MATRIX FUNCTIONS AND MATRIX ORDER

MITSURU UCHIYAMA (SHIMANE UNIV.(EP), RITSUMEIKAN
UNIV.(GUEST))

Abstract

This note is based on $[8,19]$. The main purpose is to give a new method to construct an operator monotone function, and to give a characterization for an operator monotone function on a finite interval.

1. Introduction

Let $f(t)$ be a real continuous function defined on an interval J in the real axis. For a hermitian matrix A whose spectrum is in J, i.e. $A \in B_{h}(J), f(A)$ is well-defined. f is called an operator monotone function on J and denoted by $f \in \mathbf{P}(J)$ if this map $A \mapsto f(A)$ preserves the matrix order, i.e.,

$$
f(A) \leqq f(B) \text { whenever } A \leqq B .
$$

$\mathbf{P}_{+}(J)$ stands for $\{f \mid f \in \mathbf{P}(J), f(t)>0\}$. f is said to be operator decreasing if $-f$ is operator.
g is called an operator convex functionon J if it fulfills the operator inequality

$$
g(s A+(1-s) B) \leqq s g(A)+(1-s) g(B)
$$

for every $0<s<1$ and for every pair A, B with spectra in J.
An operator concave function is similarly defined. We here give some examples to help our comprehension. But the proves of some of them need subsequent results.

Example 1.1. (i) A power function t^{λ} is operator monotone and operator concave on $(0, \infty)$ for $0 \leq \lambda \leq 1$.
(ii) For $1<\lambda \leq 2, t^{\lambda}$ is operator convex but not operator monotone on $(0, \infty)$.
(iii) $1 / t$ is operator decreasing and operator convex on $(0, \infty)$.
(iv) $1 / t$ is operator decreasing and operator concave on $(-\infty, 0)$.
(v) $\tan t \in \mathbf{P}(-\pi / 2, \pi / 2)$.

We now refer to the excellent theorem:
Löwner (or Loewner)[12] Let J be open. Then $f \in \mathbf{P}(J)$ if and only if f has a holomorphic extension $f(z)$ to the open upper half plane
Π_{+}which is a Pick function. In this case,

$$
\begin{equation*}
f(t)=\alpha+\beta t+\int_{-\infty}^{\infty}\left(-\frac{x}{x^{2}+1}+\frac{1}{x-t}\right) d \nu(x), \tag{1}
\end{equation*}
$$

where α is real, $\beta \geqq 0$ and ν is a Borel measure so that

$$
\int_{-\infty}^{\infty} \frac{1}{x^{2}+1} d \nu(x)<\infty, \quad \nu(J)=0 .
$$

Refer to Donoghue[10] and B. Simon[16] for further study on this area.

It is well-known that $f(t)$ defined on a right half line is operator monotone if and only if $f(t)$ is operator concave and $f(\infty)>-\infty$.
This characterization does not hold if the domain of $f(t)$ is a finite interval; for instance, $\tan t \in \mathbf{P}(-\pi / 2, \pi / 2)$ is neither operator concave nor numerically concave.

In this note we will give a characterization of an operator monotone function on a finite interval.

A relationship between the operator monotone function and the operator convex function has been investigated:

Bendat-Sherman [4]. $g(t)$ is operator convex on an open interval J if and only if

$$
K_{g}\left(t, t_{0}\right):=\frac{g(t)-\left(t_{0}\right)}{t-t_{0}} \quad\left(t \neq t_{0}\right), \quad K_{g}\left(t_{0}, t_{0}\right)=g^{\prime}\left(t_{0}\right)
$$

is in $\mathbf{P}(J)$ for every $t_{0} \in J$.
M. Uchiyama [18]. Let $g(t)$ be a C^{1}-function on an open interval J. Then $g(t)$ is operator convex if $K_{g}\left(t, t_{0}\right)$ is operator monotone for one point $t_{0} \in J$.
B. $\operatorname{Simon}(2017)$ showed us that $\frac{\tan t}{t}$ is operator convex since

$$
\frac{\frac{\tan t}{t}-1}{t} \in \mathbf{P}(-\pi / 2, \pi / 2)
$$

The following characterization for an operator convex function is fundamental for subsequent study on operator inequality.
C. Davis[9]. g is operator convex on J if and only if

$$
P g\left(A_{P}\right) P \leq P g(A) P
$$

for every A with spectrum in J and for every orthogonal projection P, where A_{P} is the compression of A to the range of P.

