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1 Introduction and Preliminaries
At first, we introduce some basic concepts in model theory.
Definition 1. A language L consists of the following:
e constant symbols,
e p-ary function symbols (n > 0),
e n-ary predicate symbols (n > 0).
Example 2. The language Loging of ordered rings is {co. c1, f+, f—, fx. P<}, where
e ¢y and c¢; are constant symbols;
e f. and fy are binary function symbols;
e f_ is a unary function symbols;
e P_ is a binary function symbols.
Let L be a language. We use x,y, 2z, 21, T2, ..., Y1, Y2,... as variables.
Definition 3. An L-structure M is a set with interpretations s™ for each s € L, where
e If ¢ € L is a constant symbol, then ¢™ € M;
o If f € L is a n-ary function symbol, then fM: M™ — M;
o If P € L is an n-ary predicate symbol, then PM C M™.
Example 4. R = (R;0,1,4, —,-, <) is an Loging-structure.
Definition 5. An L-term is defined as follows.
e Every variable is an L-term.
e Every constant symbol of L is an L-term.
o If f € L is an n-ary function symbol and ¢1,...,t, are L-terms, then f(¢1,...,¢,) is an L-term.

Example 6. [, (fx(co, ), [-(c1)) is an LoRing-term.

Let M and N be L-structures. For each L-term ¢(z) and @ € M, the interpretation t" (@) € M is naturally

defined.
Example 7. fy (f1(z,c1),y)%(2,3) = F2(FR(2.65).3) = (24 1) x 3= 9.

Definition 8. An atomic L-formula is defined as follows.
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e If t; and t5 are L-terms, then t; = t5 is an atomic L-formula.

e If P € L is an n-ary predicate symbol and ty,...,t, are L-terms, then P(fy,...,t,) is an atomic
L-formula.

Example 9. fy(z,y) = ¢y and P<(fy(c1,¢1), f-(x)) are atomic Loging-formulas.
Definition 10. An L-formula is defined as follows.

e Every atomic L-formula ia an L-formula.

e If ¢ is an L-formula, then —¢ is an L-formula.

o If v and v are L-formulas, then ¢ A1), o V9, ¢ — 9, p <> ¢ are L-formulas.

o If ¢ is an L-formula and «z is a variable, then Vaxy and Jzp are L-formulas.
Example 11. Jy((—(z = 0)) = P<(fx(z,9),1)) is an Loging-formula.

Definition 12. For each L-formula p(Z) and @ € M, the satisfication relation M = ¢(a) is defined as
follows.

o If t1(Z) and t2(Z) are L-terms, then M |= (t; = t2)(a) < tM(a) = t) (a).

e If P € L is an n-ary predicate symbol and t,...,t, are L-terms, then M | (P(ti,....t,))(a) <
(tM(@),...,tM(a)) € PM.

o If (%) is an L-formula, then M = (—)(a) & M W ¢ (a).
If 1 (Z) and ¢2(Z) are L-formulas, then
o M= (1 Ath2)(@) & M = 1(@) and M = a(a);

a
a) < M = 1(a) or M = s(a);

= =

( (

o M= (1 V)@
o M= (1 = ¥2)(@) & M | ¢1(a) implies M = o (a);
o M = (41 ¢ 1) (@) < M = 11 (a) is equivalent to M k= 1y (a).
If (2, y) is an L-formula, then

o M = (Vyi)(a) & M = ¢(a,b) for all b e M;

o M = (3yd)(a) & M = ¢(a,b) for some b € M.
Example 13. Let ¢(z) be Jy (f+(z,2) = fx (y,y)). Then R = ¢(3) because R |= f4(3,3) = fx (v6,16).

YV and 7 are called quantifiers.

Definition 14. Let ¢ be an L-formula and z be a variable which appears in ¢. Then z is said to be free in
@ if x does not appear in the scope of any quantifier in ¢. An L-formula ¢ is said to be an L-sentence if ¢
do not have any free variable.

