
48

Voros coefficients and the topological recursion for 
the hypergeometric differential equation of type (2, 3) 

By 

Yumiko TAKEI * 

§ 1. Introduction 

The exact WKB analysis is a method of analyzing differential equations with a small 

parameter fi ( or a large parameter rJ = fi- 1 ). It was first developed for second order 

ordinary differential equations and then has been extended to higher order ordinary 

differential equations. In this paper we discuss the hypergeometric differential equation 

of type (2, 3) 

(1.1) 4fi3 - - 2xfi2 - + 2(>.00 - (v00 + l)fi)fi- - t if;= 0. { d3 d2 d } 
~3 d~ ~ 

This equation is obtained from the class of hypergeometric systems of two variables 

studied in [15] by fixing the second variable. 

A Voros coefficient is defined as a contour integral of the logarithmic derivative of 

WKB solutions. The explicit form of Voros coefficients enables us to describe parametric 

Stokes phenomena. The explicit forms of Voros coefficients are first computed for the 

Weber equation [16, 17], and now known for many equations such as the Whittaker 

equation [13], the Kummer equation [2], the Gauss hypergeometric equation [1], the 

hypergeometric equation of type (1, 4) [10], and so on. 

On the other hand, the topological recursion introduced by Eynard and Orantin [7] 

is a generalization of the loop equations that the correlation functions of the matrix 

model satisfy. For a Riemann surface ~ and meromorphic functions x and yon ~, it 

produces an infinite tower of multidifferential W9,n(z1, ... , Zn) on~ and free energies F9. 

A triplet (~, x, y) is called a spectral curve and W9,n(z1, ... , Zn) is called a correlation 

function. 
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The quantization scheme for the spectral curve connects WKB solutions with the 

topological recursion ([8, 5, 4] etc.). More precisely, it is found that WKB solutions can 

be constructed by correlation functions for the spectral curve when the spectral curve 

satisfies the "admissibility condition" in the sense of [4, Definition 2.7]. WKB solutions 

can be constructed by correlation functions also for spectral curves not satisfying the 

admissibility condition, in particular, for elliptic curves ([9]) and for any degree 2 spec­

tral curve ([6, 14]). It means that the recursive relations satisfied by the coefficients of 

WKB solutions have some relationship with the topological recursion. Furthermore, in 

the case of the confluent family of the Gauss hypergeometric differential equations, we 

found that the Voros coefficients are expressed as the difference of the free energy of the 

spectral curve obtained as the classical limit of the equations [11, 12]. 

Taking these situations into account, we consider a similar problem for the hyperge­

ometric differential equations of type (1, 4) and (2, 3) in [18]. The main results are the 

following: 

1. We show that the Voros coefficients are expressed as a difference of free energies. 

2. We also get the explicit forms of the free energy and Voros coefficients of such equa­

tions. Note that the Voros coefficients for the hypergeometric differential equation 

of type (1, 4) were computed by the paper [10]. 

In what follows we explain the precise claim of these results in the case of the 

hypergeometric differential equation of type (2, 3). For their proofs and the precise 

claims in the case of the hypergeometric differential equation of type ( 2, 3), we refer the 

reader to [18]. 

The paper is organized as follows: In section 2 we introduce WKB solutions and 

Voros coefficients. In section 3 we introduce the topological recursion. In section 4 we 

state the quantization for the hypergeometric differential equation of type (2, 3). In 

section 5 we state our main results for the hypergeometric differential equation of type 

(2, 3). 
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§ 2. WKB solutions and Voros coefficients 

We consider the following third order ordinary differential equation with a small 

parameter Ii -=/=- 0 

(2.1) P ( x, Ii d!) 1/) = { /i3 d~3 + p(x)li2 d~2 + q(x, li)li d! + r(x)} 1/) = 0. 
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Here 

(2.2) 

and t, ,/\c,o -/- 0, v= are parameters. We call this equation the hypergeometric differential 

equation of type (2, 3). We consider (2.1) as a differential equation on the Riemann 

sphere IP'1 with regular or irregular singular points. 

