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1 First-order definability of generic super-

compactness

For a class P of posets, a cardinal x is said to be generically supercompact by P,
if, for any A > k, there is a poset P € P with (V,P)-generic G, and classes j,
M C VI[C] such that

(11)  j:V3McV[g;Y
(1.2)  crit(j) = K, j(k) > A; and
(1.3)  j"\e M.

We call the class mapping j as above a A-generically supercompact embedding
for k.

If M is obtained as an inner model of V by ultraproduct construction with a
< wj-complete ultrafilter in V, the condition (1.3) implies *M C M (see Proposition
22.4 in [5]).

In the context of generic supercompactness, the condition (1.3) still implies a

certain kind of closedness of M. This can be seen in the following Lemma:

Lemma 1.1 (Lemma 2.51in [2]) Suppose that G is a (V, P)-generic filter for a poset
PeV,andj:V 3 MC V[G] is such that, for cardinals k, XA in V with k < A,
crit(j) = k and 3"\ € M. Then, we have the following:

(4
) ForcmysetAGV with V= | Al < A, we have j"A € M.

) 71 I A2 e M.

) ForanyAeV with A C X\ or A C N we have A € M.

) (WOM = ()Y, Thus, if (A1) = (AL, then (A1) = (AT)Y.

) HOY C M.

) j1 A€M forall Ae HAT)Y. 0

It is consistent (modulo a supercompact cardinal) that a successor cardinal of
a regular uncountable cardinal is generically supercompact. In the following, we

use Kanamori’s notation of collapsing posets (see §10 of [7]).

Fact 1.2 Suppose that k is a (really) supercompact cardinal, p < r a regular un-

countable cardinal, and Py = Col(u, k). Then, for a (V,Pg)-generic G,

V[Go| = “ut is a generically supercompact cardinal by < p-closed posets” .

1 When we write j : V S M C V[G], we always assume that M is transitive in V[G].
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Proof. Note that V[Gy] =“u™ = K.
For A >k, let j:V 3 M bea A-supercompact embedding for k. Then we have

by closedness of M
=

§(Po) = Col(j(p), j(K)M = Col(p, j(x))".
~— ——
by elementarity =/

For a (V[Gyl, Col(y, j(k) \ k))-generic filter G, the lifting

=<

7+ V[Bo] = M[Go][C]: a® - j(a)™*®
——
c V[Gol[C]

witnesses the generic A-supercompactness of £ by pu-closed posets in V[Gy.

~—

= (N+)V[Gn] D (Fact 1.2)

For a class P of posets such that no P € P adds any new w-sequence of ground
model sets, the generic supercompactness by P is first-order definable. This is seen
in the following Proposition. The Proposition is proved by imitating the proof of
the characterization of supercompactness by Solovay and Reinhardt in terms of the
existence of normal ultrafilters (see e.g. Theorem 22.7 in [5]).

Theorem 1.3 Suppose that P is a class of posets such that no P € P adds any
new w-sequence of ground model sets, and P is closed with respect to restriction
(i.e, if P € P and p € P, then P [ p € P).

An uncountable cardinal k is generically supercompact by P if and only if, for
any \ > K, there is a P € P such that

|Fp “there is a V-normal ultrafilter on PV (Pc(A)V) 7.

Here, the notion of V-normal ultrafilter is defined as follows: Suppose that we
arc living in a universe W and V is an inner model. Let A be an ordinal in V,
T eV, ZCPVY(N\) ao-ideal with {€} € 7 for all € < A, and B € V the sub-Boolean
algebra B = PV(Z) of PV(I).

In W, U C B is a V-normal ultrafilter if

(1.4) U is a ultrafilter on the Boolean algebra B. Le.,

(1) 0¢U;

(ii) ANA" €U for any A, A’ € U;
(iii)

(iv)

1

i) if Ae U, AC A’ € B, then A’ € U; and
for any A € B, either Ac U orZ\ A€ U;

1v



(1.5)  Forany zp € Z, we have {x € Z : zy Cz} € U;

(1.6)  Forany (A¢ : £ €Ny eV, if {A: : £ <A} C U, we have
NeerAe € U. Here, Agc\Ag is the diagonal intersection of A¢’s defined by

(1.7)  AeerAe i ={x €T : x € A forall € € x}.

