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Abstract 

In [Paw86] Pawlikowski proved that, if r is a random real over N, and c is Cohen 
real over N[r], then 

(a) in N[r] [c] there is a Cohen real over N[c], and 

(b) 2w n N[c] ~ N n N[r][c], so in N[r][c] there is no random real over N[c]. 

To prove this, Pawlikowski proposes the following notion: Given two models N ~ 
M of ZFC, we associate with a cardinal characteristic != of the continuum, a sen
tence !=f;:J- saying that, in M, the reals in N give an example of a family fulfilling the 
requirements of the cardinal. So to prove (a) and (b), it suffices to prove that 

(a') cov(M)~[~l ⇒ cof(M)f;:J- ⇒ cov(N)f::1-, and 

(b') cov(M)f;:J- ⇒ add(M)f;:J- ⇒ non(M)~[~l ⇒ cov(N)~[~l. 

In this paper we introduce the notion of Tukey-order with models, which expands 
the concept of Tukey-order introduced by Vojtas [Voj93], to prove expressions of the 
form !=f;:J- ⇒ tJf::1-. In particular, we show (a') and (b') using Tukey-order with models. 

1 Introduction 

Let N be the er-ideal of measure zero subsets of 2w, M the er-ideal of meager sets in 2w, 
let /C be the er-ideal generated by the subsets of JR whose intersection with Q* (the set 
of irrational numbers) is compact in Q*, and let C be the er-ideal of countable subsets of 
reals. It is well-known that add(/C) = non(/C) = b, add(C) = non(C) = ~1, cov(/C) = 
cof(/C) = cl, and cov(C) = cof(C) = c, where b, cl and care the bounding and dominating 
numbers, and the size of JR, respectively. These cardinals describe the entries in Cichon' s 
diagram. 
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Figure 1: Cichon's diagram. An arrow indicates that ZFC proves:<::; between both cardi
nals. In addition, in the diagram, the dashed arrows mean add(M) = min{b, cov(M)} 
and cof(M) = max{'D,non(N)}. 

A relational system is a triple R = (X, Y, c::) where c:: is a relation contained in X x Y. 
Such a relational system has two cardinal invariants associated with it: 

b(R) := min{IFI : F <;;; X and ,:Jy E Y\lx E F(x Cy)}, 

'D(R) := min{IDI : D <;;; Y and \Ix E X:ly E D(x Cy)}. 

Denote R_j_ := (Y, X, c::_j_) where y c_j_ x iff ,(x c:: y). 
We say that a relational system R = (X, Y, c::) is real-definable if both X and Y are 

non-empty and analytic in Polish spaces Z and W, respectively, and c:: is analytic in 
ZxW. 

Definition 1.1 (Tukey-order [Voj93]). Let R' := (X', Y', c::') be another relational system. 
If iI!_, '¥+area pair of mappings iI!_ : X ---+ X', and 1¥+ : Y' ---+ Y such that, for any 
x EX and y' E Y', iI!_(x) c::' y' implies x c iI!+(Y'), then we say that R is Tukey-below 
R', denoted by R jT R'. Say that Rand R' are Tukey-equivalent, denoted by R ~TR', if 
R jT R' and R' jT R. Note that R jT R' implies b(R') :<::; b(R) and 'D(R) :<::; 'D(R'). 

Let M be a transitive model of ZFC (or of a large enough finite fragment of it). For a 
real x denote by Bx the Borel set with code x and set B!'1- = Bx n M its relativization in 
M. For a real definable system R = (X, Y, c::), when dealing with R inside some model 
M, we look at its interpretations RM = (XM, yM, c::M). If I is an ideal let IM be the 
family of members of I whose members can be covered by a Borel set in I coded in 
M. If N <;;; M are two models of ZFC we associate with each cardinal characteristic in 
Cichon's diagram a sentence saying that N gives an example in M of a family fulfilling 
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the requirements of the cardinal, that is, for IE {N, M} define the properties: 

()~ : any function from ww n Mis dominated by a function from ww n N. 

b~: there is no function from ww n M that dominates all functions from ww n N. 

add(I)~: LJIN tf_ IM. 

cov(I)~: LJIN ~ 2w n M. 

non(I)~: 2w n N ~ IM. 

cof(I)~ : IN is cofinal in IM. 

Cichon's and Pawlikowski [CP86] investigated the effect on the cardinal characteristics 
in Cichon's diagram after adding a single Cohen real or one random real. Motivated 
by this investigation, Palikowski [Paw86] formulated and proved that, if c and r are a 
Cohen real over M and a random real over M respectively, then 

(Cl) cof(M)~ B cof(M)~[~l B "~[~l B cov(M)~[~l. 

