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QUALITATIVE DIFFERENCES BETWEEN THE REAL LINE AND 
NONSEPARABLE LINEARLY ORDERED TOPOLOGICAL SPACES 

TETSUYA ISHIU 
MIAMI UNIVERSITY 

ABSTRACT. We shall discuss qualitative differences between the real line and nonseparable 
LOTS. 

1. INTRODUCTION 

The set JR of real numbers is used everywhere in mathematics and science to describe quan­
tities. It is well-known that as a linearly ordered topological space (LOTS in short), JR is 
characterized as a complete self-dense separable LOTS without end points. In this paper, we 
shall discuss what happens if we replace it with a nonseparable LOTS or more generally a non­
separable GO-space. In fact, we shall observe that many phenomena that we take for granted 
cannot occur when we use a nonseparable LOTS. 

The structure of this article is as follows. In Section 2, we shall define some notions that are 
used in Sections 3 and 4. In Section 3, we shall outline the proof that for every nonnegative 
integer n, every continuous injection from the product of n-many connected nowhere separable 
LOTS to the product of n-many connected nowhere separable LOTS is coordinate-wise. In 
Section 4, we shall give a new proof of G. I. Certanov's Theorem that if X and Y are infinite 
Hausdorff spaces such that X x Y is a continuous image of a countably compact GO space, 
then both X and Y are metrizable. The proof uses countable elementary submodels, too. In 
Section 5, we shall discuss J. Aczel's Theorem that every cancellative connected linearly ordered 
topological semigroup is order- and semigroup-isomorphic to a subsemigroup of (JR,+,:::;). In 
Section 6, we consider a positively ordered semigroup. In particular, we present the author's 
theorem that if S is a positively ordered archimedean semigroup with no maximal element, then 
there is an order and semigroup-homomorphism f from S onto ([O, oo), +,:::;)such that 1-1 { 0} 
is either empty of the singleton of an identity. We shall also discuss how to use this result to an 
analogue of metrizable spaces by using positively ordered semigroups. 

The author is thankful to Stevo Todorcevic for his valuable comments on the result in Section 
4. 

2. KEY DEFINITIONS AND OBSERVATIONS 

2.1. Definitions. In Sections 3 and 4, we rely on the notions introduced by the author in [10] 
and [11]. In this section, we shall present some of them. 

Throughout this section, let K be a GO-space and M a countable elementary submodel of 
H(0) where 0 is a sufficiently large regular cardinal so that KEM. 

Definition 2.1. Let K be a GO-space and Ma countable elementary submode! of H(0) where 
0 is a sufficiently large regular cardinal so that K E M. 

Let J0 (K, M) be the set of all x EK such that there exist a, b EK n M such that a:::; x:::; b. 
Let J(K, M) = J0 (K, M) \ cl(K n M). 
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For every p E K, let 

if they exist. 

71(K, M,p) = sup { x E cl(K n M): x ~ p} 

((K, M,p) = inf { x E cl(K n M): x 2 p} 

I(K,M,p) = [71(K,M,p),((K,M,p)] 

If K is nowhere separable and U is an open subset of K, then U \ cl( Kn M) =/= 0. So, ifthere 
are a lower bound and an upper bound of U that belong to M, then Un J(K, M) =/= 0. 

2.2. Observations. If p E J(K, M), then (71(K, M,p), ((K, M,p)) is an open neighborhood of 
p that is disjoint from M. Thus, [71(K,M,p),((K,M,p)], i.e. I(K,M,p) cannot be controlled 
well by M. 

It is easy to prove the following lemma. 

Lemma 2.2. Let p, q E J(K, M) with p < q and I(K, M,p) =/= I(K, M, q). Then, 

{1) ((K,M,p) ~ 71(K,M,q), and 
{2) for all x E I(K, M,p) and y E I(K, M, q), we have x ~ y. In particular, if I(K, M,p) n 

I(K, M, q) =I= 0, then ((K, M,p) = 71(K, M, q) and it is the only element of I(K, M,p) n 
I(K,M,q). 

We shall also prove the following lemma on functions from K into a Hausdorff space. 

Lemma 2.3. Let X be a Hausdorff space and g : K -+ X a continuous function with X, g E M. 
Let p E J(K, M) and g(p) EM. Then, either 

{1) {tEKnMlt<p}=f-0 andg(71(K,M,p))=g(p) or 
{2) {tEKnMlt>p}=f-0 andg(((K,M,p))=g(p). 