Lemma 1.4 Suppose that U C B is a V-normal ultrafilter.

(1) Ford < A such thatd € I, and (A¢ : £ € 0) € V with A¢ € U for all § € 9,
we have (ee; Ac € U.

(2) (Pressing Down Lemma) For any f € V with f:Z =V, if {r €T : f(x) €
x} € U, then there is & < X such that {x € T : f(x) =&} € U.

Proof. (1): Let Ac:=7 for all { € A\ 6. Then
€ U by (1.6)
——
U > Age,\Aéﬂ{x el 6 - 33} - mfeéAf'
— —_—

by (1.4), (ii) € U by (1.5)

Hence, (ees Ae € U by (1.4), (iil).
(2): Suppose that f is a counter-example to the assertion. That is,

(1.8) A:={x€Z: f(z)ex} €U, but
(19) Ac:={zxel: flx)#& eUforalgel

Then AgcyAe N A € U by (1.6) and (1.4), (ii). By (1.4), (i), there is an element
x* of this set. f(z*) € 2* by (1.8) but f(z*) # ¢ for all £ € 2* by (1.9) and the
definition (1.7) of diagonal intersection. This is a contradiction. O (Lemma 1.4)

Proof of Theorem 1.3: (=): Let A > x and let P be a < p-closed poset with
(V, P)-generic G and classes j, M C V[G] such that j : V =5 M is a A-generically
supercompact embedding for k. In particular, we have j”\ € M. Note that

(L10) M E "X € Py (i(N) = G (Pa(A)Y).
In VI[C], let
Up={AeV: ACP.\V, j" ej(A)}.
The following is casy to check:

Claim 1.4.1 U; is a V-normal ultrafilter on PV (P.(\)V). —

29
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(«<): Let A > x and let P be a < p-closed poset with (V,P)-generic G and
V-normal ultrafilter U € V[G] on PV (P,(\)V).
Let

(111) We={feV: f:PV(P.O)V) =V}

(1.12) For f,geW, f~y g {x € PNV : f(z)

g(z)} € U;
fevge{rePN : flz)eyg

()} eU.

~y is a congruence relation to €.
We write f/NU cy g/NU = feyg. 2)
Let iy : V. — W/~ be defined by

(1.13)  iy(a) = const,/~y

for a € V where const, denote the function on PY(P,(A)V) whose value is constantly

a. Lo§’s Theorem holds:

Claim 1.4.2 For any formula ¢ = ¢(xg, ..., x,_1) in Le (the language of ZF), and
Jos ooy fue1 €W, we have W /~u, €u) E o(fo/~uU, s fu1/~v), if and only if
{z € PY(P(N)Y) : VI @(fo(), oo, fuaa(2)} € U.

- By induction on . — (Claim 1.4.2)

By Claim 1.4.2; the class mapping iy above is an elementary embedding of V
into <W/NU, €U>.

Claim 1.4.3 € is (i) an extensional, (ii) well-founded and (iii) set-like relation

on W/~

F (i): The extensionality of €; follows from the elementarity of i.

(ii):  Assume, toward a contradiction, that there is a sequence (f,, : n € w) in
W such that f,.1 €y f, for all n € w. By the definition of €, this means that
A, = {2 € PY(P.(N)Y) ¢ fur1(z) € fu(z)} € U for alln € w. Since P does not add
any new w-sequence, {(f, : n € w) € V. Thus, we also have (A, : n € w) € V. By
Lemma 1.4, (1), it follows that [

we have

new An € U. For an element z of this intersection,

2) We apply here “Scott’s trick” and define the equivalence class f /~u by

f/~v:={g9 €W : g~y f and g is of minimal €-rank
among elements of VW with this property}

to make the equivalence class f/~p a set.
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folx) 2 filx) 3 foz) 2 fi(x) > ---

by definition of A,,’s. This is a contradiction.

