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Abstract

In this paper, we investigate the numerical ranges of conjugations and antilinear operators
on a Hilbert space, which will be shown to be annuli in general. This result proves that
Toeplitz-Hausdorff Theorem, which says the convexity on the numerical ranges of linear
operators, does not hold for the ones of antilinear operators. Moreover, we extend these
results to a Banach space.

1 Introduction

The results in this paper will be appeared in other journals. Let L(H) be the algebra of
all bounded linear operators on a separable complex Hilbert space H.
For T € L(H), its numerical range W (T') is defined as

W(T) ={(Tz,z):x€H,|z| =1},
where (-, -) is the standard sesquilinear form on A and || - || is its induced norm.

Theorem 1.1. (Toeplitz-Hausdorff Theorem, [8], [20])
For T € L(H), its numerical range W(T) is conver in C.

Now, we give basic properties of the numerical range W (T) of T € £(#) which come
from [7, 18, 19]. Let T, S € L(#H) and A € C. Then the following properties hold.
i) W(T*) =W(T).
i) W(T)={\}if and only if T = AI.
iii (T') contains all of the eigenvalues of T.
(T) lies in the closed disk of radius ||T'|| centered at 0.
(
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(v) aT + ply) = aW(T) + BI for o, 8 € C.

(vi UTU*) = W(T) for a unitary U.

(vii) T is self-adjoint, i.e., T = T* if and only if W(T) C R.

(viii) ) is closed (and compact) when # is finite dimensional.
(

i) W(T
ix) W(T+S)cW(T)+W(Ss).
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Example 1.2. (i) If T = ( ) on C2, then W (T) is the closed unit interval.
1
(i) I T = ( on C2, then W (T) is the closed disc of radius 5 centered at 0.

(i) f T = (1 1) on C?, then W (T) is the closed elliptical disc foci at 0 and 1,
minor axis 1 and major axis V2.

Theorem 1.3. (i) Let T be a 2 X 2 matriz with distinct eigenvalues o and 8 and corre-
sponding normalized eigenvectors x and y. Then W (T) is the closed elliptical disc foci at

- -8
a and 3, minor axis M and major axis @ 3 Al where vy = |(x,y)| and § = /1 — ~2.

1
(i) Let T have only one eigenvalue . Then W (T') is the closed disc of radius 5||T —a

centered at «.

0
Example 1.4. () If T = |1
0

—_ o O

1
0 | on C3, then W(T) is the equilateral triangle whose
0

vertices are the three cubic roots of 1, i.e., 1,w, and w?.
000

({)fT=1]1 0 0] onC3 then W(T) is the union of all the closed segments that join
0 01

the point 1 to all points of the closed disc with center 0 and radius —

Example 1.5. Let T be defined on 2 by
T(IL'07I1,1'27 T3, ) = (x17$27$37 Tt )

for (z1,x9,23,-+) € (2. Then W(T) =D where D = {\ € C: |\| < 1}.

Theorem 1.6. Let T € L(H). Then o(T) C W(T') where o(T') is the spectrum of T.

Recall that two operators T, S € L(H) are approzimately unitarily equivalent if there
exists a sequence {U, },>1 of unitaries such that lim,_,« ||U,SU," — T|| = 0.

Theorem 1.7. Let T, S € L(H). If T and S are approzimately unitarily equivalent, then
W(T) =W(S).

Definition 1.8. An operator C is said to be a conjugation on H if the following conditions
hold:

(i) C is antilinear; C(azx + by) = aCx + bCy for all a,b € C and x,y € H,

(i) C is isometric; (Cx,Cy) = (y,z) for all z,y € H, and

(iii) C is involutive; C? = I.
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For any conjugation C, there is an orthonormal basis {e,, }32, for H such that Ce, = e,
for all n (see [10] for more details). We present the following examples for conjugations.

Example 1.9. Let us define an operator C' as follows:

(i) C(x1, 22,23, -+ ,2,) = (T1, 72,73, -+ ,Tp) on C".
il) C($17$2>$37 . xn) (Tnv LTp—15Ln—2,""" 7-7;71) on C.
it} [Cf])(z) = [(2) on L2(X, p).

v) [Cf(x) ( x) on L*(R").

vi) Cf(z) = 2f(2)u(z) € K2 for all f € K2 where u is an inner function and
K2 = H? © uH? is a Model space.

Then each C' in (i)-(vi) is a conjugation.

