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A NOTE ON A QUESTION OF KOMJA.TH 

ASHUTOSH KUMAR 

ABSTRACT. We show that every graph of finite coloring number on a set of 
reals has an everywhere non-meager independent subset. 

1. INTRODUCTION 

Let G = (V, E) be a graph. The coloring number of G is the least 1-,, such 
that there is a well-ordering --< of V satisfying the following: For every x E V, 
l{Y E V: y--< x and xEy}I < 1-,,. The following fact was proved in [5]. 

Fact 1.1. Let G = (X, E) be a graph where X i:;;; [O, 1]. If every connected com­
ponent of G is countable, then there exists an E-independent Y i:;;; X such that 
µ*(Y) = µ*(X). 

Here, µ* denotes Lebesgue outer measure on R A similar result holds in the 
case of category. P. Komjath asked if Fact 1.1 could be generalized to graphs of 
countable coloring number. 

Question 1.2. Let (X, E) be a graph of countable coloring number where X i:;;; [O, 1]. 
Must there exist an E-independent Yi:;;; X such that µ*(Y) = µ*(X)? 

Recall that for Y i:;;; X i:;;; [O, 1], we say that Y is everywhere non-meager in X 
iff for every Borel B i:;;; [O, 1], if B n X is non-meager, then B n Y is non-meager 
(equivalently, for every rational interval Ji:;;; [O, 1], if JnX is non-meager, then JnY 
is non-meager). The category analogue of Question 1.2 would be the following. 

Question 1.3. Let (X, E) be a graph of countable coloring number where X i:;;; [O, 1]. 
Must there exist an E-independent Y i:;;; X such that Y is everywhere non-meager 
inX? 

In this note, we show that the category version has a positive answer for graphs 
of finite coloring number. We also show that a counterexample to either one 
of Questions 1.2 and 1.3 produces N1-saturated ideals. For similar problems and 
results see [3, 4, 5]. For some background on generic ultra powers, see [1]. 

2. CATEGORY 

Given a graph G = (V, E) and X i:;;; V, we denote the set of neighbors of X in 
G by Na(X) = {v E V: (:3x E X)(xEv)}. 

Lemma 2.1. Suppose G = (X, E) is a graph where X i:;;; [O, 1]. Suppose for every 
X' i:;;; X and for every rational interval J in which X' is non-meager, there exists a 
non-meager Yi:;;; X'nJ such that Y is E-independent and X'\Na(Y) is everywhere 
non-meager in X'. Then there exists Y i:;;; X such that Y is E-independent and 
everywhere non-meager in X. 
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Proof. Let (Jn : n < w) list all rational intervals in which X is non-meager. Using 
the assumption, we can inductively construct (Yn : n < w) such that for every 
n<w, 

(1) Yn <;;;; X n Jn, 
(2) LJk<n Yk is E-independent, 
(3) Jn n Yn is non-meager and 
(4) X \ Na(LJ{Yk: k :Sn}) is everywhere non-meager in X. 

At stage n, by applying the hypothesis to X' = X \ N0 (LJ{Yk : k < n} ), choose 
a non-meager Yn <;;;; X' n Jn such that Yn is E-independent and X' \ Nc(Yn) is 
everywhere non-meager in X'. Having constructed (Yn: n < w), put Y = Un<w Yn. 
It is clear that Y is an E-independent and everywhere non-meager in X. □ 

Fact 2.2 (Gitik-Shelah). Suppose that the meager ideal I restricted to some non­
meager set X is N1 -saturated. Then forcing with P(X)/I makes some non-meager 
subset of X meager. In particular, it cannot be isomorphic to Cohen forcing. 

Proof. Fix Z <;;;; X non-meager and a regular uncountable K such that for every 
non-meager Y <;;;; Z, the additivity of I r Y is "'· Put IP'= P(Z)/I and note that 
IP' is ccc. It suffices to show that Vll' F Z is meager. Let Z = LJ{ Zi : i < K} 
where Zi 's are meager and increasing with i. Let G be IP'-generic over V and 
j : V--+ M <;;;; V[G], the generic ultrapower embedding with critical point K. Since 
V F (Vj < K)(LJ{Zi : i < j} is meager) and j(K) > K, M F LJ{j(Zi) : i < K} is 
meager. Since each Zi <;;;; j(Zi), it follows that Z is meager in V[G]. □ 

Lemma 2.3. For every f: X--+ Y where X, Y <;;;; [O, 1] and X is non-meager, there 
exists X' <;;;; X such that X' is non-meager and Y \ f[X'] is everywhere non-meager 
in Y. 