Definition 1.1 (L. Brown $[6,7]) . g$ is called a strongly operator convex function and denoted by $g \in \mathrm{SOC}(J)$ if

$$
P g\left(A_{P}\right) P \leq g(A)
$$

for every A and for every orthogonal projection P.
One can see the following elementary facts.
\star A strongly operator convex function is operator convex.
\star A positive constant function is strongly operator convex.
\star The identity function $f(t)=t$ is not strongly operator convex on any interval.
2. Strongly operator convex functions (Brown-U)

Theorem 2.1 ([8]). Let $g(t)$ be a continuous function on J such that $g(t)>0$. Then the following are mutually equivalent.
(i) $g \in \mathbf{S O C}(J)$.
(ii)

$$
\begin{aligned}
& \frac{1}{2} g(A)+\frac{1}{2} g(B)-g\left(\frac{A+B}{2}\right) \\
\geq & \frac{1}{2}(g(A)-g(B))\{g(A)+g(B)\}^{-1}(g(A)-g(B)) .
\end{aligned}
$$

(iii) $1 / g(t)$ is operator concave.
(iv) $g(t)>0$ and

$$
\begin{aligned}
& S^{*} g(A) S+\sqrt{I-S^{*} S} g(B) \sqrt{I-S^{*} S} \\
& -g\left(S^{*} A S+\sqrt{I-S^{*} S} B \sqrt{I-S^{*} S}\right) \\
& \geq X\left\{\sqrt{I-S S^{*}} g(A) \sqrt{I-S S^{*}}+S g(B) S^{*}\right\}^{-1} X^{*}
\end{aligned}
$$

for every contraction S and for every pair of bounded self-adjoint operators A, B with spectra in J, where

$$
X=S^{*} g(A) \sqrt{I-S S^{*}}-\sqrt{I-S^{*} S} g(B) S^{*}
$$

Theorem $2.2([8])$. Let $f(t)$ be a continuous function on J and $t_{0} \in J$. Then

$$
f(t) \in \mathbf{P}(J) \Longleftrightarrow K_{f}\left(t, t_{0}\right) \in \mathbf{S O C}(J)
$$

* This gives a new method to construct an operator monotone function.

Example 2.1. Since $\tan t \in \mathbf{P}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \frac{\tan t}{t} \in \mathbf{S O C}(J)$ and hence

$$
\frac{\tan t-t}{t^{2}}=\frac{\frac{\tan t}{t}-1}{t-0} \in \mathbf{P}(J)
$$

Example 2.2. Since $\frac{\tan t}{t} \in \operatorname{SOC}(J)$ for $J=(-\pi / 2, \pi / 2), \frac{t}{\tan t}$ is operator concave, i.e., $-\frac{t}{\tan t}$ is operator convex. Thus

$$
\frac{1}{t}-\cot t=\frac{-\frac{t}{\tan t}+1}{t-0} \in \mathbf{P}(J) .
$$

Example 2.3. Since $t^{\alpha} \in \mathbf{P}(J)$, where $0<\alpha<1$ and $J=(0, \infty)$, $\frac{t^{\alpha}-1}{t-1} \in \mathbf{S O C}(J)$, and hence

$$
\frac{t^{\alpha-1}-1}{t^{\alpha}-1}=\frac{-\frac{t-1}{t^{\alpha}-1}+1}{t} \in \mathbf{P}(0, \infty)
$$

Theorem 2.3 ([8]). (i) $0 \neq g \in \operatorname{SOC}(-\infty, \infty)$ if and only if $g(t)>0$ and $g(t)$ is constant.
(ii) $0 \neq g \in \operatorname{SOC}(a, \infty)$ if and only if $g(t)>0$ and $g(t)$ is operator decreasing.
(iii) $0 \neq g \in \mathbf{S O C}(-\infty, b)$ if and only if $g(t)>0$ and $g(t) \in \mathbf{P}(-\infty, b)$.

