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1 Introduction

Let F be a field of characteristic 0. Let f(x) € F[z] be a polynomial of degree n and
aq, -+, a, be roots of f(x). Then the automorphism group Aut (F(ay,---,a,)/F) over
F is said to be the Galois group of f(x) which is denoted by Galp(f). According to
Galois Theory, an algebraic equation f(x) = 0 is solvable if and only if the Galois group
of f(x) is algebraically solvable. We set Q := {a;,-+-,a,}. Then Galp(f) < S In
particular, if f(z) is irreducible, Galg(f) acts transitively on Q. Let us give the following
two examples:

(1) The case where f(x) = a3 — 2,

(i) Galo(f) = 53,
(ii) Ss is solvable, and

(iii) f(z) = 0 is algebraically solvable.
(2) The case where f(z) = 2° — 6z + 3,

(i) Galo(f) = 55,
(ii) Ss is not solvable, and

(iif) f(x) =0 is not algebraically solvable.

In general, it is hard to get the Galois gourp of a polynomial and just as hard to
determine the solvability of the Galois group. A lot of precedent studies have found
the algorithms to determine a Galois group. We also discovered the way to decide the
solvability of the Galois group. The purpose of this note is to state the relationship
between the solvability of irreducible polynomials and orbit graphs.

2 Preliminaries

In this section, we present some fundamental definitios and properties of graphs and
groups. First, we would like to emphasize that the graphs we will be dealing with are
directed graphs. A directed graph consists of a finite set of vertices V(&) and a set of edges
A(®) consisting of ordered pairs of vertices. Remark that V(&) is not an emptyset. If
(v1,v9) € A(®), then we often write v; — ve. A non-paired directed graph is the directed
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graph such that (ve,v;) ¢ A(®) for all (vy,ve) € A(B). On the other hand, a paired
directed graph is the directed graph such that (v, v1) € A(®) for all (vy,v2) € A(B). A
diagonal graph is the directed graph such that A(&) = D := {(v,v) | v € V(&)}.

Let & = (V(8), A(®)) be a directed graph. Let a € V(&). We set A(a) = {b €
V()| (a,b) € A(®)} and §(a) = {b € V(&) | (b,a) € A(&)}. Then

deg (a) := |A(a)] + [0(a)]

is called the degree of a. Moreover & is said to be regular when any vertex has the same
degree. Let & = (V(®), A(8)) be a directed graph. Let a,b(# a) € V(®). A sequence

aperaresas - - exay, (ap =a, ap =b,e; .= (a; 1,a;) or (a;,a; 1) € A(®))

is called a path joining a and b. Both a and b are connected when there is a path joining
a and b. Remark that a € V(&) is self-connected with a. A graph & = (V(8), A(®)) is
connected if every two vertices of & are connected.

Let © be a finite set. Given a permutation group G on Q, then (G, ) becomes an
action by 27 := o(z), and 277 = 7(0(z)) for x € Q, 0,7 € G. Reversely, given a
permutation group action (G, ), then G becomes a permutation group on 2 by o(z) :=
2%, and 7(o(x)) := 277 for x € Q, 0, 7 € G. Consequently, a permutation group G on
Q2 has one to one correspondence with a permutation group action (G, €2). Hence, we
identify a permutation group G on  with a permutation group action (G, ). An action
is said to be transitive if there is only one orbit. We say a permutation group G on 2 is
transitive when a permutation group action (G, ) is transitive. Hereafter we also denote
a permutation group G on ) by (G, Q). Furthermore (G, Q) is said to be a 2-transitive
permutation group if G acts transitively on the subset of 2 x €2 consisting of the 2-tuples
all of whose entries are distinct.

Let (G, ) be a transitive permutation group. For o € G, we consider a map
o QX0 —QAxQ; (a,b) —> (a,b)? := (a®,b%).

Therefore (G, x Q) is a permutation group. Let A be a G-orbit of © x Q. A graph

(2, A) is called a orbit graph of the G-orbt A. Note that (€2, A) is a non-paired directed

regular graph or a paired directed regular graph. It is also verified that the degree of

(Q,A)is 24|
’ Q]

Example 2.1 Let Q = {ay, s, 3,4} and G = (a1 a3 a3 ay)) = Cy < Sy (Note that

the symbol H < G means that H is a subgroup of ). Then there are four G-orbits on

Q x Q) as follows:
OxQ = AIHAQHA3HA4
D

Al =
Ay = (o, ), (g, a3), (as, o), (g, )}
Az = {(ar, a3), (a2, au), (s, 1), (o, a2) }

A4 = {((11, ()44)7 (0127 Cll), (()[37 ()[2), ((){47 Qg)}
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Figure 1: (Q,4;) (Formleft,i=1, i=2,i=3, i=4)

Example 2.2 Let Q = {1, a9, 3,4} and G = S;. Then there are two G-orbits on
Q x Q as follows:

OxQ = A1HA2
D

Al =
Ay = (QxQ\D

Figure 2: (Q,4;) (From left, i =1, i =2)

The next proposition is the key of this note.

