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Remarks on conjugation and antilinear operators 
and their numerical range 

Muneo Cho1, Injo Hur 2 , and Ji Eun Lee3* 

Abstract 

In this paper, we investigate the numerical ranges of conjugations and antilinear operators 
on a Hilbert space, which will be shown to be annuli in general. This result proves that 
Toeplitz-Hausdorff Theorem, which says the convexity on the numerical ranges of linear 
operators, does not hold for the ones of antilinear operators. Moreover, we extend these 
results to a Banach space. 

1 Introduction 

The results in this paper will be appeared in other journals. Let £(1-l) be the algebra of 
all bounded linear operators on a separable complex Hilbert space 1-l. 

For TE £(1-l), its numerical range W(T) is defined as 

W(T) = {(Tx,x): x E 1-l, llxll = 1}, 

where (-, •) is the standard sesquilinear form on 1-l and 11 • 11 is its induced norm. 

Theorem 1.1. (Toeplitz-Hausdorff Theorem, [8], [20]) 
For TE £(1-l), its numerical range W(T) is convex in C. 

Now, we give basic properties of the numerical range W(T) of TE £(1-l) which come 
from [7, 18, 19]. Let T, SE £(1-l) and .X EC. Then the following properties hold. 
(i) W(T*) = W(T). 
(ii) W(T) = { .X} if and only if T = Al. 
(iii) W(T) contains all of the eigenvalues of T. 
(iv) W(T) lies in the closed disk of radius IITII centered at 0. 
(v) W(aT + f311t) = aW(T) + /31 for a, /3 EC. 
(vi) W(UTU*) = W(T) for a unitary U. 
(vii) T is self-adjoint, i.e., T = T* if and only if W(T) CR 
(viii) W(T) is closed (and compact) when 1-l is finite dimensional. 
(ix) W(T + S) c W(T) + W(S). 
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Example 1.2. (i) If T = G ~) on C2 , then W(T) is the closed unit interval. 

(ii) If T = ( ~ ~) on (C2 , then W ( T) is the closed disc of radius ~ centered at O. 

(iii) If T = (~ ~) on C2 , then W(T) is the closed elliptical disc foci at O and 1, 

minor axis 1 and major axis vf2. 

Theorem 1.3. (i) Let T be a 2 x 2 matrix with distinct eigenvalues a and f3 and corre
sponding normalized eigenvectors x and y. Then W(T) is the closed elliptical disc foci at 

,la - /31 la - /31 ~ 
a and f3, minor axis c5 and major axis --6- where 1 = I ( x, y) I and c5 = y 1 - 1 2 . 

1 
(ii) Let T have only one eigenvalue a. Then W(T) is the closed disc of radius 2 IIT- all 
centered at a. 

Example 1.4. (i) If T = on (C3 , then W(T) is the equilateral triangle whose ( 0~ 0~ ~1) 
vertices are the three cubic roots of 1, i.e., 1, w, and w2 . 

(ii) If T = on (C3 , then W(T) is the union of all the closed segments that join (0~ 0~ 0~) 
1 

the point 1 to all points of the closed disc with center O and radius 2 . 

Example 1.5. Let T be defined on £2 by 

for (x1, X2, X3, · · ·) E £2. Then W(T) = lDl where lDl = {>. E (C: 1>-1 < 1}. 

Theorem 1.6. Let T E £(1-l). Then a(T) C W(T) where a(T) is the spectrum of T. 

Recall that two operators T, S E £(1-l) are approximately unitarily equivalent if there 
exists a sequence {Un}n;:,1 of unitaries such that limn-+oo IIUnSUn* - TII = 0. 

Theorem 1. 7. Let T, S E £(1-l). If T and S are approximately unitarily equivalent, then 
W(T) = W(S). 

Definition 1.8. An operator C is said to be a conjugation on 1-l if the following conditions 
hold: 
(i) C is antilinear; C(ax +by)= aCx + bCy for all a, b E (C and x, y E 1-l, 
(ii) C is isometric; (Cx, Cy) = (y, x) for all x, y E 1-l, and 
(iii) C is involutive; C 2 = I. 



11

For any conjugation C, there is an orthonormal basis { en}~=O for 1i such that Gen= en 
for all n (see [10] for more details). We present the following examples for conjugations. 

Example 1.9. Let us define an operator C as follows: 
(i) C(x1,X2,X3,··· ,xn) = (x1,X2,X3,··· ,xn) on en. 
(ii) C(x1, X2, X3, · · · , Xn) = (xn, Xn-1, Xn-2, · · · , x1) on en. 
(iii) [CJ] ( x) = 1[x) on .C2 ( X, µ). 
(iv) [CJ](x) = f(l - x) on L2([0, 1]). 
(v) [Cf](x) = f(-x) on L2 (1Rn). 
(vi) C f(z) = zf (z)u(z) E K;, for all f E K;, where u is an inner function and 
K;, = H 2 0 uH2 is a Model space. 
Then each C in (i)-(vi) is a conjugation. 

