A NOTE ON A QUESTION OF KOMJÁTH

ASHUTOSH KUMAR

ABSTRACT. We show that every graph of finite coloring number on a set of reals has an everywhere non-meager independent subset.

1. INTRODUCTION

Let G = (V, E) be a graph. The **coloring number** of G is the least κ such that there is a well-ordering \prec of V satisfying the following: For every $x \in V$, $|\{y \in V : y \prec x \text{ and } xEy\}| < \kappa$. The following fact was proved in [5].

Fact 1.1. Let G = (X, E) be a graph where $X \subseteq [0, 1]$. If every connected component of G is countable, then there exists an E-independent $Y \subseteq X$ such that $\mu^*(Y) = \mu^*(X)$.

Here, μ^* denotes Lebesgue outer measure on \mathbb{R} . A similar result holds in the case of category. P. Komjáth asked if Fact 1.1 could be generalized to graphs of countable coloring number.

Question 1.2. Let (X, E) be a graph of countable coloring number where $X \subseteq [0, 1]$. Must there exist an E-independent $Y \subseteq X$ such that $\mu^*(Y) = \mu^*(X)$?

Recall that for $Y \subseteq X \subseteq [0, 1]$, we say that Y is everywhere non-meager in X iff for every Borel $B \subseteq [0, 1]$, if $B \cap X$ is non-meager, then $B \cap Y$ is non-meager (equivalently, for every rational interval $J \subseteq [0, 1]$, if $J \cap X$ is non-meager, then $J \cap Y$ is non-meager). The category analogue of Question 1.2 would be the following.

Question 1.3. Let (X, E) be a graph of countable coloring number where $X \subseteq [0, 1]$. Must there exist an *E*-independent $Y \subseteq X$ such that *Y* is everywhere non-meager in *X*?

In this note, we show that the category version has a positive answer for graphs of **finite** coloring number. We also show that a counterexample to either one of Questions 1.2 and 1.3 produces \aleph_1 -saturated ideals. For similar problems and results see [3, 4, 5]. For some background on generic ultrapowers, see [1].

2. Category

Given a graph G = (V, E) and $X \subseteq V$, we denote the set of neighbors of X in G by $N_G(X) = \{v \in V : (\exists x \in X)(xEv)\}.$

Lemma 2.1. Suppose G = (X, E) is a graph where $X \subseteq [0, 1]$. Suppose for every $X' \subseteq X$ and for every rational interval J in which X' is non-meager, there exists a non-meager $Y \subseteq X' \cap J$ such that Y is E-independent and $X' \setminus N_G(Y)$ is everywhere non-meager in X'. Then there exists $Y \subseteq X$ such that Y is E-independent and everywhere non-meager in X.

KUMAR

Proof. Let $\langle J_n : n < \omega \rangle$ list all rational intervals in which X is non-meager. Using the assumption, we can inductively construct $\langle Y_n : n < \omega \rangle$ such that for every $n < \omega$,

- (1) $Y_n \subseteq X \cap J_n$,
- (2) $\bigcup_{k < n} Y_k$ is *E*-independent,
- (3) $J_n \cap Y_n$ is non-meager and
- (4) $X \setminus N_G(\bigcup \{Y_k : k \le n\})$ is everywhere non-meager in X.

At stage n, by applying the hypothesis to $X' = X \setminus N_G(\bigcup\{Y_k : k < n\})$, choose a non-meager $Y_n \subseteq X' \cap J_n$ such that Y_n is *E*-independent and $X' \setminus N_G(Y_n)$ is everywhere non-meager in X'. Having constructed $\langle Y_n : n < \omega \rangle$, put $Y = \bigcup_{n < \omega} Y_n$. It is clear that Y is an *E*-independent and everywhere non-meager in X. \Box

Fact 2.2 (Gitik-Shelah). Suppose that the meager ideal \mathcal{I} restricted to some nonmeager set X is \aleph_1 -saturated. Then forcing with $\mathcal{P}(X)/\mathcal{I}$ makes some non-meager subset of X meager. In particular, it cannot be isomorphic to Cohen forcing.