Proposition 2.3 Let (G, Q) be a transitive permutation group. Let A be a G-orbit of
Q2 x Q. Then the following is equivalent:

(1) (G,Q) is primitive, and
(2) Each orbit graph (£2,4;) (i =2,3,---,7) is connected.

Let (G, Q) be a transitive permutation group. A subset A C Q is called a non-primitive
block of (G, Q) if
A=Aor A’NA=0 (Voeq).

Clearly,  and A = {a}(= one point set) are non-primitive blocks of (G, ). Each of
them is called a trivial non-primitive block. When (G, €2) has only trivial non-primitive
blocks, we say (G, ) is primitive. In case not so, (G, §2) is said to be non-primitive.
In particular, if Q is a finite set with prime number elements, then (G, Q) is primitive.
Moreover (G,€?) is primitive if and only if G, is a maximal subgroup of G (Vx € ),
where G, is the isotropy group at x. In group theory, this is also called the stablizer at x.



We will show two easy examples.
Example 2.4 Let Q = {o,a0,a3,c4}, 0 = (a1 az a3 ay), G = (o) = Cy, and
A= {ay, a3} €. Then
(i) A°={ a3} ={a, a3} = A=A
(i) A7 ={a17, 3} = {ag,ay} = A"NA=1
(i) A% = {0, 37} = {ag,} = AT = A
(iv)

By (i), (ii), (i), (iv), (G, ) is a non-primitive permutation group.

AG‘3 _ {a10'37a3g'3} _ {Q47O(2} — AO.B n A _ @

Example 2.5 Let Q = {o, an, a3, as} and G = Sy, we have G, = ((a; ap o), (o ay)) =
Sy (Vo € Q), where oy € Q\{a;, o, ay }. Since G, contains an odd permutaion, it follows
that Go, £ As. Hence (G, <) is a primitive permutation group.

Now, we want to state the solvability of irreducible polynomials and its relation to
orbit graphs. Let F be a field of characteristic 0. Let f(z) € F|x] be a irreducible
polynomial of degree 6 and €2 be the set of roots of f(x). Let G be a Galois group of
f(@). Let Ay(= D), Ag, -+, A, Z2 Q x Q be G-orbits of Q x Q. Then the following are

equivalent:

1) G is solvable,

2) f(z) is algebraically solvable,

3) (G, ) is a non-primitive permutation group, and

(
(
(
(4

)
)
)
) Fie{2,---,r} st (9,4) is a non-connected graph.

We can see that the solvability of an irreducible polynomial has one to one correspon-

dence with the connectivity of the orbit graph. However, this is very rare. In general, it
does not hold for the degree of composition number.

Let p be a prime. Let F,, be a field with p elements. We put

. 1 2 D
AGL(l,Fp).{<a+b Yth pa+b>|aelﬁ‘p\{0}7belﬁ‘p}.

Let ¢ be a prime power. GL4(F,) is known as a group of linear transformations of a
vector space of dimension d over F,. Its subgroup consisting of matrices of determinant 1
is denoted by SL4(F,). Moreover PG L4(F,) is the factor group by the center of GL4(F,)
and PSL4(F,) is the image of SLy(IF,) in PG L4(F,).

Let G(< S,) be a transitive permutation groups. Then it is well known that G is one
of the following group. A solvable group is a group satisfying the following (2).

(1) G=5, or A,

(2) o0 €S, st. G<oAGL(1,F,)o,



(3) G = PSLy(Fy,),

(4) G= ]\/[11 or Mgg, and

d

(5) PSL4(F,) < G < PTLy(F,) st. p="1 —
Here PTLy(F,) > PGLy(F,) and PTLy(F,)/ PGLy(F,) = C,,.

d>2, ¢=1" (l is prime number).

Note that My (resp.Mas3) is a subgroup of Sy (resp.Sa3) which is called the Mathieu group
of degree 11(resp.23). These are a kind of sporadic simple groups.