Proposition 2.4 ([8], cf. Ju. L. Šmul'jan[17]). Let $f(t)$ be a function on a finite interval (a, b). Then
(i) If f is operator concave and operator monotone on (a, b), then f has an extension \tilde{f} to (a, ∞) such that \tilde{f} is operator concave and operator monotone on (a, ∞).
(ii) If f is operator convex and operator decreasing on (a, b), then f has an extension \tilde{f} to (a, ∞) such that \tilde{f} is operator convex and operator decreasing on (a, ∞).
(iii) If f is operator convex and operator monotone on (a, b), then f has an extension \tilde{f} to $(-\infty, b)$ such that \tilde{f} is operator convex and operator monotone on $(-\infty, b)$.
(iv) If f is operator concave and operator decreasing on (a, b), then f has an extension \tilde{f} to $(-\infty, b)$ such that \tilde{f} is operator concave and operator decreasing on $(-\infty, b)$.

Remark 2.1. We did not know whether this result had been known or not. However B. Simon referred us to [17] about (i).

3. MATRIX MEANS

Let us quickly remember essential results about matrix means.
Andersen-Duffin [1]. For $A, B \geq 0$, the (matrix) harmonic mean $A!B$ is defined by

$$
A!B=2 A(A+B)^{+} B\left(=2 B(A+B)^{+} A\right),
$$

where X^{+}denotes the generalized inverse of X.
$A!B=\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}$ if A, B are invertible.
Pusz-Woronowicz [15], Ando[2]. For $A, B \geq 0$ the matrix geometric mean $A \# B$ is defined by

$$
A \# B=\max \left\{X \geq 0:\left(\begin{array}{ll}
A & X \\
X & B
\end{array}\right) \geq 0\right\}
$$

Pedersen-Takesaki [14], Ando[2].

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

if A is invertible.
Remark 3.1. $0 \leq C \leq A \# B \nRightarrow\left(\begin{array}{ll}A & C \\ C & B\end{array}\right) \geq 0$.

4. Main Results

In this section we investigate matrix functions by making use of matrix means, especially harmonic mean. See [19] for detail. We start with new elementary result on matrix mean.
Lemma 4.1. If $A, B \geqq 0$ and $A+B>0$, then

$$
\frac{A+B}{2}-A!B=\frac{1}{2}(A-B)(A+B)^{-1}(A-B) .
$$

Lemma 4.2. If $B \geqq A \geqq 0$ and $B>0$, then

$$
B-A=(B+(A \# B))!(B-(A \# B)) .
$$

Lemma 4.3. Let $0<A \leqq B$. Then the operator equation

$$
0<X \leqq Y, \quad A=X!Y, \quad B=\frac{X+Y}{2}
$$

has a unique solution

$$
X=B-(B-A) \# B, \quad Y=B+(B-A) \# B .
$$

Moreover, we have $A \# B=X \# Y$.
Lemma 4.4. For $A, B, C \geqq 0$

$$
C \leqq A!B \Longleftrightarrow\left(\begin{array}{ll}
A & C \\
C & B
\end{array}\right) \geqq \frac{1}{2}\left(\begin{array}{ll}
C & C \\
C & C
\end{array}\right) \geq 0
$$

We are ready to proceed to matrix functions.
Theorem 4.1. Let $g(t)>0$ be a continuous function defined on J. Then

$$
g \in \operatorname{SOC}(J) \Leftrightarrow\left\{\begin{array}{l}
g\left(\frac{A+B}{2}\right) \leqq g(A)!g(B) \leqq \\
\leqq \frac{g(A)+g(B)}{2}(\forall A, B) .
\end{array}\right.
$$