Proof. Fix $Z \subseteq X$ non-meager and a regular uncountable κ such that for every non-meager $Y \subseteq Z$, the additivity of $\mathcal{I} \upharpoonright Y$ is κ . Put $\mathbb{P} = \mathcal{P}(Z)/\mathcal{I}$ and note that \mathbb{P} is ccc. It suffices to show that $V^{\mathbb{P}} \models Z$ is meager. Let $Z = \bigcup \{Z_i : i < \kappa\}$ where Z_i 's are meager and increasing with i. Let G be \mathbb{P} -generic over V and $j: V \to M \subseteq V[G]$, the generic ultrapower embedding with critical point κ . Since $V \models (\forall j < \kappa) (\bigcup \{Z_i : i < j\} \text{ is meager})$ and $j(\kappa) > \kappa$, $M \models \bigcup \{j(Z_i) : i < \kappa\}$ is meager. Since each $Z_i \subseteq j(Z_i)$, it follows that Z is meager in V[G]. \Box

Lemma 2.3. For every $f : X \to Y$ where $X, Y \subseteq [0,1]$ and X is non-meager, there exists $X' \subseteq X$ such that X' is non-meager and $Y \setminus f[X']$ is everywhere non-meager in Y.

Proof. Use the fact that Y can be partitioned into two everywhere non-meager subsets - See Lusin [6] or use Fact 2.2.

Lemma 2.4. For every $f : X \to Y$, where $X, Y \subseteq [0,1]$ and Y is non-meager, there exists $Y' \subseteq Y$ such that Y' is non-meager and $X \setminus f^{-1}[Y']$ is everywhere non-meager in X.

Proof. Let \mathcal{F} be a maximal family of pairwise disjoint meager subsets W of Y such that $X \setminus f^{-1}[W]$ is not everywhere non-meager in X. It is easy to see that \mathcal{F} is countable and so $W_0 = \bigcup \mathcal{F}$ is meager. Let $Y_1 = Y \setminus W_0$. Note that for every meager $W \subseteq Y_1, X \setminus f^{-1}[W]$ is everywhere non-meager in X.

Towards a contradiction, assume that for every non-meager $Y' \subseteq Y_1, X \setminus f^{-1}[Y']$ is not everywhere non-meager in X. Then the meager ideal \mathcal{I} restricted to Y_1 must be \aleph_1 -saturated. It follows that $\mathbb{B} = \mathcal{P}(Y_1)/\mathcal{I}$ is a complete boolean algebra that satisfies ccc.

For each rational interval J in which X is non-meager, define \mathbf{a}_J to be the infimum in \mathbb{B} of all conditions [Y'] such that $Y' \subseteq Y_1$ and $(X \setminus f^{-1}[Y']) \cap J$ is meager. We claim that each $\mathbf{a}_J > 0_{\mathbb{B}}$. Suppose not. As \mathbb{B} is ccc, there exists a countable family $\{Y'_n \subseteq Y_1 : n < \omega\}$ such that for each n, $(X \setminus f^{-1}[Y'_n]) \cap J$ is meager and $W = \bigcap\{Y'_n : n < \omega\}$ is meager. But now $X \setminus f^{-1}[W]$ is not everywhere non-meager in X while $W \subseteq Y_1$ is meager which is impossible. Therefore $\mathbf{a}_J > 0_{\mathbb{B}}$.

It follows that the family $\{\mathbf{a}_J : J \text{ rational interval and } X \cap J \text{ non-meager}\}$ is dense in $\mathbb{B} \setminus \{0_{\mathbb{B}}\}$. So \mathbb{B} must be isomorphic to Cohen forcing. But this contradicts Fact 2.2.

Lemma 2.5. Suppose $Y, \langle (k_n, Y_n) : n < \omega \rangle$ and $\langle f_{n,k} : n < \omega, k < k_n \rangle$ satisfy the following.

- (a) $1 \leq k_n < \omega$.
- (b) $Y, Y_n \subseteq [0, 1]$ and Y is non-meager.
- (c) $f_{n,k}: Y_n \to Y$.

Suppose further that either $\{k_n : n < \omega\}$ is bounded in ω or the meager ideal restricted to Y is not \aleph_1 -saturated. Then there exists $Y' \subseteq Y$ such that Y' is non-meager and for every $n < \omega$, $Y_n \setminus \bigcup \{f_{n,k}^{-1}[Y'] : k < k_n\}$ is everywhere non-meager in Y_n .

