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概要

This paper is a brief survey on a uniformly locally o-minimal structure of 

the second kind for non-specialists of model theory. An o-minimal structure 

enjoys tame topological properties such as monotonicity theorem and defin-

able cell decomposition theorem. A uniformly locally o-minimal structure of 

the second kind is a new variant of o-minimal structure. A uniformly locally 

o-minimal structure of the second kind enjoys the local versions of tame topo-

logical properties possessed by an o-minimal structure. It enables to develop 

a tame dimension theory for definable sets. 

1 Introduction 

This paper is a survey on a uniformly locally o-minimal structure of the second kind 

for non-specialists of model theory. The definition of a structure given here is slightly 

different from the original definition in model theory. A reader who has interest in 

model theory should consult textbooks such as [1, 17, 19]. 

The notation N denotes the set of positive integers. In this paper, a structure is 

a pair M = (M,6＝固｝nEN)of a set M and the collection 6 of families釘 of

subsets of Mn satisfying the following conditions: 

(i) The empty set and Mn are members of 6n for all n EN. The set {(x,y) E 
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M2 Ix= y} is also a member of釘

(ii) The families 6n are closed under the boolean algebra for all n E N. 

(iii) The Cartesian product 81 x 82 belongs to 6m+n if 81 and 82 are members of 

6m and 6n, respectively. 

(iv) Let 7r : Mn→Mm  be a coordinate projection and let X be a member of釘

Then, the projection image 1r(X) belongs to芦

(v) Letび bea permutation of { 1,..., n}. We define the map百： Mn→Mnby 

び(x1,...,xn)= (xび(1),...'Xび(n))-We have百(X)E 6n if XE釘

When a structure M is given, the set M is called the universe or the underlying set of 

the structure M. Members in 6n are called definable sets. Let X and Y be definable 

sets. A map f : X→Y is called definable if its graph is a definable set. 

We sometimes need to consider the family of structures such that some sets other 

than those given in (i) are definable. When M is a densely linearly ordered set with 

the order<, a structure M = (M, 6) is called an expansion of a dense linear order if 

the set {(x, y) I x < y} is definable. When (M, •) is a group, a structure M with the 

universe M is called an expansion of a group if the set { (x, y, z) E M3 I x • y = z} is 

definable. We define an expansion of an ordered group, an expansion of an ordered 

field and so on in the same manner. 

An a-minimal structure M = (M, 6) is an expansion of a dense linear order without 

endpoints such that 

(vi) any definable subset of Mis a finite union of points and open intervals. 

An open interval is a subset of M of the form {x E M I a < x < b}, where a E 

MU  {-oo} and b E MU  { +oo }. Definable sets and definable maps in an o-minimal 

structures are well-behaved. For instance, for a unary definable function f: M →M, 

the domain of definition M is decomposed into finite points and open intervals such 

that the restriction off to the open intervals are monotone and continuous. It is called 

the monotonicity theorem. The definable cell decomposition theorem for o-minimal 

structures guarantees that any definable set is a finite union of good-shaped definable 

sets called'cells.'Readers who are interested in o-minimal structures should consult 

van den Dries's book [4] and Coste's book [2]. The paper [5] is also recommended. 

Many structures relaxing the condition (vi) are proposed and investigated such 
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as weakly o-minimal structures [16], locally o-minimal structures [21] and structures 

having (locally) o-minimal open cores [3, 6]. A locally o-minimal structure is defined 

by localizing the condition (vi). A locally a-minimal structure is an expansion of a 

dense linear order without endpoints satisfying the following condition: 

(vi)'Let X be a definable subset of M. For any x EM, there exists an open interval 

I containing the point x such that X n J is a finite union of points and open 

intervals. 

Unfortunately, even a localized version of monotonicity theorem is unavailable in a 

general local o-minimal structure [21, Proposition 2.11]. This is the reason why the 

author proposed a uniformly locally o-minimal structure of the second kind in [8]. A 

local monotonicity theorem holds true in a uniformly locally o-minimal structure of 

the second kind [8, Corollary 3.1]. A definably complete locally o-minimal structure 

admits local definable cell decomposition if and only if it is a uniformly locally o-

minimal structure of the second kind [8, Corollary 4.1]. This paper summarizes the 

results on uniformly locally o-minimal structures of the second kind including the 

above theorems. It is a survey paper, and does not give a new insight on uniformly 

locally o-minimal structures of the second kind. 