(
(
Eiv)[ f(z) = lf:L)onLQ([O 1]).
(

Let X be a separable complex Banach space and L(X) denote the algebra of all
bounded linear operators on X. Let X* be the dual space of a Banach space X and let
T* be the adjoint operator of T € L(X). The set II is defined by

M={(z,f) e X x X" : |If| = f(z) = ||zl = 1}.

For T € L(X), the numerical range V(T) of T is defined by

V(T) ={f(Tz) : (z,f) eI}

Let o(T) denote the spectrum of T' € L(X). For a subset M of C, we denote the
closure of M by M. Note that for any 7' € L(X), o(T) C V(T) holds (see [W]) and V (T)
is connected (see [2] and [3, Corollary 5, page 102]). In general, V(T') is ([3, Example 1,
page 98]) and we denote the closed convex hull of V(T') by @@ V(T'). An operator T' € L(X)
is said to be Hermitian if V(T) C R. If T is Hermitian on X, then V(T) = coo(T) ([3,
Corollary 11, page 53]). If H is a Hermitian operator, then H? may not be Hermitian
from [3, Example 1, Page 58]. In 2018, Cho and Tanahashi [6] introduce the concept of a
conjugation on a Banach space. An operator C': X — X is called a conjugation on X, if
C satisfies

C?=1, |C|| <1, Clz+y) =Cz+ Cy, C(A\x) =Nz, (1)
for z,y € X and A € C. Note that (1) implies that ||Cz| = ||z|| for all z € X.

2 Main results

First, we consider the following questions:
(i) What is the numerical range W(C) of a conjugation C on a Hilbert space H?

(ii) What is the numerical range W (A) of an antilinear operator A on a Hilbert space H?
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Theorem 2.1. (In 1965, Godic and Lucenko [14])
If U is a unitary operator on H, then there exist conjugations C' and J such that U = C'J
and U* = JC.

Lemma 2.2. (In 2014, S. R. Garcia, E. Prodan, and M. Putinar [12]) If C and J are
conjugations on H, then U := C'J is a unitary operator. Moreover, U is both C'-symmetric
and J-symmetric.

A vector © € H is called isotropic with respect to C' if (Cz,x) = 0 (see [12]).

Lemma 2.3. (Garcia, Prodan and Putinar, [12, Lemma 4.11] )
If C : H — H is a conjugation, then every subspace of dimension > 2 contains isotropic
vectors for the bilinear form (-,C-).

Theorem 2.4. (In 2018, Hur and Lee [9]) Let C be a conjugation on H. Then its the
numerical range W (C) is the following:

(i) W(C)=A{z:|z| =1}, when dimH = 1 (equivalently, H = C).
(ii) W(C)={z:]|2| <1} for dimH > 2.

A bounded antilinear operator A on a Hilbert space H is defined by taking complex
conjugation on the coefficients on a linear one, i.e., for z,y € H and for o, 8 € C

Al(azx + By) = aA(z) + BA(y).
Crucial observation For any antilinear operator A and x € H,
(Ae”z,e"z) = (e7 Az, e”z) = e ¥ (Ax,x)  for real 6, (2)
which means that, if any complex number X is in W (A), then the circle {z € C : |z| = ||}
is contained in W (A).

In other words, (2) shows why the numerical ranges of any antilinear operators should
be circular regions, which would be much easier than the numerical ranges of linear
operators. For a linear operator 7', the quantity

(Te®x,ez) = (T, x)

is independent of €, so a similar computation (2) for linear operators does not give further
information on W (T).

Theorem 2.5. (In 2018, Hur and Lee [9]) Let A be a bounded antilinear operator on H.
Put a =: inf{|(Az,z)| : ||z|| = 1} and b =: sup{|[(Ax,x)| : ||z|| = 1}. Then its numerical
range W (A) of A is the following:

(i) When dimH =1 (equivalently, H = C), a =b and W(A) = {z : |z| = a}.

(i") For dimH > 2, W(A) is contained in the annulus whose boundaries are two circles
{z: |z] = a} and {z : |z| = b}. Inner or outer boundary circle is in W(A) if and only if
the infimum or supremum becomes the minimum or mazimum, respectively.



Note that if T is a linear operator and A is an antilinear operator, then TA and AT
are an antilinear operators.