Proof. Suppose no such Y' exists. We first show that the meager ideal restricted to Y must be \aleph_1 -saturated. Suppose not and let $\{A_i : i < \omega_1\}$ be a family of pairwise disjoint non-meager subsets of Y. For each $i < \omega_1$, choose $n_i < \omega$ and a rational interval J_i such that $Y_{n_i} \cap J_i$ is non-meager and $(Y_{n_i} \setminus \bigcup \{f_{n_i,k}^{-1}[A_i] : k < k_{n_i}\}) \cap J_i$ is meager. By shrinking $\{A_i : i < \omega_1\}$, we can assume that $n_i = n_*$ and $J_i = J_*$ do not depend on i. Let W be a meager set such that for each $i < \omega$, $(Y_{n_*} \setminus \bigcup \{f_{n_*,k}^{-1}[A_i] : k < k_{n_*}\}) \cap J$ is contained in W. Fix $x \in (Y_{n_*} \setminus W) \cap J$. Then $x \in \bigcup \{f_{n_*,k}^{-1}[A_i] : k < k_{n_*}\}$ for every $i < \omega$. It follows that for some $i < j < \omega$ and $k < k_{n_*}$, we have $x \in f_{n_*,k}^{-1}[A_i] \cap f_{n_*,k}^{-1}[A_j]$ which is impossible since $A_i \cap A_j = \emptyset$.

Using the hypothesis, we can fix $K < \omega$ such that each $k_n \leq K$. By replacing each Y_n with a similar copy of Y_n , we can assume that there is a disjoint family $\{J_n : n < \omega\}$ of intervals such that each $Y_n \subseteq J_n$. Put $X = \bigcup \{Y_n : n < \omega\}$ and define $F_k : X \to Y$ for k < K, such that for every $n < \omega$ and $k < k_n$, $F_k \upharpoonright Y_n = f_{n,k}$. Applying Lemma 2.4 K-times, choose $Y' \subseteq Y$ such that Y' is non-meager and $X \setminus \bigcup \{F_k^{-1}[Y'] : k < K\}$ is everywhere non-meager in X. Since Y_n 's are separated by pairwise disjoint intervals, it also follows that for every $n < \omega$, $Y_n \setminus \bigcup \{f_{n,k}^{-1}[Y'] : k < k_n\}$ is everywhere non-meager in Y_n . But this contradicts our assumption that no such Y' exists. \Box

Now suppose $X \subseteq [0,1]$ and G = (X, E) has coloring number $\theta \leq \aleph_0$. Suppose either $\theta < \aleph_0$ or the meager ideal restricted to X is nowhere \aleph_1 -saturated. We'll show that G satisfies the hypothesis of Lemma 2.1. Let J be a rational interval and $X' \subseteq X$ be such that $X' \cap J$ is non-meager. We need to find a non-meager $Y \subseteq X' \cap J$ such that Y is E-independent and $X' \setminus N_G(Y)$ is everywhere non-meager in X'. We can clearly assume that X' = X.

Fix a well-ordering \prec of X such that for every $x \in X$, $|\{y \in X : y \prec x \land yEx\}| < \theta$. Let $F : X \to [X]^{<\theta}$ be defined by $F(x) = \{y \in X : y \prec x \land yEx\}$. Choose a partition $\{X_m : m < \theta\}$ of X such that each X_m is E-independent. Let $\{Y_n : n < \theta^2\}$ be a refinement of $\{X_m : m < \theta\}$ such that for each n, $|F(x)| = k_n$ does not depend on $x \in Y_n$. Choose $f_{n,k} : Y_n \to X$, for $n < \theta^2$ and $k < k_n$, such that for every $x \in Y_n$, $F(x) = \{f_{n,k}(x) : k < k_n\}$.