(ii): Let f € W be arbitrary, and let S = UzEPV(PR(A)V) f(z). Then, by Los’s
Theorem, we have
{9/~v : g/~v €v f/~u} SH{g/~v : g: PY(P.(N)Y) = S}
The right side of the inclusion is clearly a set. — (Claim 1.4.3)

Let py : (W/~p, €u) — (M, €) be the Mostowski-collapse, and let [-]; : W —

M; [ [flu = pu(f/~v).
Lés’s Theorem (Claim 1.4.2) translates to the following:

Claim 1.4.4 For any formula ¢ = ¢(xq, ..., x,_1) in Le (the language of ZF ), and
fos ooy fao1 €W, we have M = o([folu, -, [fuo1]v), if and only if
{z € PY(P(N)Y) : V E o(fo(2), ..., fuma(2))} € U. —

Let
ju VS M ae [dy = puliv(a)) = [consty]y.
We show that jy : V 5 Misa A-generically supercompact embedding for «.

Claim 1.4.5 (1) jy(&)=¢& forall € € k.

(2) ju(k) > k.

(3) ju" e M.

F (1): Note that jy(€) = pp(iv(€)) = [conste]y. Thus, for € < k and f € W,

flu €ju(§) & [flu € [conste]y
& {zePY(P.NY) : flo)e € }eU
~—~

-
Claim 1.4.4 = const¢(x)
& {z e PY(P.(\)Y) : flx)= n* } €U for some n* € £
— —~
by Lemma 1.4, (2) and (1.5) = consty-(x)

< [flv = ju(n®) for some n* € €.
N
Claim 1.4.4
Thus, by induction on £ < k, we obtain jy(§) = & for all £ < k.
(2): Let ¢ : PY(P.(N)Y) = V; 2 +— sup(z N k)
For all £ < k, we have



Claim 1.4.4 and (1.5)
=~

& = jul§) =l[constdy < [Ju < [const.]u = ju(k).
—~— ~—
(1) Claim 1.4.4 and (1.5)
Thus & < [t]y < j(k).
(3) We show that [’L.dpﬁ(/\)v]U = jU //)\.
For an arbitrary f € W

[flu € lidp, o]y & {z €PN : fla)e = }eU

—~— —~
by Claim 1.4.4 =idp, (ayv(T)
s {zeP.(\)V: fla)= & } U for some £ < A
- —
by Lemma 1.4, (2) = const¢- ()

< [flo = ju(&F) for some £ < A.
~
by Claim 1.4.4 —| (Claim 1.4.5)
It follows that there is p € G such that
P |Fp “there is a V-normal ultrafilter on PV(P,(\)V)”.

Since P | p € P by the assumption on P, we obtain the desired condition for A by
replacing P with P | p. [ (Theorem 1.3)

Note that the proof of Claim 1.4.3 relies on the property of P that no P adds
any new w-sequence ground model sets. Note also that the argument using the fact
that the well-foundedness of a relation is A is irrelevant here since the relation €
is not in the ground model.

Thus, the proof of Theorem 1.3 cannot simply be applied to the generic super-
compactness by a class of posets P whose elements might add new w-sequences of
ground model sets.

By Theorem 1.3 we obtain another characterization of generic supercompactness

by a P as in Theorem 1.3:

Corollary 1.5 Suppose that P is a class of posets such that no P € P adds any

new w-sequence of ground model sets, and P is closed with respect to restriction.

Then, the following are equivalent:

(a) & is generically supercompact by P.

(b) For any X\ > k, there is a P € P such that

|Fp “there is a V-normal ultrafilter on PV (P.(A)V) 7.

(¢) For any X\ > k, there is a P € P such that for any (V,P)-generic G, there

are classes j, M C V|G| such that j : V = M; crit(j) = k; j(k) > A and j"XN € M.
]



2 Rado Conjectures of height > w,;

For an infinite cardinal p, a tree T = (T, <7) is said to be p-special if T is the union
of p-many antichains (i.e. subsets whose elements are pairwise incomparable). Note
that

(2.1)  Any tree of height < p* is p-special, and any tree of height > u* is not

p-special.