Example 2.6. (In 2018, Hur and Lee [9]) Consider A, := C diag {2 —1/n}>°, on ¢*(N),
where C'is the canonical conjugation on (*(N) and diag {2—1/n}22, is the (infinite-sized)
diagonal matrix (which is linear). Then

W(A) ={z:1<|z| <2}

Similarly put A, := C diag {1/n}°, on (*(N) and A3 := A; & Ay, where & is the direct
sum of two antilinear operators. Hence

W(Ay) ={z:0< 2] <1} and W(A3) ={z:0 < |z| < 2}.

Next, we consider the following questions:
(i) What is the numerical range V(C') of a conjugation C' on a Hilbert space X'?
(ii) What is the numerical range V(A) of an antilinear operator A on a Hilbert space X'?

A topological space X is called connected if there are two open subsets A and B in X
such that X = AU B and AN B = (), then either A= 0 or B = ().

Lemma 2.7. (Bonsall and Duncan [3, Theorem11.4])
Let X be a complex Banach space. Then Il is a connected subset of X x X* with the norm
x weak® topology.

We define the numerical range of C' by
V(C)={f(Cx): (z,f) e}
Lemma 2.8. Ifdim X > 2, then both 0 and 1 are in V(C).

Theorem 2.9. Let X be a complex Banach space and let C' be a conjugation on X. Then
V(C) is in the complex plane C.

Theorem 2.10. Let X be a Banach space and let C' be a conjugation on X. Then the
numerical range V(C) of C is the following:

(1) V(C) ={z: 12| =1}, when dim X =1 (equivalently, X = C).
(ii) V(C)=A{z:]z| <1} for dim X > 2.
In general, V(T) C V(T*) for T € L(X) and its adjoint operator 7% on X*. For a

conjugation C' on &', we define the dual conjugation C* on X* of C' by

(€ f)(z) = f(Cx) (v eX),

where f(Cx) is the complex conjugation of the complex number f(Cz).

13
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The numerical range V' (C*) of C* is given by
V() ={FCf): [FIl=F) =fll=1 Fex™ feax ]

For (z, f) € 11, let & be the Gelfand transformation of x. Then since ||| = Z(f) = || f|| =1
and by the definition of C* it holds

#(Cf) = (C*f)(x) = f(Cx),

we have {Z : z € V(C)} C V(C¥).
Corollary 2.11. Let X be a complex Banach space and let C' be a conjugation on X.
Then V(C) = V(C*).

A space X is called path-connected if for any two points x and y in X there exists a
continuous path f from [0, 1] to X such that f(0) =z and f(1) =y.
Remark In general, there is no relation between connectedness and path-connectedness.
For example, topologist’s sine curve, i.e.,

1
{z+isin— : 0<zx<1}U{wy:-1<y<1l}cC
T

is connected but not path-connected (even though C is path-connected). Path-connectedness
is not hereditary either, i.e., even though a total space X is path-connected, we do not
know if every subset of X is path-connected.

Recall that X is a reflexive Banach space if X** = {& : 2z € X}

Lemma 2.12. (Luna, [16, Corollary 7]) Let X be a complex reflexive Banach space with
dimX > 2 and let T € L(X). Then V(T) is path-connected.

Theorem 2.13. With same hypothsis as in provious theorem, if X is reflexive, then the
numerical range V(C') of C' is

V(C)={z:]z| < 1}.
For an antilinear operator A on X, we define the numerical range V(A) by V(A) =
{f(Az): (z, f) eI}

Theorem 2.14. Let X be a Banach space and let A be a bounded antilinear operator on
X. Put a:=inf{[f(Az)| : [|f|| = [|z[| = 1} and b:=sup{|f(Az)| : ||| = [|lz|| = 1}. Then
its numerical range V(A) of A is the following:

(i) When dim X = 1 (equivalently, X = C), a =b and V(A) = {z : |z| = a}.

(ii) For dim X > 2, V(A) is contained in the annulus whose boundaries are two circles
{2z : |z| = a} and {z : |z| = b}. Inner or outer boundary circle is in V(A) if and only if
the infimum or supremum becomes the minimum or mazimum, respectively.



For an antilinear operator A on X', we define the adjoint operator A* of A by

(A" f)(x) = f(Az), (ze X, fear)

where f(Axz) is the complex conjugation of the complex number f(Az). Then A* is an
antilinear operator on A’*.

Corollary 2.15. Let X be a Banach space and let A be an antilinear operator on X.
Then V(A) C V(A*) and the equality holds when X is reflexive.