Proof. Use the fact that Y can be partitioned into two everywhere non-meager 
subsets - See Lusin [6] or use Fact 2.2. D 

Lemma 2.4. For every f : X --+ Y, where X, Y <;;;; [O, 1] and Y is non-meager, 
there exists Y' <;;;; Y such that Y' is non-meager and X \ 1-1 [Y'] is everywhere 
non-meager in X. 

Proof. Let F be a maximal family of pairwise disjoint meager subsets W of Y such 
that X \ J-1 [W] is not everywhere non-meager in X. It is easy to see that Fis 
countable and so Wo = LJ F is meager. Let Y1 = Y \ Wo. Note that for every 
meager W <;;;; Y1 , X \ J-1 [W] is everywhere non-meager in X. 

Towards a contradiction, assume that for every non-meager Y' <;;;; Y1 , X\J-1 [Y'] 
is not everywhere non-meager in X. Then the meager ideal I restricted to Y1 must 
be N1 -saturated. It follows that ]Ill = P(Y1 ) /I is a complete boolean algebra that 
satisfies ccc. 

For each rational interval J in which X is non-meager, define aJ to be the 
infimum in ]Ill of all conditions [Y'] such that Y' <;;;; Y1 and (X \ 1-1 [Y']) n J is 
meager. We claim that each aJ > OE- Suppose not. As ]Ill is ccc, there exists a 
countable family {Y~ <;;;; Y1 : n < w} such that for each n, (X \ 1-1 [Y~]) n J is 
meager and W = n{Y~ : n < w} is meager. But now X \ J-1 [W] is not everywhere 
non-meager in X while W <;;;; Y1 is meager which is impossible. Therefore aJ > OE. 

It follows that the family { aJ : J rational interval and X n J non-meager} is 
dense in ]Ill\ {OE}- So ]Ill must be isomorphic to Cohen forcing. But this contradicts 
Fact 2.2. □ 
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Lemma 2.5. Suppose Y, ((kn, Yn) : n < w) and Un,k : n < w, k < kn) satisfy the 
following. 

(a) 1 :S kn < w. 
(b) Y, Yn <;;; [O, 1] and Y is non-meager. 
(c) fn,k: Yn--+ Y. 

Suppose further that either { kn : n < w} is bounded in w or the meager ideal 
restricted to Y is not Ni -saturated. Then there exists Y' <;;; Y such that Y' is non­
meager and for every n < w, Yn \ LJ{f~t[Y'] : k < kn} is everywhere non-meager 
in Yn. ' 

Proof. Suppose no such Y' exists. We first show that the meager ideal restricted 
to Y must be Ni-saturated. Suppose not and let {Ai : i < wi} be a family of 
pairwise disjoint non-meager subsets of Y. For each i < wi, choose ni < w and a 
rational interval Ji such that Yn, n Ji is non-meager and (Yn, \ LJ{f~\[Ai] : k < 
knJ) n Ji is meager. By shrinking { Ai : i < wi}, we can assume that ni = n* and 
Ji = J* do not depend on i. Let W be a meager set such that for each i < w, 
(Yn* \ LJ{f~*\[Ai]: k < kn*}) n J is contained in W. Fix x E (Yn* \ W) n J. Then 

x E LJ{f~*\[Ai]: k < kn*} for every i < w. It follows that for some i < j <wand 

k < kn*, we have x E f~*\[Ai] n f~*\[AJ] which is impossible since Ai n Aj = 0. 
Using the hypothesis, we can fix K < w such that each kn :S K. By replacing 

each Yn with a similar copy of Yn, we can assume that there is a disjoint family 
{ Jn : n < w} of intervals such that each Yn <;;; Jn. Put X = LJ{Yn : n < w} 
and define Fk : X --+ Y for k < K, such that for every n < w and k < kn, 
Fk I Yn = f n,k· Applying Lemma 2.4 K-times, choose Y' <;;; Y such that Y' is 
non-meager and X \ LJ{F,;i[Y'] : k < K} is everywhere non-meager in X. Since 
Yn's are separated by pairwise disjoint intervals, it also follows that for every n < w, 
Yn \ LJ{f~t [Y'] : k < kn} is everywhere non-meager in Yn. But this contradicts our 
assumpti~n that no such Y' exists. D 

Now suppose X <;;; [O, 1] and G = (X, E) has coloring number 0 :S N0 . Suppose 
either 0 < N0 or the meager ideal restricted to X is nowhere Ni-saturated. We'll 
show that G satisfies the hypothesis of Lemma 2.1. Let J be a rational interval 
and X' <;;; X be such that X' n J is non-meager. We need to find a non-meager 
Y <;;; X'nJ such that Y is E-independent and X'\Na(Y) is everywhere non-meager 
in X'. We can clearly assume that X' = X. 