This paper is organized as follows. We first define a uniformly locally o-minimal 

structure of the second kind and related structures in Section 2. Topology of definable 

sets in a uniformly locally o-minimal structure of the second kind is discussed in 

Section 3. We develop a dimension theory for definable sets in a uniformly locally 

o-minimal structure of the second kind in Section 4 using the results of Section 3. We 

conclude this paper with remarks in Section 5. 

2 Baise Definitions 

We first review the definitions given in [18, 21, 15, 8]. 

Definition 2.1. We consider an expansion M = (M, 6) of a dense linear order 

without endpoints. It is definably complete if every definable subset of M has both a 

supremum and an infimum in M U｛士oo}[18]. A definably complete expansion of an 

ordered group is divisible and abelian [18, Proposition 2.2]. 
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We review the definition of locally a-minimal structures. The structure M is locally 

a-minimal if, for every definable subset X of M and for every point a E M, there 

exists an open interval I containing the point a such that X n J is a finite union 

of points and open intervals. A locally o-minimal structure M is strongly locally o-

minimal if, for every point a E M, there exists an open interval I containing the point 

a such that X n J is a finite union of points and open intervals for every definable 

subset X of M. 

A locally o-minimal structure M is a uniformly locally a-minimal structure of the 

first kind if, for any positive integer n, any definable set X C Mn+l and a EM, there 

exists an open interval I containing the point a such that the definable sets Xy n J 

are finite unions of points and open intervals for all y E Mn. Here, Xy denotes the 

fiber {x EM  I (x,y) EX}. A uniformly locally o-minimal structure of the first kind 

is called a uniformly locally o-minimal structure in [15]. 

A locally o-minimal structure M is a uniformly locally a-minimal structure of the 

second kind if, for any positive integer n, any definable set X c Mn+l, a E M and 

b EM叫 thereexist an open interval I containing the point a and an open box B 

containing b such that the definable sets Xy n J are finite unions of points and open 

intervals for all y E B. 

We frequently consider a definably complete uniformly locally o-minimal expansion 

of the second kind of an ordered group. We simply call it a DCULOAS structure in 

this paper. 

A locally o-minimal structure whose universe is the set of reals股 isstrongly locally 

o-minimal [21, Corollary 3.4]. A strongly locally o-minimal structure is always a 

uniformly locally o-minimal structure of the first kind. But the converse is not true 

in general. A definably complete uniformly locally o-minimal structure of the first 

kind which is not strongly o-minimal is found in [8, Example 2.4]. A uniformly locally 

o-minimal structure of the first kind is a uniformly locally o-minimal structure of the 

second kind. The converse is not true, neither. A counterexample is [8, Example 

2.3]. A locally o-minimal structure is not necessarily a uniformly locally o-minimal 

structure of the second kind. Its counterexample is [8, Example 2.2]. 

The following proposition indicates that it is futile to consider a uniformly locally 

o-minimal expansion of the second kind of an ordered field. 
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Proposition 2.2 ([8, Proposition 2.1]). A uniformly locally a-minimal expansion of 

the second kind of an ordered field is a-minimal. 

3 Tame topology 

The following is the local monotonicity theorem for uniformly locally o-minimal 

structure of the second kind. 

Theorem 3.1 (Local monotonicity theorem). Consider a uniformly locally a-minimal 

structure of the second kind M = (M, 6). Let I be an interval and f: I→M be a 

definable function. For any (a, b) E M汽thereexist an open interval J1 containing the 

point a, an open interval h containing the point b and a mutually disjoint definable 

partition 

f―1(J砂nJ1 = xd LJ Xe LJ X+ LJ x_ 

satisfying the following conditions: 

(1) the definable set Xd is discrete and closed; 

(2) the definable set Xe is open and f is locally constant onふ；

(3) the definable set X+ is open and f is locally strictly increasing and continuous 

onX十;

(4) the definable set X_ is open and f is locally strictly decreasing and continuous 

onX_. 