Example 15. Let ¢ be y((=(z = 0)) = fx(z,y) = 1). Then z is free in ¢, so ¢ is not an Loring-sentence.
Let ¥ be Vz3y((=(z = 0)) = fx(z,y) =1). Then ¢ is an Loging-sentence.

A set of L-sentences is called an L-theory. Let 7', T} and 1% be L-theories.
Definition 16. M is said to be a model of T (M =T) if M = for all p € T.

Definition 17. T is said to follow from Ty (T3 |= T%) if M | T5 for all M = T.



Definition 18. T} is said to be equivalent to 75 if Th | Ts and Ts = 1.
We introduce the hierarchy of L-formulas.
Definition 19. L-formulas are classfied as follows.
o A Ag formula is a quantifier-free L-formula.
e A II; formula is an L-formula of the form Va,Vzs ... Vz, where ¢ is a Ay formula and n > 0.
e A Y formula is an L-formula of the form 31325 ... 32,7 where ¢ is a Ag formula and n > 0.

e A Il formula is an L-formula of the form Va,Vzs ...V, 3y Jys ...y, where ¥ is a Ay formula and
n,m > 0.

e A Y, formula is an L-formula of the form Jx 3wy ... I, Vy1Vys . . . Yy where ¢ is a Ag formula and
n,m > 0.

o -,
Example 20. V:I,'Elgt/((ﬁ(.'lt =0)) = fx(r,y) = 1) is a ITy Loging-sentence.
Definition 21. M is said to be a substructure of N (M C N) if M is a subset of N and the following holds:
e If ¢ € L is a constant symbol, then ¢ = ¢V,
o If f € L is an n-ary funciton symbol, then f = f¥|yu;
o If P € L is an n-ary function symbol, then PM = PV n M.

Example 22. Z is a substructure of R as LoRring-structures.

Definition 23. M is said to be elementarily equivalent to N (M = N) if M = ¢ & N | ¢ for all
L-sentences .

We introduce one of the most important theorems in model theory.
Fact 24 (Compactness theorem). T has a model if and only if every finite subset of T" has a model.
The following facts follow from the compactness theorem.

Fact 25. Suppose that Ty = ¢ or Ty = —p for all ¥, (I1,,) sentences ¢. Then there exist My = Ti and
M, |= T such that My [~ ¢ or My [~ — for all &, (II,,) sentences ¢.

Fact 26. Suppose that M = ¢ = N | ¢ for all ¥, sentences ¢. Then there exists an L-structure N’ such
that M C N’ =N and M E ¢(a) = N’ = ¢(a) for all &,, formulas ¢(7) and @ € M.

2 Hereditary theories and II; theories

Remark 27. Let M be a substructure of N. Then M |= p(a) <& N | p(a) for all A formulas p(Z) and
a € M. Thus N = ¢ = M = ¢ for all II; sentences p.

We introduce hereditary theories and II; theories.

Definition 28. T is said to be hereditary if the following holds: If M is a substructure of N and N = T,
then M =1T.

Definition 29. T is said to be a II; theory if T" is equivalent to an L-theory consisting of II; sentences.

Remark 30. By Remark 27, T" is hereditary if 7" is a II; theory.
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Example 31. Let Ly = {-}, where - is a binary function symbol. Let T} be a set of the following L;-sentences:
o VaVyVz ((z-y)-z=u-(y-2)),
o IyVu (v y=y a=u),
o Vady (v -y=y-x=c¢).

Then T3 is not hereditary, so T; is not a II; theory. To make 77 hereditary, we have to add some constant
symbols and function symbols to Lq. Let Lo = Ly U {e, ’1}., where e is a constant symbol and ~! is a unary
function symbol. Let 75 be a set of the following Lo-sentences:

o VoV (z-y) 2= (y-2),
e Vi(zre=e-x=u),
eVr(z-xt=a"1z=e¢).

Then 75 is a II; theory, so T5 is hereditary.
The converse of Remark 30 also holds.

