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Vector bundle over a GKM graph and combinatorial 
Borel-Hirzebruch formula and Leray-Hirsh theorem 
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Shintaro Kuroki 

Dep. of Applied Math. Faculty of Science, Okayama University of Science 

1. Introduction 

This article is the research announcement of the paper [Ku21]. The aim of the paper 
[Ku21] is to study an equivariant vector bundle over GKM manifolds from combinatorial 
point of view by using the notion of legs which are introduced in [KU] (also see [LSl 7] 
for a non-compat edge). In the paper [Ku21], we will use the notations from [LS17] to 
define an equivariant vector bundle over a GKM graph; however, in this article, we will use 
the notations which used in [KU]. 

1.1. GKM manifold and GKM graph. We first briefly recall the GKM manifold 
and the (abstract) GKM graph (see [GZOl] and [Ku19] also). Let Tn be then-dimensional 
torus and M2m be a 2m-dimensional, compact, connected, manifold with almost effective 
Tn-action. We denote such manifold as (M竺T門， orM竺 M,(M, T) (if its torus action 
or dimensions of a manifold and a torus are obviously known from the context). We call 
(M2m, TりaGKM manifold if it satisfies the following properties: 
(1) the set of fixed points is not empty and isolated, i.e., MT is 0-dimensio叫；
(2) the closure of each connected component of I-dimensional orbits is equivariantly 
diffeomorphic to the 2-dimensional sphere, called an invariant 2-sphere. 

Regarding fixed points as vertices and invariant 2-spheres as edges, this condition is equiva— 
lent to that the one-skeleton of (M竺介）hasthe structure of a graph, where a one-skeleton 
of (M竺Tn)is the orbit space of the set of 0-and I-dimensional orbits. By attaching the 
tangential representations around the fixed points, we can define the labels on edges. This 
labeled graph is called a GKM graph of a GKM manifold (M, T). 
Abstractly, the GKM graph can be defined as follows. Let r be an m-valent graph 
with the set of vertices V(r) and the set of edges E(r). We put a label a : E(r)→ 
Hom(T,Sりc::::-H2(BT) c::::-zn on r, where BTn (often denoted by BT) is a classifying 
space of an n-dimensional torus T. Note that the cohomology ring (over Z-coefficient) of 
BTn is isomorphic to the polynomial ring 

H*(BT) c::::-Z[a1,...，叫，
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where ai is a variable with deg ai = 2 for i = 1,..., n. Set 

a(p) = {a(e) I e E EP(r)} c H2(BT), 

where Ep(r) is the set of out-going edges from the vertexp. Note that IEP(f)I = m because 
we assume r is an m-valent graph. An axial function on r is the function a : E(r)→ 
炉 (BTn)for n :Sm which satisfies the following three conditions: 

(1): a(e)＝土a（で）， whereでisthe edge e with the reversed orientation; 
(2): for each vertex p E V(r), the set a(p) is pairwise linearly independent, i.e., each 
pair of elements in a(p) is linearly independent in炉 (BT);
(3): for all e E E(f), there exists a bijective map▽e : Ei(e)げ） →Et(e)げ） from
the out-going edges on the initial vertex i(e) of e to the out-going edges on the 
terminal vertex t(e) of e such that 
(1)▽e:=▽e-19 
(2)▽e(e)＝で， and
(3) for each e'E Ei(e)(r), there exists an integer ce(e') such that 

(1.1) a（▽e(e')) -a(e') = ce(e')a(e) E H2(BT). 

The collection V =｛▽e I e E E(r)} is called a connection on the labelled graph (r, a); we 
denote the labelled graph with connection as (r, a,▽）， and the equation (1.1) is called a 
congruence relation. We call the integer ce(e') in the congruence relation an Euler number 
of e'over e. The conditions as above are called an axiom of axial function. 

DEFINITION 1.1 (GKM graph [GZOl]). If an m-valent graph r is labeled by an axial 
function a : E(r)→炉(BTりforsome n :S m, then such labeled graph is said to be an 
(abstract) GKM graph, and denoted as (r, a,▽） （or (r, a) if the connection▽is obviously 
determined). 

In addtion, we often assume the following condition: 

(4): for each p E V(r), the set a(p) spans H2(BT). 

The axial function which satisfies (4) is called an e.ffective axial function. 

DEFINITION 1.2 ((m, n)-type GKM graph). Let (f, a, V) be an abstract GKM graph. 
If the axial function a is effective, (r, a，▽） is said to be an (m,n)-type GKM graph. 

