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Abstract

By using the variational method, we show the existence of various
kinds of solutions in the planar Sitnikov problem. For a given symbolic
sequence, we show the existence of orbit realizing it. We also prove the
existence of periodic orbits.

1 Introduction

Consider the three-body problem which is governed by the following ODEs:

q̈1 = −m2
q1 − q2

|q1 − q2|3
−m3

q1 − q3
|q1 − q3|3

q̈2 = −m1
q2 − q1

|q2 − q1|3
−m3

q2 − q3
|q2 − q3|3

(1)

q̈3 = −m1
q3 − q1

|q3 − q1|3
−m2

q3 − q2
|q3 − q2|3

.

Here qk ∈ R3 and mk ≥ 0 for k = 1, 2, 3 represent positions and masses.
Sitnikov [5] considered a special case of the three-body problem in which

two masses are equal and the other is zero, and in which the massless particle
moves on the z-axis and the other two masses move along elliptic curves on xy-
plane which are periodic orbits of the Kepler problem(Figure 1). That model is
called the Sitnikov problem. This model is famous for the subsystem in which
oscillatory orbits are first proven to exist.

On the other hand, Chenciner & Montogomery [1] proved the existence of
an eight-shaped periodic solution in the planar three-body problem with equal
masses by using the variational method. Since then, a number of periodic and
quasi-periodic solutions have been found as minimizers of variational formula-
tion of the N -body problem in various different settings.
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Figure 1: Sitnikov problem

In this paper we study the planar Sitnikov problem. Let m1 = m2 = 1 > 0
and m3 = 0 for (1). The equations become

q̈1 = − q1 − q2
|q1 − q2|3

q̈2 = − q2 − q1
|q2 − q1|3

(q1, q2, q3 ∈ R2)

q̈3 = − q3 − q1
|q3 − q1|3

− q3 − q2
|q3 − q2|3

.

The motion of q1 and q2 is governed by the two-body problem.
There is a subproblem such that q1 and q2 move on x-axis and q3 moves on

y-axis. We denote

q1 = (x(t), 0), q2 = (−x(t), 0), q3 = (0, y(t)).

Here x(t) and y(t) satisfy

ẍ = − 1

4x2

ÿ = − 2y

(x2 + y2)3/2
.

By rescaling it, the equations become

ẍ = − 1

8x2
(2)

ÿ = − y

(x2 + y2)3/2
. (3)

Let x(t) be the periodic solution of (2) with period 1 such that x(t) = 0(t ∈ Z)
and x(t) > 0(t ∈ R\Z). The binary collision is regarded as regularized. The
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regularization can be intuitively regarded as the elastic bounce(Figure 2). See
Appendix in detail.

x−x

y

Figure 2: planar Sitnikov problem

Consider a sequence a = {an}n∈Z ∈ {−1, 1}Z. Define the subset M of
{−1, 1}Z by the set of sequences a such that the length of each successive part
of −1 or +1 is no less than 3. More accurately, the sequence a ∈ {−1, 1}Z is
represented as

a : . . . ,−1,−1, . . . ,−1︸ ︷︷ ︸
k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k0

,−1,−1, . . . ,−1︸ ︷︷ ︸
k1

, 1, 1, . . . , 1︸ ︷︷ ︸
k2

, . . . ,

where {kj}j∈Λ ⊂ N ∪ {∞} may be finite, semi-finite or infinite sequence, that
is, Λ is the one of the following possiblity:

Λ = {I, I + 1, I + 2, . . . , J − 2, J − 1, J}, kI = kJ = ∞ (I < J)

Λ = {I, I + 1, I + 2, . . . }, kI = ∞ (I ∈ Z)
Λ = {. . . , J − 2, J − 1, J}, kJ = ∞ (J ∈ Z)
Λ = Z.

Let M be the set of a such that kj ≥ 3 for any j ∈ Λ.
For a ∈ M and for N1, N2 ∈ Z(N1 < N2), we define the set of functions

ΩN1,N2
(a) = {y(t) ∈ H1([N1, N2],R) | an · y(n) > 0 (n = N1, N1 + 1, . . . , N2)},

Ω(a) = {y(t) ∈ H1
loc(R,R) | an · y(n) > 0 (n ∈ Z)}

(See Figure 3).