§ 2.1. WKB solutions 

For (2.1) we construct a formal solution, called a WKB solution, of the form 

(2.3) ~(x, n) = exp [Jx S(x, n)dx] . 

We substitute this into (2.1) and have the following equation 

(2.4) 

3 ( d2 d 3) n dx2 S(x, n) + 3S(x, n) dx S(x, n) + S(x, n) 

+ p(x)n2 ( d~ S(x, n) + S(x, n) 2) + nq(x, n)S(x, n) + r(x) = 0. 

This is a counterpart of the Riccati equation in the second-order case. We seek for a 

formal series solution of the form 

= 
(2.5) S(x, n) = r,,-1s_1(x) + So(x) + nS1(x) + ... = L r,,msm(x). 

m=-1 

By substituting (2.5) into (2.4), and equating like powers of both sides with respect to 

n, we obtain 

(2.6) s:3_ 1 + p(x)S~1 + qo(x)S-1 + r(x) = 0, 

(2.7) (3S-12 + 2p(x)S-1 + qo(x)) So+ 3S-1 d!~1 + p(x) d!~1 + q1(x)S-1 = 0, 

and 

(2.8) 

i+j+k=m-1 
i,j,k?_O 
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Eq. (2.6) has three solutions, and once we fix one of them, we can determine Sm for 

m ~ 0 uniquely and recursively by (2.7) and (2.8). Sm(x) form~ 0 are functions on 

the Riemann surface defined by S_1(x). 

§ 2.2. Voros coefficients 

In this subsection we define Voros coefficients of the hypergeometric differential equa­

tion of type (2, 3). 

By straightforward computations, we obtain asymptotic behaviors of characteristic 

roots of the quantum (2, 3) curve; these are solutions of P(x, [;) = 0, 

c(O)(x A ) = i--/t x-1/2 + Aoo x-1 + O(x-3/2) 
',, ' 00 v'2 2 ' 

. 't ,\ 
t:;(ll(x, Aoo) = - i~ x-1/2 + ~x-1 + O(x-3/2), 

v2 2 
(2.9) 

1 
t:;<2l(x, -\00 ) = -x - A00 X-l + O(x-2). 

2 

Let 'Yoo,j (j E {0,1}) be a path on the Riemann surface of S_ 1(x) which starts from 

x = oo on the third sheet (i.e., {;(x,-\ 00 ) = t:;<2l(x,-\00 ) on the sheet), turn around a 

turning point, and returns to x = oo on the (j + 1)-th sheet (i.e., [;(x, -\00 ) = t:;(j) (x, -\00 ) 

on the sheet). A turning point is defined by a point at which two characteristic roots 

coincide. 

Remark l. We will consider x as a branched covering map x(z) from lP'1 to itself 

below. We can verify that 'Yoo,o is defined as the image by x of a path from oo to O on 

z-plane and 'Yoo,l is defined as the image by x of a path from oo to oo on z-plane. 

Then, we define Voros coefficients of the hypergeometric differential equation of type 

(2, 3) 
(2.10) 

v(oo,j)(Aoo,t,voo,O,Voo,l;n)= 1 (s(x,n)-n-1S_1(x)-So(x))dx (jE{0,1}). 
"Yoo ,j 

§ 3. Topological recursion 

§ 3.1. Topological recursion 

In this section we briefly explain the global topological recursion. It was shown in [3] 

that it is indeed equivalent to the usual local formulation of the topological recursion 

introduced by Eynard and Orantin [7] when the ramification points are all simple. 

Let us start from the definition of genus O spectral curves. (See [7] for general 

definition of spectral curves.) 
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Define 3.1. A spectral curve of genus O is a pair (x(z), y(z)) of non-constant ra­

tional functions on lP'1 , such that their exterior differentials dx and dy never vanish 

simultaneously. 

