FRAGILITY OF PROPERNESS

YASUO YOSHINOBU

ABSTRACT. We prove that for any models $V \subsetneq W$ of ZFC with the same ordinals, there is a poset which is proper in V but not in W. This answers a question raised by Karagila.

In this short paper we prove the following theorem, which answers a question raised by Karagila [4, Problem 5]. The background of the question is explained in [5].

Theorem 1. Suppose $V \subsetneq W$ are models of ZFC with the same ordinals. Then there exists a poset \mathbb{P} in V such that \mathbb{P} is proper in V but not in W.

Proof. Let κ be the least ordinal such that ${}^{\kappa}\operatorname{Ord} \cap (W \setminus V) \neq \emptyset$. It is easy to see that κ is a regular infinite cardinal both in V and W. Let λ be the least ordinal such that ${}^{\kappa}\lambda \cap (W \setminus V) \neq \emptyset$. Then λ is a cardinal in V and satisfies $\lambda \geq 2$. Our proof of Theorem 1 is done in two cases.

<u>Case 1</u> $\kappa > \omega$.

This case can be done with an argument similar to the one in [8, Section 2], which gave an example of a proper poset whose properness is destroyed by some κ -closed forcing. It was a variation of Shelah's example of a pair of proper posets whose product is improper (see [7, XVII Observation 2.12, p.826]).

Work in V first. Let T denote the tree ${}^{\kappa}\lambda$ ordered by end-extension. Note that there are λ^{κ} branches through T. Let $\theta := \lambda^{\kappa}$, $\mathbb{P} := \operatorname{Add}(\omega, 1)$ and $\dot{\mathbb{Q}}$ be a \mathbb{P} -name such that $\Vdash_{\mathbb{P}}$ " $\dot{\mathbb{Q}} = \operatorname{Col}(\omega_1, \theta)$." Since $\dot{\mathbb{Q}}$ is σ -closed in $V^{\mathbb{P}}$, by Mitchell's theorem (see [6]) no branches through T are newly added by forcing over $\mathbb{P} * \dot{\mathbb{Q}}$, and thus there are exactly ω_1 branches through T in $V^{\mathbb{P}*\dot{\mathbb{Q}}}$. Note that $\operatorname{cf} \kappa = \omega_1$ holds in $V^{\mathbb{P}*\dot{\mathbb{Q}}}$, and let \dot{C} be a $(\mathbb{P} * \dot{\mathbb{Q}})$ -name for a cofinal subset of κ of order type ω_1 . In $V^{\mathbb{P}*\dot{\mathbb{Q}}}$ we let

$$T \upharpoonright \dot{C} = \{ t \in T \mid \mathrm{lh}(t) \in \dot{C} \}.$$

Supported by Grant-in-Aid for Scientific Research (C) (No. 18K03394) from JSPS.

YASUO YOSHINOBU

Then $T \upharpoonright \dot{C}$ forms a tree of height ω_1 with ω_1 cofinal branches. Now let $\dot{\mathbb{R}}$ denote a $(\mathbb{P} * \dot{\mathbb{Q}})$ -name for a c.c.c. poset specializing $T \upharpoonright \dot{C}$ (see [1, §7]). Then $\mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{R}}$ is proper in V.

Now let G be any $(\mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{R}})$ -generic filter over W (thus over V). While $T \upharpoonright \dot{C}_G$ is specialized in V[G], W (and thus W[G]) has branches through T which are not in V (and thus not in V[G]), and so W[G] has branches through $T \upharpoonright \dot{C}_G$ which are not in V[G]. Therefore ω_1 must be collapsed in W[G], and thus $\mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{R}}$ is improper in W. \Box (Case 1)

<u>Case 2</u> $\kappa = \omega$.

This case can be handled by generalizing the argument of Shelah (presented by Goldstern in [3]), showing that some σ -closed posets (for example Col(ω_1, ω_2)) turns improper after adding a real in some ways (for example adding a Cohen real).

Lemma 2. There exists $\mu > \omega_1^W$, regular in W, such that $(\mathcal{P}_{\omega_1}\mu)^W \setminus V$ is stationary in W.

(Proof of Lemma 2)

Subcase (i) $\lambda = 2$ (namely there exists a real in $W \setminus V$).

In this subcase, the conclusion of Lemma 2 for $\mu = \omega_2^W$ directly follows from Gitik's theorem [2, Theorem 1.1]. Subcase (ii) Otherwise.

Pick an $f \in {}^{\omega}\lambda \cap (W \setminus V)$. Since no reals are in $W \setminus V$ in this subcase, it is easy to see that no $x \supseteq \operatorname{ran}(f)$ in V is countable in W. Pick a W-regular cardinal $\mu \ge \max\{\lambda, \omega_2^W\}$. Then in W, the set

$$X = \{ x \in \mathcal{P}_{\omega_1} \mu \mid x \supseteq \operatorname{ran}(f) \}$$

does not intersect with V, and is stationary in $\mathcal{P}_{\omega_1}\mu$. \Box (Lemma 2)

Let μ be as in Lemma 2, and $\mathbb{P} = \operatorname{Col}(\omega_1, \mu)^V$. \mathbb{P} is σ -closed and thus proper in V. Now work in W. Let θ be a sufficiently large cardinal. Then by Lemma 2,

$$Y = \{ M \prec H_{\theta} \mid \mathbb{P} \in M, |M| = \omega, M \cap \mu \notin V \}$$

is stationary in $\mathcal{P}_{\omega_1}H_{\theta}$. Note that for each $M \in Y$, $M \cap \omega_1$ is an ordinal and so is $M \cap \omega_1^V$. We write $M \cap \omega_1^V$ as δ . For each $M \in Y$, if $p \in \mathbb{P}$ were (M, \mathbb{P}) -generic, by a density argument we would have $\operatorname{ran}(p \upharpoonright \delta) = M \cap \mu \notin V$, which is absurd since $p \in V$. Therefore \mathbb{P} is not proper in W.

 \Box (Theorem 1)

Question In Theorem 1, can we always find \mathbb{P} which is totally proper?

FRAGILITY OF PROPERNESS

References

- James E. Baumgartner. Applications of the Proper Forcing Axiom. In K. Kunen and J.E. Vaughan, editors, *Handbook of set-theoretic topology*, pages 913–959. North-Holland, 1984.
- [2] Moti Gitik. Nonsplitting subset of $P_{\kappa}(\kappa^+)$. Journal of Symbolic Logic, 50(4):881–894, 1985.
- [3] Martin Goldstern. Answer of MathOverflow question 193522. MathOverflow, https://mathoverflow.net/a/193522, 2015.
- [4] Asaf Karagila. Open problems. Blog entry, http://karagila.org/problems. html, 2018.
- [5] Asaf Karagila. Preserving properness. Blog enrty, http://karagila.org/2018/ preserving-properness/, 2018.
- [6] William Mitchell. Aronszajn trees and the independence of the transfer property. Annals of Mathematical Logic, 5:21–46, 1972.
- [7] Saharon Shelah. Proper and Improper Forcing. Perspectives in Mathematical Logic. Springer-Verlag, 1998.
- [8] Yasuo Yoshinobu. Properness under closed forcing. In Advances in Mathematical Logic / Dedicated to the Memory of Professor Gaisi Takeuti, SAML 2018, Kobe, Japan, September 2018, Springer Proceedings in Mathematics and Statistics, to appear.

GRADUATE SCHOOL OF INFORMATION SCIENCE NAGOYA UNIVERSITY FURO-CHO, CHIKUSA-KU, NAGOYA 464-8601 JAPAN *E-mail address*: yosinobu@is.nagoya-u.ac.jp