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Abstract 

We consider a lattice isomorphism between the lattice of topolo­
gies on linear spaces whose dimensions are at least two over Hausdorff 
topological fields. By using a result of J. Hartmanis (1958), we show 
that if the image of the set of linear topologies on the domain space 
by the lattice isomorphism coincides with the set of linear topologies 
on the target space, then the coefficient fields are isomorphic and 
the linear spaces are semi-linear isomorphic. Moreover, such a lattice 
isomorphism or a composition of a involution with the lattice isomor­
phism is induced by a composition of a linear translation with the 
semi-linear isomorphism. 

1 Introduction 

1. 1 Back ground and motivation 

For a fixed set X, the lattice of topologies ~ ( X) = (~ ( X), C) is a partially 
ordered set consisting of the set ~(X) of all topologies that can be defined on 
X endowed with the set inclusion c. It is known that this partially ordered 
set has supremum and infimum for any subsets of ~(X). In particular, we 
can define two binary operators on ~(X) by taking supermum and infimum 
of two elements of ~(X), which allows us to study ~(X) in algebraic man­
ner [2]. Thus, although the lattice of topologies is one of the areas in the 
general topology, but also the structure of the lattice of topologies itself is 
an interesting object. 
In this paper, we consider when X is a linear space over a Hausdorff topo­
logical filed K. Among all topologies on X, a natural topology for the linear 
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space is a topology, which we call linear topology, such that the two linear 
operators 

the addition :X x X -+ X, 

the scalar multiplication :K x X -+ X 

are continuous. We denote the subset of I;(X) consisting of all linear topolo­
gies by TK(X). It is known that the partially ordered set TK(X) = (TK(X), C 

) also has supremum and infimum for any subsets of TK(X). In particu­
lar, the partially ordered set TK(X) has the maximum element, denoted by 
rmax(x). 
The question we deal with is to what extent the structure of the linear spaces 
are determined by the distribution of TK(X) in I;(X). More precisely, for 
two linear spaces X 1 and X 2 over two Hausdorff topological fields K 1 and 
K 2 , respectively, if there exists a lattice isomorphism 8 between I;(X1 ) and 
I;(X2 ) such that the image of TK1 (X1 ) by 8 coincides with TK2 (X2), then 
our question is whether K 1 and K 2 are isomorphic and X 1 and X 2 are iso­
morphic. 

1.2 A related work 

Let us explain a related work of Juris Hartmanis [3, Theorem 4], which is 
on the automorphism group of the lattice of topologies on a set X. We 
consider automorphisms of I;(X). Let f: X-+ X be a bijection map. Then 
f induces a lattice isomorphism f*, called induced map by f, defined by 

(1) 

where TE I;(X) is a topology on X. The inverse map off* is clearly, (f-1t 
and also J*, defined by 

(2) 

Another candidate for an automorphism of I;(X) is a map C, defined by 

C(T) := {X \ u I u ET}. 

J. Hartmanis showed, in [3], that C is a lattice automorphism that does not 
come from a bijective map when the cardinality of X is finite and at least 
three and that C is not a lattice automorphism when the cardinality of X 
is infinite. The following result by J. Hartmanis states the converse: every 
automorphism of I;(X) comes from f* and C. 

Fact 1 ([3, Theorem 4]). Let X be a non-empty set. When the cardinality 
of X is one, two or infinity, the group Aut(I;(X)) of automorphisms of 
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the lattice of topologies ~(X) on X is isomorphic to the symmetric group 
Sym(X) on X. When the cardinality of X is finite and at least three, the 
group Aut(~(X)) is isomorphic to the direct product of Sym(X) and the 
two element group. 