(C2) add(M)~ B add(M)~[~l B b~[~l B non(M)~1~l. 

(C3) add(N)~ ⇒ add(N)~1~1 B cov(N)~1~1. 

(C4) non(N)~[~l B cof(N)~[~l ⇒ cof(N)~. 

(Rl) add(N)~ B add(N)~[~l and cof(N)~ B cof(N)~[~l. 

(R2) <.M ,.M[r] d M M[r] 
uN B uN[r] an ()N B ()N[r] · 

(R3) ()~ ⇒ non(N)~1~1 and cov(N)~1~1 ⇒ b~. 

(R4) cov(M)~[~l ⇒ cov(M)~ and non(M)~ ⇒ non(M)~1~1. 

(R5) cov(N)~1~l ⇒ cov(N)~ and non(N)~ ⇒ non(N)~[~l. 

(R6) add(M)~1~1 B add(M)~ and cof(M)~ B cof(M)~i~l-

Later, Bartoszynki, Roslanowski, and Shelah [BRS96] proved the converse of (R4): 

(R7) cov(M)~ ⇒ cov(M)~1~1 and non(M)~1~1 ⇒ non(M)~. 

This research was completed by Shelah [BJ95, Lemma 1.3.4] who proved that 

(R8) .~1~1 ⇒ ()~ and b~ ⇒ s~1~1 (where t: ands are the splitting number and unreaping 
number, respectively, see Example 2.3(v)). 
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We summarize these implications in Figure 2 and Figure 3. 
The proof of the implication cl~1~l ⇒ cl~ (in [CP86, Lemma 3.4]) is reviewed as fol

lows: For each f E N[c] n ww find g1 E N n ww in such way that each h E Mn ww 
dominated by f is also dominated by g1. In other words, if h E ww n Mis not domi
nated by any function from ww n N then it is also not dominated by any function from 
N[c] nww. 

A curious aspect of the argument above, established by Cichon and Palikowski, 
gives additional information beyond of the implications. They get (implicitly) two maps 
w_: ww n M-+ ww n M[c] and W+: ww n N[c] -+ N n ww such that, for any h E ww n M 
and f E N[c] n ww, w_(h) =hand if his dominated by f then it is also dominated 
by W+(f), which resembles the Tukey-order. This can be rephrased in the language of 
Tukey-order (see Definition 1.1), that is, (wwnM, wwnN, :S*) jT (wwnM[c], wwnN[c], :S*). 
This rephrasing is important because we obtain in this way a simple description to treat 
implications between sentences involving cardinal characteristics. 

Motivated by the above description we expland the concept of Tukey-order with 
models as follows: 

Assume that N <;;; M are models of ZFC. For a real definable relational system R we 
let 

(i) cl(R)~ iff\fx E XM::Jy E YN(x Cy). 

(ii) b(R)~ iff---,::Jy E YM\fx E XN(x Cy). 

Definition 1.2. Let N O <;;; M0, N <;;; M be models of ZFC and let R, R' be two real 
definable systems. We write R ::::~i,~ R' if there is a pair of maps iJi _ : XM0 -+ X'M 
and iJi + : Y'M -+ yMo such that 

(a) for all XE xMo and for ally' E Y'M, w_(x) c::' y' implies XL W+(Y'). 

(b) w_[XN°] <;;; X'N and W+[Y'N] <;;; yNo_ 

Also we write R ~Mo,M R' if R ---<Mo,M R' and R' ---<M,Mo R. No,N -No,N -N,No 

So this definition formalices the above example. The reason for considering the 
Tukey-order with models is the following lemma: 

Lemma 1.3. Assume that N O <;;; M0, N <;;; M are models of ZFC and let R, R' be two real 
definable relational systems. lfR ::::~i.~ R', then cl(R')~ ⇒ cl(R)~i and b(R)~i ⇒ b(R')~. 

Proof According to Definition 1.2 choose functions iJi _ : XM0 -+ X'M and iJi + : yM -+ 
yMo fulfilling (a)-(b ). We only prove cl(R')~ ⇒ cl(R)~i, since the second statement is 
analogous. To this end assume that cl(R')~ holds and show cl(R)~i. 