One of the Y_n 's is non-meager in J, say Y_0 . Since either $\sup\{k_n : n < \omega\} < \theta < \aleph_0$ or the meager ideal restricted to X is nowhere \aleph_1 -saturated, we can use Lemmas 2.3 and 2.5 to obtain $Y' \subseteq Y_0 \cap J$ such that Y' is non-meager and for every $1 \le n < \theta^2$, $Y_n \setminus \bigcup(\{f_{n,k}^{-1}[Y'] : k < k_n\} \cup \{f_{0,k}[Y'] : k < k_0\})$ is everywhere non-meager in Y_n . Since Y_0 is E-independent, $X \setminus N_G(Y')$ is also everywhere non-meager in X. Applying Lemma 2.1, it follows that X has an everywhere non-meager E-independent subset.

KUMAR

Since the rational distance graph $E = \{\{x, y\} : x, y \in \mathbb{R}^2, ||x - y|| \in \mathbb{Q}\}$ in plane has countable coloring number (see Theorem 2.3 in [3]), we get the following: Suppose X is a subset of plane such that the meager ideal restricted to X is nowhere \aleph_1 -saturated. Then X has an everywhere non-meager subset that avoids rational distances.

3. Measure

By modifying the arguments of the previous section, we can show that unless the null ideal restricted to some non-null subset of X is \aleph_1 -saturated, Question 1.2 has a positive answer. Let us indicate the main steps.

Lemma 3.1. Suppose $X \subseteq [0,1]$ and G = (X, E) is a graph. Suppose for every $X' \subseteq X$, there exists $Y \subseteq X'$ such that Y is E-independent, $\mu^*(Y) \ge 0.5\mu^*(X')$ and $\mu^*(X' \setminus N_G(Y)) = \mu^*(X')$. Then there exists $Y \subseteq X$ such that Y is E-independent and $\mu^*(Y) = \mu^*(X)$.

Proof. For $A \subseteq [0,1]$, let env(A) be a G_{δ} set containing A such that $\mu^{\star}(A) = \mu(env(A))$. Construct $\langle Y_n : n < \omega \rangle$ as follows.

- (1) $Y_0 \subseteq X, \ \mu^*(Y_0) \ge 0.5\mu^*(X), \ Y_0 \text{ is } E \text{-independent and } \mu^*(X \setminus N_G(Y_0)\}) = \mu^*(X).$
- (2) Suppose $\langle Y_k : k \leq n \rangle$ has been constructed. Let $Z_n = \bigcup_{k \leq n} Y_k$. Define $W_n = X \setminus (N_G(Z_n) \cup \bigcup_{k \leq n} \operatorname{env}(Y_k))$. Choose $Y_{n+1} \subseteq W_n$ such that
 - (a) $\mu^{\star}(Y_{n+1}) \ge 0.5\mu^{\star}(W_n),$
 - (b) Y_{n+1} is *E*-independent and
 - (c) $\mu^{\star}(W_n \setminus N_G(Y_{n+1})) = \mu^{\star}(W_n).$

Now it is easy to check that $Y = \bigcup \{Y_n : n < \omega\}$ is *E*-independent and $\mu^*(Y) = \mu^*(X)$.

The following can be proved exactly like Fact 2.2.

Fact 3.2 (Gitik-Shelah). Suppose that the null ideal \mathcal{I} restricted to some non-null set X is \aleph_1 -saturated. Then forcing with $\mathcal{P}(X)/\mathcal{I}$ makes some non-null subset of X null. In particular, it cannot be isomorphic to random forcing.

Lemma 3.3. For every $f: X \to Y$, where $X, Y \subseteq [0,1]$ and $\mu^*(X) > 0$, for every $\varepsilon > 0$, there exists $Z \subseteq X$ such that $\mu^*(Z) \ge (1-\varepsilon)\mu^*(X)$ and $\mu^*(Y \setminus f[Z]) = \mu^*(Y)$.

