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1 Introduction 

Paul Smith posted the following question: 

Question 1 ( [17]) Is it true that for any smooth action of a finite group G on a homotopy 
sphere with exactly two fixed points, the real G-modules determined on the tangent spaces 
at the two fixed points are isomorphic? 

If the action is semi-free, then the answer is yes [1]. Sanchez [16] showed that the 
answer is yes if the group G is of odd prime power order. However, Cappell and Shaneson 
[2] showed that the answer is no if G is a cyclic group of order 4n for n ::::: 2. Many 
researchers studied this corresponding problem (eg. [15, 3, 7, 12, 10, 14]). 

We say U and V are Smith equivalent, denoted by U -;:::_8 V, if there exists a smooth 
G-action on a homotopy sphere S such that s0 = {x,y} and the tangential G-modules 
Tx(S) and Ty(S) are isomorphic to U and V respectively. We put 

Sm(G) := {[U] - [V] I U -;:::_s V} c RO(G) 

which is called the Smith set of G. There are natural questions that for a group G, what 
the Smith set Sm( G) is and in particular when the Smith set is not trivial. 

Let S(G) be the set of all subgroups of G. For sets .C, P of subgroups of G and a 
subset A of RO(G), we put 

Ap = n ker(Res~: RO(G)--+ RO(P)) n A, 
PEP 

Ac= n ker(Fixf RO(G)--+ RO(N0 L/L)) nA, 
LE£ 

A~= (Ap)L'.. 

Let Pcyc(G) denote the set of cyclic subgroups of G of odd prime power order and let 
P0 aa(G) denote the set of subgroups of G of odd prime power order. Clearly Pcyc(G) C 

P0 aa(G). By character theory, we have 

RQ(G)podd(G) = RQ(G)Pcyc(G)· 

Then by Sanchez's result, we have an implementation 

Sm(G) C RO(G)podd(G)· 
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It is easy to see that for the set Q( G) of all subgroups of G of order 1, 2, 4, Sm( G) is a 
subset of RO(G)Q(G) and thus 

Sm(G) C RO(G)podd(G)UQ(G)· 

However, Sm(C4n) is not trivial for n 2'. 2. Here C4n denotes a cyclic group of order 4n. 
In particular it is not satisfied that Sm(G) is a subset of RO(G)P(G)· 

We define a subset LSm( G) called the Laitinen-Smith set of G, which is a subset 
of Smp(G) ( G) as follows. We say U and V are Laitinen-Smith equivalent, denoted by 
U :::c::: LS V, if there exists a smooth G-action on a homotopy sphere S such that S0 = { x, y}, 
the tangential G-modules Tx(S) and Ty(S) are isomorphic to U and V respectively, and 
Sh is connected for any element h of G of 2-power order 2: 8. We put 

LSm(G) := {[U] - [V] I U :::C:::£s V}. 

The set LSm( G) is a subset of Sm( G)P(G), where P( G) denotes the set of subgroups of G 
of prime power order. 

For an clement g of G, the real conjugacy class of g, denoted by (g)± is the union of 
the conjugacy class of g and that of g-1 . A finite group G is called an Oliver group if 
there does not exist a sequence 

P<JH<JG 

such that P and G / H is of prime power order and H / P is cyclic. 

Theorem 2 ([11, 5]) The followings are equivalent. 

(1) G is an Oliver group. 

(2) There exists a fixed-point-free G-action of a disk. 

(3) There exists a one fixed point G-action of a sphere. 

Question 3 ([6]) Let G be a finite Oliver group. Is it true that LSm( G) is not trivial if 
G has at least two real conjugacy classes of elements of G not of prime power order? 

Morimoto [8] pointed out that the answer is no and moreover showed that Sm( G) is 
a subset of RO(Gt2 (G), where n 2 (G) is the set of subgroups of G with index 1 or 2. 
Furthermore Morimoto and his students [4] showed that if a Sylow 2-subgroup of G is a 
normal subgroup of G then Sm(G) is a subset of RO(Grc), where n(G) is the set of 
normal subgroups of G with index 1 or prime. 

In this note, we recall and study Oliver groups G satisfying that LSm( GfWl is not 
trivial. 