1.2. Equivariant vector bundle over a GKM manifold. We next recall the equi-
variant (complex) vector bundle (see e.g. [Ka88, Ka91]). In particular, we introduce 
the equivariant vector bundle over a GKM manifold. Let M be a smooth manifold with 
T-action. Note that the T-action induces the diffeomorphism 

t:M→M 
for each element t ET. We often denote 

t-p:=t(p) 

for the map from p E M to t(p) E M by the diffeomorphism t E T. Let [ be a complex 
vector bundle over M. We use the following notations: 
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• E(~) denotes the total space of~; 
● 7r: E(＜）→ M denotes the projection of the vector bundle; 
• F怠）：＝戸(p)denotes the fibre over p EM. 

We call~ an equivariant (complex) vector bundle over M if it satisfies the following three 
conditions: 

(1) E(~) also has a T-action; 
(2) The projection 7r : E (~)• Mis T-equivariant; therefore, for p E Mandt ET, 
the diffeomorphism p曰 t• p induces the map on fibres t* : Fp(~) • Ft-p(~); 
(3) The induced map t* : F;怠） • Ft•p (~) is a complex linear isomorphism for every 
p EM  and t ET. 

If M is a GKM manifold and E(~) be its equivariant complex rank r vector bundle, 
then there is the following irreducible decomposition for the fibre on a fixed point p E M九

(1.2) 応(~)-::::- V(77p,1) 〶.．． EB V(7/p,r), 

for j = 1,..., r, where T/p,j : T→S1 is a one-dimensio叫 (possiblytrivial) representation. 
Note that the orbit space of each factor may be regarded as V(TJp,j)/Tn,::,:恥+（half line), 
i.e., leg with the initial vertex p. Therefore, we may define the r-legs with labels on each 
fixed point p. This property is the motivation to define the equivariant vector bundle over 
a GKM graph. 

2. Equivariant vector bundle over a GKM graph and its projectivization 

In this section, we define the equivariant vector bundle over a GKM graph and its 
projectiviation. 

2.1. Equivariant vector bundle over a GKM graph. Let g := (r, a, V) be an 
m-valent GKM graph with the axial function a : E(r)→炉(BTn),where we denote 
E = E(r) and V = V(「）． Inthis paper, we assume that there is no legs in E (see [KU]), 
i.e., r is a compact graph. 

By Section 1.2, we may define a(n) (equivariant complex) rank r vector bundle Q := 
(r,a,▽） over g as follows: 

(1) the abstract (non-compact) graph r consists of V(r) = V and E(r) = EU  L, 

where L is the set of legs such that LP = L n EPげ） ＝ ｛lp,1,..., lp,r} for all p EV; 
(2) the label a: EU L→が(BT門suchthat庫＝aand a(lp,j)＝りp,jE炉 (BT門；
(3) the connection▽ = ｛▽e I e E E} is defined by the collection of bijective maps 

▽e : Ei(e) U Li(e)→Et(e) U Lt(e) for the initial vertex i(e) and the terminal vertex 
t(e) of the edge e such that Ve IEi(e)＝立．

REMARK 2.1. Note that the labels on LP might not be pairwise linearly independent 
(see Figure 1). Therefore, the vector bundle over a GKM graph might not be defined by 
the one-skelton of the (non-compact) manifold with torus actions (also see [GZOl] for the 
geometric meaning of pairwise linearly independence). 
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FIGURE 1. The labeled graph of the equivariant vector bundle which is 
induced from the tangent bundle over <C戸 withthe standard T2-action. 
The middle triangle represents the GKM graph of <CP2 with the standard 
T2-action. Note that this labeled graph does not satisfy the pairwise linearly 

independent; for example around p, a(e1) =a= a(lp,1), a(e2) = (3 = a(lp,2). 

空•~roje~tivization of an equivariant vector bundle over a GKM graph. 
Let g = (r, a, V) be a rank r + 1 vector bundle over a GKM graph g = (r, a,▽） for some 
r ~ 0. We define the projectivization P⑰ :＝ （r',a',▽）． 
The graph r'of P（り） consistsof the following vertices and edges: 

(1) V(r') = L, i.e., each leg becomes a vertex of P（切
(2) two legs lp,i, lq,j are connecting by the edge if one of the following holds: 

• p = q, i.e., lp,i, lp,j E Lが
• there exists an edge e EE  such that i(e) = p, t(e) = q and Ve(lp,i) = lq,J・ 

It is easy to check that r'is an m+r valent graph. We attach the label a': E'→炉(BTn)
on every edge as follows: 

(1) if e EE'satisfies i(e) = lp,i, t(e) = lp,j, then 

a'(e)＝面知）一 a(lp,j);

(2) if e EE'satisfies i(e) = lp,i, t(e) = V心，i)for some edge f E E, then 

a'(e) = a(f) = a(f). 