Fu汎hermore,if the structure M is a DCULOAS structure, we can choose J1 = I and 

J2=M. 

This theorem is first proved in [15, Proposition 11] only for strongly locally o-

minimal structures. For any point a E M叫thereexists an open box B such that the 

intersection of B with a definable subset of Mn in the given strongly locally o-minimal 

structure is a definable subset in an o-minimal structure having the same universe [15, 

Theorem 9]. The above theorem for strongly locally o-minimal structures is a direct 

corollary of it皿 dthe monotonicity theorem for o-minmal structures. Theorem 3.1 is 

found in [8, Corollary 3.1] and its proof is not so easy. The'furthermore'part follows 

from [10, Theorem 2.11, Proposition 2.13]. 
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We review the definitions of cells and definable cell decomposition. 

Definition 3.2 (Definable cell decomposition). Consider an expansion of dense linear 

order M = (M, 6). Let (i1,..., in) be a sequence of zeros and ones of length n. 

(i1,..., in)-cells are definable subsets of Mn defined inductively as follows: 

• A (0)-cell is a point in Mand a (1)-cell is an open interval in M. 

• An (i1,..., in, 0)-cell is the graph of a continuous definable function defined on 

an (i1,..., in)-cell. An (i1,..., in, 1)-cell is a definable set of the form { (x, y) E 

C x M I f(x) < y < g(x)}, where C is an (i1,..., in)-cell and f and g are 

definable continuous functions defined on C with f < g. 

A cell is an (i1,..., in)-cell for some sequence (i1,..., in) of zeros and ones. An open 

cell is a (1, 1,..., 1)-cell. 

We inductively define a definable cell decomposition of an open box B C M匹 For

n = 1, a definable cell decomposition of B is a partition B = LJ：：1 Ci inぃ血脳

cells. For n > 1, a definable cell decomposition of B is a partition B = LJ：：1 Ci 

into finite cells such that 1r(B) = LJ：：国Ci)is also a definable cell decomposition of 

1r(B), where 7r: Mn→Mn-I is the projection forgetting the last coordinate. Given 

a finite family｛ふ｝入EAof definable subsets of B, a definable cell decomposition of B 

partitioning｛ふ｝入EAis a definable cell decomposition of B such that the definable 

sets A入 areunions of cells for all入EA.

In an o-minimal structure, global definable cell decomposition is available. It means 

that, for any finite family of definable subsets of Mn, there exists a definable cell de-

composition of Mn partitioning the given family [4, Chapter 3, Cell decomposition 

theorem 2.11]. In a general local o-minimal structure, even local definable cell de-

composition is unavailable. The following theorem says that it is available when the 

structure is a definablly complete uniformly locally o-minimal structure of the second 

kind. 

Theorem 3.3 (Local definable cell decomposition theorem). Consider a strongly 

locally a-minimal structure or a definably complete uniformly locally a-minimal struc-

ture of the second kind M = (M, 6). 

Let｛ふ｝入EAbe a finite family of definable subsets of M匹 Forany point a E M叫
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there exist an open box B containing the point a and a definable cell decomposition of 

B partitioning the finite family { B n A入 I入EAand BnA入-/-0}. 

This theorem is first proved in [15, Proposition 13] only for strongly locally o-

minimal structures. It is also a direct corollary of [15, Theorem 9] and the definable 

cell decomposition theorem for o-minimal structures. The case in which the structure 

is a definably complete uniformly locally o-minimal structure of the second kind is [8, 

Theorem 4.2]. 

Definition 3.4. A locally o-minimal structure admits local definable cell decomposi-

tion if the assertion in Theorem 3.3 hold true for all positive integers n. 

When the structure is definably complete, we can get the following important corol-

lary: 

Corollary 3.5 ([8, Corollary 4.1]). A definably complete locally o-minimal structure 

admits local definable cell decomposition if and only if it is a uniformly locally o-

minimal structure of the second kind. 