For cardinals i, x with k > p*, the Rado Conjecture of height u™ with reflection
point < k is the principle:

RC(u, < k):  For any tree T', if T is not p-special, then there is 77 € [T|<" such
that 7" is not p-special.

The following is a straight-forward generalization of Lemma 12 in [0]:

Lemma 2.1 If a tree T is p-special and P a < pt-closed poset, then we have
|Fp “T is not u-special”.

Proof. By (2.1), we may assume that ht(T) = . Suppose that |-p “T is p-special ”,

and let f be a P-name such that
(22)  |e“f:T— jiand
f1"{&} is an antichain in T for all E< .

We want to prove that T"is p-special (in V).

By induction on o < i, we can take p;, € P and & € p for t € T,, such that
(2.3) if ¢ <7t then p; <p py; and
(24)  wolbef) =8
Note that, for each t € T, if py, for all ¢ <7 t have been defined according to (2.3)
and (2.4), there is p € P with p <7 py for all ¢ <p ¢ by < p*-closedness of P.

Thus we can choose p; <p p such that it satisfies (2.4).
For & < p, let

Ac={teT : & =¢)

Then T' = J,_, A¢, and each A¢ for § < p is an antichain by (2.2), (2.3), and (2.4).

[ (Lemma 2.1)

Proposition 2.2 Suppose that u* < k and k is a generically supercompact cardi-
nal by < u*-closed posets. Then RC(y', < k) holds for all w < p' < p.
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Proof. Suppose that w < p/ < g and T is not p/-special. Let |T| = A. We want
to show that there is a subtree 7" of T of cardinality < x which is not u/-special.
Without loss of generality, we may assume that the underlying set of 7" is A.
That is, we assume that 7' = (\, <r).
Let P be a < put-closed poset, and G a (V, P)-generic set with j, M C V[C] such
that

(1.1)  j:V3 M CV[0];
(L.2)  crit(y) = K, j(k) > A; and
(13)  j"\e M.

By < pt-closedness of P? and Lemma 2.1, we have
(2.5)  VI[C] =“T is not p/-special”.
The tree j”A = (j”\, 7”<r) is isomorphic to 7. Thus we have
V[C] = “j"T is not p/-special”.

Since the tree j”T is an element of M by Lemma 1.1, it follows that
M E“j"T is not p/-special”. Thus, we have

M k= “there is a subtree T" of j(T') of size < j(x) which is not u'-special”.
~—
o =j(n')
By clementarity, it follows that

V |= “there is a subtree T of T of size < x which is not p/-special”.

[ (Proposition 2.2)

3 Laver-generically supercompact cardinals

The notion of Laver-generically large cardinal was introduced in [2]. The Laver-
genericity for a class P of posets, as we define here, is stronger than the one given
in [2], and it corresponds to the definition of Laver-genericity for (P,P) in [3].

A class P of posets is iterable if

(3.1) P is closed with respect to forcing equivalence. That is, if P € P and P’
is forcing equivalent to P, then P’ € P;

(32) PlpePforany PeP and p € P; and

3) Note that < p/-closedness of P follows from this.



(33) HPePand |Fp“QeP”, then PxQ € P.

For a cardinal x and an iterable class P of posets, we call k a Laver-generically
supercompact for P (or L-g supercompact, for short) if, for any A > x and any
P € P, there is a P-name of a poset Q with |Fp“Q & P” such that, for any

(V, P % Q)-generic filter H, there are M, j C V[H] such that

(34) j:V3 M,

(3.5)  crit(j) =k, j(k) > A,
(36) P, He M and

(37)  j"Ae M.

We shall call j as above a A L-g supercompact embedding (with the critical point
K, associated with H over V).

Even in the case that the class of P of posets consists of < u-closed posets, the
first-order formulizability of the notion of Laver-generic supercompactness is un-
known: An argument like that of Proposition 1.3 cannot help because it apparently
cannot create the situation with (3.6).

