
4
0

2.
99

G
4

1.
1

0.
02

23
76

2.
09
×

10
4

0.
32

11
10

9
80

.0
3

30
74

73
4

1.
19

20
0
×

10
5
2

74
.6

8
1.

2
0.

01
16

86
1.

03
×

10
4

0.
20

85
11

22
.2

4
12

05
32

0
1.

19
17

4
×

10
5
2

64
.4

6
1.

3
0.

01
12

35
6.

11
×

10
3

0.
17

69
35

11
.5

1
69

27
98

1.
19

17
0
×

10
5
2

11
3.

37
1.

4
<

0.
01

96
1

3.
67
×

10
3

0.
14

58
08

8.
30

52
92

14
1.

19
16

4
×

10
5
2

99
.8

1
1.

5
<

0.
01

75
6

2.
67
×

10
3

0.
13

49
30

5.
30

34
88

32
1.

19
15

3
×

10
5
2

23
.7

0

57

CHAPTER 4. BALANCED GRAPH PARTITION

58

Chapter 5

Planar Subgraph Enumeration

5.1 Introduction

In this chapter, we aim to extend types of subgraphs that can be deal with
ZDDs and propose algorithms for planar subgraphs and more. Currently,
FBS is known as the framework to construct a DD representing a set of con-
strained subgraphs. FBS can deal with fundamental constraints on subgraphs
such as degrees and connectivity of vertices. Combining these constraints,
one can construct DDs representing sets of paths, cycles, trees, and match-
ings, of a given graph. Recently, Kawahara et al. [72] proposed an extension
of FBS, colorful FBS (CFBS). CFBS specifies subgraphs by “colored de-
grees” and “colorwise connectivity” of vertices. Using these constraints, one
can construct a DD for more types of subgraphs than ordinary FBS. CFBS is
utilized to construct DDs representing sets of chordal subgraphs and interval
subgraphs, both of which are characterized by induced subgraphs.

Although many graph classes are characterized by induced subgraphs,
another important characterization is by topological-minor-embeddings (TM-
embeddings) [73]. For graphs G and H, a subgraph G′ of G is a TM-
embedding of H if G′ is isomorphic to a subdivision of H. A subdivision
of H is a graph obtained by replacing each edge in H with a path with at
least one edge. Several important graph classes have forbidden topological
minor characterization (FTM-characterization) [73]. For example, a graph
is planar if and only if it has TM-embeddings of neither K5 nor K3,3 [73],
where Ka is the complete graph with a vertices and Kb,c is the complete
bipartite graph with the two parts of b and c vertices. Other examples are

59

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

Table 5.1: Relationship between graph classes and forbidden topological mi-
nors. K4 − e is the graph obtained by removing an arbitrary edge from
K4.

graph class forbidden topological minors
planar graphs K5, K3,3

outerplanar graphs K4, K2,3

series-parallel graphs K4

cactus graphs K4 − e

shown in Table 5.1 (see [74] for details).

Our contribution In this chapter, when graphs G and H are given, we
show a method to implicitly enumerate all TM-embeddings of H in G using
CFBS. Combining the method with some additional DD operations, we can
also implicitly enumerate subgraphs having FTM-characterizations, includ-
ing planar, outerplanar, series-parallel, and cactus subgraphs. Our contribu-
tions are:

• Given graphs G and H, we show a method to implicitly enumerate all
TM-embeddings of H in G using CFBS. We also analyze the complexity
of the algorithm, which has not been done in [72]. (Section 5.3.1)

• We show more efficient methods when H is a graph used in FTM-
characterizations of graph classes in Table 5.1, that is, complete graphs,
complete bipartite graphs, and K4 − e. (Section 5.3.2)

• Combining our method with DD operations, we show how to implicitly
enumerate subgraphs having FTM-characterization, including planar,
outerplanar, series-parallel, and cactus subgraphs. (Section 5.3.3)

• We evaluate our method by computational experiments. We apply our
method to implicitly enumerating all planar subgraphs in a graph. The
results show that our method runs up to five orders of magnitude faster
than a naive backtracking-based method. We apply our method also
for outerplanar, series-parallel, and cactus subgraphs. (Section 5.4)

Our techniques We apply CFBS to TM-embeddings. Before TM-embedding
enumeration, we explain how to apply CFBS to isomorphic subgraph enu-

60

5.1. INTRODUCTION

3 3 3

3 3 3

(a) K3,3.

3

3

3 3

3

3

(b) Graph whose degree multiset is the
same as K3,3 but is not isomorphic to
K3,3.

(3, 0, 0) (0, 3, 0) (0, 0, 3)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

color 1

color 2

color 3

(c) 3-edge-colored graph that is isomor-
phic to K3,3 when the colors are ignored.

3 3 3

3 3 3

(d) Subdivision of K3,3.

(3, 0, 0) (0, 3, 0) (0, 0, 3)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(e) 3-edge-colored graph that is isomor-
phic to a subdivision of K3,3 when the
colors are ignored.

(3, 0, 0)
(0, 3, 0) (0, 0, 3)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

(f) 3-edge-colored graph that is not iso-
morphic to a subdivision of K3,3 when
the colors are ignored.

Figure 5.1: Graphs and edge-colored graphs. An integer (resp., tuple) next
to a vertex stands for the degree (resp., colored degree) of the vertex. A
white vertex stands for a subdividing vertex, whose degree is 2.

meration, which is a special case of [72]. Let us consider K3,3 in Figure 5.1(a),
which is used in FTM-characterization of planar graphs. K3,3 has the degree
multiset {36}, where 36 means that there are six vertices with degree 3. The
graph in Figure 5.1(b) has the same degree multiset although it is not iso-
morphic to K3,3. Thus, the degree multiset is not enough to characterize
K3,3 uniquely. Let us consider the edge-colored graph in Figure 5.1(c). For
an edge-colored graph with k colors, we consider a colored degree of a vertex
v, that is, a k-tuple of integers such that its i-th element is the number of
color-i edges incident to v. The edge-colored graph in Figure 5.1(c) has the
colored degree multiset M = {(3, 0, 0), (0, 3, 0), (0, 0, 3), (1, 1, 1)3}. In fact,

61

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

every edge-colored graph with colored degree multiset M is isomorphic to
K3,3 when the colors are ignored. Therefore, enumerating subgraphs of G
that are isomorphic to K3,3 is equivalent to finding all 3-colored subgraphs
of G whose degree multisets equal M and then “decolorizing” them.

Now we consider TM-embedding enumeration. Recall that, for graphs
G and H, a subgraph G′ of G is a TM-embedding of H if G′ is isomorphic
to a subdivision of H. A graph H ′ is a subdivision of H if H ′ is obtained
by replacing each edge of H with a path with at least one edge. Replacing
an edge of H by a path may introduce a new vertex in H ′. Such vertices
are subdividing vertices and their degrees are 2. Figure 5.1(d) shows a sub-
division of K3,3. In the figure, white circles stand for subdividing vertices.
A subdivision of K3,3 has the degree multiset {36, 2∗}, where 2∗ means that
there are an arbitrary number of vertices with degree 2. However, a graph
with the same degree multiset may have an isolated cycle, whose all vertices
have degree 2. To forbid such a cycle, we need a constraint that the graph is
connected. However, this is not enough because a subdivision of the graph
in Figure 5.1(b) satisfies the same constraints.

Using colored constraints, we obtain the following necessary and sufficient
condition. A graph is a subdivision of K3,3 if and only if its edges can be
colored by three colors so that

1. the edge-colored graph has a degree multiset {(3, 0, 0), (0, 3, 0), (0, 0, 3),
(1, 1, 1)3, (2, 0, 0)∗, (0, 2, 0)∗, (0, 0, 2)∗} and,

2. for each i ∈ {1, 2, 3}, the subgraph induced by the color-i edges is
connected.

See Figure 5.1(e). Colorwise connectivity is needed because, if we impose
only the whole connectivity, an edge-colored graph in Figure 5.1(f) is a coun-
terexample. The above constraints can be handled by CFBS, and thus we
can construct a DD representing the set of all TM-embeddings of K3,3 in
G using CFBS. In this chapter, we prove that a similar approach can be
applied to every graph. Since the complexity of CFBS heavily depends on
the number of colors used in the constraints, we discuss how to reduce the
number of colors.

62

5.2. PRELIMINARIES

5.2 Preliminaries

5.2.1 Topological minors and characterization of graphs

In this subsection, we introduce topological minors and explain its application
to characterization of graphs. Subdividing an edge {u, v} of a graph H means
removing the edge {u, v} from H, introducing a new vertex w, and adding
new edges {u,w} and {v, w}. If a graph is obtained by subdividing each
edge of H arbitrary times (possibly zero), it is a subdivision of H. Note
that H itself is also a subdivision of H. A graph F is homeomorphic to
a graph H if F is isomorphic to some subdivision of H.1 If a graph F
is homeomorphic to a graph H, the original vertices of H are the branch
vertices of F and the other vertices are the subdividing vertices. Note that
the degree of a branch vertex equals the original degree in H while the degree
of a subdividing vertex is 2. (The degree of a branch vertex can be 2 when
its original degree in H is 2.) For graphs G and H, H is a topological minor
(TM) of G if G contains a subgraph homeomorphic to H. A subgraph G′ of
G is a TM-embedding of H in G if G′ is homeomorphic to H. For families
G and H of graphs, G is forbidden-TM-characterized (FTM-characterized)
by H if, for any graphs G ∈ G, H ∈ H, and any subgraph G′ of G, G′ is
not homeomorphic to H. For example, the family of planar graphs is FTM-
characterized by {K5, K3,3} [75]. The same characterization goes to several
graph classes (Table 5.1).

5.2.2 Edge-colored graphs and tuples

A c-(edge-)colored graph Hc = (H, f) is a pair of a graph H = (V (H), E(H))
and a function f : E(H) → [c]. If f(e) = i holds for an edge e ∈ E(H) and
an integer i ∈ [c], e is a color-i edge. The color-i degree of v ∈ V (H) in Hc

is the number of color-i edges incident to v. The colored degree of v ∈ V (H)
in Hc is a c-tuple (δ1, . . . , δc) of non-negative integers, where δi is the color-i
degree of v. The colored degree multiset of Hc, which is denoted by DS(Hc),
is the multiset of the colored degrees of all the vertices in Hc. The color-i
subgraph of Hc is a graph induced by color-i edges of Hc. H is the underlying

1In another definition, F is homeomorphic toH if some subdivision of F is isomorphic to
some subdivision of H. However, we allow subdividing only for H because H is “contracted
enough” when it is a forbidden topological minor, that is, H does not contain redundant
vertices with degree 2.

63

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

1

2 2 2

3 3 3

⊤

0-arc

1-arc

2-arc

Figure 5.2: 3-DD. A square is a terminal node and circles are non-terminal
nodes. An integer in a circle is the label of the node. For simplicity, we omit
⊥ and the arcs pointing at it.

graph of Hc. A c-colored graph F c = (F, f ′) is a c-colorized graph of H if
F is isomorphic to H. A c-colored subgraph of G is a c-colored graph whose
underlying graph is isomorphic to a subgraph of G.

Since a colored degree is a tuple, we introduce some notations for tuples.
For a c-tuple δ, δi denotes the i-th element of δ. For c-tuples δ and γ, we define
δ ≤ γ if, for all i ∈ [c], δi ≤ γi holds. When δ ≤ γ, we say that δ is dominated
by γ. For a set s of c-colored degrees, D (s) denotes the set of tuples in Nc

that are dominated by a tuple in s, that is, D (s) = {χ ∈ Nc | ∃δ ∈ s, χ ≤ δ}.

5.2.3 (c+ 1)-decision diagram

We use a (c+1)-decision diagram ((c+1)-DD) [72] for implicit TM-embeddings
enumeration. Let E be a finite set consisting of m elements e1, . . . , em. A
(c+ 1)-DD over E is a rooted directed acyclic graph Zc+1 = (N,A, `), where
N is the set of nodes, A ⊆ {(α, β) | α, β ∈ N,α 6= β} is the set of (directed)
arcs, and ` : N → [m+ 1] is a labeling function for nodes.2 There is exactly
one root node in N whose indegree is zero. In addition, N has exactly two
terminal nodes ⊥ and > whose outdegrees are zero. Nodes other than the
terminal nodes are called non-terminal nodes. Each node α has the label
`(α) ∈ [m + 1]. If α is a non-terminal node, its label is an integer in [m].
If α is a terminal node, its label is m + 1. Each non-terminal node α has
exactly c+1 arcs emanating from α. The arcs are called the 0-arc, 1-arc, . . . ,

2To avoid confusion, we use the terms “node” and “arc” for a (c + 1)-DD and use
“vertex” and “edge” for an input graph. In addition, we represent a node of a (c+ 1)-DD
using the Greek alphabet (e.g., α, β) and a vertex of a graph using the English alphabet
(e.g., u, v).

64

5.3. ALGORITHMS

and c-arc of α. For an integer j ∈ {0, . . . , c}, αj denotes the node pointed
at by the j-arc of α. For each non-terminal node α, `(αj) = `(α) + 1 or
`(αj) = m + 1 holds. That is, αj is either a non-terminal node whose label
is one more than α or a terminal node. It follows that Zc+1 is acyclic.

Given a graph G = (V,E), we can represent a family of c-colored sub-
graphs of G by a (c + 1)-DD in the following way. In a (c + 1)-DD, we
associate each path from the root node to > with a c-colored subgraph. For
each path and j ≥ 1, descending the j-arc of a non-terminal node with label
i corresponds to assigning color j to ei. Descending the 0-arc corresponds to
excluding ei from a subgraph. The set of all the paths from the root to > cor-
responds to the family of c-colored subgraphs represented by the (c+ 1)-DD.
Figure 5.2 shows an example of a 3-DD over {e1, e2, e3}. In the rest of the
chapter, Zc+1 denotes a (c+1)-DD and JZc+1K denotes the family of c-colored
subgraphs represented by Zc+1. Note that, when c = 1, a 2-DD represents
a family of ordinary subgraphs because there is a single color. When c = 1,
we omit the superscript from Zc+1 and write Z, that is, Z is a 2-DD.

5.2.4 Colorful frontier-based search (CFBS)

Colorful frontier-based search (CFBS) [72] is a framework of algorithms to
construct a DD representing the set of constrained subgraphs. Although
FBS constructs a 2-DD directly, CFBS constructs (c+ 1)-DD for some c ≥ 2
first, and then obtain a 2-DD by decolorizing the (c + 1)-DD. In this way,
one can deal with a wider range of subgraphs with CFBS than FBS. Here,
for a family F c of c-colored subgraphs, its decolorization is the family F of
subgraphs obtained by ignoring colors of edges of subgraphs in F c. For DDs,
the decolorization of the (c+1)-DD representing F c is the 2-DD representing
F . We can decolorize a DD by a recursive operation utilizing the recursive
structure of the DD [72]. To construct a (c + 1)-DD efficiently, CFBS uses
dynamic programming. The i-th frontier Wi is the set of vertices incident to
both the edges in {e1, . . . , ei−1} and {ei, . . . , em}. CFBS constructs a DD in
a breadth-first manner from the root node and merges two nodes with the
same label and states with respect to the frontier. See [72] for details.