In particular, in this situation, there are only two candidates for the value of g(p). 

3. COORDINATE-WISE THEOREM 

3.1. Introduction. Extending the result of K. Eda and R. Kamijo in [6], the author proved 
the following theorem in [11]: 

Theorem 3.1 (T. Ishiu [11]). Let n be a non-zero natural number, Ko, ... , Kn-1, Lo, ... , Ln-1 
connected nowhere separable LOTS, and f : rri<n K; -+ ITj<n Lj a continuous injective function. 
Then, f is coordinate-wise, namely there exists a bijection h : n -+ n and a function Pi : K; -+ 
Lh(i) for each i < n such that for all XE rri<n K; and i < n, 

f(x)(h(i)) = p;(x(i)) 

This theorem distinguishes JR and a connected nowhere separable LOTS. For example, it is 
easy to see the following corollary. 

Corollary 3.2. Let L be a connected LOTS. Then, the following are equivalent. 

{1) L is nowhere separable. 
{2) Every injection from L x L to L x L is coordinate-wise. 
{3) For every integer n 2 1, every injection from Ln to Ln is coordinate-wise. 

The proof of Theorem 3.1 uses countable elementary submodels. In the next several subsec­
tions, we shall sketch the main idea of the proof for the case n = 2. 

2 
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3.2. Connected nowhere separable LOTS. When we consider a continuous function from 
a connected nowhere separable LOTS into a connected nowhere separable LOTS, we can prove 
the following stronger lemma than the ones we discussed in Subsection 2.2. 

Lemma 3.3. Let K, L be connected nowhere separable LOTS and g : K -+ L a continuous 
function. Let M be a countable elementary submodel of H(0) where 0 is a sufficiently large 
regular cardinal such that K, L, g EM. Let p E J(K, M). Then, 

{1) g I I ( K, M, p) has a maximum and a minimum at the endpoints. 
{2) If g(p) EM, then g I I(K, M,p) is constant. 
{3) Ifg I I(K,M,p) is not constant, theng(p) E J(L,M) andg-+I(K,M,p) =I(L,M,g(p)). 

By using the previous lemma, we can prove the following lemma. 

Lemma 3.4. Let Ko, K1 and L be connected nowhere separable LOTS and f : Ko x K1 -+ L a 
continuous function. Let M be a countable elementary submodel of H(0) where 0 is a sufficiently 
large regular cardinal such that Ko,K1,L,f EM. If p E J(Ko,M), q E cl(K1 n M), and 
f(p, q) E J(L, M), then 

{ f(TJ(Ko, M,p), q), f(((Ko, M,p), q)} = C(L, M, f(p, q)) 

and 

f-+(I(Ko,M,p) x {q}) = I(L,M,f(p,q)) 

Note that if q EM, then this lemma is an easy consequence of Lemma 3.3. The significance 
of this lemma is that this holds even when q is a limit point of K1 n M. By using it together 
with countable elementary submode! arguments, we can show the following lemma. 

Lemma 3.5. LetKo,K1,L,f andM be as in Lemma 3.4. Letp E J(Ko,M) andq E J(K1,M). 

{1) If f is not constant, then 

f-+(I(Ko, M,p) x I(K1, M, q)) = I(L, M, f(p, q)). 

{2) If f(p,q) EM, then f is constant on I(Ko,M,p) x I(K1,M,q). 

By using Lemma 3.5, we can prove the following lemma. 

Lemma 3.6. Let Ko, K1, Lo, L1 be connected nowhere separable LOTS and f : Ko x K1 -+ 
Lo x L1 be an injective function. Let M be a countable elementary submodel of H(0) where 0 
is a sufficiently large regular cardinal such that Ko, K1, Lo, L1, f E M. Let xo E J(Ko, M) and 
x1 E J(K1,M). Define (Yo,Y1) = f(xo,x1)- Then, 

f-+(I(Ko, M, xo) x I(K1, M, x1)) = I(Lo, M, Yo) x I(Lo, M, y1) 

So, the behavior of the function f is severely restricted by M. By extending this local result 
to the entire space, we can prove Theorem 3.1. 

4. A PROOF OF CERTANOV'S THEOREM BY USING COUNTABLE ELEMENTARY SUBMODELS 

4.1. History. A well-known theorem of G. Peano says that there is a continuous surjection from 
[O, 1] onto [O, 1] x [O, l]. D. Kurepa conjectured that for every nondegenerate connected compact 
LOTS K, if there exists a continuous surjection from K onto K x K, then K is isomorphic to 
[O, 1]. In fact, he proved this theorem in the case that K has countable cellularity. 