Thus, at least at the moment, we have to treat a Laver-generic large cardinal
merely as a scheme. In each of the concrete instances we encounter, this is no
problem since we know there exactly how the elementary embeddings j, and inner
models M are constructed.

The situation depicted in the following theorem is archetypal for this:

Theorem 3.1 p*t is L-g supercompact in the model given in Fact 1.2. More pre-
cisely, if k is a (really) supercompact cardinal, 1 < k a regular uncountable cardinal,
and Pg = Col(u, ), then, for a (V,Pg)-generic Gy,

V[Go| = “u™ is a L-g supercompact cardinal for < u-closed posets”.

The theorem above follows from the corollary (Corollary 3.4) of the next theo-

rem which is a generalization of Proposition 10.20 in Kanamori [5]:

Theorem 3.2 (see Theorem 1.5 in [2]) Suppose that p, and X\ are regular with
u <A If Pis a separative poset such that |P| = X, P is u-closed, and

(3.8) e “there is a surjection ji — X7,
then ro(P) = ro(Col(u, {\})). 0

The following are well-known and easy to prove:
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Lemma 3.3 Let p be an uncountable regular cardinal. Then

(1) For disjoint sets Sy, S1, we have Col(u, Sy U Sy) ~ Col(u, Sy) x Col(u, St).

(2) IfPq and Py are < u-closed, then Py x Py is < p-closed.

(3) IfPg is <p-closed and |~p, “Py is < p-closed”, then Po + Py is < p-closed.
a

Corollary 3.4 (Corollary 1.6, (2) in [2]) For any < p-closed poset P and cardinals
v, Ao, A with |P| < XAg= (Xog)“* <\, and v < Xg, we have

Col(p, A\ v) ~ Col(u,\) ~ P xCol(,\) ~ PxCol(u, \)V'.
~— —— —~—
® ® ®
Proof. @ : Since | Col(p, \g + 2\ v) | = | Col(u, \g + 2) | = A¢ and both of the
posets add a surjection from pu to Ag, we have
(3.9)  Col(p, Ao+ 2\ v) ~ Col(u, {Ao}) ~ Col(p, Ao + 2)
by Theorem 3.2. Thus

Col(v, A\ v) ~ Col(p, Ao+ 2\ v) x Col(r, A\ X\g +2)

—~
by Lemma 3.3, (1)
~ Col(u, Ao +2) x Col(r, A\ Mg +2) ~ Col(u,\)
~ ~—
by (3.9) by Lemma 3.3, (1)
@ : By Lemma 3.3,(2) and Theorem 3.2, we have

(3.10) P x Col(p, Ao+ 1) ~ Col(p, {Ao}) ~ Col(p, Ao + 1).

Thus
P x Col(p, A) ~ P x Col(p, g+ 1) x Col(pt, A\ Ao+ 1)
—
by Lemma 3.3, (1)
~ Col(p, Ao+ 1) x Col(p, A\ Ao+ 1) ~ Col(u, ).
—~— —~—
by (3.10) by Lemma 3.3, (1)
® : follows from the < pi-closedness of P. [ (Corollary 3.4)

Proof of Theorem 3.1: Suppose that V|G| = P is < p-closed.

Let P be a Pg-name of P, and let A > r be arbitrary. Let Ag be such that
|PoxP |, A < Ag and (Ag)<# = Xg. Without loss of generality, we may assume that
the underlying set of Py * P is a cardinal < Ag.



Let j : V 5 M C Vbea Ao-supercompact embedding for x. Note that
o < () < j(Ao). Y
For an arbitrary (V[Go], P)-generic set G, let Hy be a (V[Go][G], Col(s, j(Ao))VICIE)-

(= Col(p,j(M)))
generic set. In V[Go], Let Q = P % Col(p, j (X)) V€)™, G % Hy is then a (V[Go], Q)-
generic set.
By Corollary 3.4, there is a (V, Col(y, j(Ao)))-generic set H such that j”Gy =
Go C H and V[H] = V]G] [C][Ho].
Let

(3.11)  J:V[Go] = M[H] C V[H]; a® — j(a)".