5.3 Algorithms

Proofs are deferred to Section 5.6.1.

65

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

5.3.1 Implicit enumeration of TM-embeddings

Given graphs G and H, we show a method to construct the 2-DD Z(Ĥ),

where Z(Ĥ) denotes the 2-DD representing the set of all TM-embeddings of
H in G. In the following, S(H) denotes the family of subdivisions of H. Note
that H itself is contained in S(H). Since a subdivision of H is obtained by
replacing each edge of H by a path, a subdivision of H can be expressed as
E(H) paths with distinct colors. Therefore, we can characterize subdivisions
of H using colored degrees and colorwise connectivity.

We define a smoothed profile of S(H) in the following way. Let ∆c be the
set of tuples (δ1, . . . , δc) such that exactly one of δi’s is zero and the others are
two. In other words, δc consists of all tuples of the form (0, . . . , 0, 2, 0, . . . , 0).
∆c will be used for representing colored degrees of subdividing vertices. In the
following, for a multiset M of c-colored degrees, C∗M denotes a function from
c-colored graphs to {0, 1} such that C∗M(F c) = 1 if and only if (a) DS(F c) is
obtained by adding an arbitrary number of elements (allowing duplication)
of ∆c to M and (b) the color-i subgraph for each i of F c is connected. We
say that a c-colored graph F c satisfies C∗M if C∗M(F c) = 1.

Definition 5.1 (smoothed profile). Let c be a positive integer. A multiset
M of c-colored degrees is a smoothed profile of S(H) if the following are
equivalent:

(a) A graph F belongs to S(H).

(b) There exists a c-colorized graph F c of F that satisfies C∗M .

Our method of implicit TM-embedding enumeration is written as follows:

1. Find a smoothed profile M of S(H). Let c be the number of colors in
M .

2. Construct Zc+1(C∗M).

3. By decolorizing Zc+1(C∗M), we obtain Z(Ĥ).

For Step 1, we discuss how to find a smoothed profile in Theorems 5.2–5.5.
Decolorization in Step 3 can be done in the same way as existing CFBS. To
construct Zc+1(C∗M) in Step 2, we use Kawahara et al.’s algorithm for the
following problem: Given a multiset M of c-colored degrees, construct a DD
Zc+1(C∗M). For convenience, we represent a multiset M of c-colored degrees

66

5.3. ALGORITHMS

by a set s of c-colored degrees appearing in M and a function f : s→ N such
that, for all δ ∈ s, f(δ) equals the multiplicity of δ in M .

CFBS (FBS) constructs a DD in a breadth-first manner. To avoid cre-
ating redundant nodes, CFBS manages configuration of each node. The
configuration is the information of subgraphs corresponding to a node. We
define the configuration as a tuple (deg, dn, comp, done) of four arrays.3 The
definition of each array is as follows. The first array deg is an array of colored
degrees of the vertices in the frontier. For a vertex v and an integer j ∈ [c],
deg[v] and deg[v][j] respectively denote the colored degree of v and the color-
j degree of v. The second array dn is an array of the numbers of fixed vertices
having each colored degree in s, where fixed vertices means the vertices that
have left frontiers. For a colored degree δ ∈ s, dn[δ] denotes the number of
fixed vertices having colored degree δ. The third array comp manages the
connectivity of vertices in the frontier in the color-j subgraph for each j. For
color j ∈ [c], comp[j] is a partition of the frontier such that two vertices u, v
are connected in the color-j subgraph if and only if they are contained in the
same set in comp[j]. The fourth array done holds Boolean values indicating
which color-j subgraphs are finished. We say that, for each color j ∈ [c], the
color-j subgraph is finished when all the vertices in the connected color-j
subgraph have left the frontier. For color j ∈ [c], done[j] = True if and only
if the color-j subgraph is finished.

We show pseudocode in Algorithms 5.2 and 6.2. In the following, we
explain the algorithm and show the correctness at the same time. Algo-
rithm 6.2 initializes the configurations of the root node and constructs a DD
in a breadth-first manner, which is a usual technique of FBS [4]. When cre-
ating nodes α with label i, if there is a node α′ that have the same label and
configuration as α, the nodes are shared. The subroutine Child is a function
whose inputs are a node α, its label i, and an integer j ∈ {0, . . . , c} and out-
put is a node αj that will be the j-th child of α. It is shown in Algorithm 5.2.
The procedure of Algorithm 5.2 is as follows. Let u1, u2 be the endpoints of
ei and create a node αj (Lines 1–2). Initialize (deg′, dn′, comp′, done′) by
(deg, dn, comp, done) (Line 3). For each endpoint of ei, we do the following
(Lines 4–7). For k ∈ [2], if uk is not in the i-th frontier Wi, we initialize
the colored degree of uk by (0, . . . , 0) (Line 6). For each color j ∈ [c], if
color-j subgraph is not finished, we initialize the connectivity of vertices in
the color-j subgraph as uk is the isolated vertex (Line 7).

3comp stands for component.

67

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

Algorithm 5.1: Constructing the (c+ 1)-DD

input : a set s of c-colored degrees and a function f : s→ N
output : a (c+ 1)-DD

1 let deg← [][] (an empty associative array), dn[δ]← 0 for all δ ∈ s,
comp[j′]← {{}} for all j ∈ [c], and done[j]← False for all j ∈ [c]

2 construct a root node ρ with a configuration (deg, dn, comp, done)
3 let N1 ← {ρ}, Ni ← ∅ for i ∈ {2, . . . ,m} and Nm+1 ← {>,⊥}
4 for i = 1, . . . ,m do
5 for α ∈ Ni do
6 for j = 0, . . . , c do
7 αj ← Child(α, j)
8 if αj /∈ Ni+1 ∪Nm+1 then
9 add a new node αj with label i+ 1 to Ni+1

10 let αj be the j-child of α

11 return the (c+ 1)-DD consisting of nodes of N1, . . . , Nm+1

If j > 0, we assign color j to the edge ei (Lines 8–15). If the color-j
subgraph is finished, we cannot assign color j anymore, and thus we return
⊥ (Line 9). For k ∈ [2], we add one to the color-j degree of uk (Line 10). If
deg′[uk] is not in D (s) ∪ D (∆c), deg′[uk] cannot be a target colored degree
in s or ∆c, and thus we return ⊥. Otherwise, we update the connectivity of
the vertices including uk in the color-j subgraph (Lines 13–15). For k ∈ [2],
let C(uk) be the set containing uk in the current comp′[j] (Line 13). If u1 and
u2 are in different components in the color-j subgraph, they are merged by
assigning color j to ei, and thus we update comp′[j] accordingly (Lines 14–15).

Next, we check if the color-j′ subgraph is finished for each j′. For each
j′ ∈ [c] such that the color-j′ subgraph is not finished, we do the following
(Lines 16–26). Let L be the set of components of the color-j′ subgraph
that have no vertices in Wi+1 and S be the set of the other components
(Line 17). If there are multiple components in L, the color-j subgraph will
be disconnected, and thus we return ⊥ (Line 18). Now consider the case
where there are exactly one component in L (Lines 19–26). If S the color-j
subgraph will be disconnected, and thus we return ⊥ (Line 20). Otherwise,
the color-j subgraph is finished and we update done′[c] by True (Line 21).
If color-j′′ subgraphs for all j′′ ∈ [c] are finished, we check if the multiplicity
of colored degrees. If the multiplicity is correct, we return >; otherwise

68

5.3. ALGORITHMS

⊥ (Lines 23–25). Since the components in L have no vertices in Wi+1, we
remove the components in L from comp′[j′] (Line 26).

We also check the vertices leaving the frontier (Lines 27–34). For each
k ∈ [2], if uk is not in Wi+1, we check the colored degree of uk. If deg′[uk] is
in s, we add one to dn′[deg′[uk]] (Line 30). If dn′[deg′[uk]] exceeds the target
multiplicity f(deg′[uk]), we return ⊥ (Line 31). If deg′[uk] is in neither s nor
∆c, we return ⊥ (Line 32). Otherwise, since uk is not in Wi+1, we remove uk
from the component of the color-j′ subgraph for each j′ ∈ [c] (Lines 33–35).

Finally, if i = m, the constraints are not satisfied, and thus return ⊥
(Line 35). Otherwise, we return a node αj with a configuration
(deg′, dn′, comp′, done′) (Lines 36–37).

To assess the efficiency of algorithms based on CFBS, it is usual to analyze
the width of the output DD [6]. The width of a DD is the maximum number
of nodes with the same label. It is a measure of both the size of the DD
and the time complexity to construct the DD. Recall that w = maxi∈[m] |Wi|,
where Wi is the i-th frontier.

Theorem 5.1. Given a multiset M , let s be the set of c-colored degrees
appearing in M and f : s → N be the function such that, for all δ ∈ s, f(δ)
equals the multiplicity of δ in M . There is an algorithm to construct a DD
Zc+1(C∗s) with width

2O(cw logw) |D (s) ∪ D (∆c)|w
∏
δ∈s

(f(δ) + 1). (5.1)

Based on Theorem 5.1, we discuss the complexity for general H. First,
we show that there is a smoothed profile for every graph H using |E(H)|
colors. Second, we show that the number of colors can be improved to τ(H),
where τ(H) is the minimum size of vertex covers of H. Although the latter
is better in most cases, we show both theorems for comparison.

Theorem 5.2. Let H be a graph with at least two vertices and Hτ(H) be
a |E(H)-colorized graph obtained by coloring the edges of H with distinct
colors. Then, M = DS(H |E(H)|) is a smoothed profile of S(H). Moreover,
there is an algorithm to construct a DD Z|E(H)|+1(C∗M) with width

2O(|E(H)|w logw)+|V (H)|. (5.2)

Theorem 5.3. Let H be a graph with at least two vertices and Hτ(H) be
a τ(H)-colorized graph whose color-i subgraph for each i is isomorphic to a

69

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

star and the set of the centers is a minimum vertex cover of H. Then, M =
DS(Hτ(H)) is a smoothed profile of S(H). Moreover, there is an algorithm
to construct a DD Zτ(H)+1(C∗M) with width

2O(τ(H)w logw)+|V (H)|. (5.3)

5.3.2 Constraints for forbidden topological minors

We derive specific smoothed profiles for the subdivisions of the graphs in the
right column of Table 5.1: complete graphs, complete bipartite graphs, and
K4 − e. While the results for complete bipartite graphs and K4 − e follow
directly from Theorem 5.3, we can reduce the number of colors by one for
complete graphs. We show the result for K4 − e in Section 5.6.2. In the
following, we discuss complete bipartite graphs first, which is easier than
complete graphs.

Theorem 5.4. Let a, b (a ≤ b) be positive integers. The multiset Ma,b =
M1

a,b ∪M2
a,b consisting of a-colored degrees is a smoothed profile of S(Ka,b),

where

M1
a,b =

{
(δ1, . . . , δa)

1

∣∣∣∣ ∃i ∈ [a], δi = b,
j 6= i⇒ δj = 0

}
, M2

a,b =

(1, . . . , 1︸ ︷︷ ︸
a

)b

 .

There is an algorithm to construct a DD Za+1(C∗Ma,b
) with width

2O(aw logw)(2a + ab)wb. (5.4)

Figure 5.1(e) shows a representation of a subdivision of K3,3 based on
Theorem 5.4.

Next, we consider the subdivisions of complete graphs. Since the size of
a minimum vertex cover of Ka is a − 1, there exists a smoothed profile of
S(Ka) with a−1 colors by Theorem 5.3. The smoothed profile is obtained by
decomposing Ka into K1,1, K1,2, . . . , and K1,a−1 and coloring the subgraphs
with distinct colors. In this coloring, if we color K1,2 with the same color as
K1,1, the obtained subgraph is K3. We show that the colored degree multiset
obtained from this coloring is also a smoothed profile of S(Ka).

70

5.3. ALGORITHMS

(0, 3, 1)

(0, 0, 4)

(2, 1, 1)

(2, 1, 1) (2, 1, 1)

Figure 5.3: Representation of a subdivision of K5. Filled and non-filled
vertices represent branch and subdividing vertices, respectively. A tuple
beside a vertex means the colored degree of the vertex.

Theorem 5.5. Let a ≥ 3 be an integer. The multiset Ma−2 = M1
a−2 ∪M2

a−2
consisting of (a− 2)-colored degrees is a smoothed profile of S(Ka), where

M1
a−2 =

(2, 1, . . . , 1︸ ︷︷ ︸
a−3

)3

 ,M2
a−2 =

(δ1, . . . , δa−2)
1

∣∣∣∣∣∣∣∣
∃i ∈ {2, . . . , a− 2} ,
j < i⇒ δj = 0,
δi = i+ 1,
j > i⇒ δj = 1

 .

There is an algorithm to construct a DD Za−1(C∗Ma
) with width

2O(aw logw)
(
3 · 2a−2 − a

)w
. (5.5)

Figure 5.3 shows a representation of a subdivision of K5 based on Theo-
rem 5.5.

5.3.3 Enumerating subgraphs having
FTM-characterizations

We show how to implicitly enumerate subgraphs having FTM-characterization.
We combine DD operations with our algorithm to implicitly enumerate TM-
embeddings. Union [8] is a function whose inputs are two 2-DDs Z1 and
Z2 and output is the 2-DD representing JZ1K ∪ JZ2K. NonSupset [5] is
a function whose input is a 2-DD Z over a finite set E and output is the
2-DD representing the family

{
A ⊆ 2E

∣∣ ∀B ∈ JZK , A 6⊇ B
}

. G(Ĥ) denotes

the set of subgraphs of G that are homeomorphic to H and Z(Ĥ) denotes

the 2-DD representing G(Ĥ). The following algorithm constructs the 2-DD
representing the set of subgraphs of G that is FTM-characterized by H.

71

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

1. Initialize a 2-DD Zsubd by the 2-DD representing the empty set.

2. Choose an arbitrary graph H from H and remove it from H.

3. Update Zsubd by Union(Zsubd,Z(Ĥ)).

4. If H is not empty, go back to Step 2. If empty, go on to Step 5.

5. We obtain the final 2-DD Zans by NonSupset(Zsubd).

For example, let us consider the case where we want to implicitly enumerate
all planar subgraphs of G. In this case, H is {K5, K3,3}. We construct Z(K̂5)

and Z(K̂3,3) and take their union, which is Zsubd. Now Zsubd represents the
set of all subgraphs of G that are homeomorphic to K5 or K3,3. Zans =
NonSupset(Zsubd) represents the family of all subgraphs of G that is FTM-
characterized by H = {K5, K3,3}. Therefore, Zans represents the family of
all planar subgraphs of G. Other types of subgraphs such as outerplanar,
series-parallel, and cactus subgraphs can be implicitly enumerated only by
changing H according to Table 5.1.

