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Complex symmetric operators and isotropic vectors 
in Banach spaces via linear functionals 

by 

Muneo Cho, Injo Hur*, Ji Eun Lee 

Abstract 

We generalize the concept of complex symmetric operators to Banach spaces via 
their dual spaces. With this extension we show the existence of isotropic vectors 
on Banach spaces whose dimension is at least two and the relation between the 
simplicity of an eigenvalue and the non-existence of its isotropic eigenvectors. All 
this work is based on [1]. 

1 Conjugations and isotropic vectors 

Let .C(1l) be the algebra of bounded linear operators on a separable complex Hilbert space 
1l with its inner product (·, ·) which is linear on the first and antilinear on the second. A 
conjugation C on 1l is an antilinear isometric involution on 1l. In other words, for any 
vectors x and y in 1l, the equality 

(Cx, Cy) = (y, x) (1) 

holds. In particular, C2 = I where I is the identity operator on 1l. 
Recently, Cho and Tanahashi [2] extended the concept of conjugations to a complex 

Banach space X (with its norm II • II) as antilinear involutions whose operator norms are 
at most 1. More precisely, any operator C : X --+ X is called a conjugation on X, if C 
satisfies 

C2 = I, IICII ::;: 1, C(x + y) = Cx + Cy, C(,\x) = >..Cx, (2) 

where x and y are in X and,\ is a complex number. Note that (2) implies that IICxll = llxll 
for all x E X. They showed that the definition above is the same as the usual one for 
conjugations in a complex Hilbert space 1l. 

A vector x E 1l is called isotropic (with respect to a conjugation C) if (Cx, x) = 0. For 
example, when 1l = CC2 and C is the canonical conjugation on CC2 , i.e., C(x,y) = (x,y), 
any vector of the form ( a, ±ia) with any complex number a becomes isotropic with respect 
to the canonical conjugation C. 

Due to the lack of an inner product, we cannot directly use the definition of isotropic 
vectors above in 1l. In order to extend them to a complex Banach space X let us first 
observe that (Cx, x) = 0-{=} Cx ..l x. 
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As a generalization of orthogonality to X, we adapt the orthogonality in the Birkhoff
James sense on [2, 5, 7]. For given two elements x and yin X, x is called orthogonal toy 
in the Birkhoff-James sense, in short x l_B y, if 

llx + .Xyll ~ llxll for all >. E C. (3) 

Note that, by the Hahn-Banach theorem, x l_B y if and only if there is a norm-one linear 
functional fin X* such that f(x) = llxll and J(y) = 0. 

Based on our discussion, isotropic vectors on X are defined as follows: 

Definition 1.1. A vector x in X is called isotropic, if Cx l_B x, or equivalently, for all 
>.EC, 

IICx +>.xii~ IICxll-

Since C is norm-preserving, Cx l_B x implies that x l_B Cx (which is notable since 
the orthogonality in the Birkhoff-James sense is not symmetric). Again, by the Hahn
Banach theorem, x l_B Cx if and only if there is f in X* such that IIJII = 1, f(x) = 

llxll and f(Cx) = 0. 

Let us now focus on the existence of isotropic vectors. On these isotropic vectors on 
1-l, Garcia et al. [3, 4] showed two well-known results: the existence of isotropic vectors in 
any subspace of 1-l whose dimension is at least two (which is Lemma 4.11 in [3] or Lemma 
1.2 in this article) and the relation between the simplicity of an eigenvalue>. of T and the 
non-existence of its isotropic eigenvectors for >. when T is complex symmetric (which is 
Theorem 4.12 in [3]). Here an eigenvalue >. is called simple if its algebraic multiplicity is 
1, or equivalently dimker(>.J -T) = l. 

Lemma 1.2. [3, Lemma 4.11] If C: 1-l--+ 1-l is a conjugation, then every subspace whose 
dimension is at least two contains isotropic vectors for the bilinear form (·, C-). 

In order to show our affirmative answer on Banach-space version of the lemma above, 
introduce the Gram-Schmidt process on X via linear functionals in [6]. Note that this 
result is an easy application of Hahn-Banach theorem. 

Lemma 1.3. [6, Proposition 2.1] Let x1 , x2 be vectors of X. Then the following are 
equivalent: 
(i) {x1 ,x2 } is linearly independent. 
(ii) There exist functionals Ji, h in X* such that fi(x1 ) -=/- 0, h(x1) = 0, and h(x2 )-=/- 0. 

Based on [1], we now see the existence of isotropic vectors on X via a similar idea of 
Lemma 1.2. 

Theorem 1.4. [1, Theorem 2.4] If C : X --+ X is a conjugation, then every subspace 
whose dimension is at least two contains isotropic vectors for the conjugation C. 

Therefore, we have the following corollary. 
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Corollary 1.5. Let TE L'.(X) be complex symmetric and let ,X be an eigenvalue of T. If 
T has no isotropic eigenvectors for>., then dimker(T - .X) = 1. 