Let X be a separable complex Banach space and .C(X) denote the algebra of all 
bounded linear operators on X. Let X* be the dual space of a Banach space X and let 
T* be the adjoint operator of TE .C(X). The set II is defined by 

II= { (x, J) EX x X* : IIJII = f(x) = llxll = 1 }. 

For TE .C(X), the numerical range V(T) of T is defined by 

V(T) = {J(Tx) : (x,f) E II}. 

Let u(T) denote the spectrum of T E .C(X). For a subset M of e, we denote the 
closure of M by M. Note that for any TE .C(X), u(T) C V(T) holds (see [W]) and V(T) 
is connected (see [2] and [3, Corollary 5, page 102]). In general, V(T) is ([3, Example 1, 
page 98]) and we denote the closed convex hull of V (T) by co V (T). An operator T E .C( X) 
is said to be Hermitian if V(T) C JR. If T is Hermitian on X, then V(T) = cou(T) ([3, 
Corollary 11, page 53]). If H is a Hermitian operator, then H 2 may not be Hermitian 
from [3, Example 1, Page 58]. In 2018, Cho and Tanahashi [6] introduce the concept of a 
conjugation on a Banach space. An operator C : X-+ X is called a conjugation on X, if 
C satisfies 

C2 = I, IICII :S 1, C(x + y) = Cx + Cy, C(.>.x) = >..Cx, (1) 

for x, y E X and .>. E e. Note that (1) implies that IICxll = llxll for all x E X. 

2 Main results 

First, we consider the following questions: 

(i) What is the numerical range W ( C) of a conjugation C on a Hilbert space 1i? 

(ii) What is the numerical range W(A) of an antilinear operator A on a Hilbert space 1i? 
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Theorem 2.1. (In 1965, Godic and Lucenko [14]) 
If U is a unitary operator on 1-l, then there exist conjugations C and J such that U = CJ 
and U* = JC. 

Lemma 2.2. (In 2014, S. R. Garcia, E. Prodan, and M. Putinar [12]) If C and J are 
conjugations on 1-l, then U := CJ is a unitary operator. Moreover, U is both C-symmetric 
and J -symmetric. 

A vector x E 1-l is called isotropic with respect to C if (Cx, x) = 0 (see [12]). 

Lemma 2.3. (Garcia, Prodan and Putinar, [12, Lemma 4.11] ) 
If C : 1-l --+ 1-l is a conjugation, then every subspace of dimension 2". 2 contains isotropic 
vectors for the bilinear farm (-, C-). 

Theorem 2.4. (In 2018, Hur and Lee [9]) Let C be a conjugation on 1-l. Then its the 
numerical range W(C) is the following: 

(i) W( C) = { z : lzl = 1}, when dim 1-l = 1 ( equivalently, 1-l = q. 
(ii) W(C) = {z: lzl:::; 1} fordim1-l 2". 2. 

A bounded antilinear operator A on a Hilbert space 1-l is defined by taking complex 
conjugation on the coefficients on a linear one, i.e., for x, y E 1-l and for a, /3 E C 

A (ax + f3y) = aA(x) + fIA(y). 

Crucial observation For any antilinear operator A and x E 1-l, 

(Aei0x, ei0x) = (e-i0 Ax, ei0x) = e-2i0 (Ax, x) for real 0, (2) 

which means that, if any complex number>. is in W(A), then the circle {z EC: lzl = l>-1} 
is contained in W(A). 

In other words, (2) shows why the numerical ranges of any antilinear operators should 
be circular regions, which would be much easier than the numerical ranges of linear 
operators. For a linear operator T, the quantity 

(Ti0x,ei0x) = (Tx,x) 

is independent of 0, so a similar computation (2) for linear operators does not give further 
information on W(T). 

Theorem 2.5. (In 2018, Hur and Lee [9]) Let A be a bounded antilinear operator on 1-l. 
Put a=: inf{l(Ax,x)I: llxll = 1} and b =: sup{l(Ax,x)I: llxll = 1}. Then its numerical 
range W(A) of A is the following: 

(i') When dim1-l = 1 (equivalently, 1-l = q, a= band W(A) = {z: lzl = a}. 

(ii') For dim 1-l 2". 2, W(A) is contained in the annulus whose boundaries are two circles 
{z: lzl = a} and {z: lzl = b}. Inner or outer boundary circle is in W(A) if and only if 
the infimum or supremum becomes the minimum or maximum, respectively. 
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Note that if T is a linear operator and A is an antilinear operator, then TA and AT 
are an antilinear operators. 