5.4 Computational experiments

5.4.1 Settings

We conducted two experiments. First, we compared several methods to enu-
merate planar subgraphs (Section 5.4.2). Second, we applied our framework
to enumerating all types of subgraphs in Table 5.1 (Section 5.4.3). For input
graphs, we used complete graphs Kn and 3× b king graphs X3,b as synthetic
data. X3,b is a graph obtained by, to the 3 × b grid graph, adding diagonal
edges in all the cycles of length four. As real data, we used Rome graph4,
which is often used in studies on graph drawing. The edge orderings are de-
termined by breadth-first ordering for complete graphs and king graphs, and
an existing method based on path-width optimization [64] for Rome graphs.
We implemented all the code in C++ and compiled them by g++5.4.0 with
-O3 option. To handle DDs, we used TdZdd [69] and SAPPORO BDD inside
Graphillion [63]. We used a machine with Intel Xeon E5-2637 v3 CPU and
1 TB RAM. For each case, we set the timeout to one day.

4http://www.graphdrawing.org/data.html

72

5.4. COMPUTATIONAL EXPERIMENTS

5.4.2 Comparing several methods to enumerate planar
subgraphs

We compare the following three methods for planar subgraph enumeration.

• Backtrack: It explicitly enumerates subgraphs based on backtrack-
ing. The details are described in Section 5.6.3.

• DDEdge: It implicitly enumerates subgraphs using DDs. It uses
|E(H)| colors based on Theorem 5.2. In other words, it uses ten colors
for S(K5) and nine colors for S(K3,3).

• DDVertex: It implicitly enumerates subgraphs using DDs. It uses
τ(H) colors based on Theorems 5.3–5.5. In other words, it uses three
colors both for S(K5) and S(K3,3).

As a subroutine of Backtrack, we used a planarity test in C++ Boost5. For
fairness, Backtrack does not output solutions but only counts the number
of solutions. DDEdge and DDVertex construct DDs representing the set
of solutions. Once a DD is constructed, we can count the number of solutions
in linear time to the number of nodes in the DD [5].

Table 5.2 shows the experimental results. In all the cases, all the methods
output the same number of solutions. Among the three methods, DDVer-
tex ran fastest except for K6. Backtrack finished in a day only when the
number of solutions is small (less than 109). Although DDEdge solved more
instances than Backtrack, it ran out of memory when the size of input or
the number of solutions grows. In contrast, DDVertex succeeded even for
such instances. For example, for X3,4, DDVertex is 122,544 and 187 times
faster than Backtrack and DDEdge. In addition, for X3,500, DDVer-
tex succeeded in implicitly enumerating 7.95×101349 planar subgraphs only
in 405.04 seconds (less than seven minutes). These results demonstrate the
outstanding efficiency of DDVertex.

5.4.3 Applying our framework to several types of sub-
graphs

In this subsection, we apply our framework to enumerating all types of sub-
graphs in Table 5.1. As stated in Section 5.3.3, to enumerate different types

5https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/boyer_myrvold.

html

73

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

Table 5.2: Experimental results. Each column shows the name of graphs,
the number of vertices and edges, the running time of the three methods (in
seconds), and the number of planar subgraphs. “T/O” and “M/O” mean
time out and memory out, respectively. “-” means all the methods failed.
The number of solutions for K10 is from OEIS A066537, which is marked by
‘*’. We write the fastest time for each input graph in bold.

graph |V | |E| Backtrack DDEdge DDVertex # solutions
K5 5 10 < 0.01 0.14 < 0.01 1023
K6 6 15 < 0.01 2.12 0.21 32071
K7 7 21 28.28 35.02 2.73 1823707
K8 8 28 3113.64 620.84 66.34 163947848
K9 9 36 T/O 15623.11 4694.41 20402420291
K10 10 45 T/O T/O T/O *3209997749284
X3,4 12 29 11029.38 16.83 0.09 5.33× 108

X3,5 15 38 T/O 53.93 1.67 2.70× 1011

X3,10 30 83 T/O 665.65 5.62 8.93× 1024

X3,50 150 443 T/O M/O 37.28 1.29× 10133

X3,100 300 893 T/O M/O 76.99 2.03× 10268

X3,500 1500 4493 T/O M/O 405.04 7.95× 101349

X3,1000 3000 8993 T/O M/O M/O -
G1 (grafo1764.20) 20 25 792.16 1.09 0.06 3.35× 107

G2 (grafo1760.28) 28 39 T/O 96.81 3.76 5.49× 1011

G3 (grafo10000.38) 38 52 T/O 787.98 29.43 4.50× 1015

G4 (grafo10008.42) 42 61 T/O 38647.96 668.15 2.30× 1018

G5 (grafo1378.46) 46 62 T/O M/O 796.48 4.61× 1018

G6 (grafo1395.61) 61 78 T/O M/O 11992.12 3.02× 1023

G7 (grafo5287.61) 61 88 T/O M/O M/O -
G8 (grafo9798.76) 76 91 T/O M/O 1709.64 2.48× 1027

G9 (grafo10006.98) 98 136 T/O M/O M/O -

of subgraphs, it is enough to change H, the set of forbidden topological mi-
nors.

Figures 5.4(a)–5.4(c) show the results. We call an algorithm to enu-
merate planar subgraphs Planar, and so on. The results for king graphs
(Figure 5.4(b)) are easiest to understand. We observe that Planar takes the
most time because it uses three colors while the others use two colors. Among
the algorithms using two colors, Outerplanar is most time-consuming be-
cause it needs two topological minors. The reason why Series-Parallel
runs faster than Cactus is that K4 has better “regularity” than K4 − e,
which makes the size of the output DD smaller. Indeed, for X3,500, the
size (number of nodes) of the DD constructed by Series-Parallel was

74

5.5. CONCLUSION

5 6 7 8 9 10
n

10 1

101

103
tim

e
(s

ec
)

planar
outerplanar
cactus
series-parallel

(a) Complete graph Kn. (b) King graph X3,b.

(c) Rome graph.

Figure 5.4: Results of applying our framework to enumerating several types
of subgraphs. For each figure, its horizontal axis shows the size of an input
graph and vertical one running time (in seconds). Note that all the vertical
axes and the horizontal axis of Figure 5.4(b) are logarithmic.

4,582,909 while that by Cactus was 7,289,225. The similar relation holds
both for Figs. 5.4(a) and 5.4(c). For Rome graphs (Fig. 5.4(c)), the time for
G8 was smaller than G6 although G8 has more edges than G6. It is because
w of G8 was smaller than that of G6.

5.5 Conclusion

Given graphs G and H, we have shown a method to implicitly enumerate
topological-minor-embeddings of H in G using decision diagrams. We also
have shown a useful application of our method to enumerating subgraphs
characterized by forbidden topological minors, including planar, outerpla-
nar, series-parallel, and cactus subgraphs. Computational experiments show
that our method can find all planar subgraphs up to 122,544 times faster than
a naive backtracking-based method and could solve more problems than the
backtracking-based method. We have applied our method also for outer-
planar, series-parallel, and cactus subgraphs. Future work is extending our
method from topological minors to general minors.

75

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

5.6 Appendix for this chapter

5.6.1 Proofs omitted from Section 5.3

In this section, we show appendix for this chapter. We show the proofs
omitted from Section 5.3 in this subsection. For Theorems 5.2–5.5, there are
two parts in the proofs: correctness of smoothed profiles and widths of the
output DDs. The titles of the paragraphs indicate them.

Proof of Theorem 5.1

In the following, by “Line”, we refer to lines in Algorithm 5.2. For a vertex v,
the number of different values for deg[v] is at most |D (s) ∪ D (∆c)| because
we return ⊥ if deg[v] is not in D (s) ∪D (∆c) (Line 12). Since every frontier
has at most w vertices, the number of distinct sequences of values appearing
in deg is at most |D (s) ∪ D (∆c)|w. For a colored degree δ ∈ s, the value of
dn[δ] is in {0, . . . , f(δ)} because we return ⊥ if dn[δ] exceeds f(δ) (Line 31).
Therefore, the number of different sequences of values appearing in dn is at
most

∏
δ∈s(f(δ) + 1). For each color j′ ∈ [c], comp[j′] maintains the partition

of at most w vertices in the frontier. Since the number of partitions of w
elements is O(ww) = 2O(w logw), the number of different values for comp is(
2O(w logw)

)c
= 2O(cw logw). For each color j′ ∈ [c], done[j′] is either True

or False, and thus the number of different sequences of values appearing in
done is 2c. Since we share nodes with the same label and configuration, the
width of the constructed DD (the number of nodes with the same label) is
at most the number of different configurations. The number is at most the
product of the numbers of deg, dn, comp, and done. Therefore, the width of
the constructed DD is at most

|D (s) ∪ D (∆c)|w ·
(∏
δ∈s

(f(δ) + 1)

)
· 2O(cw logw) · 2c

= 2O(cw logw) |D (s) ∪ D (∆c)|w
∏
δ∈s

(f(δ) + 1).

Proof of Theorem 5.2

In the following, the proofs consist of two parts. We first show that the
colored degree multiset is indeed the smoothed profile, and next derive the
width of the DD.

76

5.6. APPENDIX FOR THIS CHAPTER

Smoothed profile Let F be a graph that is homeomorphic to H. Observe
that a subdivision of a graph H is obtained by replacing each of its edges
by a path of length one or more. Let us color the paths with distinct colors.
Each edge in F is associated, through the bijective mapping, with an edge
in H. If an edge e in F is associated with an edge e′ in H and e′ has the
color i in Hτ(H), we color e with i in F . The obtained τ(H)-colorized graph
of F has the

The colored degree multiset of the colorized graph, with the constraint
“the color-i subgraph is connected for each i,” suffices to ensure that the
graph is homeomorphic to H. The color-i subgraph for each i must be a
path because there are two vertices with degree 1 and an arbitrary number
of vertices with degree 2 and is connected. In addition, two paths with
different colors i and j share their endpoints if and only if there is a vertex
whose color-i and color-j degrees are both 1. Therefore, for every graph H,
we can identify S(H) by the constraints with |E(H)| colors.

Width We derive Formula (5.2) from (5.1). Now, let c = |E(H)| and s =
M . All the tuples in s are dominated by (1, . . . , 1) because at most one edge
with each color is incident to a vertex. Since no tuples in ∆|E(H)| are dom-
inated by (1, . . . , 1), D (s) ∪ D

(
∆|E(H)|) ⊆ D ({(1, . . . , 1)}) ∪ D

(
∆|E(H)|) =

D ({(1, . . . , 1)})∪∆|E(H)|. Therefore,
∣∣D (s) ∪ D

(
∆|E(H)|)∣∣ = |D ({(1, . . . , 1)})|

+
∣∣∆|E(H)|

∣∣ = 2|E(H)|+ |E(H)|. In addition,
∏

δ∈s(f(δ) + 1) ≤ 2|V (H)| because
there are at most |V (H)| different tuples in s. Based on the above discussion,

2O(cw logw)
∣∣D (s) ∪ D

(
∆|E(H)|)∣∣w∏

δ∈s

(f(δ) + 1)

≤ 2O(|E(H)|w logw)
(
2|E(H)| + |E(H)|

)w
2|V (H)|

= 2O(|E(H)|w logw)+|V (H)| (2|E(H)| + |E(H)|
)w

= 2O(|E(H)|w logw)+|V (H)| 2O(|E(H)|w)

= 2O(|E(H)|w logw)+|V (H)|.

Proof of Theorem 5.3

We use the following lemma regarding characterization of isomorphic sub-
graphs by colored degrees. For a graph H, a subset S ⊆ V (H) is a vertex
cover of H if, for every edge e ∈ E(H), at least one of its endpoints belongs

77

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

to S. We denote the minimum size of vertex covers in H by τ(H). A star is
a graph isomorphic to K1,a for some positive integer a.

Lemma 5.1 ([76]). Let H be a graph and Hc be a c-colored graph of H
such that, for every i ∈ [c], the subgraph of Hc induced by color-i edges is
isomorphic to a star. A graph F is isomorphic to H if and only if there exists
a c-colored graph F c of F such that DS(F c) = DS(Hc). It follows that, for
every H, there is a profile using τ(H)-colored degrees.

Smoothed profile Let F be a graph that is homeomorphic to H. Each
edge in F is associated, through the bijective mapping, with an edge in H.
If an edge e in F is associated with an edge e′ in H and e′ has the color i
in Hτ(H), we color e with i in F . The obtained τ(H)-colorized graph of F
satisfies (a) and (b) in Definition 5.1.

Let F be a graph and F c be a c-colorized graph of F such that it satisfies
(a) and (b) in Definition 5.1. First, we show that, in F c, the color-i subgraph
for each i is homeomorphic to a star. For each integer i in [c], let Mi be
the multiset of degrees of vertices in the color-i subgraph of F c. By (a) in
Definition 5.1, the multiset Mi satisfies one of the following:

1. Mi = {12, 2y} for an integer y ≥ 0, or

2. Mi = {x1, 1x, 2y} for integers x ≥ 3 and y ≥ 0.

If Mi = {12, 2y} for an integer y ≥ 0, the color-i subgraph of F c is a path.
Thus, it is homeomorphic to K1,1. If Mi = {x1, 1x, 2y} for integers x ≥ 3 and
y ≥ 0, the color-i subgraph of F c is isomorphic to K1,x. For each color i ∈ [c],
we process the color-i subgraph of F c as follows:

• If Mi = {x1, 1x, 2y} for integers x ≥ 3 and y ≥ 0, we smooth all the
vertices with degree 2, where smoothing a vertex v with degree 2 means
removing vertex v and edges incident to it and connecting two vertices
that were adjacent with v by a new edge.

• If Mi = {12, 2y} for an integer y, we check DS(Hτ(H)). If DS(Hτ(H))
contains a vertex with color-i degree 2 (note that there exists at most
one such vertex in DS(Hτ(H))), we smooth all the vertices but one with
degree 2. If not, we smooth all the vertices with degree 2.

78

5.6. APPENDIX FOR THIS CHAPTER

Let Ic be the c-colorized graph obtained by the above procedure and I be its
underlying graph. In Ic, the color-i subgraph for each i is isomorphic to a star
and DS(Ic) = DS(Hc). Therefore, by Lemma 5.1, the graph I is isomorphic
to H. Since F is obtained by inserting smoothed vertices into edges in I, the
graph F is a subdivision of I. It follows that F is homeomorphic to H.