Theorem 1. For any a ∈ M, N1, N2 ∈ Z(N1 < N2) and α, β > 0, there
exists a solution y(t) ∈ ΩN1,N2

(a) of the planar Sitnikov problem such that

3



-1 -1 -1 -1 +1 +1 +1 -1 -1 an

t
-4 -3 -2 -1 0 1 2 3 4

+1

Figure 3: Behavior of y(t) ∈ Ω(a)

aN1
y(N1) = α, aN2

y(N2) = β. Moreover for n ∈ {N1, N1 + 1, . . . , N2 − 1}
satisfying anan+1 = 1, there is no real value t ∈ (n, n + 1) such that y(t) = 0,
and for n ∈ {N1, N1 + 1, . . . , N2 − 1} satisfying anan+1 = −1 there is a unique
real number t ∈ (n, n+ 1) such that y(t) = 0.

There are two simple sequences e± ∈ M such that

e+ = . . . , 1, 1, 1, . . . , e− = . . . ,−1,−1,−1, . . .

For N ∈ N, define PN = {a ∈ M\{e±} | an = an+N (n ∈ Z)}.

Theorem 2. For any a ∈ PN , there exists an N -periodic solution y(t) ∈ Ω(a).
Moreover for n ∈ {0, 1, . . . , N − 1} satisfying anan+1 = 1, there is no real value
t ∈ (n, n + 1) such that y(t) = 0, and for n ∈ {0, 1, . . . , N − 1} satisfying
anan+1 = −1 there is a unique real number t ∈ (n, n+ 1) such that y(t) = 0.

Remark 1. If a ∈ PN , a also belongs to PkN for k ∈ N. We can obtain
kN -periodic solution. But we do not know whether these periodic solutions are
different.

This paper is organized as following. Next section, we introduce the varia-
tional formulation and prove the existence of generalized solutions. In Section
3, we show that the generalized solutions have no collision and that they are
classical solutions. In appendix, we illustrate how to regularize the binary col-
lision.

2 Variational formulation and the existence of
generalized solutions

We first show the existence of generalized solutions for Theorem 1. A generalized
solution means a solution which is allowed to have triple collisions. Let x(t) be
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determined as a solution with a collision per period 1. The equation (3) of y is
equivalent to the variational problem with respect to the action functional

AN1N2
(y) =

∫ N2

N1

L(y, ẏ, t)dt,

where the Lagrangian is

L(y, ẏ, t) =
1

2
ẏ2 +

1√
(x(t))2 + y2

.

We prove the coercivity of AN1,N2
(y) on

Γ = {y ∈ ΩN1,N2
(a) | y(N1) = aN1

α, y(N2) = aN2
β} (4)

for Theorem 1. We can assume that N1 = 0, N2 = N without loss of generality.
Let |y(t)|(t ∈ [0, N ]) attain the maximum maxt∈[0,N ] |y(t)| at tmax, and let ∥·∥L2

and ⟨·, ·⟩L2be the L2-norm and -inner product. We estimate the L2-norm of y
in the set (4) as follows:

∥y∥2L2 =

∫ N

0

y2dt ≤ N |y(tmax)|2 = 2N

∣∣∣∣∫ tmax

0

ẏ(t)dt+ a0α

∣∣∣∣2
≤ 2N

(∣∣∣∣∫ tmax

0

ẏ(t)dt

∣∣∣∣+ |α|
)2

≤ 2N

(∫ tmax

0

|ẏ(t)| dt+ |α|
)2

≤ 2N

(∫ N

0

|ẏ(t)|dt+ |α|

)2

= 2N(∥ẏ∥L1 + |α|)2,

where ∥ · ∥L1 is the L1-norm. Since

∥ẏ∥2L1 = ⟨1, |ẏ|⟩2L2 ≤ ∥1∥2L2∥ẏ∥2L2 = N∥ẏ∥2L2 ,

∥ẏ∥L2 diverses to infinity as ∥y∥L2 → ∞. Therefore since

∥ẏ∥2L2 ≤ 2AN (y),

AN (y) diverses to infinity as ∥y∥H1 → ∞ for y in the set (4). This means that
AN restricted on the set is coercive, and hence there exists a minimizer in the
closure ΩN1N2 of ΩN1N2 .