3 Main Results

Let © be a finite set with prime elements. Let (G, <) is a transitive permutation group.
Let Ay(= D), Ag, -+, A, be G-orbits of Q x Q. Then (Q2,A;) (2 <i <r) is a connected
graph. Our results are proved by using GAP adequately.

Theorem 3.1 Let p (> 5) be a prime. Let Q := {ay, -+ ,,}. Let (G,Q) is a transitive
permutation group. Let Ay(= D), Ag, -+, A, be G-orbits of Q x Q. Then we have

(1) G = S%or A? = r = 2 and (£, A) is a paired directed regular graph of degree
2(p—1).

(2) 0 €S, st. G<o 'AGL(1,F,)o,
(i) |G| is odd, then (Q,A;) (2 < i < r) is a non-paired directed regular graph of

G
degree W||
(ii) |G| is even, then (Q, A;) (2 < i < r) is a paired directed regular graph of degree
2|G|
Q-

In particular, if G = 0 7'AGL(1,F,)o, it means that r = 2 and (Q, A,) is a paired
directed regular graph of degree 2(p — 1).

(3) G = PSLy(Fy1) = r =2 and (£, Ay) is a paired directed regular graph of degree

2(p—1).
(4) G = Myy or Mas = r =2 and (£2, Ay) is a paired directed regular graph of degree
2(p—1).
¢

-1
(5) PSLy(F,) < G < PTLy(F,) st. p= T == 2 and (€2, Ay) is a paired
directed regular graph of degree 2(p — 1).

Let Q := {a1, -+ ,a,} (n € N). Let (G, Q) is a 2-transitive permutation group and
O = {{ay, a5} |i,5(#4) € {1,--- ,n}}. For 0 € G, we consider a map

o:Q —Q; {a,b} — {a,b}°.
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Then (G, Q') is a transitive permutation group. For o € G, a map
o U xQ — Q' xQ; (oot {ag, a}) — {ai o)}, {ow. au})?

is a bijection. Hence (G, x Q') is a permutation group. Let A’ be a G-orbit of Q' x €V'.
Immediately, we get an orbit graph (€', A’). Remark that D'(= {({a;, a;}, {ai, a;}) |
{ai, o5} € V'}) is a G-orbit of ' x . Since (G,€Y) is a transitive permutation group, it
is either primitive or non-primitive.

Theorem 3.2 Let p be a prime (> 5). Let Q := {ay, -+ ,a,} and Q' = {{a;, a5} | 4, j(#
i) € {1,--+,p}}. Let (G,Q) is a transitive permutation group.. Le A, (= D’),--- ;A be
G-orbits of €' x (2. Then

(1) G=S%or A" = (U, A/) (i=2,--- ,t) is connected.

(2) e €S, st. G=01AGL(1,F,)o.
= Fie{2,---t} st. (,A/) is disconnected.

(3) G = PSLy(Fyy) = (U, A)) (i =2,--- 1) is connected.

(4) G = My or Myy = (Y, A)) (i=2,---,t) is connected.

2

_1(:q+1) = (V,A/) (i=2,---,1)

(5) (i) PSLy(F,) < G < PTLy(F,) sit. p= "1 —

is connected.

d _
(5) (i) G = PSLy(F,) st. p=1 11, d>3= %€ {2t} st (V,A)is
-

disconnected.

By Galois Thery, we get the following.
d
-1
Tz
q—1
3). Let F be a field of characteristic 0. Let f(x) € F[z] be a irreducible polynomial

of degree p and Q be the set of roots of f(x). Let G be the Galois group of f(x). Let
A/(= D), -+, A{ be G-orbits of ' x . Then the following are equivalent:

Theorem 3.3 Let ¢ be a prime power. Let p be a prime (> 5) such that p #

(1) f(z) is not algebraically solvable, and

(2) There are only two G-orbits of Q x Q such that (Q,A,) is the paried directed
complete graph and (€', A;') (2 <4 < ¢) is connected..

qd

—1
q—1
5q — q? = 4 <= q(5 — ¢*"!) = 4. Since ¢ is a prime power, so that ¢ = 2, 4. The case
where ¢ = 2, we just have 5 = 27 — 1, and so 2? = 6, a contradiction. In the case of ¢ = 4
as well, then 15 = 4% — 1, so 4% = 16 <= d = 2. This is also a contradiction because
d > 3. Remark that Fyy & AGL(1,F5), where Fy is a Frobenuis group of order 20.

Theorem 3.3 holds for p = 5. If 5 =

(d > 3), then 5(¢ — 1) = ¢ — 1 <
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Figure 3: Hasse diagram of transitive permutation groups of degree 5
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