Width We derive Formula (5.3) from (5.1). Now, let c = τ(H) and s = M .
Since the color-i subgraph for each i of Hτ(H) is a star, every colored degree
χ in DS(Hτ(H)) satisfies that there exists at most one color i such that χi
exceeds 1. Therefore,

D (s) ∪ D
(
∆τ(H)

)
⊆

(χ1, . . . , χτ(H)) ∈ Nτ(H)

∣∣∣∣∣∣
∃i ∈ [τ(H)],
χi ≤ |V (H)| − 1,
j 6= i⇒ χj ≤ 1

 (5.6)

Note that |V (H)|− 1 is an upper bound of the maximum degree of H. From
(5.6), we obtain

∣∣D (s) ∪ D
(
∆τ(H)

)∣∣ ≤ 2τ(H)τ(H). Combining the above with∏
δ∈s(f(δ) + 1) ≤ 2|V (H)|, we obtain

2O(cw logw)
∣∣D (s) ∪ D

(
∆τ(H)

)∣∣w∏
δ∈s

(f(δ) + 1)

≤ 2O(τ(H)w logw)
(
2τ(H)τ(H)

)w
2|V (H)|

= 2O(τ(H)w logw)+|V (H)| (2τ(H)τ(H)
)w

= 2O(τ(H)w logw)+|V (H)| 2O(τ(H)w)

= 2O(τ(H)w logw)+|V (H)|.

Proof of Theorem 5.4

Smoothed profile Let A and B be the parts of Ka,b (a ≤ b) consisting
of a and b vertices, respectively. The set A is a minimum vertex cover of
Ka,b. Let us decompose Ka,b into a stars such that their centers are A and
the leaves are B. We color the stars with distinct colors from [a]. In the
colorized graph, the multisets of colored degrees of the vertices in A and B
are M1

a,b and M2
a,b, respectively. By Theorem 5.3, Ma,b = M1

a,b ∪M2
a,b is a

smoothed profile of S(Ka,b).

79

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

Width We derive Formula (5.4) from (5.1). Now c = a and s = Ma,b.
Since D (s)∪D (∆a) = D

(
M1

a,b

)
∪D

(
M2

a,b

)
∪D (∆a) = D

(
M1

a,b

)
∪D

(
M2

a,b

)
,

we obtain |D (s) ∪ D (∆a)| ≤
∣∣D (M1

a,b

)∣∣ +
∣∣D (M2

a,b

)∣∣ = ab + 2a = 2a + ab.
Combining the above with

∏
δ∈s(f(δ) + 1) = 2a(b+ 1),

2O(cw logw) |D (s) ∪ D (∆a)|w
∏
δ∈s

(f(δ) + 1)

≤ 2O(aw logw) (2a + ab)w 2a(b+ 1)

= 2O(aw logw) (2a + ab)w b.

Proof of Theorem 5.5

Smoothed profile Let us decompose a subdivision F of Ka into subdi-
visions of K3, K1,3, . . . , and K1,a−1 so that their centers and leaves are the
branch vertices of F and color them with distinct colors. We denote the col-
orized graph by J . J is an (a− 2)-colored graph and the multiset of colored
degrees of the branch vertices in J is Ma−2 = M1

a−2 ∪M2
a−2, where M1

a−2 and
M2

a−2 are the multisets of the colored degrees of (three arbitrarily chosen)
branch vertices of a subdivision of K3 and the centers of the subdivisions of
the stars, respectively. Therefore, J satisfies the constraint C∗M , where M is
Ma−2.

We show that the converse is true by induction. When a = 3, for a graph
F , assume that there exists a 3 − 2 = 1-colorized graph F 1 satisfying the
constraint C∗M , where M = M1. Since F1 has an arbitrary number of vertices
of degree 2 and is connected, F1 is a cycle, that is, a subdivision of K3.
Next, for an integer a ≥ 3, assume that “For a graph I, if there exists an
(a − 2)-colored graph Ia−2 satisfying the constraint C∗M , where M = Ma−2,
I belongs to S(Ka)” is true. For a graph F , assume that there exists an
(a− 1)-colored graph F a−1 satisfying the constraint C∗M ′ , where M ′ = Ma−1.
Among the colored degree multiset of F a−1, the part of colors from 1 to a−2
is Ma−2 plus an arbitrary number of elements of ∆a−2. Therefore, by the
assumption, the underlying graph of the colored graph from color 1 to a− 2
in F a−1 forms a subdivision of Ka. The remaining part, the color-(a − 1)
subgraph of F a−1, has one vertex with degree a, a vertices with degree 1, and
an arbitrary number of vertices with degree 2 and is connected. Therefore,
the color-(a − 1) subgraph of F a−1 forms a subdivision of K1,a. As for its
center, its color-(a− 1) degree is a and the degrees of the other colors are 0.
As for its leaves, their color-(a− 1) degrees are 1. If the colored degree of a

80

5.6. APPENDIX FOR THIS CHAPTER

leaf belongs to M1
a−1, it can be a branch vertex of K3. Otherwise, δi = i+ 1

implies that it is the center of a subdivision of K1,i+1. Therefore, F a−1 is a
graph obtained by merging the branch vertices of a subdivision of Ka and
the leaves of a subdivision of K1,a. It follows that the underlying graph of
F a−1 is homeomorphic to Ka+1.

Width We derive Formula (5.5) from (5.1). Now c = a− 2 and s = Ma−2.
For D (s) ∪ D (∆a−2), the following holds:

D (s) ∪ D
(
∆a−2) = D

(
M1

a−2
)
∪ D

(
M2

a−2
)
∪ D

(
∆a−2)

= D

(1, . . . , 1︸ ︷︷ ︸
a−2

)

 ∪

(δ1, . . . , δa−2)

∣∣∣∣∣∣∣∣
∃i ∈ [a− 2],
j < i⇒ δj = 0,
2 ≤ δi ≤ i+ 1,
j > i⇒ δj = 1

= 2a−2 +

a−2∑
i=1

(
i · 2a−2−i

)
= 2a−2 + (2a−1 − a)

= 3 · 2a−2 − a.

In addition,
∏

δ∈s(f(δ) + 1) = (3 + 1) · (1 + 1)a−3 = 2a−1 holds. Thus, we
obtain

2O(cw logw)
∣∣D (s) ∪ D

(
∆a−2)∣∣w∏

δ∈s

(f(δ) + 1)

≤ 2O((a−2)w logw)
(
3 · 2a−2 − a

)w
2a−1

= 2O(aw logw)
(
3 · 2a−2 − a

)w
.

5.6.2 Smoothed profile of S(K4 − e)
Recall that K4− e is the graph obtained by removing an arbitrary edge from
K4.

Theorem 5.6. A multiset M = {(3, 0), (1, 2), (1, 1)2} of 2-colored degrees is
a smoothed profile of S(K4 − e). There is an algorithm to construct a DD
representing Z3(C∗M) with width 2O(w logw).

81

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

Proof Let K4−e = ({a, b, c, d} , {{a, b} , {a, c} , {a, d} , {c, b} , {c, d}}). The
set {a, c} of vertices is a minimum vertex cover of the graph. We color the
star with edges {a, b}, {a, c}, and {a, d} by color 1 and that with {c, b} and
{c, d} by color 2. The colored degree multiset of the colorized graph is M .
By Theorem 5.3, M is a smoothed profile of S(K4− e). We obtain the width
as follows:

2O(cw logw)
∣∣D (s) ∪ D

(
∆2
)∣∣w∏

δ∈s

(f(δ) + 1)

= 2O(2w logw) · 8w · (2 · 2 · 3)

= 2O(w logw).

5.6.3 Details of backtracking-based method

In this subsection, we show the details of an algorithm to explicitly enumerate
planar subgraphs based on backtracking, which we used in Section 5.4. Pseu-
docode is given in Algorithm 5.3. Given a graph G, we first call Main(G)
(Line 1). It calls a subfunction Rec. Its inputs are a graph G, a subset of
edges S that forms a planar subgraph of G, and the index of the edge that
should be processed next. If i = |E(G)|+1, we can add no edges, and thus we
output S (Line 3). Otherwise, we guess whether ei is adopted for a solution
of not. We always call Rec(G,S, i+ 1) because G[S] is planar. In contrast,
we call Rec(G,S ∪ {ei} , i + 1) only if G[S ∪ {ei}] is planar. Since planar
graphs are closed under taking subgraphs, the algorithm correctly outputs all
the planar subgraphs. The algorithm runs a planarity test O(|E(G)|) times
for each solution. Since a planarity test can be done in O(|V (G)|) time [77],
the time complexity of the algorithm is O(N · |E(G)| · |V (G)|), where N is
the number of solutions.

82

5.6. APPENDIX FOR THIS CHAPTER

Algorithm 5.2: Child(α, i, x)

input : node α with configuration (deg, dn, comp, done) and a child
number j

output : a node αj that will be the j-th child of α
1 let {u1, u2} ← ei
2 generate αj
3 let deg′ ← deg, dn′ ← dn, comp′ ← comp, and done′ ← done
4 for k ∈ [2] do
5 if uk /∈Wi then
6 deg′[uk]← (0, . . . , 0)
7 for j′ ∈ [c] such that done′[j′] = False do

comp[j′]← comp[j′] ∪ {{uk}}
8 if j > 0 then
9 if done′[j] = True then return ⊥

10 for k ∈ [2] do
11 deg′[uk][j]← deg′[uk][j] + 1
12 if deg′[uk] /∈ D (s) ∪ D (∆c) then return ⊥
13 for each k ∈ [2], let C(uk) be the set containing uk in the current

comp′[j]
14 if C(u1) 6= C(u2) then
15 comp′[j]← (comp′[j] \ {C(u1), C(u2)}) ∪ {C(u1) ∪ C(u2)}
16 for j′ ∈ [c] such that done′[j′] = False do
17 let L← {C ∈ comp′[j′] | C ∩Wi+1 = ∅} and S ← comp′[j] \ L
18 if |L| > 1 then return ⊥
19 else if |L| = 1 then
20 if |S| > 0 then return ⊥
21 else
22 done′[j′]← True
23 if for all j′′ ∈ [c], done′[j′′] = True then
24 if for all δ ∈ s, dn′[δ] = f(δ) then return >
25 else return ⊥
26 comp′[j′]← comp′[j′] \ L
27 for k ∈ [2] do
28 if uk /∈Wi+1 then
29 if deg′[uk] ∈ s then
30 dn′[deg′[uk]]← dn′[deg′[uk]] + 1
31 if dn′[deg′[uk]] > s(deg′[uk]) then return ⊥
32 else if deg′[uk] /∈ ∆c then return ⊥
33 for j′ ∈ [c] such that done′[j′] = False do
34 let C(uk) be the set containing uk in the current comp′[j′]
35 comp′[j′]← (comp′[j′] \ {C(uk)}) ∪ ({C(uk) \ {uk}})

36 if i = m then return ⊥
37 let (deg′, dn′, comp′, done′) be the configuration of αj
38 return αj

83

CHAPTER 5. PLANAR SUBGRAPH ENUMERATION

Algorithm 5.3: Enumerating planar subgraphs based on backtrack-
ing

input : a graph G
output : all planar subgraphs in G

1 def Main(G):
2 Rec(G, ∅, 1)

3 def Rec(G,S, i):
4 if i = |E(G)|+ 1 then output S
5 else
6 Rec(G,S, i+ 1)
7 if G[S ∪ {ei}] is planar then
8 Rec(G,S ∪ {ei} , i+ 1);

84

Chapter 6

Frontier-Based Search for
ZSDDs

6.1 Introduction

Until the previous chapter, we have been used ZDDs for implicit enumera-
tion. Although ZDDs can represent set families in a compact way, the size
of a ZDD can be prohibitively large, which leads to the limitation of the
application of ZDDs to relatively small graphs. Recently, Zero-suppressed
Sentential Decision Diagrams (ZSDDs) [49] have been proposed as different
representations of set families. Since ZSDDs are generalizations of ZDDs, ZS-
DDs are at least as compact as ZDDs. In theory, there exist set families that
have polynomial ZSDD sizes but exponential ZDD sizes [65]. In addition,
ZSDDs inherit some poly-time queries of ZDDs: counting, random sampling,
and Apply operations. Thus, a natural question is: Can we design top-down
construction algorithms for ZSDDs representing sets of subgraphs? The ques-
tion is partially answered in an affirmative way by Nishino et al. [78]. They
proposed top-down construction algorithms for ZSDDs representing sets of
specific types of subgraphs: matchings and paths. The sizes of constructed
ZSDDs by their algorithms are bounded by the branch-width of the input
graph [78], while those of ZDDs are bounded by the path-width [64]. Since
the branch-width of a graph never exceeds the path-width [79], ZSDDs have
tighter upper bounds than ZDDs. The efficiency of their algorithms was
confirmed in experiments. Despite such striking results, their algorithms are
specific to matchings and paths.

85

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

(a) A vtree. (b) A ZSDD.

Figure 6.1: A vtree and a ZSDD that respects the vtree.

In this chapter, we propose a novel framework of top-down construction
algorithms for ZSDDs. To design a top-down construction algorithm using
our framework, one only has to prove a recursive formula for the desired set
of subgraphs. Using the recursive formula, we can theoretically show the
correctness and the complexity of the algorithm, which was difficult with
the existing method. We apply our framework to the three fundamental
constraints used in ZDDs: the number of edges, degrees of vertices, and
connectivity of vertices. We show that the sizes of constructed ZSDDs are
bounded by the branch-width of the input graph, not only for matchings
and paths. Experiments show that proposed methods can construct ZSDDs
faster than ZDDs and that the constructed ZSDDs are smaller than ZDDs
representing the same sets of subgraphs.

6.2 Preliminaries

6.2.1 (X,Y)-partition and vtree

To introduce ZSDDs, we define (X,Y)-partition and vtree in this subsection.