Now we shall prove of the existence for Theorem 2. For each y ∈ Ω(a), there
is t0 such that y(t0) = 0 since a ̸= e±. Let maxt∈[0,N ] |y(t)| be attained at tmax

and similarly we get

∥y∥2L2 ≤
∫ N

0

y2dt ≤ N |y(tmax)|2 = 2N

∣∣∣∣∫ tmax

t0

ẏ(t)dt

∣∣∣∣2
≤ 2N

(∫ tmax

t0

|ẏ(t)| dt
)2

≤ 2N

(∫ N

0

|ẏ(t)| dt

)2

≤ 2N

(∫ N

0

|ẏ(t)|dt

)2

= 2N∥ẏ∥2L1 .
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The rest of the proof is the same as one for Theorem 1.

3 The number of t with y(t) = 0 on (n, n+ 1)

We estimate the number of t satisfying f(t) = 0 on (n, n + 1). When y(t)
minimizes AN1N2 , we can assume that n = 0 and y minimizes A0,1. Suppose
that y minimizes A0,1. We show that the number of t ∈ (0, 1) such that y(t) = 0
is at most one or y(t) is identically zero on (0, 1).

Assume that there is t0 ∈ (0, 1) such that y(t0) = 0. If ẏ(t0) = 0, y(t) and
−y(t) are solutions with the same initial condition. From the uniqueness of the
solution of ODE, y(t) is identically zero.

Assume that there are two t ∈ (0, 1) such that y(t) = 0 but that y(t) is not
identically zero. Let y(t0) = y(t1) = 0(0 < t0 < t1 < 1). Since y(t) is not
identically zero, ẏ(t0) ̸= 0, ẏ(t1) ̸= 0. Define a partial modified path by

ỹ(t) =

{
y(t) (t ∈ [0, t0] ∪ [t1, 1])

−y(t) (t ∈ (t0, t1))

This path ỹ also minimizes A0,1, but ỹ is not smooth. This contradicts the fact
that the minimizer is smooth.

4 Exclusion of triple collisions

4.1 Sundmann estimate

We eliminate the value of the action functional with a triple collision. We show
it for Theorem 1 and 2 simultaneously. Assume that y(0) = 0 (and assume
that N1 < 0 < N2 for Theorem 1). For any minimizer y, y|[−1,1] minimizes
A−1,1. From the Sundman estimate, the asymptotic behavior as t → ±0 can be
represented by

x(t) = c|t|2/3 +O(t), yN (t) = d±|t|2/3 +O(t)

where c = 2−4/3 · 32/3 and d± ∈ {−2−4/3 · 37/6, 0, 2−4/3 · 37/6}. We make a
modified curve with a lower value of the action functional.

Note that d+ = 0 if and only if y(t) is identically zero on (0, 1). It can be
seen from the collision manifold theory. The unstable manifold corresponding
to the configuration is one dimensional. McGehee [3] has first constructed such
coordinates for the collinear three-body problem, and Devaney [2] has applied
it to the isosceles three-body problem. Meyer and Wang [4] have studied the
restricted case of the the isosceles three-body problem which means m3 = 0.
That is the same as what we are considering.
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The value of the integral on the interval [0, ε] is

A0,ε(y) =

∫ ε

0

1

2

(
2

3
d+t

−1/3 +O(1)

)2

+
1√

(ct2/3 +O(t))2 + (d+t2/3 +O(t))2
dt

=

∫ ε

0

2

9
d2+ +

1√
c2 + d2+

 t−2/3 +O(t−1/3)dt

=

3
2

9
d2+ +

1√
c2 + d2+

 t1/3 +O(t2/3)

ε

0

=

2

3
d2+ +

3√
c2 + d2+

 ε1/3 +O(ε2/3)

The estimate of A−ε,0 is similar, and hence we get

A−ε,ε =

2

3
(d2+ + d2−) +

3√
c2 + d2+

+
3√

c2 + d2−

 ε1/3 +O(ε2/3). (5)

We will make modified curves with a less value for each case.
We can assume a0 = 1 without loss of generality since we can replace {−an}

if a0 = −1. Since a ∈ M, there are two cases: the both sides are same
as a0 i.e. a−1 = a0 = a1 = 1; one of the sides is different from a0 i. e.
a−1 = −1, a0 = a1 = 1 or a−1 = a0 = 1, a1 = −1 whose latter case is essentially
same as the former one. Hence we need to consider the case of a−1 = a0 = a1 = 1
and a−1 = −1, a0 = a1 = 1.