Proof. By a result of Lusin [6] or by using Fact 3.2, we can decompose $Y = Y' \sqcup Y''$ such that $\mu^*(Y') = \mu^*(Y'') = \mu^*(Y)$. Note that one of the sets $f^{-1}[Y']$, $f^{-1}[Y'']$ has outer measure $\geq 0.5\mu^*(X)$. It follows that there exists $Z_0 \subseteq X$ such that $\mu^*(Z_0) \geq 0.5\mu^*(X)$ and $\mu^*(Y \setminus f[Z_0]) = \mu^*(Y)$. Put $X' = X \setminus \text{env}(Z_0)$, $Y' = Y \setminus f[Z_0]$ and repeat this argument for $f \upharpoonright X' : X' \to Y'$ to obtain $Z_0 \subseteq Z_1 \subseteq X$ such that $\mu^*(Z_1) \geq 0.75\mu^*(X)$ and $\mu^*(Y \setminus f[Z_1]) = \mu^*(Y)$. Repeating this *n*-times where $\varepsilon 2^n > 1$, we get the required $Z \subseteq X$.

Lemma 3.4. Suppose $Y, \langle (k_n, Y_n) : n < \omega \rangle, \langle f_{n,k} : n < \omega, k < k_n \rangle$ satisfy the following.

(a) $1 \leq k_n < \omega$. (b) $Y, Y_n \subseteq [0, 1]$. (c) Y is non-null. (d) $f_{n,k}: Y_n \to Y$. Suppose further that for every Borel set B satisfying $\mu^*(B \cap Y) > 0$, the null ideal restricted to $Y \cap B$ is not \aleph_1 -saturated. Then there exists $Y' \subseteq Y$ such that $\mu^*(Y') = \mu^*(Y)$ and for every $n < \omega$, $\mu^*(Y_n \setminus \bigcup \{f_{n,k}^{-1}[Y'] : k < k_n\}) = \mu^*(Y_n)$.

Proof. First observe that there is an uncountable partition $\{A_i : i < \omega_1\}$ of Y such that for each $i < \omega_1, \ \mu^*(A_i) = \mu^*(Y)$. This follows from the following.

Claim 3.5. For every Borel $B \subseteq env(Y)$ of positive measure, there exist a Borel $B' \subseteq B$ of positive measure and a partition $\{Z_{\alpha} : \alpha < \omega_1\}$ of $Y \cap B'$ such that for every $\alpha < \omega$, $env(Z_{\alpha}) = B'$.

Proof. Since $\mu^*(Y \cap B) = \mu(B) > 0$, we can fix a partition $\{W_i : i < \omega_1\}$ of $Y \cap B$ into sets of positive outer measure. Since random forcing is ccc, we can choose $\langle i_{\alpha} : \alpha < \omega_1 \rangle$ such that i_{α} 's are strictly increasing and cofinal in ω_1 and env $(\bigcup\{W_j : i_{\alpha} < j < i_{\alpha+1}\}) = B'$ does not depend on $\alpha < \omega_1$. For each $\alpha < \omega_1$, define $Z_{\alpha} = B' \cap \bigcup\{W_j : i_{\alpha} < j < i_{\alpha+1}\}$. Then B', $\{Z_{\alpha} : \alpha < \omega_1\}$ are as required.

Towards a contradiction, assume that for every $i < \omega_1$, $Y' = A_i$ does not satisfy the conclusion of the lemma. By passing to an uncountable subfamily of $\{A_i : i < \omega_1\}$, we can assume that there are $n_\star < \omega$ and a rational interval J_\star such that for every $i < \omega_1$, $\mu^\star(Y_{n_\star} \cap J_\star) > (1 - 2^{-4k_{n_\star}})\mu(J_\star)$ and $\mu^\star\left((Y_{n_\star} \cap J_\star) \setminus \bigcup \{f_{n_\star,k}^{-1}[A_i] : k < k_{n_\star}\}\right) < 2^{-4k_{n_\star}}\mu(J_\star)$. It follows that $\bigcap_{i \leq k_{n_\star}} \bigcup_{k < k_{n_\star}} f_{n_\star,k}^{-1}[A_i]$

is nonempty and we get a contradiction as before.

Now suppose $X \subseteq [0, 1]$, G = (X, E) has countable coloring number and the null ideal restricted to X is nowhere \aleph_1 -saturated. We'll show that G satisfies the hypothesis of Lemma 3.1. Let $X' \subseteq X$. We need to find $Y \subseteq X'$ such that Y' is E-independent and $\mu^*(Y) \ge \mu^*(X')$. As before, we can assume that X' = X.