Definition 6.1. Let f be a set family, and X,Y be a partition of the universe
of f . Set family f can be written as

f =
h⋃

i=1

[pi t si], (6.1)

86

6.2. PRELIMINARIES

where pi and si are the set families whose universes are X and Y, respectively.
The equation is an (X,Y)-decomposition. We call p1, . . . , ph primes and
s1, . . . , sh subs. If the primes are exclusive (pi ∩ pj = ∅ for all i 6= j), the
decomposition is an (X,Y)-partition. 1

Example 6.1. Let f1 be the family of subsets of U1 = {A,B,C,D} that
contain exactly two elements. It follows that f1 = {{A,B} , {A,C} , {A,D} ,
{B,C} , {B,D} , {C,D}}. For X1 = {B} and Y1 = {A,C,D}, an (X1,Y1)-
partition of f1 is

f1 = [{∅}︸︷︷︸
prime

t f 1
2︸︷︷︸

sub

] ∪ [{{B}}︸ ︷︷ ︸
prime

t f 2
2︸︷︷︸

sub

], (6.2)

where f 1
2 = {{A,C} , {A,D} , {C,D}} and f 2

2 = {{A} , {C} , {D}}.
The universe of f 1

2 and f 2
2 is U2 = {A,C,D}. For X2 = {A,D} and

Y2 = {C}, an (X2,Y2)-partition of f 1
2 is

f 1
2 = [{{A,D}}︸ ︷︷ ︸

prime

t {∅}︸︷︷︸
sub

] ∪ [{{A} , {D}}︸ ︷︷ ︸
prime

t{{C}}︸ ︷︷ ︸
sub

]. (6.3)

A ZSDD represents a set family by recursively applying (X,Y)-partitions
to decompose the family into sub-families, where the order of partitions is
determined by a vtree. A vtree is a rooted, ordered, and full binary tree
whose leaves correspond to elements of the universe. Fig. 6.1(a) shows an
example. Symbols appearing in leaves represent corresponding elements, and
symbols beside nodes represent their names. Each internal node represents
a partition of the universe into two subsets: elements appearing in the left
and right subtrees. We denote the left and right children of node v by vl and
vr, respectively. In the figure, root node v1 represents the (X1,Y1)-partition
of the universe U1 = {A,B,C,D} where X1 = {B} and Y1 = {A,C,D}.
Similarly, node v2 represents the (X2,Y2)-partition of the universe U2 =
{A,C,D} where X2 = {A,D} and Y2 = {C}. To avoid confusion, we
call vtree nodes vnodes, ZSDD nodes znodes, and graph nodes vertices. We
represent them as vi, zi, and ui.

1In [49], an (X,Y)-decomposition is called an (X,Y)-partition if the primes are ex-
clusive and consistent (pi 6= ∅ for all i). For simplicity, we do not require consistency for
(X,Y)-partitions. If we construct a ZSDD without consistency, we can make their primes
consistent in linear time to the ZSDD size [78].

87

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

6.2.2 Zero-suppressed Sentential Decision Diagrams

A ZSDD is recursively defined as follows. ZSDD α respects vnode v if the
order of (X,Y)-partitions in α follows the vtree whose root is v. 〈α〉 denotes
the set family that α represents.

Definition 6.2. α is a ZSDD that respects vnode v if and only if:

• α = ε or α = ⊥. (Semantics: 〈ε〉 = {∅} and 〈⊥〉 = ∅.)

• α = X or α = ±X and v is a leaf with element X. (Semantics:
〈X〉 = {{X}} and 〈±X〉 = {{X} , ∅}.)

• α = {(p1, s1), . . . , (ph, sh)}, v is internal, p1, . . . , ph are ZSDDs that
respect a vnode in the subtree whose root is vl, s1, . . . , sh are ZSDDs
that respect a vnode in the subtree whose root is vr, and 〈p1〉, . . . , 〈ph〉
are exclusive. (Semantics: 〈α〉 =

⋃h
i=1[〈pi〉 t 〈si〉].)

If a ZSDD is either ε,⊥, X, or ±X, it is a terminal. Otherwise, it is
a decomposition. Fig. 6.1(b) shows an example ZSDD that represents set
family f1 in Example 6.1 and respects the vtree in Fig. 6.1(a). A circle node
and its child rectangle nodes represent an (X,Y)-partition. The symbol in
a circle node indicates the vnode that the decomposition respects. A pair of
rectangle nodes represent a prime-sub pair in an (X,Y)-partition where the
left and right are prime p and sub s, respectively. Every p and s is either
a terminal ZSDD or a pointer to a decomposition ZSDD. Circle nodes are
decomposition znodes, and rectangle nodes are element znodes. For example,
znodes z1 and z2 represent the (X,Y)-partitions in Eqs. (6.2) and (6.3),
respectively. The size of a ZSDD is the sum of the sizes of (X,Y)-partitions
in the ZSDD. The size of the ZSDD in Fig. 6.1(b) is 9. 2

6.3 A novel framework of top-down ZSDD

construction

We present a novel framework of top-down ZSDD construction. Our frame-
work is partially identical to that of Nishino et al.’s [78], but we modify it so

2The size of a ZDD is defined as the number of nodes. [8] This is because, every node of
a ZDD has exactly two children. In contrast, nodes of a ZSDD may have different number
of children, and thus the size of a ZSDD is defined as the number of arcs.

88

6.3. A NOVEL FRAMEWORK OF TOP-DOWN ZSDD
CONSTRUCTION

Algorithm 6.1: A top-down construction algorithm

input : A graph G = (V,E) and the root vtree node v
output : A ZSDD representing a set of subgraphs of G

1 Z[v]← rootState()
2 construct(v, Z)
3 Z ← reduce(Z)
4 return Z

Algorithm 6.2: construct(v, Z)

1 for z ∈ Z[v] do
2 elems← ∅
3 for (ml,mr) ∈ decomp(v, z) do
4 for ◦ ∈ {l, r} do
5 if v◦ is a leaf vnode then z◦ ← terminal(v◦,m◦)
6 else z◦ ← unique(v◦,m◦, Z)

7 elems← elems ∪
{

(zl, zr)
}

8 Set elems as the child znodes of z
9 for ◦ ∈ {l, r} do

10 if v◦ is an internal vnode then construct(v◦, Z)

that we can design algorithms easily for several constraints. Algorithm 6.1
shows the framework. The algorithm takes graph G and the root vnode as
its inputs and returns a ZSDD representing a set of subgraphs of G. Z[v]
stores a set of decomposition znodes that respect vnode v. Since a ZSDD is
represented as a set of decomposition znodes, the set of Z[v]’s for all internal
vnodes v can be seen as a ZSDD. The algorithm first calls rootState(), which
returns the root znode. The procedure depends on the types of subgraphs.
The algorithm next calls construct(v, Z), which recursively construct child
znodes of znodes respecting v. If we naively construct znodes, the number of
child znodes grows exponentially. We thus merge equivalent znodes during
the construction of a ZSDD. Here, two znodes are equivalent if they respect
the same vnode and represent the same family of sets. To detect equivalent
znodes efficiently, we attach a label to each znode. The labels must be de-
fined depending on the types of subgraphs so that two znodes are equivalent
if they respect the same vnode and have the same label. We explain how
to design labels in Section 6.4. The constructed ZSDD may have redundant
znodes. Function reduce(Z) deletes such znodes.

89

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

Algorithm 6.2 shows function construct(v, Z). The function is called only
for internal vnodes. In [78], the procedure of construct(v, Z) was designed
depending on whether vl is a leaf or not. Instead, we treat all internal
vnodes in the same way, which makes it easy to design algorithms for several
constraints. For each znode z in Z[v], the function calculates the prime-sub
pairs corresponding to z. We first initialize the set of prime-sub pairs elems
to the empty set (Line 2). Function decomp(v, z) receives vnode v and znode
z that respects v, and returns the set of pairs of labels corresponding to the
prime-sub pairs (Line 3). For each ◦ ∈ {l, r}, if v◦ is a leaf vnode, we set
znode z◦ to a terminal (Line 5). Function terminal(v,m) receives leaf vnode v
and label m, and returns an appropriate terminal depending on the types of
subgraphs. If v◦ is an internal vnode, we call unique(v,m,Z) (Line 6). The
function receives vnode v and label m, and checks whether Z[v] contains a
znode with label m. If such a znode exists, the function returns its address.
Otherwise, the function creates a new znode that respects v and has label
m, stores it into Z[v], and returns its address. We add the prime-sub pair
(zl, zr) into elems (Line 7). After generating all the prime-sub pairs, we set
elems as the child znodes of z (Line 8). Finally, for each ◦ ∈ {l, r} such
that v◦ is an internal vnode, we call construct(v◦, Z) to recursively construct
sub-ZSDDs (Lines 9–10).

The functions reduce(Z) and unique(v,m,Z) can be designed regardless
of the types of subgraphs [78]. In contrast, the definition of labels and the
procedures of rootState(), terminal(v,m), and decomp(v, z) heavily depend
on the types of subgraphs. To easily design them for several constraints, we
relate a recursive formula for the desired set of subgraphs to top-down ZSDD
construction. Intuitively, in our framework, internal vnodes correspond to
recursion steps, while leaf vnodes correspond to base cases. Therefore, we
only have to prove a recursive formula for the desired set of subgraphs. The
recursive formula directly leads to the definition of labels and the procedures
of subroutines. We can also show the correctness of the algorithm and the
bound of the constructed ZSDD size from the recursive formula.

6.4 Subroutines for several constraints

We apply our framework to three fundamental constraints: the number of
edges, degrees of vertices, and connectivity of vertices. By combining these
constraints, we can specify several types of subgraphs. For each constraint,

90

6.4. SUBROUTINES FOR SEVERAL CONSTRAINTS

we show a recursive formula for the set of subgraphs satisfying the constraint.
Using the recursive formula, we derive subroutines and bound the sizes of
constructed ZSDDs.

6.4.1 Cardinality

Given graph G = (V,E), vtree T whose leaves are labeled by the elements
of E, and non-negative integer k∗, we construct a ZSDD that represents
the family of sets with exactly k∗ elements. We can also construct a ZSDD
that represents the family of sets with at most or at least k∗ elements. In
the following, we focus on the “exactly k∗” constraint. For vnode v, let
E(v) ⊆ E be the set of graph edges that correspond to the leaf vnodes
of the sub-vtree whose root is v. For vnode v and non-negative integer
k, let f(v, k) be the family of subsets of E(v) with k elements, that is,
f(v, k) = {S | S ⊆ E(v), |S| = k}. The desired family is f(vroot, k∗), where
vroot is the root vnode of T . For leaf vnode v, `(v) denotes the element
corresponding to v. We show a recursive formula for f(v, k).

Lemma 6.1. Let v be a vnode, and k be a non-negative integer. If v is a
leaf vnode, then the following hold:

f(v, k) =

{∅} (k = 0),

{{`(v)}} (k = 1),

∅ (otherwise).

(6.4)

If v is internal, the following is an (E(vl), E(vr))-partition:

f(v, k) =
k⋃

i=0

[
f(vl, i) t f(vr, k − i)

]
. (6.5)

Using the recursive formula, we can design the subroutines of the frame-
work. In the following, we show the subroutines and proof the correctness
at the same time. We use non-negative integers as znode labels. For znode
z that respects vnode v, the label of z indicates the number of elements that
should be adopted from E(v). Function rootState() returns the root znode
with label k∗, since the desired family is f(vroot, k∗). Algorithm 6.3 shows
the subroutines terminal(v, k) and decomp(v, z). terminal(v, k) is obtained
from Eq. (6.4). If k = 0, it returns ε since 〈ε〉 = {∅} (Line 1). If k = 1, it

91

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

Algorithm 6.3: Subroutines for the cardinality constraint

Function : terminal(v, k)
1 if k = 0 then return ε
2 else if k = 1 then return `(v)
3 else return ⊥

Function : decomp(v, z)
4 elems← ∅
5 Let k be the label of z
6 for i ∈ [0, k] do
7 elems← elems ∪ {(i, k − i)}
8 return elems

(a) After
construct(v1, Z).

(b) After
construct(v2, Z).

(c) After
construct(v3, Z).

Figure 6.2: Intermediate ZSDDs for the cardinality constraint.

returns `(v) since 〈`(v)〉 = {{`(v)}} (Line 2). Otherwise, it returns ⊥ since
〈⊥〉 = ∅ (Line 3). Similarly, decomp(v, z) is obtained from Eq. (6.5). The
function initializes elems to the empty set (Line 4). Let k be the label of
z (Line 5). If the prime has label 0 ≤ i ≤ k, then the sub has label k − i.
Thus, we add the pair (i, k − i) to elems (Lines 6–7). Finally, we return
elems (Line 8). The correctness of the algorithm directly follows from the
correctness of Lemma 6.1.

Example 6.2. Let us construct a ZSDD that represents the family of subsets
of {A,B,C,D} with exactly two elements. We use the vtree in Fig. 6.1(a).
First, rootState() creates root znode z1 with label 2 and stores it into Z[v1].
The function then calls construct(v1, Z). Z[v1] contains only one znode z1.
Since z1 has label 2, decomp(v1, z1) returns {(0, 2), (1, 1), (2, 0)}. The func-
tion first processes label pair (0, 2). Since vl1 = v4 is a leaf vnode, the function
calls terminal(v4, 0), which returns ε. Since vr1 = v2 is not a leaf vnode, the
function calls unique(v2, 2, Z). It creates new decomposition znode z2 that

92

6.4. SUBROUTINES FOR SEVERAL CONSTRAINTS

(a) A graph. (b) Subgraphs.

Figure 6.3: A graph and its subgraphs satisfying a degree constraint.

respects v4 and has label 2, stores it into Z[v4], and returns its address. Sim-
ilarly, for label pair (1, 1), the corresponding prime-sub pair is calculated as
(B, z3), where z3 is a new decomposition znode that respects v2 and has label
1. As for label pair (2, 0), since the universe of the prime contains only one
element, we discard this pair. As a result, the function set the prime-sub
pairs (ε, z2) and (B, z3) as child znodes of z1. Fig. 6.2(a) shows the current
intermediate ZSDD. Since vl1 = v4 is a leaf vnode and vr1 = v2 is an internal
vnode, the function calls only construct(v2, Z).

We go on to construct(v2, Z). Z[v2] contains two znodes z2 and z3. The
function processes z2 first. Since z2 has label 2, decomp(v2, z2) returns
{(2, 0), (1, 1), (0, 2)}. However, (0, 2) is discarded because the universe of the
sub only contains one element. As a result, the prime-sub pairs are calcu-
lated as {(z4, ε), (z5, C)}, where z4 and z5 are new decomposition znodes that
respect v3. The labels of z4 and z5 are 2 and 1, respectively. The function
processes z3 next. decomp(v2, z3) returns {(1, 0), (0, 1)}. Here, znode z5 with
label 1 already exists in Z[v3], and thus unique(v3, 1, Z) returns z5. As a re-
sult, the set of prime-sub pairs is {(z5, ε), (z6, C)}, where z6 is a new znode
that respects v3 and has label 0. Fig. 6.2(b) shows the current intermediate
ZSDD. Finally, construct(v3, Z) is called and Fig. 6.2(c) shows the resulting
ZSDD. By calling reduce(Z), the ZSDD can be trimmed as Fig. 6.1(b).

Using Lemma 6.1, we can also bound the size of the constructed ZSDD.

Theorem 6.1. If α is the ZSDD obtained by Algorithm 6.3, the size of α is
O(|E|k2).