We can define the connection▽: : E;(e)→E;(e) which satisfies the congruence relations as 
follows: 
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(1) if e EE'is the edge with i(e) = lp,i, t(e) = lp,j, then for f E El(e) the edge▽'e(f) 
is the edge which satisfies that 

(a) if t(f) = lpjy, then i（▽仄!))= t(e) = lp,j and t (•'~(!)) = t(f) = lp,ki 
(b) if t(f) = v'9(lp,i) for some g E E in r such that i(g) = p, t(g) = q, then 

i(V~(f)) = t(e) = lp,j and t（▽＇e（f)） ＝も(lp,j).
(2) if e EE'is the edge with i(e) = lp,i, t(e)＝団（知） forsome edge f E E, then for 
g E E;1p1 the edge •'~ (g) is the edge which satisfies that i(e) 

(a) if t(g) = lP,!]'then i(• ~(g)) = t(e)＝▽八知） andt (•' ~(g)) = v J（い）；
(b) if t(g)＝▽h（知） forsome h E E in r such that i(h) = p, t(h) = q, then 

i(V~(g)) = t(e) = V1(lp,i) and t (•' ~(g)) = V,h(f) O V1(lp,i)-

-a 
l q,l 

-a 

l p,1 
a-

(3 -a 
¥, 

lp,2 a -a lr,2 

FIGURE 2. The projectivization of the vector bundle in Figure 1. Geomet-
rically this is nothing but the projectivization of the tangent bundle over 
CP叫i.e.,P(TCPり． Wecan also check that there is an equivariant diffeo-
morphism P(TCPり'::::'Fl(Cり， i.e.,the 6-dimensional flag manifold with 
T2-action. 

3. Combinatorial Borel-Hirzebruch formula and Leray-Hirsh theorem 

In this section, we will state the main theorem. Namely, we translate the Borel-
Hirzebruch formula for the projectivization of complex vector bundle and the Leray-Hirsh 
theorem for the complex projective bundle to the combinatoral theorem for GKM graphs. 
In this section, we put 

• g = (r,a，▽） is an m-valent GKM graph with a : E→が(BT門， wherer = 
(V,E); 
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• g = (r,a,▽） is a r皿 kr + 1 vector bundle over g, where Lp := {lp,l,..., lp,r+i} is 
the Jegs over p E V; 

•P（切＝ （r',a'，▽')is the projectivization of g, 

Recall that the cohomology ring H*（切 ofa GKM graph g is defined as follows: 

H*(g) := {f: V→H*(BTn) I f(i(e)) -J(t(e)) = 0 mod a(e)}, 

where H*(BTり＝ Z[a1,...,a』.Ifp（り） isa GKM graph, then there is the natural 
embedding from H噂） toH*(P（り）） bytaking f(p) = f（い） forall i = 1,..., r + 1, i.e., 

(3.1) H*（g)會 f(p)憎（三）旦＊（P(Q))
3.1. Preliminary. To state the mai見theorem,_weneed to prepare some notations. 

We first define the ith Chern class of Q, say c耀） EH心）， fori = 0,..., r + 1. Put 

鴨，J)＝恥 Eが (BT門

for all j = 1,...,r + 1 on p EV. We define the foll ollowing ith symmetric polynomial in 
H2i(BTり：

%，,（り）：＝ O";(T/p,l,...，りp,r+1)

こ心・..椅，rふ EH2i(BTりcH*(BT門．
柘＋・・・十kr+1=i

Set 

ぶり） ：＝〶叫切 E 〶 H*(BTり．
pEV pEV 

By using the GKM conditions, we have the following lemma: 

LEMMA 3.1. c『(Q)EH⑲)． 

We next define the 1st Chern class of the tautological line bundle of P（切， sayc『(,g)E 
が (P⑰)． Theelement c『(,g): V'→炉(BT門isdefined as follows: 

c『(,g)(lp,J)：＝鳴，j)=恥 Eが (BT門・

By the definition of the projectivization, we have the following lemma: 

LEMMA 3.2. If P（り） isa G KM  graph, then c『(,9)E H*(P(Q)). 

REMARK 3.3. Note that in order to state the main theorem, we only need the 1st Chern 
class of 19. So in this article, we do not define 19. The tutological line bundle 19 will be g・ 

defined in [Ku21]. 
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3.2. ~ain theorem. Note that by t~e embedding (3.1), we may regard the ith Chern 
class c『(?f)E H*(Q) as an element of cf(?f) E H*(P(Q)). Moreover, we may regard 

H*(Q) C H*(P(Q)). 

Now we rnay state the main result. 