The local definable cell decomposition theorem (Theorem 3.3) cannot be extended 

to the global one. We want to decompose a definable set into finite good-shaped 

definable sets, which may not be as good-shaped as cells. One candidate is a quasi-

special submanifold defined as follows: 

Definition 3.6 (Quasi-special submanifolds). Consider an expansion of a densely 

linearly order without endpoints M = (M, 6 ＝固｝nEN). Let X be a definable 

subset of Mn and 1r : Mn→Md be a coordinate projection. The definable set X 

is a元 quasi-specialsubmanifold or simply a quasi-special submanifold if, 1r(X) is a 

definable open set and, for every point x E吋X),there exists an open box U in Md 

containing the point x satisfying the following condition: For any y E X n 1r―1 (x), 

there exist an open box V in Mn and a definable continuous map T : U→Mn such 

that 1r(V) = U, T(U) = X n V and the composition 1r o Tis the identity map on U. 

Let {Xぷ昌 bea finite family of definable subsets of M八 Adecomposition of Mn 

into quasi-special submanifolds partitioning｛ふ｝悶1is a finite family of quasi-special 

submanifolds { Cぷ畠 suchthat 
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• u;:ぶ =Mn,

• Ci n C1 = 0 when i -/-j and 

• either Ci has an empty intersection with凡 oris contained in X1 for any 

1 :S i :S m and 1 :S j'.S N. 

A decomposition { Ci}似 ofMn into quasi-special submanifolds satisfies the frontier 

condition if the closure of any quasi-special submanifold豆isthe union of a subfamily 

of the decomposition. 

The following theorem says that any definable set is a disjoint union of finite quasi-

special submanifolds. 

Theorem 3.7 ([10, Theorem 4.5]). Consider a DCULOAS structure M = (M,6). 

Let{Xぷ昌 bea finite family of definable subsets of Mn. There exists a decomposition 

{C,｝似 ofMn into quasi-special submanifolds partitioning｛ふ｝匹1and satisfying the 

frontier condition. Furthermore, the number N of quasi-special submanifolds in the 

decomposition is not greater than the number uniquely determined only by m and n. 

4 Dimension theory 

Assuming that the considered structure admits local definable cell decomposition, 

we can develop a good dimension theory. We first define the dimension of a definable 

set as follows. 

Definition 4.1 (Dimension of a definable set). Consider an expansion of dense linear 

order M = (M, 6＝固｝nEN)-A definable set X C Mn is of dim(X) 2': m if there 

exists an open box B C Mm  and a definable continuous injective map f : B→ X 

which is homeomorphic onto its image. A definable set X C Mn is of dim(X) = m if 

it is of dim(X) 2': m and it is not of dim(X) 2': m + 1. The empty set is defined to be 

of dimension -oo. 

The following corollary gives equivalent definitions of dimension. 

Corollary 4.2 ([8, Corollary 5.3]). Consider a locally a-minimal structure M = 

(M,6＝固｝nEN)which admits local definable cell decomposition. The following 
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conditions are equivalent for any definable subset X C M叫

• dim(X) 2 m; 

• the definable set X contains an (i1,..., in)-cell with江j=lり2m, and 

• there exist a coordinate projection 1r : Mn→Mm  and a point a E Mn such 

that the definable set 1r(B n X) has a nonempty interior for any open box B 

containing the point a. 

The dimension defined above possesses the good features which we naturally expect 

as in Theorem 4.3 and Theorem 4.5. 

Theorem 4.3 ([8, Lemma 5.1, Corollary 5.4, Theorem 5.6]). Consider a locally 

o-minimal structure M = (M, 6 =侭｝nEN)which admits local definable cell de-

composition. The following assertions hold true: 

(1) Let X C Y be definable sets. Then, the inequality dim(X) :S:: dim(Y) holds 

true. 