6.4.2 Degree

We denote a given degree constraint by function δ∗ : V → N, where N is the
set of non-negative integers. For subgraph S ⊆ E, we say that S satisfies
δ∗ if degS(u) = δ∗(u) holds for all u ∈ V . For example, for the graph

93

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

shown in Fig. 6.3(a) and degree constraint δ∗ such that δ∗(u1) = δ∗(u4) = 1
and δ∗(u2) = δ∗(u3) = 2, there are two subgraphs satisfying δ∗ as shown in
Fig. 6.3(b). Given G, T , and δ∗, we construct a ZSDD representing the set of
all subgraphs satisfying δ∗. When a subgraph satisfies δ∗, for every vertex u,
the degree of u in a subgraph must be “exactly” δ∗(u). Although we mainly
discuss this “exact” constraint, we can easily modify the algorithm to deal
with “at most” or “at least” constraints.

Similarly to Lemma 6.1, we show a recursive formula for the set of sub-
graphs satisfying the degree constraint. For vnode v, V (v) denotes the set
of vertices to which an edge in E(v) is incident. Let us consider a degree
constraint whose domain is limited to V (v) as function δ : V (v) → N. We
define f(v, δ) as the family of subsets of E(v) such that, for all u ∈ V (v)
and S ∈ f(v, δ), degree degS(u) equals δ(u). We show a recursive formula
for f(v, δ).

Lemma 6.2. Let v be a vnode, and δ be a function from V (v) to N. If v
is a leaf vnode, let u1 and u2 be the endpoints of graph edge `(v). Then, the
following hold:

f(v, δ) =

{∅} (δ(u1) = δ(u2) = 0),

{{`(v)}} (δ(u1) = δ(u2) = 1),

∅ (otherwise).

(6.6)

If v is internal, the following is an (E(vl), E(vr))-partition:

f(v, δ) =
⋃

(δl,δr)∈P (v,δ)

[f(vl, δl) t f(vr, δr)], (6.7)

where P (v, δ) is the set of pairs of functions δl : V (vl)→ N and δr : V (vr)→
N such that

∀u ∈ V (vl) ∩ V (vr), δl(u) + δr(u) = δ(u), (6.8)

∀u ∈ V (vl) \ V (vr), δl(u) = δ(u), (6.9)

∀u ∈ V (vr) \ V (vl), δr(u) = δ(u). (6.10)

For vnode v, the frontier of v is F (v) = V (vl) ∩ V (vr). Let us consider
the graph shown in Fig. 6.3(a) and the degree constraint δ∗, which we defined
above. For vnode v, let E(vl) = {A,B,C} and E(vr) = {D,E}. It follows

94

6.4. SUBROUTINES FOR SEVERAL CONSTRAINTS

(a) A graph. (b) Prime-sub pairs.

Figure 6.4: A graph and corresponding prime-sub pairs.

that F (v) is {u2, u3}. Fig. 6.4(a) shows the current situation. The set of red
(solid) and blue (dashed) edges are E(vl) and E(vr), respectively. The set of
vertices in the shaded area is F (v). We can interpret Eqs. (6.7) to (6.10) as
follows. For vertex u ∈ V (vl)\V (vr), δ(u) edges in E(vl) must be incident to
u, and thus δl(u) = δ(u) (Eq. (6.9)). A similar statement holds for vertices
in V (vr) \V (vl) (Eq. (6.10)). The remaining vertices are in F (v). For vertex
u ∈ F (v), both edges in E(vl) and E(vr) are incident to u. Here, we guess
how many edges in E(vl) are incident to u. This results in generating nine
prime-sub pairs, as shown in Fig. 6.4(b). We can construct the ZSDD by
recursively applying Lemma 6.2. Here we use δ as a label of a znode.

Let us analyze the sizes of ZSDDs constructed by our algorithm. The
width of a vtree is maxv∈in(T) V (vl)∩V (vr), where in(T) is the set of internal
vnodes.

Theorem 6.2. If α is the ZSDD representing f(vroot, δ∗) obtained by our
algorithm, the size of α is O(|E|d2W), where d = maxu∈V δ

∗(u) + 1 and W
is the width of the input vtree.

There exists a vtree whose width equals the branch-width of the graph [78].
Given such a vtree, the ZSDD size is O(|E|d2bw(G)), where bw(G) is the
branch-width of G.

6.4.3 Spanning tree

We construct a ZSDD representing the set of all spanning trees of G. With
a few modifications, we can also construct a ZSDD representing the set of
all connected subgraphs. We introduce some notation. If vertices u, u′ are

connected in subgraph S ⊆ E, we write u
S∼ u′. Note that

S∼ is an equivalence
relation on V ; an equivalence class (a set of vertices) is a connected component
of S. Two vertex subsets C,C ′ ⊆ V are connected if there exist u ∈ C and

95

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

u′ ∈ C ′ with u
S∼ u′; we write this as C

S∼ C ′. We also write u
S∼ C ′ if C

S∼ C ′

for C = {u}.
For vnode v, let C be a partition of vertex set F (v), that is, C = {C1, . . . , Cg}

where Ci ⊆ F (v) is a vertex set satisfying Ci ∩ Cj = ∅ for i 6= j and⋃g
i=1Ci = F (v). Let R = {R1, . . . , Rn} be a disjoint set family defined

over vertex sets in C, that is, Ri ⊆ C and Ri ∩ Rj = ∅ for all i 6= j. Let
U(R) = {C | ∃i : C ∈ Ri}. Function Same(R, C, C ′) returns true if there
exists Ri ∈ R such that C,C ′ ∈ Ri, otherwise false. To represent the set
of all spanning trees, we define f(v, C,R) as the set of subgraphs S ⊆ E(v)
satisfying the following:

• for every C1, C2 ∈ U(R), C1
S∼ C2 holds if and only if Same(R, C1, C2) =

true,

• for every C ∈ C \ U(R), there exists a unique C ′ ∈ U(R) such that

C
S∼ C ′. Similarly, for every u ∈ V (v) \ F (v), there exists a unique

C ′ ∈ U(R) such that u
S∼ C ′, and

• S does not contain a cycle.

Intuitively, C represents the sets of equivalent vertices. That is, vertices in
the same vertex group C ∈ C are regarded to be connected. R represents
the connectivity constraints over such equivalent sets of vertices. The first
condition above requires that two vertex subsets C and C ′ must be connected
in S if and only if they appear in the same R ∈ R. The second condition
requires that, every equivalent vertex subset appearing in V (v) but does
not appear in R must be connected to a vertex subset C ′ appearing in R.
The third condition is for acyclicity. The set of all spanning trees of G
is f(vroot, C∗,R∗), where C∗ = {{u} | u ∈ F (vroot)} and R∗ = {{C}} for
an arbitrary C ∈ C∗ since initially there are no equivalent vertices and all
vertices must be connected to form a spanning tree.

Unfortunately, it is quite complicated to show a recursive formula for
f(v, C,R) and prove it theoretically. Thus, we show pseudo-code of subrou-
tines and explain the behavior using an example. We use (C,R) as a znode
label. rootState() returns the root znode label (C∗,R∗). Algorithm 6.4 shows
functions terminal(v, (C,R)) and decomp(v, z). terminal(v, (C,R)) returns an
appropriate terminal with respect to the label of z. Let u1 and u2 be the
endpoints of edge `(v). We first consider the case that u1 and u2 are con-
tained in the same vertex group C ∈ C (Lines 2–4). If C 6∈ U(R), C must

96

6.4. SUBROUTINES FOR SEVERAL CONSTRAINTS

Algorithm 6.4: Subroutines for spanning trees

Function : terminal(v, (C,R))
1 Let u1 and u2 be the endpoints of the graph edge `(v)
2 if Same(C, u1, u2) = True then
3 Let C ∈ C be the set containing u1 and u2
4 if C ∈ U(R) then return ε else return ⊥
5 else
6 Let C1, C2 ∈ C be the sets containing u1 and u2, respectively
7 if neither C1 nor C2 is in U(R) then return ⊥
8 else if exactly one of C1 or C2 is in U(R) then return `(v)
9 else

10 if Same(R, C1, C2) = True then return `(v) else return ε

Function : decomp(v, z)
11 elems← ∅
12 Let (C,R) be the label of z

13 Cl ←
{
C ∩ F (vl)

∣∣ C ∈ C, C ∩ F (vl) 6= ∅
}
∪
{
{u}

∣∣ u ∈ F (vl) \ F (v)
}

14 for Rl ∈ enumPartition(Cl) do
15 if isCompatible(C,R,Rl) = True then
16 Cr,Rr ← calcSubState(C,R,Rl)
17 elems← elems ∪

{
((Cl,Rl), (Cr,Rr))

}

be connected to some C ′ ∈ U(R). However, now we have C = {C}, and
thus there is no such C ′. Therefore, we return ⊥. If C ∈ U(R), to avoid
generating a cycle, we must not adopt edge `(v). Thus we return ε. We next
consider the case that u1 and u2 are contained in different sets C1, C2 ∈ C
(Lines 5–10). If neither C1 nor C2 appear in constraints R, they must be
connected to some C ′ ∈ U(R), but there are no such C ′. Thus we return ⊥
(Line 7). If either of C1 or C2 appears in R, the unconstrained one must be
connected with the other one, which has a constraint in R. Thus we return
`(v) (Line 8). If both C1 and C2 appear in R, we return the corresponding
terminal depending on whether they appear in the same Ri ∈ R or not. If
so, edge `(v) must be adopted, and thus we return `(v). Otherwise, the edge
must not be adopted, and thus we return ε (Lines 9–10).

We go on to decomp(v, z). We first enumerate all possible set of con-
straints Rl of the prime. Since Rl is a partition of vertex groups C, function
enumPartition(Cl) enumerates all partitions of Cl. There may be partitions
of Cl that are not compatible with (C,R); If C1 ∈ Ri and C2 ∈ Rj for

97

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

Ri, Rj ∈ R where i 6= j, they must not appear in the same R ∈ Rl. In
addition, for every constraint R ∈ Rl, a vertex in F (vl) must appear in
some C ∈ R in order to obtain a spanning tree. If both conditions are sat-
isfied, Rl is compatible with (C,R). Function isCompatible(C,R,Rl) returns
True if Rl is compatible with (C,R), otherwise False. calcSubState(C,R,Rl)
calculates Cr and Rr from its arguments. Intuitively, Cr and Rr are ob-
tained by updating equivalent vertex groups in C by assuming constraints
in Rl are satisfied. Let us give an example. Fig. 6.5(a) shows a label
and Fig. 6.5(b) shows the corresponding prime-sub pairs. Five vertices
u1, . . . , u5 are on the frontier. We assume F (vl) = F (vr) = F (v) in this
example. In Fig. 6.5(a), the vertices are partitioned into three equiva-
lency groups C = {C1, C2, C3}, where C1 = {u1, u2}, C2 = {u3, u4}, and
C3 = {u5}. C is further partitioned into R = {{C1} , {C2, C3}}. C and
R are depicted by solid and dashed rectangles, respectively. There are
only two Rl’s that are compatible with (C,R): Rl

1 = {{C1} , {C2} , {C3}}
and Rl

2 = {{C1} , {C2, C3}}. calcSubState(C,R,Rl
1) returns (Cr1 ,Rr

1), where
Cr1 = {C1, C2, C3} and Rr

1 = {{C1} , {C2, C3}}. calcSubState(C,R,Rl
2) re-

turns (Cr2 ,Rr
2), where Cr2 = {C1, C4},Rr

2 = {{C1} , {C4}}, and C4 = C2∪C3 =
{u3, u4, u5}.

Finally, the following theorem states the bound of constructed ZSDD size.

Theorem 6.3. If α is a ZSDD representing the set of all spanning trees
constructed by our top-down algorithm, the size of α is O(|E|W 3W), where
W is the width of the vtree.

As discussed in Section 6.4.2, there exists a vtree whose width equals the
branch-width of the graph. Given such a vtree, the size of a constructed
ZSDD is O(|E|bw(G)3bw(G)).

6.5 Experiments

We conduct experiments to evaluate the performance of the proposed top-
down construction algorithms for ZSDDs in the same way as an existing
paper [78]. The vtrees for ZSDDs are obtained by a practical algorithm to
find a branch decomposition with a small width [80]. To implement the top-
down algorithm for ZDDs, we use the top-down algorithm for ZSDDs with
a limitation that vtrees must be right-linear. Here, a vtree is right-linear

98

6.5. EXPERIMENTS

(a) A state. (b) Prime-sub pairs.

Figure 6.5: Label of the connectivity constraint and corresponding prime-sub
pairs.

if, for every internal vnode, its left child is a leaf. Since there is a one-to-
one correspondence between ZDDs with ZSDDs using right-linear vtrees, by
inputting right-linear vtrees, we can simulate ZDD construction. We use
two element orders for ZDDs. The first one uses the order obtained by a
breadth-first traversal of input graphs, as is used in graphillion [63], a library
that implements a top-down construction algorithm for ZDDs. The other one
uses the order induced from the vtrees used in the proposed method. Here
we say an order is induced if a left-right traversal of a vtree gives the visiting
order of variables [81]. We use the benchmark graphs of [78]: TSPLIB and
RomeGraph. We constructed ZSDDs representing two types of subgraphs:
1) maximum degree at most two and 2) spanning trees. All code was written
in C++ and compiled by g++-5.4.0 with -O3 option. All experiments were
conducted on a machine with Intel Xeon W-2133 3.60 GHz CPU and 256 GB
RAM.

Tables 6.1 and 6.2 show the results. In the tables, TD means the proposed
method. Z(b) and Z(v) indicate top-down methods for ZDDs that employ
breadth-first ordering and vtree traversing ordering, respectively. The empty
fields indicate failure to complete within 600 seconds. We omit the instances
for which all the methods finished within a second and at most one method
finished within 600 seconds. In almost all cases, TD ran fastest and the
sizes of ZSDDs are smaller than those of ZDDs. For example, for spanning
trees (Table 6.2), the time of TD is up to 7898 times faster than Z(b), and
188 times faster than Z(v). The size of TD is up to 476 times smaller than
Z(b) and 73 times smaller than Z(v). These results show the efficiency of
our method. Using constructed ZDDs and ZSDDs, we can also enumerate
subgraphs explicitly in polynomial time per subgraph [8, 49].

99

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

Table 6.1: Results of constructing ZSDDs and ZDDs representing the set of
all subgraphs whose maximum degrees are at most 2.