Example 2.6. (In 2018, Hur and Lee [9]) Consider A1 := C diag {2-1/n}~=l on £2 (N), 
where C is the canonical conjugation on £2 (N) and diag {2-1/n }~=l is the (infinite-sized) 
diagonal matrix (which is linear). Then 

Similarly put A2 := C diag {1/n}~=l on £2 (N) and A3 := A1 EB A2 , where EB is the direct 
sum of two antilinear operators. Hence 

W(A2) = {z: 0 < lzl::::; 1} and W(A3) = {z: 0 < lzl < 2}. 

Next, we consider the following questions: 
(i) What is the numerical range V( C) of a conjugation C on a Hilbert space X? 
(ii) What is the numerical range V(A) of an antilinear operator A on a Hilbert space X? 

A topological space X is called connected if there are two open subsets A and B in X 
such that X =AU Band An B = 0, then either A= 0 or B = 0. 

Lemma 2. 7. (Bonsall and Duncan [3, Theoremll.4]) 
Let X be a complex Banach space. Then II is a connected subset of X x X* with the norm 
x weak* topology. 

We define the numerical range of C by 

V(C) = { f(Cx) : (x, f) E II}. 

Lemma 2.8. If dimX ~ 2, then both O and 1 are in V(C). 

Theorem 2.9. Let X be a complex Banach space and let C be a conjugation on X. Then 
V ( C) is in the complex plane C. 

Theorem 2.10. Let X be a Banach space and let C be a conjugation on X. Then the 
numerical range V(C) of C is the following: 

(i) V(C) = {z: lzl = 1}, when dimX = 1 (equivalently, X = C). 

(ii) V(C) = {z: lzl::::; 1} fordimX ~ 2. 

In general, V(T) c V(T*) for T E .C(X) and its adjoint operator T* on X*. For a 
conjugation Con X, we define the dual conjugation C* on X* of C by 

(C* f)(x) = f(Cx) (x EX), 

where f(Cx) is the complex conjugation of the complex number f(Cx). 
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The numerical range V(C*) of C* is given by 

V(C*) = {F(C*J): IIFII = F(J) = llfll = 1, FE X**, f Ex·}. 

For (x, f) E II, let x be the Gelfand transformation of x. Then since llxll = x(J) = llf 11 = 1 
and by the definition of C* it holds 

x(C*J) = (C*J)(x) = f(Cx), 

we have {z : z E V(C)} c V(C*). 

Corollary 2.11. Let X be a complex Banach space and let C be a conjugation on X. 
Then V(C) = V(C*). 

A space X is called path-connected if for any two points x and y in X there exists a 
continuous path f from [O, 1] to X such that f(O) = x and f(l) = y. 

Remark In general, there is no relation between connectedness and path-connectedness. 
For example, topologist's sine curve, i.e., 

1 
{ x + i sin - : 0 < x ~ 1} U { iy : -1 ~ y ~ 1} c (C 

X 

is connected but not path-connected (even though (C is path-connected). Path-connectedness 
is not hereditary either, i.e., even though a total space X is path-connected, we do not 
know if every subset of X is path-connected. 

Recall that X is a reflexive Banach space if X** = { x : x E X}. 

Lemma 2.12. (Luna, [16, Corollary 7]) Let X be a complex reflexive Banach space with 
dim X 2: 2 and let T E £( X). Then V (T) is path-connected. 

Theorem 2.13. With same hypothsis as in provious theorem, if X is reflexive, then the 
numerical range V ( C) of C is 

V(C) = {z: lzl ~ 1}. 

For an antilinear operator A on X, we define the numerical range V(A) by V(A) = 
{ f(Ax) : (x, j) E II}. 

Theorem 2.14. Let X be a Banach space and let A be a bounded antilinear operator on 

X. Put a:=inf{lf(Ax)I: llfll = llxll = 1} and b:=sup{lf(Ax)I: llfll = llxll = 1}. Then 
its numerical range V(A) of A is the following: 

(i) When dimX = 1 (equivalently, X = q, a= band V(A) = {z: lzl = a}. 

(ii) For dim X 2: 2, V(A) is contained in the annulus whose boundaries are two circles 
{z: lzl = a} and {z: lzl = b}. Inner or outer boundary circle is in V(A) if and only if 
the infimum or supremum becomes the minimum or maximum, respectively. 
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For an antilinear operator A on X, we define the adjoint operator A* of A by 

(A* f)(x) = f(Ax), (x EX, f EX*), 

where f(Ax) is the complex conjugation of the complex number f(Ax). Then A* is an 
antilinear operator on X*. 

Corollary 2.15. Let X be a Banach space and let A be an antilinear operator on X. 
Then V(A) <:;;;; V(A*) and the equality holds when X is reflexive. 