4.2 The case of a−1 = a0 = a1 = 1

In this case, y(−1) ≥ 0 and y(1) ≥ 0. If y(−1) > 0, d− = 0 or d− = 2−4/3 · 37/6
from Section 3. If y(−1) = 0 and y(t) < 0(−ε < t < 0), we can replace y(t)
by −y(t). Hence we need to consider the case of d− = 0 or d− = 2−4/3 · 37/6.
Therefore it is sufficient to study 4 different case determined by d± ∈ {0, 2−4/3 ·
37/6}.

The case of d+ = d− = 2−4/3 · 37/6 Define a modified path for t ∈ (−ε, ε) by

ytest(t) =
1

2ε
(y(ε)− y(−ε))(t+ ε) + y(−ε)

= d−ε
2/3 +O(ε).

We get

ẏtest(t) = O(1)
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Hence we have

A−ε,ε(ytest) =

∫ ε

−ε

O(1) +
1

d−ε2/3
dt =

2

d−
ε1/3 +O(ε) = 2−5/3 · 3−1/6ε1/3 +O(ε)

≈ 1.398820085ε1/3 +O(ε).

On the other hand, (5) is

2−2/3 · 31/3 · 7ε1/3 +O(ε) = 6.359922076ε1/3 +O(ε).

The case of d+ = 2−4/3 · 37/6, d− = 0 Define a modified path for t ∈ (−ε, ε)
by

ytest(t) =
1

2ε
(y(ε)− y(−ε))(t+ ε) + y(−ε)

=
1

2
d+ε

−1/3(t+ ε) +O(ε).

We get

ẏtest(t) =
1

2
d+ε

−1/3 +O(1)

Since 0 < ycol(t) < ytest(t),∫ ε

−ε

1√
x(t)2 + ycol(t)2

dt ≥
∫ ε

−ε

1√
x(t)2 + ytest(t)2

dt.

The kinetic part of the test path is∫ ε

−ε

1

2
(
1

2
d+ε

−1/3 +O(1))2dt =
1

4
d2+ε

1/3 +O(ε2/3) = 2−14/3 · 37/3ε1/3 +O(ε2/3)

≈ 0.5110651668ε1/3 +O(ε2/3),

and one of the collision path is

2

3
(d2+ + d2−)ε

1/3 +O(ε2/3) = 2−5/3 · 34/3ε1/3 +O(ε2/3)

≈ 1.362840445ε1/3 +O(ε2/3).

Then by summing them, the test path has lower value of the action functional.

The case of d+ = 0, d− = 2−4/3 · 37/6 Similar as the previous case.

The case of d+ = d− = 0 Define a test path by

ytest(t) = ε2/3 − |t|2/3 t ∈ (−ε, ε).
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The kinetic part is∫ ε

−ε

1

2
ẏ2 =

∫ ε

0

(
2

3
t−1/3

)2

dt =
4

9
· 3[t1/3]ε0 =

4

3
ε1/3

Since

ytest(t)
2 + x(t)2 = (ε2/3 − |t|2/3)2 + c2|t|4/3 +O(|t|5/3)

= (c2 + 1)(|t|4/3 − ε2/3

c2 + 1
)2 +

c2ε4/3

c2 + 1
+O(ε5/3),

the potential part is estimated as follows:∫ ε

−ε

1√
ytest(t)2 + x(t)2

dt ≤ 2
√
c2 + 1ε1/3

c
+O(ε2/3).

The value of the action functional is estimated

A−ε,ε(ytest) = 2

(
2

3
+

√
c2 + 1

c

)
ε1/3 +O(ε2/3) ≈ 4.475003732ε1/3 +O(ε2/3)

This value is lower than one for collision paths because∫ ε

−ε

1

ct2/3
dt =

6ε1/3

c
≈ 7.268482372ε1/3.

4.3 The case of a−1 = −1, a0 = a1 = 1

Take a modified path as follows

ytest =


−(y(−ε)− δ)(ε− k)−1(t+ k) + δ t ∈ [−ε,−k]

δ t ∈ [−k, 0]

(y(ε)− δ)ε−1t+ δ t ∈ [0, ε]

where δ = lε2/3, k = εa and l, a ∈ (0, 1) is some constant.
The integral on interval [0, ε] is estimated as follows:

A0,ε(ytest) =

∫ ε

0

1

2
(y(ε)− δ)2ε−2 +

1√
((ct2/3 +O(t))2 + ((y(ε)− δ)ε−1t+ δ)2

dt

≥ 1

2
(y(ε)− δ)2ε−1 + εδ−1

=
1

2
(d+ε

2/3 +O(ε)− δ)2ε−1 + εδ−1

= (
1

2
(d+ − l)2 + l−1)ε1/3 +O(ε).