Let R be the set of ramification points of x(z), i.e., R consists of zeros of dx(z) of 

any order and poles of x(z) whose orders are greater than or equal to two (here we 

consider x as a branched covering map from lP'1 to itself). We need to introduce some 

notation to define the topological recursion. 

Define 3.2. Let A <;;_k B if A <;;_ B and IAI = k. 

Define 3.3. Let S(t) be the set of set partitions of an ensemble t. 

Then, we define the recursive structure: 

Define 3.4 ([4, Definition 3.4]). Let {W9 ,n} be an arbitrary collection of symmetric 

multidifferential on (lP'1 r with g 2 0 and n 2 1. Let k 2 1, t = { t1, ... , tk} and 

z = {z1, ... , Zn}- Then, we define 

(3.1) 

The first summation in (3.1) is over set partitions oft, l(µ) is the number of subsets in 

the set partitionµ. The third summation in (3.1) is over all l(µ)-tuple of non-negative 

integers (g1 , ... ,9!(µ)) such that I:!~{ 9i = g + l(µ) - k. LJ denotes the disjoint union, 
and the prime' on the summation symbol in (3.1) means that we exclude terms with 

(gi, lµil + IJil) = (0, 1) (i = 1, ... , l(µ)) (so that Wo,1 does not appear) from the sum. 

We also define 

(3.2) 

where oi,j is the Kronecker delta symbol. 

We now define the topological recursion. 

Define 3.5 ([4, Definition 3.6]). Eynard-Orantin's correlation function W9 ,n(z1 , • • • , zn) 
for g 2 0 and n 2 1 is defined as a multidifferential on (lP'1 )n using the recurrence relation 

(3.3) 
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for 2g + n ?: 2 with initial conditions 

(3.4) Wo,1(zo) := y(zo)dx(zo), 

Here we set W9 ,n = 0 for a negative g and 

k 

(3.5) E(k)(z; t1, ... , tk) := IJ (Wo,1(z) - Wo,1(ti)), 
i=l 

(3.6) wz-a(zo) := (-1- - - 1-) dzo. 
zo-z zo-a 

The second and third summations in (3.3) together mean that we are summing over all 

subsets of T'(z), where T'(z) is a set of preimages of x(z) except for the original point 

z. a is an arbitrary base point on JP1, but it can be checked (see [3]) that the definition 

is actually independent of the choice of base point a. 

See [7] for basic properties of Wg,n· 

§ 3.2. Definition of free energies 

The free energy F9 (g ?: 0) is defined for the spectral curve, and one of the most 

important objects in Eynard-Orantin's theory. 

Define 3.6 ([7, Definition 4.3]). For g ?: 2, the g-th free energy F9 is defined by 

(3.7) 
1 

Fg := 2 _ 29 L ~~ [<I>(z)W9 ,1 (z)] (g?: 2), 
rER 

where <f>(z) is a primitive of y(z)dx(z). The free energies F0 and F 1 are also defined, 

but in a different manner (see [7, §4.2.2 and §4.2.3] for the definition). 

§ 4. Quantum (2, 3) curve 

We treat the quantization introduced by Bouchard and Eynard [4]. 

In what follows we restrict ourselves to the case of the (2, 3) curve 

(4.1) P(x, y) = 4y3 - 2xy2 + 2>..00 y - t = 0, 

where >..00 -/=- 0 and tare parameters. We parametrize (4.1) as 

(4.2) {
x = x(z) = 4z3 + 2>..00 z - t = 2z + >..00 _ _ t_ 

2z2 z 2z2 ' 

y=y(z)=z 
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and regard it as a spectral curve in the sense of Definition 3.1. 

