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ABSTRACT. We show that every graph of finite coloring number on a set of
reals has an everywhere non-meager independent subset.

1. INTRODUCTION

Let G = (V,E) be a graph. The coloring number of G is the least s such
that there is a well-ordering < of V satisfying the following: For every x € V,
{y € V:y <z and zFEy}| < k. The following fact was proved in [5].

Fact 1.1. Let G = (X, E) be a graph where X C [0,1]. If every connected com-
ponent of G is countable, then there exists an E-independent Y C X such that

u* (V) = p*(X).
Here, p* denotes Lebesgue outer measure on R. A similar result holds in the

case of category. P. Komjath asked if Fact 1.1 could be generalized to graphs of
countable coloring number.

Question 1.2. Let (X, E) be a graph of countable coloring number where X C [0, 1].
Must there exist an E-independent Y C X such that p*(Y) = p*(X)?¢

Recall that for Y € X C [0, 1], we say that Y is everywhere non-meager in X
iff for every Borel B C [0,1], if BN X is non-meager, then BNY is non-meager
(equivalently, for every rational interval J C [0, 1], if JNX is non-meager, then JNY
is non-meager). The category analogue of Question 1.2 would be the following.

Question 1.3. Let (X, E) be a graph of countable coloring number where X C [0, 1].
Must there exist an E-independent Y C X such that Y is everywhere non-meager
n X?

In this note, we show that the category version has a positive answer for graphs
of finite coloring number. We also show that a counterexample to either one
of Questions 1.2 and 1.3 produces Nj-saturated ideals. For similar problems and
results see [3, 4, 5]. For some background on generic ultrapowers, see [1].

2. CATEGORY

Given a graph G = (V, F) and X C V, we denote the set of neighbors of X in
Gby Nag(X)={veV:(3zeX)(xEv)}.

Lemma 2.1. Suppose G = (X, E) is a graph where X C [0,1]. Suppose for every
X' C X and for every rational interval J in which X' is non-meager, there exists a
non-meager Y C X'NJ such thatY is E-independent and X'\ Ng(Y") is everywhere
non-meager in X'. Then there exists Y C X such that Y is E-independent and
everywhere non-meager in X.
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Proof. Let (J, : n < w) list all rational intervals in which X is non-meager. Using
the assumption, we can inductively construct (Y, : n < w) such that for every
n<w,

(1) Y, S XNy,

(2) Uk<p Y is E-independent,

(3) J,NY, is non-meager and

(4) X\ Neg(U{Yx : E <n}) is everywhere non-meager in X.

At stage n, by applying the hypothesis to X’ = X \ Ng(U{Yx : k¥ < n}), choose

a non-meager Y, C X’ N.J, such that Y;, is E-independent and X’ \ Ng(Y;,) is
everywhere non-meager in X’. Having constructed (Y;, : n < w), put Y =, ., Ya.
It is clear that Y is an E-independent and everywhere non-meager in X.

Fact 2.2 (Gitik-Shelah). Suppose that the meager ideal T restricted to some non-
meager set X is Ny -saturated. Then forcing with P(X)/Z makes some non-meager
subset of X meager. In particular, it cannot be isomorphic to Cohen forcing.

Proof. Fix Z C X non-meager and a regular uncountable s such that for every
non-meager Y C Z, the additivity of Z [ Y is k. Put P = P(Z)/Z and note that
P is cce. It suffices to show that VF = Z is meager. Let Z = |J{Z; : i < s}
where Z;’s are meager and increasing with 7. Let G be P-generic over V and
j:V — M C V[G], the generic ultrapower embedding with critical point . Since
VE (V) < k) (U{Z :i<j}is meager) and j(k) > k, M = U{j(Zi) : i < K} is
meager. Since each Z; C j(Z;), it follows that Z is meager in V[G]. O

Lemma 2.3. For every f: X — Y where X, Y C [0,1] and X is non-meager, there
exists X' C X such that X' is non-meager and Y \ f[X'] is everywhere non-meager
mY.

Proof. Use the fact that Y can be partitioned into two everywhere non-meager
subsets - See Lusin [6] or use Fact 2.2. O

Lemma 2.4. For every f : X — Y, where X,Y C [0,1] and Y is non-meager,
there exists Y' C Y such that Y’ is non-meager and X \ f=1[Y'] is everywhere
non-meager in X.