Although the above statement is on the structure of the automorphism 
group, the proof shows that elements of Aut(~(X)) are of form f* or Co f*, 
where f is a bijection map from X to itself. Hence, by a minor change of 
the proof in [3], the following statement holds: 

Fact 2. Let X 1 and X 2 be two non-empty sets such that their lattice of 
all topologies ~(X1), ~(X2 ) are isomorphic. Let 8 : ~(X1 ) ----+ ~(X2 ) be 
a lattice isomorphism. When the cardinality of X 1 is one, two or infinity, 
there exists a unique bijection 0 : X 1 ----+ X 2 such that the induced map 0* 
coincides with 8. When the cardinality of X 1 is finite and at least three, 
there exists a unique bijection 0 : X 1 ----+ X 2 such that the induced map 0* 
coincides with 8 or C o 8. 

As a corollary of Fact 2, if the lattice of topologies of two sets are iso­
morphic, then the cardinality of the two sets coincides. 

1.3 The main result 

When X 1 and X 2 in Fact 2 are linear spaces over Hausdorff topological fields 
K1, K2, respectively, our main result is a similar statement of Fact 2. We 
further assume that the image of TK1 (X1 ) by 8 : ~(X1 ) ----+ ~(X2) coincides 
with TK2 (X2 ), which implies that the restriction of 8 to TK1 (X1 ) is a lattice 
isomorphism between TK1 (X1 ) and TK2 (X2). Then it will be shown that there 
exists a topological field isomorphism q> : K 1 ----+ K 2 and 0 : X 1 ----+ X 2 in Fact 
2 is a composition of a </>-semi-linear isomorphism with a linear translation. 
Here, a </>-semi-linear isomorphism <I> : X 1 ----+ X2 with a field isomorphism 
q> : K 1 ----+ K 2 is a bijection such that for all x, y E X 1 and a E K 1 , the map 
<I> satisfies 

<I>(x + y) = <I>(x) + <I>(y), 
<I>(a · x) = cp(a) · <I>(x). 

More specific statement of the result is the following: 

Theorem 1. 1 Let K1, K2 be two Hausdorff topological fields and X1, X2 
be two linear spaces, whose dimension is at least two over K 1 and K 2 , 

1 Assumptions on the topological fields and on dimensions of linear spaces are dropped 
from the author's research presentation at the work shop "New developments of transfor­
mation groups", held at RIMS in May 2021. 
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respectively. Let 8 : ~(X1) --+ ~(X2) be a lattice isomorphism such that 
8(TK1 (X1)) = TK2 (X2 ) holds. Then there exists a unique triple (q'>,<I>,x0) 
such that when the cardinality of X1 is infinite, the induced map by <I>+ x0 : 

X1 --+ X 2 coincides with 8 and when the cardinality of X 1 is finite, the 
induced map by <I>+ x0 coincides with 8 or Co 8, where q'>: K 1 --+ K 2 is a 
isomorphism between the topological fields, <I> : X 1 --+ X 2 is a ())-semi-linear 
isomorphism and x 0 is a point of X 2. 

As a corollary, if the lattice of topologies of two linear spaces are isomor­
phic with a map such that the restriction is also an isomorphism between 
the lattice of linear topologies, then the coefficient fields are isomorphic as 
topological fields and the two linear spaces are semi-isomorphic. 
We consider the case when K 1 = K 2 as topological fields and X1 = X 2 
in the situation of Theorem 1. Another corollary of the theorem is on the 
subgroup G(X1) of Aut(~(X1)), defined by 

G(X1) := {8 E Aut(~(X1)) I 8(TK1 (X1)) = TK1 (X1)}. 

By Theorem 1, the group G(X1) is isomorphic to the group of semi-direct 
product of the abelian group X 1 and the group rGL(X1) of semi-linear 
automorphisms. Here, a permutation <I> : X1 --+ X1 that preserves the addi­
tion of X1 belongs to rGL(X1) if and only if there exists an automorphism 
q'> : K 1 --+ K 1 of the topological field such that <I> is a ())-semi-linear isomor­
phism. The multiplication of the semi-direct group is defined by 

(x1, <I>1) · (x2, <I>2) := (x1 + <I>1 (x2), <I>1 o <I>2) 

for (x1, <I>1), (x2, <I>2) E X1 X rGL(X1)-

2 A proof of the main result 

This section is devoted to give a proof of Theorem 1. 