We choose 

(4.3) 
D(z; v00 ) = [z] - (1- v00 )[0] - v00 [00] 

= (1 - v00 )([z] - [O]) + v00 ([z] - [oo]) 

as the divisor for the quantization, where v 00 is a parameter. Then, the quantum curve 

of the (2, 3) curve (quantum (2, 3) curve) is given by 

(4.4) { 
3d3 2d2 A d } 

4n dx3 - 2xn dx 2 + 2(>.00 - n)n dx - t 'ljJ = 0 

according to [4, Lemma 5.14]. Here we used the notation 

§ 5. Main results for the hypergeometric differential equation of type (2, 3) 

§ 5.1. Relations between the Voros coefficient and the free energy 

In this subsection we descrive the Voros coefficient of the quantum (2, 3) curve in 

terms of the free energy of the (2, 3) curve with a parameter shift. Let 

(5.1) 
00 

F(>-oo, t; n) = L, n,29- 2 Fg(Aoo, t) 
g=O 

be the generating function of the free energies of the (2, 3) curve. Then, the following 

relations hold: 

Theorem 5.1. 

(5.2) 

(oo,O) . - A • - A • - 8Fo -1 2voo - 1 82 Fo V (>-oo, t, Voo, n) - F(>-oo + n, t, n) F(>-oo, t, n) ,:}\ r/, + --- 2 , 
U/\ 00 2 8).00 

(5.3) 
v(oo,l) (). t V . n) = Q oo, ' oo, . 

Here >-oo = Aoo - Voon as we have introduced in (4.5). 

We can prove Theorem 5.1 similarly to the case of the Gauss equation ([12, Theorem 

3.1]). 

Then, we get the three-term difference equation that the generating function of the 

free energies satisfies. 
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Theorem 5.2. The free energy (5.1) satisfies the following difference equation. 

(5.4) 
1 

F(>.00 + fi, t; fi) - 2F(>.00 , t; fi) + F(>.00 - fi, t; fi) = - 2 log (-2t) 

To prove Theorem 5.2, we need the following identity. 

Lemma 5.3. 

(5.5) V(oo,O)(>. t V +l·fi) =V(oo,O)(>. t V ·fi) oo, , 00 , oo, , (X), • 

Using the following Lemma, we can prove Lemma 5.3. 

Lemma 5.4. The WKB solution of the quantum (2, 3) curve satisfies 

(5.6) 
d 

dx 'lj;(x; Voo,O, Voo,1, fi) = 'lj;(x; V00 ,o + 1, Voo,1, fi). 

Proof of Theorem 5.2. Substituting v00 = 0 into (5.5), we have 

(5.7) y( oo,O) (>. t l · fi) = y( oo,O) (>. t 0· fi) 
oo, ' ' oo, ' ' . 

On the other hand, (5.2) with v00 = 1 and v00 = 0 gives 

(oo,0) . _ . _ _ . _ ! 8Fo ! 8 2 Fo (5.8) V (>.00 , t, 1, fi) - F (>-oo, t, fi) F (>-oo fi, t, fi) 1i a>. + 2 2 , 
oo 8>.oo 

(oo,0) . _ . . 18Fo 182Fo (5.9) V (>.00 , t, 0, fi) - F (>.00 + fi, t, fi) - F (>-oo, t, fi) - ti, a>. - 2--2 • 
oo 8>.oo 

Then, the desired equality (5.4) follows immediately from (5.7), (5.8), (5.9) and 

>-oo 2 
Fo = --4- log (-2t). 

§ 5.2. The explicit forms of the free energy and Voros coefficient 

□ 

As a corollary, we obtain explicit formulas for the coefficients of the free energy and 

Voros coefficient. In this subsection we finally provide the explicit forms for the free 

energy and Voros coefficients. 

Theorem 5.5. (i) For g 2: 2 the g-th free energy of the (2, 3) curve has the following 

expression: 

(5.10) 

(ii) The Voros coefficients for the quantum (2, 3) curve are explicitly given by 

(5.11) y(oo,j)(>.00 , t, v00 ; fi) = 0 (j E {O, 1} ). 
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