Let x E XM0 be arbitrary. There is a y E Y'N such that w_(x) c::' y. Now, by 
Definition l.2(a) we get x c W+(Y) and W+ E yNo by (b). □ (Lemma 1.3) 
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cov(M);:;'1~1 ~ cof(M);:;'1~1 - cof(N);:;'1~1 

~JI~] nonJ);:;'1~1 

! 
cov(N)~ - non(M)~ - cof(M)~ cof(N)~ 

j j 
b~ -----~~ 

j j 
add(N)~ - add(M)~ - cov(M)~ - non(N)~ 

Figure 2: Cichon's diagram with models after adding a Cohen real. 

Objective. The main motivation of this work is to prove some of the implications 
from Figure 2 and Figure 3 using Tukey-order with models. 

This paper is structured as follows: We review in section 2 the basic notation and 
the results this paper is based on. We deal with the concept of il(R)~ and b(R)~ in 
section 3. We show in section 4 the effect on il(R)~ and b(R)~ after of adding a single 
Cohen real without goodness. Likewise after a single random real. 

2 Preliminaries 

For a set A<;;; 2w x 2w denote Ax= {y: (x, y) EA} and AY = {x: (x, y) EA}. Denote by 
xw the set of all maps from w into X considered as sequences of elements of X. 

Given a function b with domain w such that b(i) =I= 0 for all i < w, h E ww and n < w, 
define S(b, h) = ITn<w[b(n)]""h(n)_ A slalom is a function <p: w---+ [w]<w_ 

For functions f, g E ww and <p with domain w we define 

(1) f s;• g iff :3n E w'vm;:::: n(f(m)::::; g(m)). 

(2) f =/=* g iff :3n E wVm;:::: n(f(m) =/= g(m)). 

(3) For a slalom <p, define 

(i) f E* <p by :3m E w'vn;:::: m(f(n) E <p(n)), which is read <p localizes x; 
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cov(N)~ - - non(M)~ -

j j 
b~l~l - b~ ----- ll~ - ll~[~l 

j j 
add(N)~ cov(M)~ - -- non(N)~ 

Figure 3: Cichon's diagram with models after adding a random real. 

(ii) f E= <p iff \In E w:lm 2'. n(f(n) E <p(n)). Denote its negation by f (j_= <p, 
which is read <p anti-localizes f. 

For A, B E [w JN°, define A ex B iff either B " A is finite or A n B is finite. Note that 
A cf. B iff A splits B, that is An Band B " A are infinite. Denote by lI the set of interval 
partitions of w. For I, J Ell, define 

(i) I r;;;K Jiff v=n:Jm(Im s;;; ln)-

(ii) I l;i- Jiff v=n \Im Un f). lm) 

Let IP' be a poset. For a model M and a set X denote MIP' := { T E M : T is a IP'-name} and 
M~ := { T E MIP' : If- T E X}. Say that IP' is a Suslin ccc forcing notion if it is ccc and there 
is a Polish space Z such that 

(i) IP' s;;; z, 

(ii) :::;IP' s;;; Z x Z is ~i and 

(iii) J_IP' s;;; Z X Z is ~i-
Definition 2.1. We say that R = (X, Y, c::) is a Polish relational system if 
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(I) X and Y are Perfect Polish spaces, and 

(II) C::= UnEw C::n where (en: n E w) is some increasing sequence of closed subsets of 
X x Y such that, for any n <wand for any y E Y, (cn)Y = {x E X : x Cn y} is 
closed nowhere dense. 

The closed sets mentionated in (I) and (II) have an absolute definition, that is, as Borel 
sets they have the same Borel codes in all transitive models. Say that xis R-unbounded 
over H if\ly EH n Y(x ~ y). 

Let C and lBl be the Cohen algebra and random algebra for adding one Cohen real 
and one random real, respectively. 

Many cardinals characteristics can be described through simple relational systems. 
In the following example, we recall that some of the entries in Cichon's diagram can be 
defined through simple relational systems. 

Example 2.2. For any ideal I on 2w. 

(a) Gr= (2w,I, E), so b(C:r) = non(I) and ()(Gr)= cov(I). 

(b) I:= (I,<:;::) = (I, I,<:;::) is directed, b(I) = add(I) and ()(I) = cof(I). 

Given two relational systems Rand R', we let (R; R') := (X x (X'f, Y x Y', c::;) 
where (x, J) C; (a, b) means x C a and f(a) c::' b. Hence ()(R; R') := ()(R) · ()(R') and 
b(R; R') = min{b(R), b(R)} by [BlalO, Thm. 4.11]. 

We present some examples of the classical framework, that is, with instances of Pol
ish relational systems. 

Example 2.3. The examples (i)-(v) are Polish relational systems. 

(i) Combinatorial characterizations of() and b. 