2 Some groups of which Smith sets are nontrivial 

Let ac denote the number of real conjugacy classes of elements not of prime power order. 
If LSm(G) is not trivial then ac 2'. 2 holds. For G = Aut(A6), ac = 2 and Sm(G) is 
trivial. Let ba,2 be the number of real conjugacy classes of G / n£rn2 (G) L which is the 
image of the real conjugacy classes of elements of G not of prime power order. 
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Proposition 4 If a0 = bc,2 then LSm( G) is trivial. 

Equivalently if LSm( G) is not trivial then a0 > bc,2 holds. 
For a prime p, the Dress subgroup QP( G) is defined as the intersection of all subgroups 

of G with p--power index. Put 
Gnil = n QP(G). 

p 

The factor group G / Gnil is nilpotent. Let £( G) be the set of large subgroups, that is the 
set of subgroups of G which includes a Dress subgroup QP(G) for some prime p. 

For a subset S of S(G), we say that K is an S-gap subgroup of G if there exists an 
(Sn K)-free K-module V such that 

dim VP> 2dim VH 

for any P < H :S K and PE P(K), where 

snK={SnKISES}. 

A finite group G is called a gap group if G is an £(G)-free gap subgroup of G. We say 
that a G-module V satisfies the weak gap condition if 

dim VP 2: 2 dim VH 

for any P < H :S G and PE P(G). Also, we say that G satisfies the Gni1-coset condition1 

if there exists a Gni1-coset of G containing two elements x and y not of prime power order 
that are not real conjugate in G and, in addition, 

(1) the elements x and y are both in some £(G)-gap subgroup K of G, or 

(2) the orders of x and y are even and the elements of order 2 of (x) and (y) are 
conjugate in G "-- O2 (G), where (x) and (y) are the cyclic groups generated by x and 
y, respectively. 

Remark 5 ( cf. [18, Theorem B]) If an Oliver group G has an element x not of prime 
power order such that (x) n02 (G) is a group of ever order then (x)02 (G) is an £(G)-gap 
subgroup of G. 

Theorem 6 (cf. [14, Theorem 5.6]) If G satisfies (2), then there exists an element of 

RO( G);~~ can be described as the difference of nonisomorphic G-modules satisfying the 

weak gap condition and it belongs to LSm( G). 

Theorem 7 ([8, 9, 14]) Let G be a finite nonsolvable group. Suppose that there exist 
two or more real conjugacy classes of elements of G not of prime power order. Then G 
satisfies one of the following property. 

(1) G is isomorphic to Aut(A6). 

(2) G is isomorphic to PEL(2, 27). 
1 It was defined in [14]. This version is a little bit extended so that [14, Theorem 5.6]. 
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(3) G satisfies the Gnil_coset condition. 

Furthermore, LSm(G) is nontrivial for any group G satisfying (2) or (3), and if Sm(G) 
is trivial then (1) holds. 

Question 8 Determine nonsolvable groups G of which Smith set is trivial. Is it true that 
if ac S l,then Sm(G) = O? 

By the above theorem and [12, Classification Theorem], such groups are finitely many. 
For an epimorphism f: G-+ F, we easily see that J* Sm(F) isomorphic to Sm(F), is 

a subset of Sm(G). However it is not known whether the action on a sphere giving the 
Smith equivalence is effective. If G is an Oliver group and there is a pair CV, W) of .C(F)­
free F-modules such that [V]- [W] E RO(F)P(F) and both V and W satisfy the weak gap 
condition, then we construct an effective action of a sphere giving J*([V]- [W]) E Sm( G). 

Let WRO(G) be the set of the difference of .C(G)-free G-modules satisfying the weak 
gap condition and put WLO(G) = LO(G)nWRO(G). The following proposition is known. 

Proposition 9 Let G be an Oliver group. 

WLO(G) C LSm(G/:CCl C Sm(G)P(G)· 

Note that WLO(N) = LO(N) for a nilpotent group N. We have LO(N) c LSm(N). 
Then we have 

Proposition 10 If LSm(G) = 0 then LSm(G/Gnil) = 0 holds. 

We remark that nilpotent groups N with LO(N) = 0 are known: 

Proposition 11 ([13]) Let N be a finite nilpotent group not of prime power order. If 
LO(N) = 0, then N is isomorphic to C2 x Q, Q a group of odd prime power order, or 
P x C3 for a 2-group P such that x and x-1 are conjugate for any element x E P. 