THEOREM 3.4 (Combinatorial Leray-Hirsh theorem). Let Q = (rふ▽） bea rank r+ l 
equivariant vector bundle over a GKM graph Q = (r, a，▽）． Assume that the projectiviza-
tion P⑨ :＝ （r', a'，▽')satisfies the GKM conditions. Then its equivariant cohomology 
H*(P(Q)) is isomorphic to the following algebra over H*（釘

r+l 

H*(P(切)~ H*(Q)[c『(1g)］／〈区(-l)ic耀）c『（1g)r+1-'〉，
i=O 

where c『(9)E H2i(P（の） isthe ith Chern class of g and c『("/g)E H2(P（切） isthe 1st 
Chern class of the tautological line bundle of P（切

Namely, the equivariant cohornology of P（切 isgenerated by c『("/g)and there is the 
following unique relation: 

r+l 

(3.2) L(-1)氾（切c『(7g)r+1-t= 0. 
i=O 

The relation (3.2) is also called a Borel-Hirzebruch formula for the ordinary projectiviza— 
tion of the complex vector bundle. So (3.2) may be regarded as a combinatorial Borel-
Hirzebruch formula from GKM theoretical point of view.. 

3.3. Example. Let P(Q) be the projectivization in Figure 2. In this final section, we 
check Theorem 3.4 by example in Figure 2. 

The 1st Chern class c『("19)of the tautological line bundle of P（切 isgiven by the 
following equation by Figure 1 (see Figure 3): 

e『('Yg)(lq,2)＝鴫，2)= a -(3； 

e『('Yg)(lq,1)= a(lq,1) = -(3； 

e『("19)(lr,1) = a(lr,1) = -a; 

e『('Yg)（い） ＝叫，2)=(3 -a; 

e『('Yg)（い） ＝鴫，2)=(3； 

e『("19)(lp,1) = a(lp,1) = a. 
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a(lp,1) = a a(lr,1) = -a 

叩p,2)=(3 a(lr,2) =(3 -a 

FIGURE 3. The 1st Chern class of the tautological line bundle c『（'Yg)for Figure 2. 

The 1st Chern class c『(Q)Eが（P（切） ofthe vector bundleりisgiven by the following 
equation by Figure 1 (see Figure 4): 

c『（り）（lq,1)= C『（り）（lq,2)= a(lq,1)＋a(lq,2) = -/3 + (a -/3) = a -2/3； 

e『(Q)(lr,1)= C『(Q)(lr,2)= a(lr,1) + a(lr,2) =-a+ (/3 -a)=(3 -2a; 

c『（り）（lp,1)= C『(Q)(lp,2)= a(lp,1) + a(lp,2) =a+ (3. 

c『（切（lp,1)=a+ f3 e『(Q)(lr,1)=(3 -2a 

c『（切（lp,2)=a+(3 c『(Q)(lr,2)=(3 -2a 

FIGURE 4. The 1st Chern class c『（り） ofFigure 1. 
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The 2nd Chern class cf（り） E炉 (P（り）） ofthe vector bundleりisgiven by the following 
equation by Figure 1 (see Figure 5): 

c{(Q)(lq,1) = c{(Q)(lq,2) = a(lq,1) ・ a(lq,2) = -f3(a -/3); 

c{(Q)(lr,1) = c{(Q)(lr,2) = a(lr,1) ・ a(lr,2) = -a(/3 -a); 

cI(Q)(lp,1) = cf（り）（lp,2)= a(lp,1) ・ a(lp,2) = a/3. 

cf（り）（lq,2)= -(3（a-(3）八八cI(Q)(lq,1)= -(3（a-(3） 

cr(Q)(lp,1) = a(3~cr(Q)(lr,1) = -a((3-a) 

c『（り）（lp,2)= a(3cI(Q)(lr,2) = -a((3 -a) 

FIGURE 5. The 2nd Chern class c『（り） ofFigure 1. 

Then we can check the following equation on the vertex lq.2 E V': 

信（一l)ic『（叩（19)2-)(lq,2) 

=(c『("'fg)(lq,2))2 -C『(9)(lq,2). C『("'19)(lq,2) + cf (Q)(lq,2) 
=(a -fJ)2 -(a -fJ)(a -2fJ) + (-fJ(a -fJ)) 
=0. 

It is also easy to check the similar equations for all vertices Y'・ This_shows that the 
combinatorial Borel-Hirzebruch formula (3.2) is true for H*(P⑰)of P（切 inFigure 2. 
By using [GKM98] and the well-known results of Hわ(CPり， wehave the following 
application to the geometry: 
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COROLLARY 3.5. The equivariant cohomology of the T2-action on TCP2'::::'Fl(Cりis
isomorphic to the following ring: 

犀 (Fl(Cり）辺l*(P（切）

'::::'H*(Q)[c『(7g)］／〈e『(7g)2-c『（切・ c『('Yg)+ cf(Q)〉

'::::'Z[T1, T2, T3, C『(7g)］／〈T汀汀3,C『(7g)2-e『(Q)・ C『（賃!J)+cf（切〉，

where T;'s are Thom class of the GKM subgraph of the GKM graph Q of CP乞

This is the computation of the equivariant cohomology of flag manifolds by using the 

Borel-Hirzebruch formula (also see [KLSS]). 

The proof of Theorem 3.4 will be given in [Ku21] 
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