(a) Consider the relational system D := (ww, ww, :S:*). Define b := b(D) and() := 
()(D). 

(b) Define the relational systems D 1 := (IT, IT, 1;;:;K) and D 2 := (IT, IT, If). It was proved 
in [BlalO] that D ~T D 1 ~T D 2, so ()(D1 ) = (){D2) =()and b(D1) = b(D2) = b. 

(ii) Combinatorial characterizations of cov(M) and non(M). 

(a) Define Ed := (ww, ww -=/*). Since CM jT Ed, b(Ed) :S: non(M) and ()(Ed) :S: 
cov(M). Even more, b(Ed) = non(M) and ()(Ed) = cov(M) ([BJ95, Thm. 
2.4.1 & Thm. 2.4.7]). 

(b) Let b be a function with domain w such that b(i) -=I 0 for all i < w, and let 
h E ww. Define aLc(b, h) := (S(b, h), TI b, "/00 ), so put bb\c := b(aLc(b, h)) and 
()b\c := ()(aLc(b, h)), which we refer to as anti-localization cardinals. If h ?:* 1 
then aLc(w, h) ~T Ed, so b~Lh = non(M) and()':;;:, = cov(M) ([BJ95, Thm. 
2.4.1 & Thm. 2.4.7]). Here w denotes the constant f~nction b(n) = w. 
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(iii) Define Dn := {a E [2<wj<N□: >-*(UsEa[s])::::; 2-n} (endowed with the discrete topol
ogy) and put D := ITn<w Dn with the product topology, which is a perfect Polish 
space. For every X E D denote N; := nn<w UsEx(n) [s], which is clearly a Borel null 
set in 2w. 

Define the relational system Cn := (D, 2w, c::) where x c z iff z ~ N;. Recall that 
any null set in 2w is a subset of N; for some x E D, even more Cn ~T Ci. Hence, 
b(Cn) = cov(N) and cl(Cn) = non(N). 

(iv) For each k < w let idk : w -+ w such that idk(i) = ik for all i < wand 11 := {idk+l : 
k < w }. Let Le* := (ww, S(w, 11), E*) be the Polish relational system where 

S(w, 11) := {rp: w-+ [w]<N□: 3h E 11\:/i < w(lrp(i)I::::; h(i))}. 

As consequence of [BJ95, Ihm. 2.3.9], b(Le*) = add(N) and cl(Le*) = cof(N). In 
fact, N ~T Le*. 

(v) Consider the relational system S := ([w]N°, [w]N□, ex), so b(S) = sand cl(S) = t, 

which are known as the splitting number and unreaping number, respectively. 

(vi) Denote 3 := {f : 2<w -+ 2<w : Vs E 2<w(s ~ J(s))}. For f E 3 define Gt := 
nn<w U1s12n[f(s)]. Define the relational system Cf:= (3, 3, c::M) where! c::M g iff 
G9 ~ G1. Recall that any element of 3 codes a member of M, even more Cf ~TM. 
Note that c::M is quite complex (it is rrt). 

We say that p ~ [wjN° is anw-splittingfamily if'c/A ~ [wjN°3x E p'vy E A(x cl- y). Define 
5w := min{IPI : pis w-splitting}. 

3 The concepts of l'l(R)~ and b(R)~ 

The next result show that all standard proof of inequalities between cardinals in Ci
choft' s diagram can be adapted to Definition 1.2. 

Theorem 3.1 ([Bar84],[Fre84],[Bar87] and [Paw85]). Let N, M be models of ZFC. Then 

(a) CM =s~,~ ci. 

(b) CM :S~,~ D. 

(c) 0-1 -<M,M D -<M,M M. 
-N,N -N,N 

(d) c-1 -<M,M Mand c-1 -<M,M N. 
M -N,N N-N,N 

(e) M =s~~ N. 

(f) M =s~~ (Ct; D) 
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As consequence we get, 

(i) non(N)~ ⇒ cov(M)~ and non(M)~ ⇒ cov(N)~. 

(ii) c'l~ ⇒ cov(M)~ and non(M)~ ⇒ b~. 

(iii) b~ ⇒ add(M)~ and cof(M)~ ⇒ c'l~ and c'l~ ⇒ b~. 

(iv) cof(M)~ ⇒ non(M)~ and cov(M)~ ⇒ add(M)~ and cof(N)~ ⇒ non(N)~ and 
cov(N)~ ⇒ add(N)~. 

(v) cof(N)~ ⇒ cof(M)~ and add(M)~ ⇒ add(N)~. 