Theorem 32. Suppose that 7" is hereditary. Then 7" is a II; theory.

Proof. Let T* = {¢ : II; sentence | T |=t)}. We prove T* |= T. Let ¢ € T. It is sufficient to show that
there exists a II; sentence ¢ such that 7' |= v and —¢ | —).

Suppose that T }= 1 or —~p = —p for all IT; sentences tp. By Fact 25, there exist My =T and M; = —¢
such that M; = ¢ or My = = for all II; sentences . Thus My = ¢ = My =« for all ¥; sentences 1)
because the negation of ¥; formulas are equivalent to II; formulas. By Fact 26, there exists M| such that
My € M{ = M;. Then M| = T. Since T is hereditary, we have My = T. Especially we obtain M, = ¢,
which is a contradiction. O

Therefore, 1" is hereditary < 1" is a 1I; theory.

3 Inductive theories and II, theories
Let w={0,1,2,...}.

Remark 33. Let (M;);cw be a chain of L-structures and N :=|J,. M;, that is,

icw
MyCM; C---CM;C M1 C---CN (Vi ew).
Let ¢ be a T3 sentence. Suppose that M; = ¢ for all i € w. Then N [ .
‘We introduce inductive theories and II5 theories.
Definition 34. T is said to be inductive if the union of any chain of models of 7" is a model of 7.
Definition 35. 7 is said to be a Ily theory if 1" is equivalent to an L-theory consisting of II, sentences.

Remark 36. By Remark 33, T is inductive if 7" is a II5 theory.

Example 37. The theories of groups, rings, ficlds and dense linear orders without endpoints are 1l theories,
so these are inductive.

Example 38. Let L = {<}, where < is a binary predicate symbol. Then T := {¢ : L-sentence | Z |= ¢} is
not inductive, so 71" is a Il theory.

1 1
") Consider the following chain: Z C 52 C ZZ C---.



The union of this chain is dense. However, Z is not dense, that is, Z = Jz3yvz(z < y A —(z < 2z < y)).

Definition 39. Let M be a substructure of N. Then M is an elementary substructure of N (M < N) if
M = ¢(a) & N = ¢(a) for all L-formulas ¢(Z) and a € M.

Fact 40. Let (NV;)icw be a chain of L-structures and N := |
Then N; < N for all i € w.

N;. Suppose that N; < N;y; for all i € w.

i€w

The converse of Remark 36 also holds.
Theorem 41. Suppose that T is inductive. Then T is a I theory.

Proof. Let T* = {4 : II5 sentence | T |=¢}. We prove T* = T. Let ¢ € T. It is sufficient to show that
there exists a Iy sentence 1 such that 7' = 4 and —¢ = —p. Suppose that T' £ ¢ or —p E - for all
II, sentences 1. By Fact 25, there exist M |= T and Ny = - such that M & ¢ or Ny & - for all I,
sentences . Hence Ny = ¢ = M |= ¢ for all X3 sentences . By Fact 26, there exists an L-structure
My such that Ny C My = M and Ny |= ¢(a) = My = ¢(a) for all X formulas ¢(z) and a € Ny. Thus
My = v¥(a) = Ny = ¢(a) for all 3y formulas ¢(Z) and @ € Ny. Consider in the language L(Ny) := L U Ny,
where each a € Ny is a constant symbol. Then My = ¥ = Ny = ¢ for all ¥y L(Np)-sentences tp. By Fact 26,
there exists an L(Np)-structure Ny such that My C Ny = Ny. Since Ng = Ny as L(Np)-structures, Nog < Ny
as L-structures.
By repeating the above discussion, we obtain the following chain:

NoC My C Ny CM CNyC--- |

where M; = M and N; < Ny, for all i € w. Let N = {,¢,, Ni = U, Mi. By Fact 40, we have N; < N for
all i € w. Hence N |= —p. Since M; |= T for all ¢ € w and T is inductive, we have N |= T. Especially we
have N = ¢, which is a contradiction. O

Therefore, T' is inductive < T is a I theory.
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