Fix a well-ordering -< of X such that for every x E X, l{Y E X : y -< x A 

yEx }I < 0. Let F : X --+ [X]<0 be defined by F(x) = {y E X : y -< x A yEx }. 
Choose a partition {Xm : m < 0} of X such that each Xm is E-independent. Let 
{Yn: n < 02 } be a refinement of {Xm: m < 0} such that for each n, IF(x)I = kn 
does not depend on x E Yn. Choose fn,k : Yn --+ X, for n < 02 and k < kn, such 
that for every x E Yn, F(x) = {fn,k(x): k < kn}-

One of the Yn's is non-meager in J, say Y0 . Since either sup{kn: n < w} < 0 < N0 

or the meager ideal restricted to X is nowhere Ni -saturated, we can use Lemmas 2.3 
and 2.5 to obtain Y' <;;; Y0 n J such that Y' is non-meager and for every 1 :S n < 02 , 

Yn \ LJ({f,:::UY']: k < kn} U {fo,k[Y']: k < ko}) is everywhere non-meager in Yn. 
Since Y0 is E-independent, X \ Nc(Y') is also everywhere non-meager in X. Ap­
plying Lemma 2.1, it follows that X has an everywhere non-meager E-independent 
subset. D 
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Since the rational distance graph E = {{x,y} : x,y E ~ 2 , llx - YII E (Ql} in 
plane has countable coloring number (see Theorem 2.3 in [3]), we get the following: 
Suppose X is a subset of plane such that the meager ideal restricted to X is nowhere 
N1 -saturated. Then X has an everywhere non-meager subset that avoids rational 
distances. 

3. MEASURE 

By modifying the arguments of the previous section, we can show that unless 
the null ideal restricted to some non-null subset of X is N1-saturated, Question 1.2 
has a positive answer. Let us indicate the main steps. 

Lemma 3.1. Suppose X s;; [0, 1] and G = (X, E) is a graph. Suppose for every 
X' s;; X, there exists Y s;; X' such that Y is E-independent, µ*(Y) ~ 0.5µ*(X') and 
µ*(X' \ Na(Y)) = µ*(X'). Then there exists Y s;; X such that Y is E-independent 
and µ*(Y) = µ*(X). 

Proof. For A s;; [0, 1], let env(A) be a G8 set containing A such that µ*(A) = 
µ(env(A)). Construct (Yn: n < w) as follows. 

(1) Y0 s;; X, µ*(Yo)~ 0.5µ*(X), Y0 is E-independent and µ*(X \ Na(Y0)}) = 
µ*(X). 

(2) Suppose (Yk : k ~ n) has been constructed. Let Zn = uk<n Yk- Define 
Wn = X \ (Na(Zn) U LJk<n env(Yk)). Choose Yn+1 s;; Wn such that 

(a) µ*(Yn+i) ~ 0.5µ*(Wn), 
(b) Yn+l is E-independent and 
(c) µ*(Wn \ Na(Yn+1)) = µ*(Wn)-

Now it is easy to check that Y = LJ{Yn: n < w} is E-independent and µ*(Y) = 
µ*(X). □ 

The following can be proved exactly like Fact 2.2. 

Fact 3.2 (Gitik-Shelah). Suppose that the null ideal I restricted to some non-null 
set X is N1 -saturated. Then forcing with P(X)/I makes some non-null subset of 
X null. In particular, it cannot be isomorphic to random forcing. 

Lemma 3.3. For every f : X-+ Y, where X, Y s;; [O, 1] and µ*(X) > 0, for every 
c > 0, there exists Z s;; X such that µ*(Z) ~ (1-c)µ*(X) and µ*(Y\f[Z]) = µ*(Y). 

Proof. By a result of Lusin [6] or by using Fact 3.2, we can decompose Y = Y' LJ Y" 
such that µ*(Y') = µ*(Y") = µ*(Y). Note that one of the sets f- 1 [Y'], f- 1 [Y"] 
has outer measure ~ 0.5µ*(X). It follows that there exists Z 0 s;; X such that 
µ*(Zo) ~ 0.5µ*(X) and µ*(Y \ f[Z0]) = µ*(Y). Put X' = X \ env(Z0), Y' = 

Y \ f[Z0 ] and repeat this argument for f IX' : X' -+ Y' to obtain Z0 s;; Z 1 s;; X 
such that µ*(Z1) ~ 0.75µ*(X) and µ*(Y \ f[Z1]) = µ*(Y). Repeating this n-times 
where c2n > 1, we get the required Z s;; X. □ 

Lemma 3.4. Suppose Y, ((kn, Yn) : n < w), Un,k : n < w, k < kn) satisfy the 
following. 