(vi) non(M)~ and c'l~ ⇒ cof(M)~. 

As a consequence of (iii), (iv) and (vi), 

(vii) cof(M)~ {cc} non(M)~ and()~. 

Though add(M)~ does not transform into b~ and cov(M)~, the following lemma 
gives the required characterization. 

Lemma 3.2 ([Paw86, Cor. 1.3]). ,add(M)~ iff there exists c E M, a Cohen real over N, and 
a function in ww n M which dominates any function from N[c]. 

Figure 4 shows the implications between the sentences of the cardinal characteristics 
associated with M, N, band c'l. 

cov(N)W- non(M)W -cof(M)W- cof(N)W 

! ! 

Figure 4: Cichon's diagram with models N i::;; M of ZFC. 

From now on, fix a Suslin ccc poset IP'. One interesting case of Definition 1.2 is when 
R :::s~~t~~l R' where N i::;; M and G is a IP'-generic over M. A similar definition holds 
for Ml!' and Nll', more concretely: 

Definition 3.3. Fix two models N i::;; M of ZFC. Let IP' be a Suslin ccc forcing notion, let 
Rand R' be two real definable relational systems. 
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(1) R ~~,~" R' if there are maps \Ji_ : XM --+ M~, and \Ji+ : Mi', --+ yM such that 

(1.1) for any x E XM and for any y' E Mi',, Ir "w_(x) c y' implies x c' W+(Y')". 

(1.2) w _ [XN] c N~, and w +[Ni",] c yN. 

(2) R ~~:::: R' if there are maps \ll _ : M~ --+ X'M and w + : (Y')M --+ Mi' such that 

(2.1) for any x EM~ and for any y' E (Y')M, \lf_(x) c y' implies Ir x c' W+(Y'). 

(2.2) w_[N~] c (X')N and W+[(Y')N] c Ni'. 

The next result shows the main reason for considering the above definition. 

Lemma 3.4. Fix N c::: M models of ZFC. Let G be a "JP-generic over M. 

( ") IfR ---<M,Mp R' th R ---<M,M[G] R' 
l -N,NP en -N,N[ll'nG] . 

("") IfR ---<Mil' ,M R' th R ---<M[G],M R' 
ll -N",N en -N[ll'nG],N · 

Now we give an application of Definition 3.3. For this, consider the following defi
nition: For a relational system R = (X, Y, c) we let Rw := (X, [Y]w, Cw) where x Cw y if 
:3n < w(x C Yn), which is a relational system. 

Definition 3.5 (US90]). A notion forcing "JP is R-good if, for any "JP-name h for a member 
of Y, there exists a non-empty countable set H c:: Y (in the ground model) such that, for 
any x E X, if xis R-unbounded over H then Ir x i;t h. 

Lemma 3.6. If"JP is R-good iffRJ_ ~~::~ Rt when W+ is the identity map. 

Proof Leth be a "JP-name for a member of Y. Then, in V, choose a non-empty countable 
set Yii c::: Y such that, for any x E X, if x is R-unbounded over Yii then Ir x i;t h. Put 
w_(h) = Yii and W+(x) = x for any x EX. We check Definition 3.3(2.1). Leth E Vi' and 
let x E xv. Assume Yii ct x. Then ,(x Cw Yi,), that is, x i;t Yn for all n < w. Hence, 
Ir x i;t ii. 

For the converse, suppose RJ_ ~~::~ Rt when W+ is the identity map. We want to 

see that Definition 3.5 holds. To this end, let h be a "JP-name for a member of Y. According 
to Definition 3.3 choose \ll_: Vi'--+ [Yt. So, put H := ran(w_(h)). It is not hard to see 
that H works. □ (Lemma 3.6) 

Remark 3.7. The maps \ll _ : Vi' --+ [Y]w and w + : X --+ V~ from Lemma 3.6 where w + 
is the identity are definable and absolute. 

The following is a consequence of Lemma 3.6 and Remark 3.7. 

Lemma 3.8. MF "JP is R-good iffRJ_ ~~::~ Rt when W+ is the identity map. 
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Lemma 3.8 can be generalized to two models. 

Lemma 3.9. Let lP' be a Suslin ccc notion. Asumme that M F "JP' is R-good" and N F "JP' is 
R-good". Then R_j_ ~~:,~ R~. 