Fix a well-ordering \prec of X such that for every $x \in X$, $\{y \in X : y \prec x \land yEx\}$ is finite. Let $F : X \to [X]^{<\aleph_0}$ be defined by $F(x) = \{y \in X : y \prec x \land yEx\}$. Choose a partition $\{X_m : m < \omega\}$ of X such that each X_m is E-independent. Let $\{Y_n : n < \omega\}$ be a refinement of $\{X_m : m < \omega\}$ such that for each n, $|F(x)| = k_n$ does not depend on $x \in Y_n$. Choose $f_{n,k} : Y_n \to X$, for $n < \omega$ and $k < k_n$, such that for every $x \in Y_n$, $F(x) = \{f_{n,k}(x) : k < k_n\}$.

Fix n_{\star} such that $\mu^{\star}(\bigcup\{Y_n : n < n_{\star}\}) \ge 0.6\mu^{\star}(X)$. By applying Lemma 3.4 n_{\star} -times, we can find $\langle Y'_n : n < n_{\star} \rangle$ such that the following hold.

- (1) For every $n < n_{\star}, \mu^{\star}(Y'_n) = \mu^{\star}(Y_n)$.
- (2) Whenever $m, n < n_{\star}$ and $k < k_m$, we have $Y'_m \cap f_m^{-1}[Y'_n] = \emptyset$.
- (3) For every $n_{\star} \leq m < \omega, \ \mu^{\star}(Y_m) = \mu^{\star}(Y_m \setminus \bigcup \{f_{m,k}^{-1}[Y'_n] : n < n_{\star} \land k < k_m\}).$

Put $W = \bigcup \{Y'_n : n < n_\star\}$ and observe that W is E-independent and $\mu^\star(W) \geq 0.6\mu^\star(X)$. Put $X'' = \bigcup_{m \geq n_\star} Y_m \setminus \bigcup \{f_{m,k}^{-1}[Y'_n] : n < n_\star \land k < k_m\}$. Let \mathcal{F} be a finite family of functions from W to X such that for every $n < n_\star$ and $k < k_n$, there exists $f \in \mathcal{F}$ such that $f \upharpoonright Y'_n = f_{n,k} \upharpoonright Y'_n$. Applying Lemma 3.3 $|\mathcal{F}|$ -times, we can obtain $Y \subseteq W$ such that $\mu^\star(Y) \geq 0.9\mu^\star(W)$ and $\mu^\star(X'') = \mu^\star(X'' \setminus \bigcup \{f[Y] : f \in \mathcal{F}\})$. It follows now that $\mu^\star(X \setminus N_G(Y)) = \mu^\star(X)$ and hence Y is as required. \Box

KUMAR

We do not know if the measure analogue of Lemma 2.4 holds.

Question 3.6. Suppose $f : X \to Y$ where $X, Y \subseteq [0,1]$ and Y is non-null. Must there exist $Y' \subseteq Y$ non-null such that $\mu^*(X \setminus f^{-1}[Y']) = \mu^*(X)$?

A special case of this (Fact 1.1) was shown in [5] under the additional assumption that f is countable-to-one.

References

- M. Foreman, Ideals and generic elementary embeddings, Handbook of set theory Vol. 2 (M. Foreman, A. Kanamori, ed.), Springer 2010, 885-1147
- [2] M. Gitik and S. Shelah, Forcing with ideals and simple forcing notions, Israel J. Math 68 1989, 129-160
- [3] P. Komjáth, Set theoretic constructions in Euclidean spaces, New Trends in Discrete and Computational Geometry (J. Pach, ed.), Springer, 1993, 303-325
- [4] A. Kumar, Avoiding rational distances, Real Analysis Exchange, Vol. 38(2) 2012/13, 493-498
- [5] A. Kumar, S. Shelah, A transversal of full outer measure, Advances in Mathematics, Vol. 321 (2017), 475-485
- [6] N. Lusin, Sur la décomposition des ensembles, C. R. Acad. Sci. Paris 198 1934, 1671-1674

DEPARTMENT OF MATHEMATICS AND STATISTICS, INDIAN INSTITUTE OF TECHNOLOGY KANPUR, KANPUR 208016, UP, INDIA.

Email address: krashu@iitk.ac.in URL: https://home.iitk.ac.in/~krashu/