Proof. Let F be a maximal family of pairwise disjoint meager subsets W of Y such
that X \ f~1[W] is not everywhere non-meager in X. It is easy to see that F is
countable and so Wy = [JF is meager. Let Y7 = Y \ W,. Note that for every
meager W C Yy, X \ f~1[W] is everywhere non-meager in X.

Towards a contradiction, assume that for every non-meager Y’ C Yy, X\ f~1[Y’]
is not everywhere non-meager in X. Then the meager ideal Z restricted to Y; must
be W;-saturated. It follows that B = P(Y7)/Z is a complete boolean algebra that
satisfies ccc.

For each rational interval J in which X is non-meager, define a; to be the
infimum in B of all conditions [Y’] such that Y’ C Yy and (X \ f~[Y']) N J is
meager. We claim that each a; > Og. Suppose not. As B is ccc, there exists a
countable family {Y, C Y; : n < w} such that for each n, (X \ f71[Y]) N J is
meager and W = ({Y,! : n < w} is meager. But now X \ f~[W] is not everywhere
non-meager in X while W C Y} is meager which is impossible. Therefore a; > Op.

It follows that the family {ay : J rational interval and X N .J non-meager} is
dense in B\ {Og}. So B must be isomorphic to Cohen forcing. But this contradicts
Fact 2.2. 0
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Lemma 2.5. Suppose Y, ((kn,Ys) :n < w) and (fpnr :n < w,k < ky,) satisfy the
following.

(a) 1<k, <w.

(b) Y)Y, € [0,1] and Y is non-meager.

() fap:Y, =Y.

Suppose further that either {k, : n < w} is bounded in w or the meager ideal
restricted to 'Y is not Ny-saturated. Then there exists Y' CY such thatY' is non-
meager and for every n < w, Yy, \ U{fn_,lC[Y’] ik < k,} is everywhere non-meager
mnYy,.

Proof. Suppose no such Y’ exists. We first show that the meager ideal restricted
to Y must be Nj-saturated. Suppose not and let {A4; : i < wi} be a family of
pairwise disjoint non-meager subsets of Y. For each i < wy, choose n; < w and a
rational interval .J; such that Y,,, N J; is non-meager and (Y, \ U{f,, }k [Ai] : k <
kn,}) N J; is meager. By shrinking {A; : i < w1}, we can assume that n; = n, and
Ji; = J, do not depend on i. Let W be a meager set such that for each ¢ < w,
(Yo, \U{f,  4[As] + k < Ky, }) N J s contained in W. Fix z € (V,,, \ W) N J. Then
S U{fn_*lk[Az] ik < kp, } for every i < w. It follows that for some i < j < w and
k <k, , we have z € f;*lk[Ai] N fn_*lk,[Aj] which is impossible since 4; N A; = 0.
Using the hypothesis, we can fix K < w such that each k, < K. By replacing
each Y,, with a similar copy of Y,,, we can assume that there is a disjoint family
{Jn : n < w} of intervals such that each Y,, C J,. Put X = (J{Y, : n < w}
and define Fj, : X — Y for k < K, such that for every n < w and k < ky,
Fr 'Y, = fnr Applying Lemma 2.4 K-times, choose Y’ C Y such that Y’ is
non-meager and X \ J{F}, '[Y’] : k < K} is everywhere non-meager in X. Since
Y, ’s are separated by pairwise disjoint intervals, it also follows that for every n < w,
Yo \U{f,.. LY'] : k < ky,} is everywhere non-meager in Y;,. But this contradicts our
assumption that no such Y’ exists. ([l

Now suppose X C [0,1] and G = (X, E) has coloring number 6 < X,. Suppose
either 6 < Ng or the meager ideal restricted to X is nowhere Nj-saturated. We'll
show that G satisfies the hypothesis of Lemma 2.1. Let J be a rational interval
and X’ C X be such that X’ N J is non-meager. We need to find a non-meager
Y C X’NJ such that Y is E-independent and X'\ Ng(Y) is everywhere non-meager
in X’. We can clearly assume that X' = X.