Proof Since NF lP' is R-good, we can find w~ : Nr ➔ (Yw)N and w~ : N~M ➔ (Yw)M 
by Lemma 3.8. To define \lf _ : M~M ➔ (Yw)M it suffices to note the following: If iJ E Nr 
then 

NF 'vx E X(w~(iJ) ~w X ⇒If- iJ ~ x) 

By absolutness, 

rr' 1 

MF 'vx E X(w~(iJ) ~w X ⇒If- iJ ~ x) 

So we set \ll _ : M~M ➔ (Yw)M by 

II' 1 

W (') ._ { W~(iJ) ifi; E Nr, 
- Y .- w~(iJ) otherwise. 

□ (Lemma 3.9) 

Remark 3.10. (i) The Polish relational systems D and Le* fulfill D ~T Dw and Le* ~T 

(Le*)w, respectively. 

(ii) If R is a Polish relational system then Rw is one as well. It is not hard to see that 
Rw ~T (Rw)w, 

Lemma 3.9 and Remark 3.10 gives us: 

Corollary 3.11. R_j_ ~~i~ R~ holds for any Polish relational system R, in particular for D, 
and Le*. As a consequence, 

( ') M[c] M d r:.M ,:.M[c] 
l ()N[c] ⇒ ()N an VN ⇒ llN[c] . 

(ii) cof(N)~1~1 ⇒ cof(N)~ and add(N)~ ⇒ add(N)~[~l. 

Moreover,for RE {Cf, Ed, S}, we get 

(iii) non(M)~ ⇒ non(M)~[~l and cov(M)~[~l ⇒ cov(M)~. 

( . ) M[c] .. M d ( )M ( )M[c] 
lV t'.N[c] ⇒ -i:N- an Sw N ⇒ Sw N[c] • 
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Proof It follows because C is R-good for R E {D, Le*, S, Ed, Cf}. For more details to 
see e.g. [BJ95]. □ (Corollary 3.11) 

The next result concerns random forcing. 

Lemma 3.12. (a) (Lc*)1_ =s~:,:: (Lc*l. 

(b) D1- =s~::: D1-. 

As a consequence we get 

(i) add(N)~ ⇒ add(N)~[~l and cof(N)~[~l ⇒ cof(N)~. 

( '') M[r] M d r.M ,_M[r] 
ll ()N[r] ⇒ ()N an UN ⇒ uN[r] . 

Proof It follows because lE is Lc*-good and D-good. For more details to see e.g. [BJ95]. 
□ (Lemma 3.12) 

4 The effect on il(R)~ and b(R)~ after of adding one Co
hen real (random real) without goodness 

For this section assume that N ~ M are models of ZFC. From now on assume that c and 
r are a Cohen real over M and a random real over M, respectively. 

For an increasing function f E ww and a function x E 2w define XJ E 2w as XJ(n) := 

x(f(n)) for n E w. 

Lemma 4.1. D ::s~,tt CM. In particular, cov(M)~1~1 ⇒ i'l~ and b~ ⇒ non(M)~1~1. 

Proof Let's assume that C = 2<w_Let A be a C-name for a meager set in 2w. Find a 
sequence of C-names (Anln<w such that If- A = Un<w An and If- An is nowhere dense for 
each n E w, and (Anln<w is increasing. Since C is countable, C = {pm : m < w }. For 
m, n < w we can find qm,n ::; Pm and O"m,n E 2<w such that 'ff) E 2n(qm,n If- [.i~O"m,n] n An= 
0). Define gm E ww by gm(n) := lqm,nl• Let W+(A) be a function in ww which dominates 
all gm and let \[F _ (!) := CJ for f E ww. 

It remains to check that, f 1:.* W+(A) implies If- CJ rt A. To see this assume f 1:.* 
W+(A). To guarante that If- CJ rt A it sufficies to prove that, given p E Candi < w 
there is some q ::; p such that q If- CJ rt Ai. Let p E C and i < w. Choose m such that 
p = Pm and choose n :::- i such that f(n) > W+(A)(n) :::- gm(n). Wlog assume that f 
is stricly increasing, so J(k) 2 J(n) > lqm,nl for any k 2 n. Find q ::; qm,n such that 
q If- CJ r[n, n + IO"m,nl) = O"m,n· Then q If- CJ rt An, so q If- CJ rt Ai (because (Anln<w is 
increasing and n :::- i). □ (Lemma 4.1) 

Lemma 4.2. CN ::s~:,:: C{ In particular, non(C)~ ⇒ cov(N)~[~l and non(N)~1~
1 ⇒ 

cov(C)~. 
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Proof Work in N: Let B <:;;; 2w x 2w x 2w be a Borel set such that any Borel function 
f : 2w -+ 2w fulfills 

(i) {(x,y): (x,y,f(y)) (/. B} E [2w]:s;No x M (Fubiniproductofideals), 

(ii) for any x, y E 2w, B(x,y) EN, and 

(iii) {x: A{(/. M} is a countable set where Ai := { (x, y) : f(y) tf_ B(x,y)}-

Such a B exists by [CP86, Thin. 1.1]. Let i E M~w- Choose a Borel function f coded in 
M such that If- i = f(c). Finally, define w_(i) := {x: A{(/. M} and W+(x) := B(x,c) for 
XE 2w. 