Remark If X is non-reflexive, then II(X) is strictly smaller than ITI(X*) in the sense that
there exists f € X™* such that it does not have x € & such that (z, f) € II(X). Due
to this, it is possible that, even though V(A) does not contain a in (ii) on Theorem (for
example), V(A*) may contain a.

It does not occur when we consider conjugation C, since V(C) was closed.

Finally, we focus on the single-valued extension property of operators on a Banach
space X.

An operator T € L(X) is said to have the single-valued extension property (or SVEP)
if for every open subset G of C and any A’-valued analytic function ¢ on G such that

(T—=XNp(N) =0
on G, then we have ¢(A) =0 on G (see [1]).

Definition 2.16. (i) T' € L(H) has the property (1) if A € 04,(T) and {x,} is a sequence
of unit vectors of H such that ||(T — Nz,|| = 0 as n — oo, then |[(T — N)*z,|| = 0 as
n — 0.

(ii) T € L(H) has the property (I') if X € 0,(T) \ {0} and {z,} is a sequence of unit
vectors of H such that ||(T — N)x,|| = 0 as n — oo, then |[(T — A)*z,|| = 0 as n — oo.
(i) T € L(H) has the property (II) if A\, € 0,(T) (A # p) and {z,} and {y,} are
sequences of unit vectors of H such that ||(T — Naz,|| — 0 and |[(T — wya|| — 0 as
n — 00, then (x,,yn) — 0, where (-,-) is the inner product on H.

Proposition 2.17. (Uchiyama and Tanahashi, [21, Proposition 3.1])
If T € L(H) has the property (I1), then T also has the single-valued extension property.

Let X* be the dual space of a Banach space X and let T* be the adjoint operator of
T € L(X). The set II is defined by

M={(z,f) e X x X" : |If| = f(z) = |zl = 1}.

Lemma 2.18. Let © € X be nonzero. Then there exists a functional f € X* such that

I/l =1 and f(z) = ||=[].

Hence, for every unit vector = € X, there exists f € X* such that (z, f) € IL

15
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Definition 2.19. (Banach space version)

(i) T € L(X) has the property (1) if X\ € 04,(T) and {x,} is a sequence of unit vectors
of X such that ||[(T — N)x,|| = 0 as n — oo, then |[(T — N)*fal| = 0 as n — oo, where
fo € X* such that (z,, fr) € I1.

(ii) T € L(X) has the property (I') if A € a4(T) \ {0} and {z,} is a sequence of unit
vectors of X such that ||(T — Nx,|| — 0 as n — oo, then (T — X)* fu|l = 0 as n — oo,
where f, € X* such that (z,, f,) € IL.

(i) T € L(X) has the property (II) if \,u € 0,(T) (A # p) and {z,} and {y,} are
sequences of unit vectors of X such that |(T — Nz,|| — 0 and |[(T — w)ya|| — 0 as
n — oo, then f,(yn) — 0 and g,(x,) — 0, where (xn, f,) and (yn, gn) are in I1.

Theorem 2.20. (Mattila, [17, Theorem 3.11]) If X* is uniformly convex and T € L(X)
is normal, then T has the property (I).

Theorem 2.21. If T € L(X) has the property (1), then T has the property (11).

Corollary 2.22. Let T € L(X) have the property (I). If \,u € o,(T) (A # p) and z,y
are the corresponding eigenvectors of X where ||z|| = ||y|| = 1, then for (z, f), (y,g) € 11,
it holds f(Ty) = g(Tx) = 0.

Theorem 2.23. (Banach space version)
If T € L(X) has the property (II) or the property (I'), then T also has the single-valued
extension property.

For an operator T' € £(X) and for a vector z € X, the local resolvent set pr(x) of T
at x is defined as the union of every open subset G of C on which there is an analytic
function ¢ : G — X such that (T"— X\)p(A) = on G. The local spectrum of T at z is
given by or(z) = C\ pr(z). We define the local spectral subspace of an operator T € L(X)
by Xr(F) ={x € X : op(x) C F} for a subset F' of C (see [1]).

Corollary 2.24. If T € L(X) has the property (I') or the property (11), then the following
statements hold.

(i) For any analytic function on some open neighborhood of o(T), f(T) has the single-
valued extension property.

(i) If S € L(X) and Y'S = TY where Y has trivial kernel and dense range, then S has
the single-valued extension property and Y Xg(F) C Xr(F) for any subset F' of C.
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