The integral on interval [−k, 0] is

A−k,0(ytest) ≥
k

δ
= al−1ε1/3.
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The integral on interval [−ε,−k] is

A−ε,−k(ytest) ≥ (
1

2
(y(−ε)− δ)2(ε− k)−1 + 3c−1[|t|1/3]−k

−ε) +O(ε)

= (
1

2
(d−ε

2/3 − lε2/3)2(ε− k)−1 + 3c−1(ε1/3 − k1/3)) +O(ε)

= (
1

2
(d−ε

2/3 − lε2/3)2(1− a)−1ε−1 + 3c−1(1− a1/3)ε1/3) +O(ε)

= (
1

2
(d− − l)2(1− a)−1 + 3c−1(1− a1/3))ε1/3 +O(ε).

The value of the integral [−ε, ε] is

A(ytest) ≤
(
(
1

2
(d+ − l)2 + l−1) + al−1 + (

1

2
(d− − l)2(1− a)−1 + 3c−1(1− a1/3))

)
ε1/3 +O(ε2/3)

=
1

2
(d+ − l)2 + (a+ 1)l−1 +

1

2
(d− − l)2(1− a)−1 + 3c−1(1− a1/3)

=
1

2
(d+ − ds)2 + (a+ 1)d−1s−1 +

1

2
(d− + ds)2(1− a)−1 + 3c−1(1− a1/3)

=
d2

2
(1− s)2 + (a+ 1)d−1s−1 +

d2

2
(1 + s)2(1− a)−1 + 3c−1(1− a1/3)

=

(
d2+
2
((1− s)2 + (1 + s)2(1− a)−1) + (a+ 1)d−1s−1 + 3c−1(1− a1/3)

)
ε1/3 +O(ε2/3)

By taking a = 0.2, s = 0.5,(
d2+
2
((1− s)2 + (1 + s)2(1− a)−1) + (a+ 1)d−1s−1 + 3c−1(1− a1/3)

)
≈ 6.317782296

and the value for collision paths is 6.359922076.

5 The number of t with y(t) = 0 on (n, n + 1)
(revised)

As we showed, the set of t ∈ (n, n+1) satisfying y(t) = 0 is empty set, one point
or (n, n+1). Since triple collisions do not occur, the third case is impossible. If
anan+1 = −1, it is one point. If anan+1 = 1, it is empty set from the uniqueness
of the solution.

A Appendix:Regularization of collision

Here we introduce regularization of the binary collision in the planar Sitnikov
problem. The planar Sitnikov problem is equivalent to one-order differential
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equations:

dx

dt
= px

dpx
dt

= − 1

8x2

dy

dt
= py

dpy
dt

= − y

(x2 + y2)3/2
.

Now we regularize the singularity x = 0. By using the Levi-Civita transform
x = 1

2ξ
2, px = pξ/ξ, we get

dξ

dt
=

pξ
ξ2

dpξ
dt

=
p2ξ
ξ3

− 1

2ξ3

dy

dt
= py

dpy
dt

= − y

( ξ
4

4 + y2)3/2
.

The motion of m1 and m2 conserves the energy

E =
1

2
p2x − 1

8x
=

1

ξ2
(
1

2
p2ξ −

1

4
).

By using the energy relation, the equations become

dξ

dt
=

pξ
ξ2

dpξ
dt

=
2E

ξ

dy

dt
= py

dpy
dt

= − y

( ξ
4

4 + y2)3/2
.

Finally by changing time variable from t to s according to ds
dt = 1

ξ2 , we obtain
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the following equations:

dξ

dt
= pξ

dpξ
dt

= 2Eξ

dy

dt
= pyξ

2

dpy
dt

= − yξ2

( ξ
4

4 + y2)3/2
.

The singularity x = 0 which corresponds to ξ = 0 is regularized. Here we fix
E < 0 so that the period is one in the original time. Remark that the Levi-Civita
transform (ξ, pξ) 7→ (x, px) is two to one. ( (ξ, pξ) and (−ξ,−pξ) corresponds to
the same (x, px))．
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