Proof. Suppose not, that is, let dim ker(T- >.) ~ 2. Then Theorem 1.4 indicates that the 
subspace ker(T - >.) contains an isotropic eigenvector which is impossible. □ 

We now consider a natural dual element related to a given conjugation C. Let C be 
a conjugation on X. Define a dual conjugation C* of C defined by 

( C*(f)) (x) := l(Cx). (4) 

Then C* is a conjugation on the dual space X* of X. See [2] for more details. Then we 
have the following proposition: 

Proposition 1.6. Let x be a unit vector of a Banach space X and let C be a conjugation 
on X. Let 1 be a linear functional on X such that 11111 = l(x) = llxll = 1 and l(Cx) = 0. 
If x ..lB Cx, then 1 ..lB C*(f). In particular, x is isotropic. 

Note that this natural dual conjugation C* of C in (4) will be discussed and used in 
Section 2. 

2 C-symmetric operators, shortly CSOs 

In this section, we would like to extend the concept of complex symmetric operators or 
more generally C-symmetric operators from 1i to X, based on [1]. Let us first recall that, 
in 1i, the C-symmetry of a bounded linear operator Ton 1i is expressed by CT*C = T. 
In particular, with the aid of (1), for any vectors x and y in 1i, 

(CTy, x) = (CTCCy, x) = (T*Cy, x) = (Cy, Tx) = (CTx, y). (5) 

However, due to the lack of an inner product again, we cannot use the condition to define 
complex symmetric operators on X. Instead, we interpret (5) via linear functionals in the 
dual space 1i* of 1i in order to generalize C-symmetric operators to X. 

Proposition 2.1. For a bounded linear operator Ton 1i, CT*C = T if and only if for 
every pair of unit vectors, say x and y, there are two functionals 1 and gin 1i* such that 
11111 = llgll = 1, l(x) = g(y) = 1, l(Cy) = g(Cx) and l(CTy) = g(CTx). 

Note that, in Proposition 2.1, we used the fact that, for given a unit vector x E 1i, 
there is a unique norm-one linear functional 1 with l(x) = 1, which is just 1(·) = (·, x). 
Based on this observation, we would like to extend the C-symmetry of linear operators 
to Banach spaces and in particular to those satisfying the property above, that is, for 
each unit vector x, there is a unique norm-one functional 1 with l(x) = l. It is then 
well-known that Phelps [8] and Taylor [9] characterize the condition for such a property 
on X as follows: 

Theorem 2.2 ([8, 9]). If X* is strictly convex, then every subspace, say M, has a unique 
norm-preserving extension of continuous linear functionals on M. The converse holds 
when X is reflexive. 
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Recall that a normed space X is called strictly convex, if x, y E S and x -:/- y imply 
11>.x + (1 - >.)yll < 1 for O < >. < 1, where Sis the unit sphere {x E X I llxll = 1} in 
X, i.e., S contains no line segments. It is worth to mention that, due to the theorem 
above, when X* is strictly convex, then for given a unit vector x there exists the unique 
norm-one functional fin X* satisfying f(x) = l. 

A typical example of such a complex Banach space in our mind is V(11', dµ) with p > l 
but p -:/- 2, where 11' is the unit circle and dµ is a finite measure on 11'. More precisely, by 
Riesz representation theorem for V(11') says that, for a given norm-one linear functional 
c/>, there exists unique g E Lq('lI', dB) (essentially up to measuredµ) with 1/p + 1/q = 1, 
such that llgllq = 114>11 = 1 and 

cj>(f) = l fgdµ, f E V(11', dµ). 

Based on Proposition 2.1 and the observation above, we extend the C-symmetry of 
linear operators to complex Banach spaces X via their dual spaces as follows: 

Definition 2.3. Let T E .C(X) and let C be a conjugation on X. Then T is called 
C-symmetric in the sense of X*, if, for every pair of unit vectors x and y in X, there exist 
two norm-one functionals f and gin X* such that f(x) = g(y) = 1, f(Cy) = g(Cx) and 
f(CTy) = g(CTx). 

Here the functionals are sometimes denoted by fx,T and gy,T, especially when we 
emphasize the dependence of these functionals on x, y and T. However, in many cases 
when they are unambiguous, let us ignore these subscripts for convenience. 

Remarks. 1. Even though the definition above seems a very natural extension of the 
C-symmetry of linear operators from 11, to X via its dual space, it would not be clear if 
the identity operator I of X would be C-symmetric in the sense of X*. 
2. It is worthy mentioning that, if there exists T E .C(X) which is C-symmetric in the 
sense of X*, then so is the identity operator I. The functionals f and g can be chosen for 
both T and I at the same time (i.e., fx,T = fx,I and gy,T = gy,1). 
3. Even though T and Sare C-symmetric in the sense of X*, we do not know if fx,T = fx,s 
nor if f(CTy) = g(CTx) implies f(TCy) = g(TCx) in general. 
4. On general complex Banach spaces, Definition 2.3 seems weaker. One of the reasons 
is that (y, x) = (Cx, Cy) in 11,, which can be re-written to 

fx(Y) := (y, x) = (Cx, Cy) =: gcy(Cx) 

via linear functionals in X*. This would, however, be hard to achieve on general Banach 
spaces. 