The key idea of our proof is to consider two maps Nx, Tx between lin­
ear topologies on X and linear subspaces of X, defined by the following 
definitions. 

Definition 1. Let T be a linear topology on a linear space X. We define a 
subspace N x (T) of X by 

Nx(T) := n U. 
OEUET 

Definition 2. Let S be a linear subspace of X, we define a linear topology 
Tx(S) on X by 
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where 1rs is a quotient map from X to X/ S and 1rs*' 1rs* are defined in the 
same way with (1) and (2), respectively . 

Remark 1. It is easy to show that N x(T) is actually a linear subspace. Also, 
it is not difficult to prove that for a linear map f : X -+ Y between linear 
spaces X, Y, the map J* sends linear topologies on Y to linear topologies on 
X and if f is surjective, f * sends linear topologies on X to linear topologies 
on Y. Hence Tx(S) is actually a linear topology on X. As for the relation 
between Nx and Tx, the composition TxoNx is not always the identity map 
on the set of linear topologies because there may be more than two Hausdorff 
linear topologies on X. On the other hand, since we use the maximum 
element rmax ( X) for the definition of T x ( S), the other composition N x o T x 
is the identity map on the set of all subspaces of X. 

Let us come back to the situation of Theorem 1. From Fact 2, there 
exists a bijection 0 : X 1 -+ X2 such that the induced map 0* coincides with 
8 or with Co 8. We first consider the case 0* coincides with 8 and show 
that there exists a triple ( 1>, <I>, x 0 ) satisfying 0 = <I> + x 0 . 

We define an element x0 := 0(0) and a bijective map <I> : X 1 -+ X 2 by 
<I> + x0 = 0 so that <I>(0) = 0 holds. Then because a linear translation 
map X2 3 x H x + a E X2 for a fixed point a E X2 induces a lattice 
automorphism of ~(X2) such that the image of TK2 (X2 ) is TK2 (X2 ) itself, 
the induced map <I>* : ~(X1 ) -+ ~(X2 ) is a lattice isomorphism such that 
the image <I>(TK1 (X1)) is TK2 (X2)-
Let S be a subspace of X 1 . By definition and an easy argument, we obtain 
the linear subspace Nx2 (<I>*(Tx1(S))) equals to <I>(Nx1(Tx1(S)). Moreover, 
since the map Nx1 0Tx1 is identity, the subspace Nx2 (<I>*(Tx1 (S))) coincides 
with <I>(S). Thus, the image of the subspace S by the map <I> is a subspace 
of X 2 . Furthermore, because taking the image of subspaces by <I> preserves 
the set inclusion C and <I> is a bijection, the dimension of <I>(S) is one if and 
only if that of Sis one. As for affine subspaces, we claim the following: 

Lemma 1. Let S be a linear subspace of X1 . Then the image <I>(a + S) 
coincides with <I> (a) + <I> ( S) for any a E X 1 . 

Proo f. Assume that there exists a point q E <I> ( a + S) \ ( <I> (a) + <I> ( S)). Let 
p E X1 be a point such that <I>(p) = q. Since <I>(S) = N x 2 ( <I>*(Tx1 (S))) holds, 
the affine subspace <I>(a) + <I>(S) is represented as ncI>(a)EVE<I>.(Txl (S)) V = 
naEUETx1(S) <I>(U). Thus we have an open neighborhood u of the point a 
with respect to the topology Tx1 (S) that is not an open neighborhood of 
p. On the other hand, because p belongs to a+ s = naEUETxl (S) u, this is 
a contradiction. Therefore, we obtain <I>(a + S) C <I>(a) + <I>(S). The same 
argument for the inverse map <1>-1 shows that a+ S = <I>- 1 (<I>(a + S)) C 