S. Mardesic and P. Papic [14] extended the result and showed that if X and Y are nonde­
generate connected compact LOTS and X x Y is a continuous image of a connected compact 
LOTS, then both X and Y are metrizable. Then, L. B. Treybig showed the following theorem, 
which strengthens these results even further: 

Theorem 4.1 (L.B. Treybig [15]). If X and Y are infinite Hausdorff spaces and X x Y is a 
continuous image of a compact LOTS, then both X and Y are metrizable. 
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G. I. Certanov [4] showed that this theorem holds even when a compact LOTS is replaced by 
a countably compact GO space, namely: 

Theorem 4.2 (G. I. Certanov [4]). If X and Y are infinite Hausdorff spaces and X x Y is a 
continuous image of a countably compact GO space, then X and Y are compact and metrizable. 

Note that in the conclusion of both Theorem 4.1 and Theorem 4.2, X and Y are compact 
and metrizable, so they are separable. 

In the next subsection, we shall give a proof of Theorem 4.2 by using countable elementary 
submodels. 

4.2. The use of countable elementary submodels. First, we shall prove the following 
lemma. As we mentioned, this is an easy corollary of Theorem 4.2. 

Lemma 4.3. If X and Y are infinite Hausdorff spaces and X x Y is an image of a countably 
compact GO space. Then X and Y are separable. 

Proof.(Sketch) Let X and Y be infinite Hausdorff space, K a countably compact GO space, 
and fa continuous surjection from K onto Xx Y. Let M be a countable elementary submodel 
of H(0) where 0 is a sufficiently large regular cardinal with X, Y, K, f E M. Let 91, g2 be the 
coordinate functions off, i.e. f(t) = (g1(t),g2(t)) for every t EK. 

Suppose that at least one of X and Y is nonseparable. Without loss of generality, suppose 
that Xis nonseparable. So, there exists x0 EX\ cl(X n M). Since Y is infinite, Y n Mis also 
infinite. By a little argument, we can build a monotone sequence (tnln < w) such that for every 
n < m < w, g1(tn) = xo, g2(tn) EM, and g2(tn) =/- g2(tm)-

By using Lemma 2.3, we can prove that for every n < w, tn+2 r/:. I(K, M, tn)- Let tw = 
sup{ tn In< w }. Then, g1(tw) = xo since g1(tn) = xo for all n < w. 

However, tw is also a limit point of { (,(K, M, tn) I n < w }. Since (,(K, M, tn) E cl(K n M), 
we have g1(tw) E cl(Y n M). This is a contradiction. □(Lemma 4.3) 

Theorem 4.2 can be obtained as a corollary of the previous lemma as follows. 

Proof of Theorem 4.2. Let X and Y be infinite Hausdorff space, K a countably compact GO 
space, and fa continuous surjection from K onto Xx Y. By Lemma 4.3, X and Y are separable. 
So, there exists a countable subset D of K such that f--+ cl(D) =Xx Y. Since cl(D) is a closure 
of a countable subset of countably compact GO space, it is a compact LOTS. By Theorem 4.1 
applied to f I cl(D), we can see X and Y are metrizable. □ 

However, we can prove Theorem 4.2 without using Theorem 4.1 by using the following lemma. 

Lemma 4.4 (T .Ishiu [13]). Let X be a Hausdorff space that is a continuous image of a separable 
countably compact LOTS. Then, X is first countable. 

There are many results in this line of research. The author will consider applications of this 
technique in these situations to find new proofs and theorems. 

5. LINEARLY ORDERED TOPOLOGICAL SEMIGROUPS 

5.1. Aczel's Theorem. We shall consider topological semigroups on a LOTS, i.e., the following 
structures. 

Definition 5.1. A linearly ordered topological semigroup is a triple (S, •, :S::) such that (S, :S::) is 
a linearly ordered set, and (S, •) is a topological semigroup when the topology on Sis given by 
the order topology. 

Recall the following notion. 

Definition 5.2. We say that a semigroup S is cancellative if and only if for every a, x, y E S, 
ax= ay implies x = y and xa = ya implies x = y. 
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The following corollary can be obtained from Theorem 3.1. 

Corollary 5.3. Let K be a connected nowhere separable LOTS which has at least two elements. 
Then, there is no cancellative linearly ordered topological semigroup on K. 