(2) Let a be a permutation of the set {1,..., n }. The definable map万： Mn→Mn

is defined by百(x1,...,xn)= (xcr(l),・・・,xcr(n))- Then, we have dim(X) = 

dim（u(X)) for any definable subset X of M匹

(3) Let X and Y be definable sets. We have dim(X x Y) = dim(X) + dim(Y). 
(4) Let X and Y be definable subsets of Mn. We have 

dim(X UY)= max{ dim(X), dim(Y)}. 

(5) Let X be a definable set. The notation f)X denotes the frontier of X defined 

by 8X = X¥X. We have dim(8X) < dimX. 

In the course of the proof of Theorem 4.5, we demonstrate the following strong 

definable Baire property, which is a definable variant of the famous Baire property. 

Proposition 4.4 (Strong definable Baire property, [9, Theorem 4.3]). Consider a 

DCULOAS structure M = (M, 6＝侭｝nEN)- Take c E M. Let {X〈r〉}r>cbe a 

parameterized increasing family of definable sets of M叫 thatis, there exists a definable 

subset X of Mn+l such that X〈r〉coincideswith the fiberぶ forany r > c and we 

have X〈T〉ex〈s〉ifr < s. Set X = Ur>c X〈r〉.Thedefinable set X〈T〉hasa 

nonempty interior for some r > c if X has a nonempty interior. 
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Structures satisfying a weaker definable Baire property are discussed in [7, 14] 

Theorem 4.5 ([9, Theorem 1.1, Corollary 1.2], [10, Theorem 3.14]). Consider a 

DCULOAS structure M = (M, 6＝固｝nEN). The following assertions hold true: 

(1) Let f: X→Mn be a definable map. We have dim(f (X))さdimX.

(2) Let f : X →Mn be a definable map. The notation D(f) denotes the set of 

points at which the map f is discontinuous. We have dim D(f) < dim X. 

(3) (Addition Property) Let'P: X→Y be a definable su巧ectivemap whose fibers 

are equi-dimensional; that is, the dimensions of the fibers'P―1 (y) are constant. 

We have dimX = dim Y + dimcp-1(y) for ally E Y. 

5 Remarks 

We conclude this paper with several remarks. The most restrictive structure con-

sidered in this paper is a DCULOAS structure. However, by [10], all the assertions 

except the local definable cell decomposition theorem (Theorem 3.3) are satisfied in 

any definably complete locally o-minimal structure such that 

(*) the image of a discrete definable set under a coordinate projection is again 

discrete. 

A DCULOAS structure satisfies the condition (*). Shoutens proposed a locally 

o-minimal structure called a model of DCTC [20]. A model of DCTC is a definably 

complete locally o-minimal structure with the property (*). A locally o-minimal 

expansion of an ordered field falls into a model of DCTC. 

A natural unsolved question is as follows: 

Conjecture. Does any definably complete locally o-minimal structure satisfy the prop-

erty (*)? 

The strongly locally o-minimal structure in [15, Example 12] is definably complete 

nor satisfies the property(*), neither. 

Since a DCULOAS structure has tame topological properties, definable functions 

are also expected to have tame properties. Definable equi-continuity is defined and 

investigated in [11]. A variant of the Arzela-Ascoli theorem is demonstrated in the 
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same paper. 

Consider two structures M = (M, 6 =阿｝nEN)and M'= (M,6'=｛図｝nEN)

having the same universe M. When 6 is a subset ofぎ M is called a reduct of 

M', and M'is called an expansion of M. For a given structure M, the reduct 

generated by the open sets definable in M is called the open core of M. A sufficient 

condition for a structure having an o-minimal open core is discussed in [3]. Definably 

complete expansions of ordered fields having locally o-minimal open cores are treated 

in [6]. The author gave a sufficient condition for a structure having uniformly locally 

o-minimal open core of the first/second kind in [12]. 

A locally o-minimal structure whose universe is the set of reals IR is strongly o-

minimal. It enjoys more tame condition called almost o-minimality. 

Definition 5.1. An expansion of densely linearly ordered set without endpoints is 

almost o-minimal if any bounded definable set in M is a finite union of points and 

open intervals. Here, M is the universe of the expansion. 

The notion of almost a-minimality was formulated in [13]. 
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