Fix a well-ordering < of X such that for every x € X, [{y € X : y < z A
yEx}| < 6. Let F: X — [X]<Y be defined by F(z) = {y € X : y < x AyEz}.
Choose a partition {X,, : m < 6} of X such that each X,, is E-independent. Let
{Y,, : n < 62} be a refinement of {X,, : m < 6} such that for each n, |F(z)| = ky,
does not depend on = € Y,,. Choose f, 1 Y, — X, forn < 0% and k < ky,, such
that for every x € Y, F(z) = {forx(x) : k < ky}.

One of the Y}, ’s is non-meager in J, say Yp. Since either sup{k, : n < w} < 6 <X
or the meager ideal restricted to X is nowhere N;-saturated, we can use Lemmas 2.3
and 2.5 to obtain Y’ C YyNJ such that Y is non-meager and for every 1 < n < 2,
Yo\ U({f;i[Y’] tk <kt U{for[Y']: k < ko}) is everywhere non-meager in Y,.
Since Yy is E-independent, X \ Ng(Y”) is also everywhere non-meager in X. Ap-
plying Lemma 2.1, it follows that X has an everywhere non-meager F-independent
subset. (]
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Since the rational distance graph E = {{z,y} : =,y € R?, ||z — y|| € Q} in
plane has countable coloring number (see Theorem 2.3 in [3]), we get the following:
Suppose X is a subset of plane such that the meager ideal restricted to X is nowhere
Ni-saturated. Then X has an everywhere non-meager subset that avoids rational
distances.

3. MEASURE

By modifying the arguments of the previous section, we can show that unless
the null ideal restricted to some non-null subset of X is Ni-saturated, Question 1.2
has a positive answer. Let us indicate the main steps.

Lemma 3.1. Suppose X C [0,1] and G = (X, E) is a graph. Suppose for every
X' C X, there exists Y C X' such thatY is E-independent, p*(Y) > 0.5u*(X’) and
w (X' \ Ng(Y)) = p*(X'). Then there exists Y C X such thatY is E-independent
and p* (V) = p*(X).

Proof. For A C [0,1], let env(A) be a G; set containing A such that p*(A) =
u(env(A)). Construct (Y, : n < w) as follows.
(1) Yo € X, p*(Yp) > 0.5p*(X), Yy is E-independent and p* (X \ Ng(Yo)}) =
*(X).
(2) gu;pgse (Y : k < n) has been constructed. Let Z,, = |J,«,, Ys. Define
W, =X\ (Na(Z,) UUp<, env(Ys)). Choose Y, 11 € W, such that
(a) 1" (Yoy1) > 050 (W),
(b) Y41 is E-independent and
(©) w*(Wn\ Na(Ynir)) = p*(Wa).
Now it is easy to check that Y = (J{Y,, : n < w} is E-independent and p*(Y) =
w*(X). O

The following can be proved exactly like Fact 2.2.

Fact 3.2 (Gitik-Shelah). Suppose that the null ideal T restricted to some non-null
set X is Ny-saturated. Then forcing with P(X)/Z makes some non-null subset of
X null. In particular, it cannot be isomorphic to random forcing.

Lemma 3.3. For every f: X — Y, where X,Y C [0,1] and p*(X) > 0, for every
e > 0, there exists Z C X such that p*(Z) > (1—e)p*(X) and p*(Y\ f[Z]) = p*(Y).

Proof. By a result of Lusin [6] or by using Fact 3.2, we can decompose Y = Y'UY"”
such that u*(Y') = p*(Y") = p*(Y). Note that one of the sets f~'[Y'], f~[Y"]
has outer measure > 0.5p¢*(X). It follows that there exists Zy C X such that
p(Zo) > 05u*(X) and p*(Y \ f]Zo]) = p*(Y). Put X' = X \ env(Zp), V' =
Y\ f[Zo] and repeat this argument for f | X' : X’ — Y’ to obtain Zo C Z; € X
such that p*(Z7) > 0.75p*(X) and pu*(Y'\ f[Z1]) = p*(Y'). Repeating this n-times
where €2 > 1, we get the required Z C X. O

Lemma 3.4. Suppose Y, {(kn,Yn) : n < w), (for 1 n < w,k < ky) satisfy the
following.
(a) 1<k, <w.
(b) Y)Y, C[0,1].
(c) Y is non-null.
(d) fnJc : Yn —Y.
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Suppose further that for every Borel set B satisfying p*(BNY) > 0, the null
ideal restricted to Y N B is not Ny-saturated. Then there exists Y' CY such that

(Y') = p*(Y) and for every n < w, p* (Yo \ ULFT Y]t b < ka}) = * (V).