3 Case when LO(G) -1- 0 implies WLO(G) -1- 0 

It is unknown that there exists a finite group G such that LO(G) =/= WLO(G). There 
exist many groups satisfying the equality: 

Proposition 12 If G is a gap group then LO(G) = WLO(G). 

Proposition 13 If an Oliver group G has an element whose order is divisible by at least 
three distinct primes, then O =/= WLO(G) c LO(G) c LSm(G). 

Proof By the assumption, G is a gap group and satisfies (1) and (2) of the ann_ 
condition. I 

Theorem 14 Let G be a finite Oliver group with QP( G) =/= G for some odd prime p. 
Then for any x E LO(G) there exists an .C(G)-free G-module W satisfying the weak gap 
condition such that x + [W] is represented by a .C(G)-free G-module satisfying the weak 
gap condition, which implies WLO(G) = LO(G) c LSm(G). 
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Proof It suffice to show that 

WRO(G){02 (G)} - RO(G){02 (G)} 
'P(G) - 'P(G) 

for an Oliver group G. Since if G is a gap group then it is clear, we assume that G is 
not a gap group. First we assume that [G: O2(G)] = 2. Then by [19, Theorem 7.7], the 
group Gnil is of odd order. By Sylow's theorem, we see the claim. In the case when G is 
an Oliver nongap group with [G: O2(G)] > 2. By [18, Theorem A], we see the claim. I 

Suppose that G/Gnil has 2-power order. Let x and y be elements of G not of prime 
power order such that x02(G) = y02(G) and lx02(G)I > 2. Then we can construct 
an nontrivial element of WLO( G) by using elements of RO( (x) )P(G) and RO( (y) )P(G) by 
using the ann_condition. Thus we see 

Theorem 15 Let G be an Oliver group. Suppose that any subgroup K of G with [K : 
0 2(G)] = 2 is a gap group. Then LO(G) = WLO(G) c LSm(G). 

Therefore, the case when [G: Gnil] = 2 is important: 

Theorem 16 Let G be a finite nongap Oliver group such that G / Gnil is cyclic. LO ( G) ® 
Q -/- WLO( G) ® Q if and only if there exist two elements x and y of G not of prime power 
order, lxl and IYI is even and not divisible by 4, and elements of order 2 of (x) and (y) 
are elements of G "- 0 2 ( G) and are not conjugate in G. 

Remark 17 There exist finite Oliver groups G such that 

(1) G is not a gap group, 

(2) [G : anil] = 2, and 

(3) there exist two elements of G "- Gnil of order 2 which are not conjugate in G. 

4 Oliver solvable groups 

Nonsolvable groups are Oliver groups. In this section we consider finite solvable Oliver 
nongap groups. Ronald Solomon pointed out the structure of a nongap group G with 
[G: ann] = 2 as follows. Suppose that there exists an element of order 2 of G "- ann_ The 
group G/G2 is a solvable group for some normal subgroup G2 of G of odd order: There 
exist normal subgroups G1, G2 of G such that 

(1) anil ~ G1 ~ G2, 

(2) G2 is of odd order, 

(3) Gi/G2 is a 2-group, 

(4) Gnil/G1 is an abelian group of odd order, and every element of (G/G1) "- (Gnil/G1 ) 

is an element of order 2. 
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Note that ( G "- ann) / G2 does not have an element not of prime power order. 
For K :S: G, we put 

CK,G := #{(k)± I k E NPP(K)}, 

where (k)± is the real conjugacy class of k. Recall the following proposition. 

Proposition 18 ([12, Second Rank Lemma and Subgroup Lemma]) LSm(G) =/= 0 
for an Oliver group G with Ccnil,G 2". 2. 

Thus suppose that Cann,a :S: 1. Under this condition, we see 

Theorem 19 Let G be a nongap Oliver solvable group with [G : Gnil] = 2 and c0 nn,c :S: 1. 
- - {Gnil} - {Gnil} G nil {Gnil} -

Then LSm(G) - Sm(G)P(G) - WRO(G)P(G) - RO(G)P(G) and Ind0 nn RO(G )P(G) -
0. 

The proof depends on the structure of a nongap group G with [G: ann] = 2 by Ronald 
Solomon. Note that if LO(G) =/= 0 then O =/= WLO(G) C LSm(G) for any nonsolvable 
group G. 

Finally remark that there exist a few Oliver groups G such that LO( G) = 0 and 
LSm( G) =/= 0. The author expects that this is a rare case. 
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