<I>-1(<I>(a) + <I>(S)) c <I>-1(<I>(a)) + <I>-1(<I>(S)) = a+ S, which implies the 
claim of this lemma. □ 
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Now, we show that <I> : X 1 --+ X 2 preserve the additions. We denote 
by Span(x), the one-dimensional subspace of a linear space X generated 
by nonzero element x E X. Let x, y be nonzero elements of X 1 that 
arc linearly independent. Note that <I>(x) and <I>(y) are also linearly in­
dependent since <I> is bijective. By Lemma 1, the image <I>(Span(x) + y) is 
equal to <I>(Span(x)) + <I>(y) and this coincides with Span(<I>(x)) + <I>(y) since 
<I>(x) belongs to one-dimensional subspace <I>(Span(x)). The same argument 
shows that <I>(Span(y) + x) = Span(<I>(y)) + <I>(x). Thus, the intersection 
<I>(Span(x) + y) n <I>(Span(y) + x), to which <I>(x + y) belong is a one point 
set { <I>(x) + <I>(y)}. Therefore, we obtain <I>(x + y) = <I>(x) + <I>(y). By using 
this linear independent case, similar arguments show that <I>(-x) = -<I>(x) 
for nonzero x and that <I>(x + y) = <I>(x) + <I>(y) when x, y are not linearly 
independent. Here, we use the assumption of Theorem 1 on the dimension 
of X 1 to take an element z such that x, z are linearly independent. 
Next, we define a field isomorphism </; : K 1 --+ K 2 . Let x0 be a non-zero 
element of X 1. For every a E K 1, since <I>(a · x 0 ) belongs to one-dimensional 
subspace Span(<I>(x0)), there exists a unique /3 = f3(x0 , a) E K 2 such that 

<I>(a · xo) = /3 · <I>(xo)-

Let us show that /3 does not depend on the choice of x0 . Take an another 
nonzero element x1 E X 1. If x0 , x1 are linearly independent, since <I> pre­
serves the additions, we have the following equality: 

f3(xo + x1, a)· (<I>(xo) + <I>(x1)) =f3(xo + x1, a)<I>(xo + x1) 

=<l>(a · (xo + x1)) 

=<l>(a · xo) + <I>(a · x1) 