Theorem 4.2. (i) if $f(t)>0$ on $(0, b)$, where $0<b \leqq \infty$, then

$$
f \in \mathbf{P}_{+}(0, b) \Leftrightarrow f(A!B) \leqq f(A)!f(B) \quad(\forall A, B)
$$

(ii) $f \in \mathbf{P}(0, b) \Leftrightarrow\left\{\begin{array}{l}f(A!B) \leqq \frac{f(A)+f(B)}{2}(\forall A, B), \\ f(0+)<\infty .\end{array}\right.$
(iii) if $f(t)>0$ on (a, ∞), where $-\infty<a$, then
$f \in \mathbf{P}_{+}(a, \infty) \Leftrightarrow\left\{\begin{array}{l}f(A)!f(B) \leqq f\left(\frac{A+B}{2}\right) \quad(\forall A, B), \\ f(\infty)>0 .\end{array}\right.$
(iv) $f(t) \in \mathbf{P}(0, \infty) \Leftrightarrow f(A!B) \leqq f\left(\frac{A+B}{2}\right) \quad(\forall A, B)$.

Remark 4.1. \star We can get a characterization for $f \in \mathbf{P}(a, b)$ from (ii) by translation.
\star The constraints $f(0+)<\infty$ in (ii) and $f(\infty)>0$ in (iii) are both indispensable; for instance, $f(t)=\frac{1}{t}$ satisfies $f(A!B)=\frac{1}{2}(f(A)+$ $f(B))$ and $f(0+)=\infty$, but it is operator decreasing. $\star \Rightarrow$ in (iii) and \Rightarrow in (iv) are well-known.
Example 4.1. (i) $\tan (A!B) \leqq \tan A!\tan B$ for $0<A, B<\pi / 2$.
(ii) $(A!B)^{\alpha} \leqq A^{\alpha}!B^{\alpha} \leqq \frac{1}{2}\left(A^{\alpha}+B^{\alpha}\right) \leqq\left(\frac{A+B}{2}\right)^{\alpha}$ for $A, B>0$.
(iii) $\log (A!B) \leqq \frac{1}{2}(\log A+\log B) \leqq \log \frac{A+B}{2}$ for $A, B>0$.

Corollary 4.3. Let σ be a symmetric operator mean defined in [11] and $f \in \mathbf{P}_{+}(0, \infty)$, then

$$
f(A!B) \leqq f(A) \sigma f(B) \leqq f\left(\frac{A+B}{2}\right)(\forall A, B>0)
$$

Conversely, each of the following implies $f \in \mathbf{P}_{+}(0, \infty)$:
(i) $f(A!B) \leqq f(A) \sigma f(B)(\forall A, B), f(0+)<\infty$,
(ii) $f(A) \sigma f(B) \leqq f\left(\frac{A+B}{2}\right)(\forall A, B), f(\infty)>0$,
(iii) $f(A!B) \leqq f\left(\frac{A+B}{2}\right)(\forall A, B)$.

We remark that Ando-Hiai[3] has shown that if $f>0, f(A) \sigma f(B) \leqq f\left(\frac{A+B}{2}\right)$ and σ is not the harmonic mean, then $f \in \mathbf{P}_{+}(0, \infty)$.

Proposition 4.4. Let $g(t)>0$ on J. TFAE
(i) $g \in \mathbf{S O C}(J)$,
(ii) $f(g(t)) \in \mathbf{S O C}(J)$ for every $f \in \mathbf{P}_{+}(0, \infty)$,
(iii)

$$
\left(\begin{array}{cc}
f(g(A)) & f\left(g\left(\frac{A+B}{2}\right)\right) \\
f\left(g\left(\frac{A+B}{2}\right)\right) & f(g(B))
\end{array}\right) \geqq 0
$$

for every $f \in \mathbf{P}_{+}(0, \infty)$ and for every $A, B \in B_{h}(J)$,
(iv) $f(g(t))$ is operator convex on J for every $f \in \mathbf{P}_{+}(0, \infty)$.
(v) $f(g(t))$ is operator convex on J for every $f \in \mathbf{P}(0, \infty)$.