Proof. Let (K, ·, s) be a cancellative linearly ordered topological semigroup where K is 
connected and nowhere separable. Define 

f(x,y) = (x,x • y) 

Since K is cancellative, f is not coordinate-wise and injective. By Theorem 3.1, f is coordinate­
wise. This is a contradiction. □(Corollary 5.3) 

In fact, J. Aczel [1] proved the following stronger result. R. Craigen and Z. Pales [5] gave a 
simpler proof. 

Theorem 5.4 (J. Aczel [1]). Let S be a cancellative connected linearly ordered topological semi­
group. Then, S is order- and semigroup-isomorphic to a subsemigroup of (JR, +). 

By using this theorem, it is easy to observe that every connected linearly ordered topological 
semigroup is order- and semigroup-isomorphic to one of (-00,00), [0,oo), (0, oo), [1, oo), (1, oo), 
(-oo, 0], (-oo, 0), (-oo, -1], and (-oo, -1). 

As a corollary, we can see the following theorem proved by E .Cartan [3]. 

Corollary 5.5 (E. Cartan [3]). Every connected linearly ordered topological group is order- and 
semigroup-isomorphic to (JR, +). 

We may wonder if these results can be extended to a broader class of connected topological 
groups and semigroups, not necessarily topologized by the order topology. It is related to the 
question of whether Theorem 3.1 can be extended to more topological spaces. 

6. LINEARLY ORDERED SEMIGROUPS 

6.1. History. We may also consider another class of semigroups on LOTS. 

Definition 6.1. We say that a triple (S, •, s) is a linearly ordered semigroup if and only if (S, •) 
is a semigroup, (S, S) is a linearly ordered set, and for all a, b, c E S, a S b implies ac S be and 
ca S cb. 

A trivial but motivating example of a linearly ordered semigroup is (JR,+, s). Linearly ordered 
semigroups and linearly ordered topological semigroups are independent notions. Namely, there 
exists a linearly ordered semigroup that is not a linearly ordered topological semigroup and vice 
versa. (See [8]). 

There are several results about sufficient conditions for a linearly ordered semigroup to be 
order- and semigroup-isomorphic to a subsemigroup of (JR,+, s). To state them, we shall define 
several notions on linearly ordered semigroups. 

Definition 6.2. Let S be a linearly ordered semigroup. We say that S is positively ordered if 
and only if for all a, b E S, ab 2". a and ab 2". b. We say that Sis strictly positively ordered if and 
only if for all a, b ES, ab> a and ab> b. 

Note that (JR,+, s) is not positively ordered, but ([0, oo ), +, s) is positively ordered. For 
simplicity, we say S is a positively ordered semigroup to mean a positively ordered linearly 
ordered semigroup. 

Definition 6.3. We say that S is a naturally totally ordered semigroup if and only if S is a 
positively ordered semigroup and for all a, b E S with a < b, there exist x, y E S such that 
ax = ya = b. If S is also strictly positively ordered, we say that S is strictly naturally totally 
ordered. 
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Namely, a positively ordered semigroup Sis naturally totally ordered, for all distinct a, b E S, 
a < b is equivalent to the existence of x and y such that ax = ya = b. So, the linear ordering 
can be determined by the semigroup operation. 

Definition 6.4. Let S be a positively ordered semigroup. We say that S is archimedean if and 
only if for all a, b E S, whenever a is not an identity, there exists n E N such that an ~ b. 

For example, ([0, oo), +,::;)is archimedean. 
0. Holder [9] proved the following theorem, which gives the first sufficient condition for 

a positively ordered semigroup to be order- and semigroup-isomorphic to a subsemigroup of 
(JR,+,::;). 

Theorem 6.5 (0. Holder [9]). Let (S, •, ::;) be a strictly naturally totally ordered semigroup with 
no least element. 

{1) If S is complete as a linearly ordered set, then S is order- and semigroup-isomorphic to 
((0, oo), +, ::;). 

{2) S is archimedean if and only if S is order- and semigroup-isomorphic to a subsemigroup 
of((0,oo),+,::;). 

N. G. Alimov and L. Fuchs strengthened this theorem to give equivalent conditions. To state 
their result, we shall give the following definition. 

Definition 6.6. Let S be a positively ordered semigroup. We say that a, b E S form an 
anomalous pair if and only if a i= b and for all positive natural number n, an < bn+I and 
bn < an+I. 

For example, ((0, oo), +,::;)has no anomalous pair. The following example demonstrates what 
an anomalous pair is. 