To finish the proof it remain to check that w_(i) cf x implies If- i E W+(x). Assume 
that w _ ( i) cf x, that is, A{ is a meager set. Since c is a Cohen real over M, If- c (/. A{. 
Then If- i = f(c) E B(x,c)• □ (Lemma 4.2) 

The following lemma shows the behaviour of the additivities and cofinalities after 
adding a single Cohen real. 

Lemma 4.3. M ~r;:,;,'::, M. As a consequence, cof(M)~ ⇒ cof(M)r;:,1~1 and add(M)~ ⇒ 
add(M)r;:,1~1• 

Proof Let 6 E M~. Choose a C' <:;;; 2w x 2w meager coded in M such that If- C~ = 6. 
By Sirkoski's isomosphism theorem [Sik69, Thm. 32.5]), there is a Borel isomosphism 
rp: 2w -+ 2w x 2w such that A EM iff rp(A) E M x M (Fubini product of ideals). Next 
define w_(C) := rp-1 [C']. 

Let Ebe a Borel set in M nM. Then rp( E) is meager in 2w x 2w, so put w + ( E) := rp( E)c
lt is clear that \ll_(C) <:;;; E implies If- C <:;;; W+(E). □ (Lemma 4.3) 

The next lemma is the converse of Lemma 3.12, that is, it describes b and cl in the 
extension obtained by adding a single random real. 

L 4 4 D M 8,M D I t· l M M[r] d <.M[r] <.M emma . . ~N",N . n par icu ar, ()N ⇒ ()N[r] an uN[r] ⇒ uN. 

Proof Let g E M~w- By ww-bounding find h9 E M such that If- g :S:* h9. Next we 
define w_(g) := h9 and W+U) := f for f E ww n M. It is clear that \ll_(g) :S:* f implies 
If- g :s;* W+(f). D(Lemma4.4) 

In a similar way to Lemma 4.3 it can be proved an analogous result for ramdon 
forcing. 

Lemma 4.5. N ~r;:,:,::: N. As a consequence, cof(N)~ ⇒ cof(N)r;:,1~1 and add(N)~ ⇒ 
add(N)r;:,1~1• 

Now we prove the relationship between D and CN after adding a single random 
real. 
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L 4 6 C _j_ M 8 ,M D J • l M (N)M[r] d (N)M[r] ,:.M emma . . N ::SNlll,N • n parttcu ar, ilN ⇒ non N[r] an cov N[r] ⇒ vN. 

Proof Let 13 E Mt. Find a Borel null A ;:: 2w x 2w such that If- 13 = Ar. Since A is a null 
set, choose sequences Sn, tn E 2<w such that lsnl = ltnl and 

00 

m<wn2:m n=l 

Find an increasing function \Jf _ ( 13) E ww by indiction on n such that 

(a) j::::; \Jf_(13)(n)---+ lsJI < \Jf_(13)(n + 1). 

(b) ~J;:,'L(B)(n) Lb([sJ] x [tJ]) ::::; Lb([;~~~[tn]) (where Lb denote the Lebesgue measure). 

From (a) and (b) it follows that 

2l'L(B)- 1 [ls;l]I 
--~-< 221s;I 

2n+2 

L 221s;I 
\JI_ (B)(n)<'.'.j<w-(B)(n+l) 

::::; Lb([sn] X [tn]). 

On the other hand, define '11+(!) := r1 for f E ww. 
To conclude the proof it suficies to prove that, \Jf_(13) ::::;• f implies If- B "/; r1. To do 

this, assume that \Jf_(13) ::::;• f. 
Work in M. Define 

H := {x: (x,x1) En U [sn] x [tnl} 
m<wn2:m 

It sufficies to prove that H has measure zero. Note that 

H= n u {x: (x,x1) E [sn] x [tnD} 
m<wn2:m 

Claim 4.7. For any increasing function f E ww ands, t E 2<w, 

({ }) 
211- 1 (lsl)I 

Lb x:(x,x1)E[s]x[t] ::::; 2l•l+itl 

Proof For a proof to see [Car20, Claim 2.1]. □ (Claim 4.7) 

We continue the proof of Lemma 4.6. By Claim 4.7 and ( *) it follows that H has 
measure zero. Since If- r is a random real over M, If- r (/_ H which means that If- (r, r1) (/_ 
A, that is If- r1 (/_Ar= 13. □ (Lemma 4.6) 
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Lemma 4.8 ([Paw86, Lemma 3.5]). There is some JIB-name of a Borel function P : 2w ➔ 2w 
such that If- for any A EM, p-1 [A] is both meager and coded in V. 