Time (ms) Size
instance |V | |E| TD Z(b) Z(v) TD Z(b) Z(v)
att48 48 130 381 6801 2291 194786 1065745 507169
berlin52 52 145 1021 - 36354 807660 - 5229861
eil51 51 142 1012 247736 46524 774280 27277682 5974875
grafo10106 100 119 5 2617 16 2658 15461 7529
grafo10124 100 139 9237 - 40842 3060950 - 3283397
grafo10153 100 136 3784 - 4658 832943 - 561283
grafo10183 100 132 132 - 157837 80127 - 4088915
grafo10184 100 140 4981 - 119366 1006210 - 2002968
grafo10204 100 148 156529 - 303366 15712819 - 19847326
grafo10223 100 135 863 - 5956 330554 - 826121

6.6 Conclusion

We have proposed a novel framework of algorithms for top-down ZSDD con-
struction. We have shown the solid subroutines for three fundamental con-
straints: the number of edges, degree of vertices, and connectivity of ver-
tices. We have shown the sizes of constructed ZSDDs can be bounded by the
branch-width of the input graph. Experiments confirmed the efficiency of our
method. Using Apply operations, we can combine several constraints. For
example, we can extract connected subgraphs from ZSDD α by construct-
ing ZSDD β representing the set of all connected subgraphs and computing
α∩β. We believe that our framework can be used to solve various real-world
problems.

100

6.6. CONCLUSION

Table 6.2: Results of constructing ZSDDs and ZDDs representing the set of
all spanning trees.

Time (ms) Size
instance |V | |E| TD Z(b) Z(v) TD Z(b) Z(v)
att48 48 130 3494 103871 3005 279613 5098205 387715
berlin52 52 145 11826 - 62706 937746 - 3194017
eil51 51 142 25828 - 94272 838254 - 7178190
ulysses22 22 56 39 3391 65 3036 520035 16762
grafo10106 100 119 28 221161 53 1756 836212 4057
grafo10183 100 132 2866 - 538878 224373 - 16414697
grafo10223 100 135 48563 - 128097 1009299 - 7313087
grafo10248 100 126 301 195249 672 16524 1617024 47605

101

CHAPTER 6. FRONTIER-BASED SEARCH FOR ZSDDS

102

Chapter 7

Conclusions and Future
Directions

In this thesis, we have proposed implicit enumeration algorithms of sub-
graphs. Below we conclude this thesis by summarizing each contribution
and suggesting future work for the contribution. We also show future direc-
tions of this research area.

Chapter 3: Evacuation Planning for General Graphs. We have dealt
with the evacuation planning problem. We reformulated the convexity of
components as spanning shortest path forests (SSPFs) to deal with general
graphs and have proposed an algorithm to construct a ZDD representing a set
of SSPFs. We have also proposed algorithms to deal with the distance and
capacity constraints efficiently. As shown in experimental results using real-
world map data, the proposed algorithm can construct ZDDs in a few minutes
for input graphs with hundreds of edges. As future work, it is important to
consider new constraints such as the reliability of roads.

Chapter 4: Balanced Graph Partition. We have proposed an algo-
rithm to construct a ZDD representing all the graph partitions such that all
the weights of its connected components are at least a given value. As shown
in the experimental results, the proposed algorithm has succeeded in con-
structing a ZDD representing a set of more than 1012 graph partitions in ten
seconds, which is 30 times faster than the existing state-of-the-art algorithm.
Future work is devising a more memory efficient algorithm that enables us
to deal with larger graphs, that is, graphs with hundreds of vertices. It is

103

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

also important to seek for efficient algorithms to deal with other constraints
on weights such that the ratio of the maximum and the minimum of weights
is at most a specified value.

Chapter 5: Planar Subgraph Enumeration. Given graphs G and
H, we have shown a method to implicitly enumerate topological-minor-
embeddings of H in G using decision diagrams. We also have shown a useful
application of our method to enumerating subgraphs characterized by for-
bidden topological minors, including planar, outerplanar, series-parallel, and
cactus subgraphs. Computational experiments show that our method can
find all planar subgraphs up to 122,544 times faster than a naive backtracking-
based method and could solve more problems than the backtracking-based
method. We have applied our method also for outerplanar, series-parallel,
and cactus subgraphs. Future work is extending our method from topological
minors to general minors.

Chapter 6: Frontier-based search for ZSDDs. We have proposed a
novel framework of algorithms for top-down ZSDD construction. We have
shown the solid subroutines for three fundamental constraints: the number
of edges, degree of vertices, and connectivity of vertices. We have shown the
sizes of constructed ZSDDs can be bounded by the branch-width of the input
graph. Experiments confirmed the efficiency of our method. Using Apply
operations, we can combine several constraints. For example, we can extract
connected subgraphs from ZSDD α by constructing ZSDD β representing the
set of all connected subgraphs and computing α ∩ β. We believe that our
framework can be used to solve various real-world problems.

Open problems. We show the conclusion and future work of this thesis.
In this thesis, we have proposed implicit enumeration algorithms to solve the
problems more efficiently and generalize the types of subgraphs that can be
enumerated. As for efficiency, although we have proposed a more efficient
algorithm than the existing one for a specific problem (the balanced graph
partitioning in Chapter 4), in general, the sizes of input graphs that can be
dealt with by DDs are limited to small. We suggest a direction towards larger
graphs in the next section.

As for generality, ZDDs can enumerate a wide range of subgraphs hav-
ing forbidden graph characterization. Three types of patterns are mainly

104

used for the characterization: subgraphs, induced subgraphs, and minors.
For subgraphs, the inclusion relationship can be written as family algebra,
and thus can be dealt with by ZDDs. For induced subgraphs, the inclusion
relationship is more complicated, but there is an algorithm for them [72].
We have proposed an algorithm for (topological) minors in Chapter 5. We
also can enumerate subgraphs without forbidden graph characterization such
as spanning shortest path forests (Chapter 3). As for ZSDDs, although we
have extended the types of subgraphs from matchings and paths to subgraphs
with the degree and connectivity constraints (Chapter 6), there are no known
methods to deal with induced subgraphs and minors.

Future directions

We show future directions of this research area.

Multiple DDs for one input graph. In implicit enumeration, the output
is a single DD representing a set of subgraphs of a given graph. However,
when the size of the output DD is too large, we cannot obtain any result due
to memory shortage. As a result, we can deal only with graphs of relatively
small sizes, say, graphs with a hundred edges. To deal with larger graphs,
we consider representing the output by multiple DDs. First, we partition
the input graph into some components. Next, we construct a DD for each
component. The results are obtained by combining the results from each
DD. In this approach, the size of each DD can be smaller than when the
output is a single DD. In addition, multiple DDs can be stored in a compact
way using shared-BDD [34] and variable shifting technique [82]. Technical
difficulties are how to partition a graph and how to combine the results from
multiple DDs.

DDs for dense input graphs. It is important to devise a new DD whose
size can be small for dense graphs. As we have seen in Section 5.4, we can
deal with sparse king graphs X3,b with thousands of edges while we were only
able to dense complete graphs Kn for n ≤ 10. It is known that, given a graph,
the size of a DD representing a set of subgraphs can be bounded by a graph
parameter of the input graph. The size of a ZDD and a ZSDD are bounded by
the path-width an the branch-width of the input graph, respectively. These

105

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

parameters are small when the graph is sparse. In contrast, the clique-
width [83] is a parameter that can be small not only for sparse graphs but
also for dense graphs. If we devise a new DD whose size can be bounded by
the clique-width, we can deal with dense graphs efficiently.

DDs specialized for graphs. DDs are data structures for general set fam-
ilies. By identifying an edge set with the edge-induced subgraph, we can use
DDs to represent a set of subgraphs. Although this interpretation is useful,
there is a possibility that we can design DDs specialized for representing sets
of subgraphs, not general set families. If we design such a DD, the size will
become smaller than a general DD and we can use queries that are specific
to graphs. For example, in Chapter 4, we used TDDs as intermediate data
structures to design connected component operation in ZDDs. As another
example, to extract subgraphs such that specified two vertices s and t are
connected from a ZDD, we need another ZDD representing the set of s-t paths
and use restrict operation, which does not have a polynomial-time guarantee.
By designing DDs specialized for graphs, we may be able to support such
queries in polynomial time. It will be useful for graph-related applications.

106

Bibliography

[1] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari.
Sublinear-space bounded-delay enumeration for massive network ana-
lytics: Maximal cliques. In Ioannis Chatzigiannakis, Michael Mitzen-
macher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016,
July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 148:1–148:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

[2] Etienne Birmelé, Rui A. Ferreira, Roberto Grossi, Andrea Marino, Na-
dia Pisanti, Romeo Rizzi, and Gustavo Sacomoto. Optimal listing of
cycles and st-paths in undirected graphs. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, Jan-
uary 6-8, 2013, pages 1884–1896. SIAM, 2013.

[3] Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal al-
gorithm for scanning all spanning trees of undirected graphs. SIAM J.
Comput., 26(3):678–692, 1997.

[4] Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato.
Frontier-based search for enumerating all constrained subgraphs with
compressed representation. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., 100-A(9):1773–1784, 2017.

[5] Donald E. Knuth. The art of computer programming, Vol. 4A, Combi-
natorial algorithms, Part 1. Addison-Wesley Professional, 1st edition,
2011.

[6] Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the Tutte
polynomial of a graph of moderate size. In John Staples, Peter Eades,

107

Naoki Katoh, and Alistair Moffat, editors, Algorithms and Computation,
6th International Symposium, ISAAC ’95, Cairns, Australia, December
4-6, 1995, Proceedings, volume 1004 of Lecture Notes in Computer Sci-
ence, pages 224–233. Springer, 1995.

[7] Randal E. Bryant. Graph-based algorithms for boolean function manip-
ulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[8] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combi-
natorial problems. In Alfred E. Dunlop, editor, Proceedings of the 30th
Design Automation Conference. Dallas, Texas, USA, June 14-18, 1993,
pages 272–277. ACM Press, 1993.

[9] David Eppstein. Finding the k shortest paths. SIAM J. Comput.,
28(2):652–673, 1998.

[10] Ronald C. Read and Robert E. Tarjan. Bounds on backtrack algorithms
for listing cycles, paths, and spanning trees. Networks, 5(3):237–252,
1975.

[11] Rui A. Ferreira, Roberto Grossi, Romeo Rizzi, Gustavo Sacomoto, and
Marie-France Sagot. Amortized Õ(|V |)-delay algorithm for listing chord-
less cycles in undirected graphs. In Andreas S. Schulz and Dorothea
Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Sym-
posium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume
8737 of Lecture Notes in Computer Science, pages 418–429. Springer,
2014.

[12] Takeaki Uno and Hiroko Satoh. An efficient algorithm for enumerating
chordless cycles and chordless paths. In Saso Dzeroski, Pance Panov,
Dragi Kocev, and Ljupco Todorovski, editors, Discovery Science - 17th
International Conference, DS 2014, Bled, Slovenia, October 8-10, 2014.
Proceedings, volume 8777 of Lecture Notes in Computer Science, pages
313–324. Springer, 2014.

[13] Takeo Yamada, Seiji Kataoka, and Kohtaro Watanabe. Listing all the
minimum spanning trees in an undirected graph. Int. J. Comput. Math.,
87(14):3175–3185, 2010.

[14] Takeaki Uno. Algorithms for enumerating all perfect, maximum and
maximal matchings in bipartite graphs. In Hon Wai Leong, Hiroshi

108

Imai, and Sanjay Jain, editors, Algorithms and Computation, 8th In-
ternational Symposium, ISAAC ’97, Singapore, December 17-19, 1997,
Proceedings, volume 1350 of Lecture Notes in Computer Science, pages
92–101. Springer, 1997.

[15] Takeaki Uno. A fast algorithm for enumerating bipartite perfect match-
ings. In Peter Eades and Tadao Takaoka, editors, Algorithms and Com-
putation, 12th International Symposium, ISAAC 2001, Christchurch,
New Zealand, December 19-21, 2001, Proceedings, volume 2223 of Lec-
ture Notes in Computer Science, pages 367–379. Springer, 2001.

[16] Manu Basavaraju, Pinar Heggernes, Pim van ’t Hof, Reza Saei, and
Yngve Villanger. Maximal induced matchings in triangle-free graphs.
In Dieter Kratsch and Ioan Todinca, editors, Graph-Theoretic Concepts
in Computer Science - 40th International Workshop, WG 2014, Nouan-
le-Fuzelier, France, June 25-27, 2014. Revised Selected Papers, volume
8747 of Lecture Notes in Computer Science, pages 93–104. Springer,
2014.

[17] Kazuhiro Kurita, Kunihiro Wasa, Takeaki Uno, and Hiroki Arimura.
Efficient enumeration of induced matchings in a graph without cycles
with length four. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., 101-A(9):1383–1391, 2018.

[18] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maxi-
mal cliques in sparse graphs in near-optimal time. In Otfried Cheong,
Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and Compu-
tation - 21st International Symposium, ISAAC 2010, Jeju Island, Ko-
rea, December 15-17, 2010, Proceedings, Part I, volume 6506 of Lecture
Notes in Computer Science, pages 403–414. Springer, 2010.

[19] Christopher J. Henry and Sheela Ramanna. Maximal clique enumera-
tion in finding near neighbourhoods. Trans. on Rough Sets XVI, page
103–124, 2013.

[20] Carla D. Savage. A survey of combinatorial Gray codes. SIAM Rev.,
39(4):605–629, 1997.

[21] David Avis and Komei Fukuda. Reverse search for enumeration. Discret.
Appl. Math., 65(1-3):21–46, 1996.

109

[22] C. Y. Lee. Representation of switching circuits by binary-decision pro-
grams. The Bell System Technical Journal, 38(4):985–999, 1959.

[23] Sheldon B. Akers. Binary decision diagrams. IEEE Trans. Computers,
27(6):509–516, 1978.

[24] Masahiro Fujita, Hisanori Fujisawa, and Nobuaki Kawato. Evaluation
and improvement of boolean comparison method based on binary deci-
sion diagrams. In 1988 IEEE International Conference on Computer-
Aided Design, ICCAD 1988, Santa Clara, CA, USA, November 7-10,
1988. Digest of Technical Papers, pages 2–5. IEEE Computer Society,
1988.

[25] Sharad Malik, Albert R. Wang, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Logic verification using binary decision dia-
grams in a logic synthesis environment. In 1988 IEEE International
Conference on Computer-Aided Design, ICCAD 1988, Santa Clara, CA,
USA, November 7-10, 1988. Digest of Technical Papers, pages 6–9. IEEE
Computer Society, 1988.

[26] Olivier Coudert and Jean Christophe Madre. A unified framework for
the formal verification of sequential circuits. In IEEE/ACM Inter-
national Conference on Computer-Aided Design, ICCAD 1990, Santa
Clara, CA, USA, November 11-15, 1990. Digest of Technical Papers,
pages 126–129. IEEE Computer Society, 1990.

[27] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, and David L.
Dill. Sequential circuit verification using symbolic model checking. In
Richard C. Smith, editor, Proceedings of the 27th ACM/IEEE Design
Automation Conference. Orlando, Florida, USA, June 24-28, 1990,
pages 46–51. IEEE Computer Society Press, 1990.