Example 6.7. Let S = (0,oo) x [0,oo). Define a semigroup operator· by 

(a,x) · (b,y) = (a+b,x+y) 

and let S be ordered by the lexicographical ordering. It is easy to observe that S is a positively 
ordered semigroup that is archimedean. 

Let a E (0,oo) and x and y be distinct elements of [0,oo). It is easy to see that (a,x) and 
(a, y) form an anomalous pair. 

Then, N. G. Alimov's theorem can be stated as follows. 

Theorem 6.8 (N. G. Alimov [2]). Let S be a positively ordered semigroup. Then, S is order­
and semigroup-isomoryhic to a subsemigroup of ([0,oo),+,::;) if and only if Sis cancellative 
and has no anomalous pair. 

L. Fuchs gave the following equivalent condition. 

Theorem 6.9 (L. Fuchs [7]). Let S be a positively ordered semigroup. Then, S is order- and 
semigroup-isomorphic to a subsemigroup of ([O, oo ), +, ::;) if and only if S is archimedean, has 
no anomalous pair, and has no maximal element unless S is a singleton. 

So, the seemingly benign assumptions in the previous theorems are sufficient to show that S 
is separable and even further. 

6.2. With anomalous pairs. Given Theorem 6.8 and Theorem 6.9, we may wonder what if S 
has an anomalous pair. To consider this problem, the author defined the following equivalence 
relation in [12]. 

Definition 6.10. Let S be a positively ordered archimedean semigroup with no maximal ele­
ment. Define an equivalence relation ~ on S by a ~ b if and only if either a = b or a and b form 
an anomalous pair. 

Let S / ~ be the set of all equivalence classes. We shall define a semigroup operation · by 
[a] · [b] = [ab] and define a linear ordering ::; by [a] ::; [b] if and only if a ::; b. 
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It was shown in [12] that the definition of• and son S/~ is well-defined and (S/~, •, s) is 
a positively ordered semigroup. Then, the author proved the following theorem, which extends 
6.9 to the case with anomalous pairs. 

Theorem 6.11 (T. Ishiu [12]). Let S be a positively ordered archimedean semigroup with no 
maximal element. Then, (S/~, ·, s) is order- and semigroup-isomorphic to a subsemigroup of 
([O,oo),+,s). 

We can easily prove the following corollary. Note that if e is an identity of S, then it is easy 
to see that [e] = { e }. 

Corollary 6.12 (T. Ishiu [12]). Let S be a positively ordered archimedean semigroup with no 
maximal element. Then, there exists an order- and semigroup-homomorphism f from S onto 
([O, oo ), +, S) such that 1-1 { 0} is either empty or the singleton of an identity. 

Namely, if we remove the noise made by anomalous pairs, then we can apply Theorem 6.9. 

6.3. S-metrizability. In this subsection, we shall consider an application of Theorem 6.11 
0. Holder's motivation in [9] to start the research on linearly ordered semigroups is the 

axiomatization of the theory of magnitude. So, it is natural to wonder what happens if we 
replace [O, oo) with a positively ordered semigroup in the definition of metrizable spaces. 

First, we shall define an S-metric. 

Definition 6.13. Let X be any set and S a positively ordered semigroup with identity e. We 
say that a function d : X x X --+ S is a S -metric on X if and only if for all x, y, z E X, 

(1) d(x,y) = e if and only if x = y, 
(2) d(x,y) = d(y,x), and 
(3) d(x, y) S d(x, z)d(z, y). 

Note that by (3) with x and y switched, d(y, x) S d(y, z)d(z, x). By applying (2), we get 
d(x, y) S d(y, z)d(z, x). So, we have d(x, y) S min { d(x, z)d(z, y), d(z, y)d(x, z) }. 

Definition 6.14. Let X be any set, Sa positively ordered semigroup with identity e, and d an 
S-metric on X. For all x EX ands ES, the s-ball centered at xis defined by 

Bd(x, s) = { y EX I d(x, y) < s} 

Let Bd be the set of all subsets of X of the form Bd(x, s) where x EX ands ES withs> e. 
If Bd is a basis for a topology on X, then we say that the topology Ta, generated by B is the 

topology induced by d. 

Unfortunately, not all S-metric induces a topology. But when it does, we may introduce the 
following notion. 

Definition 6.15. Let X be a topological space and S a positively ordered semigroup with 
identity e. We say that X is S-metrizable if and only if there exists an S-metric don X such 
that the topology of X coincides with the topology induced by d. 