Corollary 4.5. ([19], cf.[13]) For $0<A, B, C<b$, the following are mutually equivalent:
(i) $C \leqq A!B$.
(ii) $f(C) \leqq f(A)$! $f(B)$ for every $f \in \mathbf{P}_{+}(0, b)$.
(iii) $\left(\begin{array}{ll}f(A) & f(C) \\ f(C) & f(B)\end{array}\right) \geqq \frac{1}{2}\left(\begin{array}{ll}f(C) & f(C) \\ f(C) & f(C)\end{array}\right) \geqq 0$ for every $f \in \mathbf{P}_{+}(0, b)$.
(iv) $\left(\begin{array}{ll}f(A) & f(C) \\ f(C) & f(B)\end{array}\right) \geqq 0$ for every $f \in \mathbf{P}_{+}(0, b)$.
(v) $f(C) \leqq \frac{1}{2}(f(A)+f(B))$ for every $f \in \mathbf{P}(0, b)$.

Remark 4.2.

$$
0 \leq C \leq A!B \Leftrightarrow\left(\begin{array}{ll}
f(A) & f(C) \\
f(C) & f(B)
\end{array}\right) \geqq 0\left(\forall f \in \mathbf{P}_{+}(0, \infty)\right)
$$

was given in [13], which is an interesting paper, but there is an essential mistake in the proof.

References

[1] W.N. Anderson and R. J. Duffin, Series and parallel addition of matrices. J. Math. Anal. Appl. 26, 576-594(1969).
[2] T. Ando, Topics on operator inequalities, Lecture Note, Sapporo, 1978.
[3] T. Ando and F. Hiai, Operator log-convex functions and operator means. Math. Ann.
[4] J. Bendat and S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc. 79(1965)58-71.
[5] R. Bhatia, Positivity Definite Matrices, Princeton Series in Applied Mathematics, 2007.
[6] L. G. Brown, Semicontinuity and multipliers of C-algebras. Canad. J. Math. 40 (1988), no. 4, 865-988
[7] L. G. Brown, A treatment of strongly operator convex functions that does not require any Ann. Funct. Anal. 9(1) (2018) 41-55.
[8] L. G. Brown and M. Uchiyama, Some results on strongly operator convex functions and operator monotone functions. Linear Algebra Appl. 553, 238251(2018).
[9] C. Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957), 42-44.
[10] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation. Springer-Verlag, 1974.
[11] F. Kubo and T. Ando, Means of positive linear operators. Math. Ann. 246, 205-224(1980).
[12] K. Löwner, Über monotone matrixfunktionen. Math. Z., 38 (1934), 177-216.
[13] H. Najafi, Operator means and positivity of block operators. Math. Z. 289, 445-454 (2018).
[14] G. K. Pedersen and M. Takesaki, The operator equation $T H T=K$. Proc. Amer. Math. Soc. 36(1972)311-312.
[15] W. Pusz and S.L. Woronowicz, Functional calculus for sesquilinear forms and purification map. Rep. Math. Phys. 8, 159-170(1975).
[16] B. Simon, Loewner's Theorem on Monotone Matrix Functions, Springer. to be published.
[17] Ju. L. Šmul'jan, Monotone operator functions on a set consisting of an interval and a point, Ukrain. Mat. Ž. 17(1965), Amer. Math. Soc. Transl. (2)67(1968), 25-32.
[18] M. Uchiyama, Operator monotone functions, positive definite kernel and majorization. Proc. Amer. Math. Soc. 138, no. 11, 3985-3996 (2010).
[19] M. Uchiyama, Operator functions and the Operator Harmonic Mean, Proc. Amer.Math. Soc. to appear.