Remark If X is non-reflexive, then II(X) is strictly smaller than II(X*) in the sense that 
there exists f E X* such that it does not have x E X such that (x, f) E II(X). Due 
to this, it is possible that, even though V(A) does not contain a in (ii) on Theorem (for 
example), V(A*) may contain a. 

It does not occur when we consider conjugation C, since V(C) was closed. 

Finally, we focus on the single-valued extension property of operators on a Banach 
space X. 

An operator TE L'.(X) is said to have the single-valued extension property (or SVEP) 
if for every open subset G of C and any :\:'-valued analytic function if) on G such that 

(T - .\)ifJ(.\) = 0 

on G, then we have ifJ(.\) = 0 on G (see [1]). 

Definition 2.16. (i) TE £(1-l) has the property (I) if.\ E ua(T) and {xn} is a sequence 
of unit vectors of 1l such that ll(T - .\)xnll ➔ 0 as n ➔ oo, then ll(T - .\)*xnll ➔ 0 as 
n ➔ oo. 

(ii) T E £(1-l) has the property (I') if.\ E ua(T) \ {O} and {xn} is a sequence of unit 
vectors of 1l such that ll(T - .\)xnll ➔ 0 as n ➔ oo, then ll(T - .\)*xnll ➔ 0 as n ➔ oo. 
(iii) T E L'.(1-l) has the property (II) if.\,µ E ua(T) (.\ -=/- µ) and { Xn} and {Yn} are 
sequences of unit vectors of 1l such that ll(T - .\)xnll ➔ 0 and ll(T - µ)Ynll ➔ 0 as 
n ➔ oo, then (xn, Yn) ➔ 0, where (·, ·) is the inner product on 1-l. 

Proposition 2.17. (Uchiyama and Tanahashi, [21, Proposition 3.1]) 
If T E £(1-l) has the property (II), then T also has the single-valued extension property. 

Let X* be the dual space of a Banach space X and let T* be the adjoint operator of 
TE L'.(X). The set II is defined by 

II= { (x, f) EX x X* : llfll = f(x) = llxll = 1 }. 

Lemma 2.18. Let x E X be nonzero. Then there exists a functional f E X* such that 

11111 = 1 and f(x) = llxll-
Hence, for every unit vector x E X, there exists f E X* such that (x, f) E II. 



16

Definition 2.19. (Banach space version) 
(i) T E L(X) has the property (I) if A E O"a(T) and { Xn} is a sequence of unit vectors 
of X such that ll(T- .\)xnll-+ 0 as n-+ oo, then ll(T- .\)*fnll-+ 0 as n-+ oo, where 
f n E X* such that (xn, f n) E II. 
(ii) T E L(X) has the property (I') if A E O"a(T) \ {0} and {xn} is a sequence of unit 
vectors of X such that II (T - .\)xn II -+ 0 as n -+ oo, then II (T - .\)* f n II -+ 0 as n -+ oo, 
where fn E X* such that (xn, fn) E II. 
(iii) T E L(X) has the property (II) if.\,µ E O"a(T) (.\ =/- µ) and { Xn} and {Yn} are 
sequences of unit vectors of X such that ll(T - .\)xnll -+ 0 and ll(T - µ)Ynll -+ 0 as 
n-+ oo, then fn(Yn) -+ 0 and gn(xn) -+ 0, where (xn, fn) and (Yn, gn) are in II. 

Theorem 2.20. (Mattila, [17, Theorem 3.11]) If X* is uniformly convex and T E L(X) 
is normal, then T has the property (I). 

Theorem 2.21. If TE L(X) has the property (I), then T has the property (II). 

Corollary 2.22. Let TE L(X) have the property (I). If.\,µ E O"p(T) (.\ =/- µ) and x, y 
are the corresponding eigenvectors of X where llxll = IIYII = 1, then for (x, f), (y, g) E II, 
it holds f(Ty) = g(Tx) = 0. 

Theorem 2.23. (Banach space version) 
If T E £( X) has the property (II) or the property (I'), then T also has the single-valued 
extension property. 

For an operator TE L(X) and for a vector x E X, the local resolvent set pr(x) of T 
at x is defined as the union of every open subset G of (C on which there is an analytic 
function cp : G -+ X such that (T - .\)cp(.\) = x on G. The local spectrum of T at x is 
given by O"r(x) = C\pr(x). We define the local spectral subspace of an operator TE L(X) 
by Xr(F) = {x EX: O"r(x) CF} for a subset F of (C (see [1]). 

Corollary 2.24. IfT E L(X) has the property (I') or the property (II), then the following 
statements hold. 
(i) For any analytic function on some open neighborhood of O"(T), f(T) has the single
valued extension property. 
(ii) If SE L(X) and YS = TY where Y has trivial kernel and dense range, then S has 
the single-valued extension property and Y X 8 (F) C Xr(F) for any subset F of C. 
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