A natural question is whether every S-metrizable space is metrizable. Actually, there is an 
easy counterexample. 

Example 6.16. Let 8 be any limit ordinal and S = 8 + 1. We shall define the semigroup 
operator · by a· (3 = min { a, (3 }, and let S be ordered by the reverse of the ordinary order, i.e. 
a Ss (3 if and only if (3 S a. Then, S is a positively ordered semigroup with maximal element 
8. Note that 8 is an identity. 

Let X = <62 be ordered by the lexicographical ordering and topologized by the order topology. 
For every x,y EX with xi= y, let d(x,y) be the least a< 8 such that x(a) i= y(a). We 

stipulate d(x, x) = 8. We shall show that dis S-metric. It is easy to show that d(x, y) = 8 if and 
only if x = y, and d( x, y) = d(y, x). To show the triangle inequality, let x, y, z E X. Without 
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loss of generality, we may assume that they are distinct. If d(x, y) < d(y, z), then clearly 
d(x, z) = d(x, y) = min { d(x, y), d(y, z)} = d(x, y) • d(y, z). Similarly when d(y, z) < d(x, y). 
Suppose d(x, y) = d(y, z). Then, d(x, z) > d(x, y) = min { d(x, y), d(y, z)} = d(x, y) • d(y, z). 
Thus, in all cases, we have d(x,z) ~ d(x,y) ·d(y,z). Since the ordering of Sis the reverse of the 
ordinary ordering, d(x,z) "5:cs d(x,y) · d(y,z). 

We shall show that the topology of X coincides with the topology induced by d. It suffices 
to show that for all x, y, z EX with x < y < z, there exists a ES such that Bd(Y, a) C::: (x, z). 

Let a = max { d(x, y), d(y, z) }. To show Bd(Y, a) C::: (x, z), let y' E Bd(Y, a). Then, since 
d(y, y') <s a, we have d(y, y') > a. So, y' f (a+l) = y f (a+l). Since a= max { d(x, y), d(y, z)} 
and y' f (a+ 1) = y f (a+ 1), x < y implies x < y' and y < z implies y' < z. Thus, y' E (x, z). 

However, you may notice that the triangle inequality of the metric d in the last example can 
be replaced by d(x,z) "5:cs max{d(x,y),d(y,z) }. Recall the following definition. 

Definition 6.17. An ultrametric on Xis a metric don X such that for all x, y, z EX, 

d(x, z) "5:c max { d(x, y), d(y, z)} 

Notice that in this definition, we only used lll as a linearly ordered set. So, we may generalize 
this notion to an arbitrary linearly ordered set with the least element. 

Definition 6.18. Let L be a linearly ordered set with the least element 0£. An L-ultrametric 
on a set Xis a function d: Xx X-+ L such that for all x, y, z EX, 

(1) d(x,y) = OL if and only if x = y, 
(2) d(x, y) = d(y, x), and 
(3) d(x, z) "5:c max { d(x, y), d(y, z) }. 

For each x EX ands EL, we define 

Bd(x, s) = { y EX I d(x, y) < s} 

and Bd the set of all sets Bd(x, s) of the form x E X and s E L with s =f. 0£. If Bd is a basis 
for a topology on X, then the topology generated by Bd is called the topology induced by d and 
written as 'T,J,. 

Note that not all L-ultrametrics induce a topology. 

Definition 6.19. Let L be a linearly ordered set with the least element 0£. A topological space 
X is an L-ultrametrizable if and only if there exists an L-ultrametric d such that the topology 
of X coincide with 'T,J,. 

Now, the question is as follows: 

Question 1. Let S be a positively ordered semigroup with an identity. For every topological 
space X, if Xis S-metrizable, then is X either metrizable or L-metrizable for some LOTS L? 

If the answer is yes, then S-metrizability is absorbed into metrizability and L-metrizability 
for a LOTS L. 

By using Theorem 6.11, we can prove the following theorem. 

Theorem 6.20. Let S be an archimedean positively ordered semigroup with an identity but no 
maximum element. Then, every S -metrizable space is metrizable. 

If S does not have the least archimedean component, then it is easy to see that every S­
metrizable space is L-ultrametrizable where Lis the LOTS consisting of all archimedean com­
ponents of S. If S has the least archimedean component that has no maximum element, then 
we may use Theorem 6.20. So, the only remaining case is when S has the least archimedean 
component that has a maximum element. 
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