The following lemma discusses the behavior of the structure CM in the extension by 
adding one random real. 

Corollary4.9. CM ::s~,'~I1l CM. Inparticular,cov(M)~[~l cc;, cov(M)~andnon(M)~ cc;, 

(M)M[r] 
non N[r]. 

Proof By Lemma 4.8, there is a JIB-name of a Borel function P : 2w ➔ 2w coded in N[r] 
such that for any A E Mn M[r], p-1 [A] is both meager and coded in M. Work in 
M[r]. Let A be a Borel set in Mn M[r]. Then p-1 [A] is a meager set in M, so define 
'1i+(A) := p-1 [A], and w_(z) := F(z) for z E 2w. It is clear that if z tf_ p-1 [A] then 
F(z) tf_ A. □ (Corollary 4.9) 

As a consequence of Theorem 3.1, Lemma 3.2, Lemma 4.4, and Corollary 4.9, we get: 

Corollary 4.10. add(M)~[~l cc;, add(M)~ and cof(M)~ cc;, cof(M)~!];J. 

Notice that the next result is the converse of Corollary 4.9. 

Lemma 4.11. Let h E ww sue that I:;i<w h(i) < oo. Then Ed ::s~:,,::- aLc(w, h). As a 

consequence, we get cov(M)~ cc;, cov(M)~1~1 and non(M)~1~1 cc;, non(M)~. 

Proof Let g be a JIB-name for a function in ww. For each m E w, let (p":; : n E w) be a 
maximal antichain deciding the value of !J(m). Next, let 'P[J be the slalom defined by: 

From the definition of r.p9, it is clear that lr.p9(m)I < h(m). Finally, put w(!J) := r.p9 and 
'1i+(f) := f for f E ww. 

To complete the proof it suffices to check that f tf-00 r.p9 implies If- g -/-* f. To this 
end, let n E wand p E JIB, such that f(m) tf_ r.pg(m) for all m ~ n. Find k > n such that 

1:::k h(i) < Lb([p]). Now, setting q := p" u:=k LJ{[p":;] : n < w, P": If- !J(m) = f(m) }, we 

get q If- !J(m)-/- j(m) for all m ~ k, which finishes the proof of the lemma. 
□ (Lemma 4.11) 

As a consequence Theorem 3.1, Lemma 3.2 and Lemma 4.11, we get: 

Corollary 4.12. cof(M)~1~1 <;=} cof(M)~ and add(M)~ <;=} add(M)~1~1• 

We conclude this section by proving the relationship betweem D and S after adding 
a single random real. 
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L 413 D M,M11 SI t· l M[r] M d,:.M M[r] emma . . 2 ::sN,N" • n par tcu ar, TN[r] ⇒ c>N an vN ⇒ s-N[r] • 

Proof It suffices to find functions w _ : lI n M --+ M[w]No and w + : M[w]No --+ lI n M such 
that, for any IE lI n Mand BE M[w]No' If- "if w_(I) ex B then I (I- W+(B)". 

Given IE lI n M define fr E ww by fr(n) := min In for n < w, so put 

w _(I) := LJ { [f (n), f(n + 1)) : r(min In) = 1 }-

Let 13 E [wjN° be a JE-name. Let hi3 be the name of the increasing enumeration of 13. 
LetJB E llbe alE-name such that If- J/; := [hi3(n), hi3(n)) for n < w. Choose J' E llnM 

such that If- JB r;;:1 J' (such J' exists because lE is ww-bounding). In the end, define 

To finish the proof it sufficies to prove that, if I 1> J* then If- w _ (I) r/;. 13. To see this, 
assume that I 1> J*, that is, for infinitely many n < w, there is some m such that In 2 J:r,. 
Next, set C := { n: 3m(In 2 J:r,) }, which is an infinite set in M. 

In M[r], since r is random real over M, both sets { n E C : 
{ n E C: r(min In) = 1} are infinite. Consequenly, w _(I) splits 13. 
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