To overcome the weakness of Definition 2.3 (which was addressed on 3 and 4 in Re
marks above), in most cases we will assume that X* is strictly convex. Then, due to Theo
rem 2.2, these functionals fx,T and gy,T are uniquely chosen independently of C-symmetric 
operators T in the sense of X*. Besides this, the following proposition expresses several 
useful properties when X* is strictly convex: 
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Proposition 2.4. [1, Proposition 3.4] Let X* be strictly convex and let the identity 
operator I on X be C-symmetric in the sense of X*. Let T E L'.(X). For two given 
unit vectors x and y denote by f and g two functionals satisfying f(x) = g(y) = 1 and 
f(Cy) = g(Cx). Then the following statements hold: 
(i) The (unique) norm-one functional whose function value at Cx is 1 is C* f. (Note that 

IICxll = 1 again.) 
(ii) f(y) = g(x) and f(y) = (C*g)(Cx). 
(iii) If T is C-symmetric in the sense of X*, then f(TCy) = g(TCx). 
(iv) T is C-symmetric in the sense of X* if and only if CTC is also C-symmetric in the 

sense of X*. 

In any Hilbert space these are very easy to show. For example, (ii) is true due to 
f(y) = (y,x) = (x,y) = g(x) and f(y) = (y,x) = (Cx,Cy) = (C*g)(Cx). 

From now on let us see some properties of C-symmetric operators in the sense of X*. 

Proposition 2.5. If T E L'.(X) is C-symmetric in the sense of X*, then the following 
properties hold; 
(i) >..T and T - >..I are C-symmetric in the sense of X* for any complex number >.. ( and 

vice versa). 
(ii) TIM is C-symmetric in the sense of X* for any nonzero subspace M of X. 

Note that in the proposition above we do not assume that X* is strictly convex. 

Theorem 2.6. [1, Theorem 3.6] Let X* be strictly convex and let T, S E L'.(X) be C
symmetric in the sense of X*. Then the following statements hold. 
(i) T +Sis C-symmetric in the sense of X*. 
(ii) If TS = ST, then TS is C-symmetric in the sense of X*. 

As an easy consequence of the theorem above, we have the following: 

Corollary 2.7. Let X* be strictly convex. If TE L'.(X) is C-symmetric in the sense of 
X*, then so is p(T) for any polynomial p( z). 

Proposition 2.8. Let X* be strictly convex and let T E L'.(X) be C-symmetric in the 
sense of X*. If T-1 exists, then it is also C-symmetric in the sense of X*. 

It is worth to mention that this proof is similar to that of (ii) in Theorem 2.6. 

Proposition 2.9. Let X* be strictly convex. If the sequence {Tn} of C-symmetric op
erators in the sense of X* converges to T E L'.(X) in the strong operator norm topology, 
then T is also C-symmetric in the sense of X*. 

Proof. With a similar argument in the proof of Theorem 2.6 it suffices to show that 
f(CTy) = g(CTx) for given two unit vectors x and y. Due to the continuity off and g 
and the assumption on the convergence above, it follows that 

f(CTy) = lim f(CTny) = lim g(CTnx) = g(CTx). 
n--+oo n--+oo 

□ 
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Let us extend Theorem 4.12 in [3] on 1i which shows the relation between the simplicity 
of an eigenvalue and the non-existence of its isotropic eigenvectors. For this, we generalize 
so-called O-projections to X. 

Definition 2.10. A projection P is called a O-projection in the sense of X* if it is 
O-symmetric in the sense of X*. 

Let >.bean isolated eigenvalue of a bounded linear operator Ton X. Then the Riesz 
idempotent E of T with respect to >. is defined by 

E := ~ r (z - T)- 1dz 
21ri j BD> 

where ill) is an open disk centered at>. with ill) U u(T) = {>.}. It is then well-known that 
E 2 = E, ET= TE, u(Tlran(E)) ={>.}and ker(T->.J) Cran (E). When T is O-symmetric 
in the sense of X*, Theorem 2.6 and Proposition 2.9 imply that E is a O-projection in 
the sense of X*, i.e., for given two unit vectors x and y, there exist two norm-one linear 
functionals f and g satisfying f(x) = g(y) = 1, f(Cy) = g(Cx) and f(CEy) = g(CEx). 

The following theorem is a generalization of Theorem 4.12 in [3] with the O-symmetry 
in the sense of X*: 

Theorem 2.11. [1, Theorem 3.11] Let TE .C(X) be O-symmetric in the sense of X* and 
>. an isolated eigenvalue of T. If T has no isotropic eigenvectors for >., then >. is simple. 
Moreover, the converse is true if X* is strictly convex. 
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