(a) 1 ~kn< w. 
(b) Y, Yn s;; [0, 1]. 
( c) Y is non-null. 
(d) fn,k : Yn-+ Y. 
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Suppose further that for every Borel set B satisfying µ*(B n Y) > 0, the null 
ideal restricted to Y n B is not N1 -saturated. Then there exists Y' i:;;; Y such that 
µ*(Y') = µ*(Y) and for every n < w, µ*(Yn \ LJ{J;,i[Y']: k <kn})= µ*(Yn), 

Proof. First observe that there is an uncountable partition {Ai : i < w1 } of Y such 
that for each i < w1 , µ*(Ai) = µ*(Y). This follows from the following. 

Claim 3.5. For every Borel B i:;;; env(Y) of positive measure, there exist a Borel 
B' i:;;; B of positive measure and a partition { Za : a < w1 } of Y n B' such that for 
every a< w, env(Za) = B'. 

Proof. Since µ*(Y n B) = µ(B) > 0, we can fix a partition {Wi : i < w1 } of 
Y n B into sets of positive outer measure. Since random forcing is ccc, we can 
choose (ia : a < w1) such that ia 's are strictly increasing and cofinal in w1 and 
env (LJ{Wj : ia < j < ia+l}) = B' does not depend on a < w1 . For each a < w1 , 

define Za = B' n LJ{Wj : ia < j < ia+i}- Then B', {Za : a < w1} are as 
required. □ 

Towards a contradiction, assume that for every i < w1 , Y' = Ai does not 
satisfy the conclusion of the lemma. By passing to an uncountable subfamily 
of {Ai : i < w1 }, we can assume that there are n* < w and a rational in­
terval J* such that for every i < w1 , µ*(Yn. n J*) > (1 - 2-4kn* )µ(J*) and 

µ* ((Yn. n J*) \ U{f~.\[Ai]: k <kn.}) < 2-4kn* µ(J*). It follows that 

n LJ f~.\[Ai] 

is nonempty and we get a contradiction as before. □ 

Now suppose X i:;;; [0, 1], G = (X, E) has countable coloring number and the 
null ideal restricted to X is nowhere N1-saturated. We'll show that G satisfies the 
hypothesis of Lemma 3.1. Let X' i:;;; X. We need to find Y i:;;; X' such that Y' is 
E-independent and µ*(Y) 2:: µ*(X'). As before, we can assume that X' = X. 

Fix a well-ordering -< of X such that for every x E X, {y E X : y -< x I\ yEx} 
is finite. Let F : X ➔ [X]<~o be defined by F(x) = {y E X : y -< x I\ yEx}. 
Choose a partition {Xm: m < w} of X such that each Xm is E-independent. Let 
{Yn: n < w} be a refinement of {Xm: m < w} such that for each n, IF(x)I = kn 
does not depend on x E Yn. Choose fn,k : Yn ➔ X, for n < w and k < kn, such 
that for every x E Yn, F(x) = {fn,k(x): k < kn}-

Fix n* such that µ*(LJ{Yn : n < n*}) 2:: 0.6µ*(X). By applying Lemma 3.4 
nrtimes, we can find (Y~ : n < n*) such that the following hold. 

(1) For every n < n*, µ*(Y~) = µ*(Yn)-
(2) Whenever m, n < n* and k < km, we have Y,;, n J,:;;: 1k [Y~] = 0. 
(3) For every n* S: m < w, µ*(Ym) = µ*(Ym \ LJ{J,:;;:~k[Y~]: n < n* I\ k <km}). 

Put W = LJ{Y~ : n < n*} and observe that W is E-independent and µ*(W) 2:: 
0.6µ*(X). PutX"=LJm>n Ym\LJ{J,:;;:\[Y~] :n<n*/\k<km}- LetFbeafinite 
family of functions from W to X such th~t for every n < n* and k < kn, there exists 
f E F such that f I Y~ = fn,k I Y~. Applying Lemma 3.3 IFl-times, we can obtain 
Yi:;;; W such that µ*(Y) 2:: 0.9µ*(W) and µ*(X") = µ*(X" \ LJ{f[Y]: f E F}). It 
follows now that µ*(X \ Nc(Y)) = µ*(X) and hence Y is as required. D 
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We do not know if the measure analogue of Lemma 2.4 holds. 

Question 3.6. Suppose f : X ---+ Y where X, Y ~ [O, 1] and Y is non-null. Must 
there exist Y' ~ Y non-null such that µ*(X \ J- 1 [Y']) = µ*(X)? 

A special case of this (Fact 1.1) was shown in [5] under the additional assumption 
that f is countable-to-one. 
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