Since Py € M by the closedness of M (as a target model of Ag-supercompact
embedding for x) and Lemma 1.1, we have Py € M][Gy]. Hence we also have
Gy € M[Gy]. By the closedness of M[Go] (j"Xo = 7N € M C M[Gy]), we have
P € M[Go] and Col(p, j(o))VICICl = Col(y, j(No))Y € M C M[H].

Thus we have G, Hy € M[H] and M[H] = M[Go][C][Ho]. Tt follows that j is a
A-L-g supercompact embedding with the critical point k, associated with G * Hy

over V G . D (Theorem 3.1)
0

In [2], it is proved that a/the L-g supercompact cardinal for < Y;-closed poset
is Ny (if it exists). The proof can be generalized to show that a L-g supercompact
cardinal for <N,-closed poset is N, for each n € w.

In general we have the following. Let us first see the situation with an arbitrary

class P of posets:

Lemma 3.5 If k is generically supercompact by a class P of posets, and K is a

limit cardinal, then k is a Mahlo cardinal.”)

Proof. We prove first that « is a regular cardinal. Suppose not. Then there
is a strictly increasing sequence {a,i : £ < §) of ordinals such that ¢ < k and
limecs g = k.

Let P € P be such that, for a (V,P)-generic G, and j, H C V[C],

(312) j:V 3 M, and
(3.13)  crit(j) = k.

4 j(No) is going to play the role of X in Corollary 3.4.

%) Actually, for the following proof, it is enough to assume that « is generically measurable.
Here, a cardinal & is said to be generically mesearable by P, if there is a P € P with (V, P)-

generic G, j, M € V[G]  such that j:V S M C V[G]; and crit(j) = k.

67



68

By the elementarity (3.12) and (3.13), we have j({a i : £ < 0)) = (i : £ < 0).
Hence, again by elementarity, V(0] = j(k) = lim¢.5 ae = . This is a contradiction
to (3.13).

Suppose now that C' C k is a club. Then, for P, G, j, M as above, we have M =
“j(C)isaclubin j(k)” and M > j(c) Nk = C. Tt follows that M = k € j(C).
Since M |= “k is regular”, we have M |= “there is a regular cardinal € j(C)”. By

elementarity, it follows that V = there is a regular cardinal € C”. Q0 (Lemma 3.5)

Lemma 3.6 (1) Suppose that k is a generically measurable cardinal by a < pi-

closed poset. If k is a successor cardinal then ji < K.
(2) Suppose that k is a L-g supercompact cardinal for a class P of posets with
Col(u,{ut}) € P for u < k. Then we have k= ut.

(3) Suppose that k is a L-g supercompact cardinal for < p-closed posets. If k is

a successor cardinal, then k = p*.

Proof. (1): Suppose that x = (kg)*. Toward a contradiction, assume p > k. Let
poset P be a < p-closed poset such that, for (V,P)-generic G and j, M C V[G], we
have j : V= M C V[G] and crit(j) = k.

Then
(3.14) M k= (j(ko))* = j(K)
g

by elementarity. On the other hand, V[C] = “ & is a cardinal” by the < p-closedness
of P. Hence M = “k is a cardinal” and M = kg < k < j(x). This is a contradic-
tion to (3.14).

(2): Suppose that k > p*. Let P = Col(u, {u"}) and let Q be such that P < Q,
Q is < p~closed, and, for (V, Q)-generic H there are j, M C V[H] with 5 : V 5 M,
k= crit(j), and P, He M.

By elementarity, we have

M =< j((uT)Y) is the successor cardinal of j(u)”.

——— ~—
= (uh)V =H

However, HN P (€ M) collapses ()Y to an ordinal of cardinality p. This is a

contradiction.

(3): follows from (1) and (2). 0 (Lemma 3.6)

Problem 3.7 Is it consistent that for some regular uncountable i, there is a limit

cardinal k which is L-g supercompact for < p-closed posets?
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