[28] Yusuke Matsunaga and Masahiro Fujita. Multi-level logic optimization
using binary decision diagrams. In 1989 IEEE International Confer-
ence on Computer-Aided Design, ICCAD 1989, Santa Clara, CA, USA,
November 5-9, 1989. Digest of Technical Papers, pages 556–559. IEEE
Computer Society, 1989.

[29] Rolf Drechsler, Nicole Drechsler, and Wolfgang Günther. Fast exact
minimization of BDDs. In Basant R. Chawla, Randal E. Bryant, and

110

Jan M. Rabaey, editors, Proceedings of the 35th Conference on Design
Automation, Moscone center, San Francico, California, USA, June 15-
19, 1998, pages 200–205. ACM Press, 1998.

[30] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable
ordering of binary decision diagrams for the application of multi-level
logic synthesis. In Tony Ambler, Jochen A. G. Jess, and Hugo De Man,
editors, Proceedings of the conference on European design automation,
EURO-DAC’91, Amsterdam, The Netherlands, 1991, pages 50–54. EEE
Computer Society, 1991.

[31] Richard Rudell. Dynamic variable ordering for ordered binary deci-
sion diagrams. In Michael R. Lightner and Jochen A. G. Jess, edi-
tors, Proceedings of the 1993 IEEE/ACM International Conference on
Computer-Aided Design, 1993, Santa Clara, California, USA, November
7-11, 1993, pages 42–47. IEEE Computer Society / ACM, 1993.

[32] Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complex-
ity of the optimal variable ordering problems of shared binary decision
diagrams. In Kam-Wing Ng, Prabhakar Raghavan, N. V. Balasubra-
manian, and Francis Y. L. Chin, editors, Algorithms and Computation,
4th International Symposium, ISAAC ’93, Hong Kong, December 15-17,
1993, Proceedings, volume 762 of Lecture Notes in Computer Science,
pages 389–398. Springer, 1993.

[33] Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient imple-
mentation of a BDD package. In Richard C. Smith, editor, Proceedings of
the 27th ACM/IEEE Design Automation Conference. Orlando, Florida,
USA, June 24-28, 1990, pages 40–45. IEEE Computer Society Press,
1990.

[34] Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary
decision diagram with attributed edges for efficient boolean function
manipulation. In Richard C. Smith, editor, Proceedings of the 27th
ACM/IEEE Design Automation Conference. Orlando, Florida, USA,
June 24-28, 1990, pages 52–57. IEEE Computer Society Press, 1990.

[35] Elsa Loekito and James Bailey. Fast mining of high dimensional expres-
sive contrast patterns using zero-suppressed binary decision diagrams. In

111

Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunop-
ulos, editors, Proceedings of the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia,
PA, USA, August 20-23, 2006, pages 307–316. ACM, 2006.

[36] Shin-ichi Minato and Hiroki Arimura. Frequent pattern mining and
knowledge indexing based on zero-suppressed BDDs. In Saso Dzeroski
and Jan Struyf, editors, Knowledge Discovery in Inductive Databases,
5th International Workshop, KDID 2006, Berlin, Germany, September
18, 2006, Revised Selected and Invited Papers, volume 4747 of Lecture
Notes in Computer Science, pages 152–169. Springer, 2006.

[37] Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura. LCM over ZB-
DDs: Fast generation of very large-scale frequent itemsets using a com-
pact graph-based representation. In Takashi Washio, Einoshin Suzuki,
Kai Ming Ting, and Akihiro Inokuchi, editors, Advances in Knowl-
edge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD
2008, Osaka, Japan, May 20-23, 2008 Proceedings, volume 5012 of Lec-
ture Notes in Computer Science, pages 234–246. Springer, 2008.

[38] Yuko Sakurai, Suguru Ueda, Atsushi Iwasaki, Shin-ichi Minato, and
Makoto Yokoo. A compact representation scheme of coalitional games
based on multi-terminal zero-suppressed binary decision diagrams. In
David Kinny, Jane Yung-jen Hsu, Guido Governatori, and Aditya K.
Ghose, editors, Agents in Principle, Agents in Practice - 14th Inter-
national Conference, PRIMA 2011, Wollongong, Australia, November
16-18, 2011. Proceedings, volume 7047 of Lecture Notes in Computer
Science, pages 4–18. Springer, 2011.

[39] Olivier Coudert. Solving graph optimization problems with ZBDDs.
In European Design and Test Conference, ED&TC ’97, Paris, France,
17-20 March 1997, pages 224–228. IEEE Computer Society, 1997.

[40] David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N.
Hooker. Decision Diagrams for Optimization. Artificial Intelligence:
Foundations, Theory, and Algorithms. Springer, 2016.

[41] Shinsaku Sakaue, Masakazu Ishihata, and Shin-ichi Minato. Efficient
bandit combinatorial optimization algorithm with zero-suppressed bi-
nary decision diagrams. In Amos J. Storkey and Fernando Pérez-Cruz,

112

editors, International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary
Islands, Spain, volume 84 of Proceedings of Machine Learning Research,
pages 585–594. PMLR, 2018.

[42] Shinsaku Sakaue. Online, Submodular, and Polynomial Optimization
with Discrete Structures. PhD thesis, Kyoto University, March 2020.

[43] Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram
based approach for mining frequent subsequences. Knowl. Inf. Syst.,
24(2):235–268, 2010.

[44] Shin-ichi Minato. πDD: A new decision diagram for efficient problem
solving in permutation space. In Karem A. Sakallah and Laurent Simon,
editors, Theory and Applications of Satisfiability Testing - SAT 2011 -
14th International Conference, SAT 2011, Ann Arbor, MI, USA, June
19-22, 2011. Proceedings, volume 6695 of Lecture Notes in Computer
Science, pages 90–104. Springer, 2011.

[45] Yuma Inoue and Shin-ichi Minato. An efficient method for indexing all
topological orders of a directed graph. In Hee-Kap Ahn and Chan-Su
Shin, editors, Algorithms and Computation - 25th International Sym-
posium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceed-
ings, volume 8889 of Lecture Notes in Computer Science, pages 103–114.
Springer, 2014.

[46] Takanori Maehara and Yuma Inoue. Group decision diagram (GDD):
A compact representation for permutations. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First In-
novative Applications of Artificial Intelligence Conference, IAAI 2019,
The Ninth AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pages 2986–2994. AAAI Press, 2019.

[47] Arvind Srinivasan, Timothy Kam, Sharad Malik, and Robert K. Bray-
ton. Algorithms for discrete function manipulation. In IEEE/ACM In-
ternational Conference on Computer-Aided Design, ICCAD 1990, Santa
Clara, CA, USA, November 11-15, 1990. Digest of Technical Papers,
pages 92–95. IEEE Computer Society, 1990.

113

[48] Adnan Darwiche. SDD: A new canonical representation of proposi-
tional knowledge bases. In Toby Walsh, editor, IJCAI 2011, Proceed-
ings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 819–826.
IJCAI/AAAI, 2011.

[49] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Na-
gata. Zero-suppressed sentential decision diagrams. In Dale Schuurmans
and Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pages 1058–1066. AAAI Press, 2016.

[50] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J.
Artif. Intell. Res., 17:229–264, 2002.

[51] Hiroshi Imai, Kyoko Sekine, and Keiko Imai. Computational investiga-
tions of all-terminal network reliability via BDDs. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sci-
ences, E82-A:714–721, 1999.

[52] Gary Hardy, Corinne Lucet, and Nikolaos Limnios. K-terminal network
reliability measures with binary decision diagrams. IEEE Trans. Reliab.,
56(3):506–515, 2007.

[53] Takeru Inoue. Reliability analysis for disjoint paths. IEEE Trans. Re-
liab., 68(3):985–998, 2019.

[54] Hirofumi Suzuki, Masakazu Ishihata, and Shin-ichi Minato. Exact com-
putation of strongly connected reliability by binary decision diagrams. In
Donghyun Kim, R. N. Uma, and Alexander Zelikovsky, editors, Combi-
natorial Optimization and Applications - 12th International Conference,
COCOA 2018, Atlanta, GA, USA, December 15-17, 2018, Proceedings,
volume 11346 of Lecture Notes in Computer Science, pages 281–295.
Springer, 2018.

[55] Jun Kawahara, Koki Sonoda, Takeru Inoue, and Shoji Kasahara. Ef-
ficient construction of binary decision diagrams for network reliability
with imperfect vertices. Reliab. Eng. Syst. Saf., 188:142–154, 2019.

[56] Leslie G. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM J. Comput., 8(3):410–421, 1979.

114

[57] Takeru Inoue, Keiji Takano, Takayuki Watanabe, Jun Kawahara, Ryo
Yoshinaka, Akihiro Kishimoto, Koji Tsuda, Shin-ichi Minato, and Ya-
suhiro Hayashi. Distribution loss minimization with guaranteed error
bound. IEEE Trans. Smart Grid, 5(1):102–111, 2014.

[58] Takanori Maehara, Hirofumi Suzuki, and Masakazu Ishihata. Exact
computation of influence spread by binary decision diagrams. In Rick
Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich,
editors, Proceedings of the 26th International Conference on World Wide
Web, WWW 2017, Perth, Australia, April 3-7, 2017, pages 947–956.
ACM, 2017.

[59] Atsushi Takizawa, Yasufumi Takechi, Akio Ohta, Naoki Katoh, Takeru
Inoue, Takashi Horiyama, Jun Kawahara, and Shin-ichi Minato. Enu-
meration of region partitioning for evacuation planning based on ZDD.
In Proc. of the 11th International Symposium on Operations Research
and its Applications in Engineering, Technology and Management 2013
(ISORA 2013), 2013.

[60] Jun Kawahara, Takashi Horiyama, Keisuke Hotta, and Shin-ichi Minato.
Generating all patterns of graph partitions within a disparity bound. In
Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors,
WALCOM: Algorithms and Computation, 11th International Confer-
ence and Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31,
2017, Proceedings, volume 10167 of Lecture Notes in Computer Science,
pages 119–131. Springer, 2017.

[61] Jun Kawahara, Toshiki Saitoh, Hirofumi Suzuki, and Ryo Yoshi-
naka. Solving the longest oneway-ticket problem and enumerating letter
graphs by augmenting the two representative approaches with ZDDs.
In Computational Intelligence in Information Systems, pages 294–305,
2017.

[62] Ryo Yoshinaka, Toshiki Saitoh, Jun Kawahara, Koji Tsuruma, Hiroaki
Iwashita, and Shin-ichi Minato. Finding all solutions and instances of
numberlink and slitherlink by ZDDs. Algorithms, 5(2):176–213, 2012.

[63] Takeru Inoue, Hiroaki Iwashita, Jun Kawahara, and Shin-ichi Minato.
Graphillion: software library for very large sets of labeled graphs. Int.
J. Softw. Tools Technol. Transf., 18(1):57–66, 2016.

115

[64] Yuma Inoue and Shin-ichi Minato. Acceleration of ZDD construction for
subgraph enumeration via path-width optimization. TCS-TR-A-16-80.
Hokkaido University, 2016.

[65] Simone Bova. SDDs are exponentially more succinct than OBDDs. In
Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, pages 929–935. AAAI Press, 2016.

[66] Beate Bollig and Ingo Wegener. Improving the variable ordering of
OBDDs is NP-complete. IEEE Trans. Computers, 45(9):993–1002, 1996.

[67] Ryo Yoshinaka, Jun Kawahara, Shuhei Denzumi, Hiroki Arimura, and
Shin-ichi Minato. Counterexamples to the long-standing conjecture
on the complexity of BDD binary operations. Inf. Process. Lett.,
112(16):636–640, 2012.

[68] Danny Z. Chen, Jinhee Chun, Naoki Katoh, and Takeshi Tokuyama. Ef-
ficient algorithms for approximating a multi-dimensional voxel terrain
by a unimodal terrain. In Kyung-Yong Chwa and J. Ian Munro, edi-
tors, Computing and Combinatorics, 10th Annual International Confer-
ence, COCOON 2004, Jeju Island, Korea, August 17-20, 2004, Proceed-
ings, volume 3106 of Lecture Notes in Computer Science, pages 238–248.
Springer, 2004.

[69] Hiroaki Iwashita and Shin-ichi Minato. Efficient top-down ZDD con-
struction techniques using recursive specifications. TCS Technical Re-
ports, TCS-TR-A-13-69, 2013.

[70] Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shoji Kasahara.
Enumerating all spanning shortest path forests with distance and ca-
pacity constraints. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci., 101-A(9):1363–1374, 2018.

[71] Koichi Yasuoka. A new method to represent sets of products: ternary
decision diagrams. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 78(12):1722–1728, 1995.

[72] Jun Kawahara, Toshiki Saitoh, Hirofumi Suzuki, and Ryo Yoshinaka.
Colorful frontier-based search: Implicit enumeration of chordal and in-

116

terval subgraphs. In Ilias S. Kotsireas, Panos M. Pardalos, Konstanti-
nos E. Parsopoulos, Dimitris Souravlias, and Arsenis Tsokas, editors,
Analysis of Experimental Algorithms - Special Event, SEA2 2019, Kala-
mata, Greece, June 24-29, 2019, Revised Selected Papers, volume 11544
of Lecture Notes in Computer Science, pages 125–141. Springer, 2019.

[73] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate
texts in mathematics. Springer, 2012.

[74] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph
Classes: A Survey. Society for Industrial and Applied Mathematics,
1999.

[75] Casimir Kuratowski. Sur le problème des courbes gauches en topologie.
Fundamenta Mathematicae, 15(1):271–283, 1930.

[76] Takashi Horiyama, Jun Kawahara, Shin-ichi Minato, and Yu Nakahata.
Decomposing a graph into unigraphs. CoRR, abs/1904.09438, 2019.

[77] John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing.
J. ACM, 21(4):549–568, 1974.

[78] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Na-
gata. Compiling graph substructures into sentential decision diagrams.
In Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA, pages 1213–1221. AAAI Press,
2017.

[79] Hans L. Bodlaender. A partial k -arboretum of graphs with bounded
treewidth. Theor. Comput. Sci., 209(1-2):1–45, 1998.

[80] William J. Cook and Paul D. Seymour. Tour merging via branch-
decomposition. INFORMS J. Comput., 15(3):233–248, 2003.

[81] Yexiang Xue, Arthur Choi, and Adnan Darwiche. Basing decisions on
sentences in decision diagrams. In Jörg Hoffmann and Bart Selman,
editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press,
2012.

117

[82] Anuchit Anuchitanukul, Zohar Manna, and Tomás E. Uribe. Differential
BDDs. In Jan van Leeuwen, editor, Computer Science Today: Recent
Trends and Developments, volume 1000 of Lecture Notes in Computer
Science, pages 218–233. Springer, 1995.

[83] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width
of graphs. Discret. Appl. Math., 101(1-3):77–114, 2000.

118