Proof. First observe that there is an uncountable partition {4; : ¢ < wy} of Y such
that for each i < wy, p*(4;) = p*(Y'). This follows from the following.

Claim 3.5. For every Borel B C env(Y) of positive measure, there exist a Borel
B’ C B of positive measure and a partition {Z, : o« < w1} of Y N B’ such that for
every o < w, env(Z,) = B'.

Proof. Since p*(Y N B) = p(B) > 0, we can fix a partition {W; : i < w;y} of
Y N B into sets of positive outer measure. Since random forcing is ccc, we can
choose (i : @ < wy) such that i,’s are strictly increasing and cofinal in w; and
env (IU{W; :iq < j <ia+1}) = B’ does not depend on o < wy. For each a < wy,
define Z, = B'NU{W, : ia < j < iq41}. Then B', {Z, : o < wi} are as
required. (I

Towards a contradiction, assume that for every i < wp, Y’ = A; does not
satisfy the conclusion of the lemma. By passing to an uncountable subfamily
of {A; 1 i < wi}, we can assume that there are n, < w and a rational in-
terval J, such that for every i < wy, p*(Y,, NJy) > (1 — 27%=)pu(J,) and

wr ((Yn* NJo)\ U{f;ﬁlk[Az] k< kn*}> < 27 % (7). Tt follows that

N U sl

1<kn, k<kn,

is nonempty and we get a contradiction as before. (I

Now suppose X C [0,1], G = (X, E) has countable coloring number and the
null ideal restricted to X is nowhere Ni-saturated. We’ll show that G satisfies the
hypothesis of Lemma 3.1. Let X’ C X. We need to find Y C X’ such that Y’ is
E-independent and p*(Y) > p*(X’). As before, we can assume that X' = X.

Fix a well-ordering < of X such that for every z € X, {y € X : y < 2 A yEx}
is finite. Let F' : X — [X]<® be defined by F(z) = {y € X : y < = AyEx}.
Choose a partition {X,, : m < w} of X such that each X, is E-independent. Let
{Y,, : n < w} be a refinement of {X,, : m < w} such that for each n, |F(z)| = k,
does not depend on z € Y,,. Choose f, :Y, — X, for n <w and k < k,, such
that for every x € Y,,, F(z) = {fox(z) : k < k,}.

Fix n, such that p*(U{Y, : n < n.}) > 0.6p*(X). By applying Lemma 3.4
n,-times, we can find (Y, : n < n,) such that the following hold.

(1) For every n < ny, p*(Y;) = pu*(¥a).
(2) Whenever m,n < ny and k < ky,, we have Y, N f;llk Y] =0.
(3) For every n, <m < w, p*(Y,,) = p*(Ym\U{f;llk[Yé] n < ne ANk <knl).

Put W = J{Y,, : n < n,} and observe that W is E-independent and p*(W) >
0.60*(X). Put X" = U,np. Y \U{/fr [Vl : 2 < nu Ak < kp}. Let F be a finite
family of functions from W to X such that for every n < ny and k < k,,, there exists
f € Fsuch that f Y, = for | Y. Applying Lemma 3.3 |F|-times, we can obtain
Y C W such that p*(Y) > 0.9u* (W) and p*(X") = p* (X" \U{f[Y]: f € F}). It
follows now that u*(X \ Ng(Y)) = p*(X) and hence Y is as required. O
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We do not know if the measure analogue of Lemma 2.4 holds.

Question 3.6. Suppose f: X — Y where X, Y C [0,1] and Y is non-null. Must
there exist Y CY non-null such that p*(X \ f1[Y’]) = p*(X)?

A special case of this (Fact 1.1) was shown in [5] under the additional assumption
that f is countable-to-one.
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