=f3(xo, a)· <I>(xo) + /3(x1, a)· <I>(x1)-

Since <I>(x0) and <I>(xi) are linearly independent, the coefficients f3(x0 +x1 , a) 
and f3(xi, a) coincides for i = 0, 1. If x0 , x1 are linearly dependent, since 
dim X 1 is at least two, we can take z E X 1 so that x0 , z and x1, z are both 
linearly independent. Then from the linearly independent case, we have 
f3(x0 , a) = f3(z, a) = f3(x 1 , a). Therefore, /3 depends only on a and we 
define a map </; : K1 --+ K 2 by </;(a) := f3(x0 , a). Since <I> preserves the 
additions, </; : K 1 --+ K 2 also preserves the additions. The independence 
of the choice of nonzero x0 for f3(x0 , a) shows that </; preserves the multi­
plications. By the same argument for the inverse map <1>-1, the map </; is 
also a bijective, and thus </; : K 1 --+ K 2 is a field isomorphism. Now, we 
show that </; : K 1 --+ K 2 is a homeomorphism. Note that because <I>* sends 
the maximum element rmax(X1) to the maximum element rmax(X2), the 
map <I> : (X1, rmax(X1)) --+ (X2 , rmax(X2)) is a homeomorphism. Now, fix a 
nonzero element x1 E X 1. Then linear isomorphisms 'lj;1 : K 1 3 a f---+ a· x1 E 
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Span(xi) and 1/J2 : K2 3 /3 f--t /3 · <I>(x1) E Span(<I>(xi)) are homeomorphisms, 
where Span(x1) C X1 and Span(<I>(x1)) C X2 endowed with the relative 
topology of rmax(X1 ) and rmax(X2), respectively. Because the composition 
1/J2 -l o <I> 1 Span(xi) 01/J1 : K1 -+ K2 is homeomorphism, which is equal to cp, 
the map cp : K 1 -+ K 2 is an isomorphism between topological fields K 1 and 
K2. 
We conclude that cp is an isomorphism of topological fields and by defi­
nition, <I> is a cp-semi-linear isomorphism and the triple ( cp, <I>, x0 ) satisfies 
(<I>+ Xo)* = 8. 
Next, we consider the case when <I>* is Co 8. Recall that this case occurs 
when the cardinality of X 1 is finite. Because the cardinality of I;(X1 ) and 
that of I;(X2 ) are the same, X 2 is also a finite set, and thus K 2 is a finite 
field with the discrete topology. It is known that for finite-dimensional lin­
ear space X whose coefficient field K is a discrete finite field, every linear 
topology T E TK(X) has an open base of the form {S + a I a E X} for a 
subspace S (See [1] for a proof of this fact for example). Thus, every linear 
topology on X2 is mapped to itself by C : I;(X2) -+ I;(X2). Hence, Co 8 
also satisfies the assumption on 8, i.e. Co 8 : I;(X1) -+ I;(X2) is a lattice 
isomorphism such that the image Co 8(TK1 (X1)) coincides with TK2 (X2). 
Therefore, the same argument in the case when 0* = 8 shows that there 
exists a triple ( cp, <I>, x0 ) such that the induced map ( <I> + x0 ) * is Co 8, where 
cp : K1 -+ K2 is a topological field isomorphism, <I> : X1 -+ X2 is a cp-semi­
linear isomorphism and x0 E X2 . 

We end the proof by showing the uniqueness of the triple (cp, <I>, x 0 ). Let 
(cp, <I>, xo) and (cp', <I>', xo') be two triples such that the induced maps (<I>+xo)* 
and (<I>'+ x0')* is 8 or Co 8. Because the cardinality of X 2 is at least 
four, only one of 8 or Co 8 is induced by a bijection, which implies that 
(<I>+ x0 )* = (<I>'+ x0')*. Because every induced map f* by a bijection 
f: X1 -+ X2 sends a topology of form {0,{p},X1} to {0,{f(p)},X2} for 
every point p E X 1 , two maps <I>+x0 and <I>' +x0' are the same map, and thus 
we obtain x 0 = x0' and <I> = <I>'. By definition of semi-linear isomorphism 
and <I> = <I>', two field isomorphisms cp and cp' are the same. 

3 Questions 

We can consider a similar problem to Theorem 1 for groups, rings or other 
algebraic systems. We end this article by considering the case of groups. For 
every group G, we denote by Tgroup ( G), the set of group topologies, which 
consists of topologies on G such that the group operators G x G 3 (x, y) -+ 
x · y E G and G 3 x -+ x- E G are continuous. Then an analogy of Theorem 
1 is the following: Let G1 and G2 be two groups and assume that there exists 
a lattice isomorphism 8: I;(G1)-+ I;(G2) with 8(Tgroup(G1)) = Tgroup(G2)-



41

Then is there a group isomorphism <I> : G1 -+ G2 such that <I>* = 8 or 
<I>* = Co 8 holds? This does not hold because every finite cyclic group 
only admits the discrete and indiscrete topology as a group topology, and 
thus any bijection from a cyclic group G to itself induces an identity map on 
T group ( G). However, this examples does not imply the failure of the corollary 
of Theorem 1: The existence of such a lattice isomorphism implies two 
groups are isomorphic. Our first question is whether there exist groups G 
and H such that they are not isomorphic and that a lattice isomorphism 
8 exists with 8(Tgroup(G)) = Tgroup(H). The next question is whether a 
characterization of groups that satisfies the corollary of Theorem 1 exists 
or not. From a more general view point, another question is there exists a 
characterization of algebraic systems such that Theorem 1 holds. 
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