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ABSTRACT: This report describes the total synthesis of the complex, oxygenated tetracy-

clic alkaloid, lyconesidine B. The key synthetic challenge involves diastereoselective gen-

eration of a decahydroquinoline ring with a quaternary carbon at the angular position via 

domino cyclopropanation, ring-opening, and reduction. Another crucial step is the domino 

ene-yne metathesis involving a quaternary ammonium ion, leading to the construction of a 

decahydroazaazulen framework. This synthesis requires minimizing catalyst deactivation 

and approaching the metal carbene with a double bond.  

Lyconesidines A and B were first isolated from the club moss, 

Lycopodium chinense, by Kobayashi and co-workers in 2002 

(Figure 1).[1] Their structures, including determination of the ab-

solute stereochemistry, were verified using X-ray crystallog-

raphy and extensive NMR analysis, including 2D-NMR and a 

modified Mosher’s method. These alkaloids have a complex 

tetracyclic skeleton containing a cis-hydrindanone (BD ring; 

Figure 1a) and a hydroazonine with a quaternary carbon center 

at the angular position. This moiety is part of the basic skeleton 

of fawcettimine-type alkaloids, which are a major class of Ly-

copodium alkaloids.[2] The oxidation state of C13 (along the CD 

ring juncture, highlighted with a green sphere in Figure 1) in 

lyconesidines (i.e. amine-type alkaloids) is lower than that in 

typical aminal- and enamine-type analogs (fawcettimine and 

fawcettidine structures, respectively; Figure 1b,c). Therefore, 

the lyconesidines exhibit distinct D ring conformations, 

wherein the hydroxymethyl group is located at the axial posi-

tion. In other words, lyconesidine B is characterized by an oxy-

gen-functionalized amine-type skeleton. Lyconesidines A and 

B exhibited cytotoxicity against murine lymphoma L1210 cells 

(IC50 = 18.0 μg/mL and 9.5 μg/mL, respectively), and inhibited 

the polymerization of tubulin (IC50 = 300 μM and 250 μM, re-

spectively). To our knowledge, there are currently no reports 

describing a total synthesis of lyconesidines; therefore, we have 

conducted a synthetic study involving these compounds with 

the aim of expanding our understanding of their three-dimen-

sional structures and biological activities. Lyconesidine B, 

which exhibits relatively more potent activity, was used as a 

target to establish a synthetic route for obtaining analogs bear-

ing oxygen-containing functional groups, ultimately to eluci-

date structure-activity relationships based on its three-dimen-

sional framework. A synthetic method that allows introduction 

of functional groups at various positions in a certain skeleton 

enables synthesis of analogs with several interaction sites de-

signed for a target protein. In this report, we describe the total 

synthesis of lyconesidine B, which contains a highly-oxygen-

ated amine-type structure, by developing synthetic strategies 

that can be applied to analog synthesis. 

 

Figure 1. Examples of basic and oxygenated fawcettimine-type al-

kaloids, noting the number of total synthesis literature reports. (a) 

Lyconesidines and related amine-type alkaloids, (b) Fawcettimine 

and related aminal-type alkaloids, and (c) Fawcettidine and related 

enamine-type alkaloids. 

Fawcettimine-type alkaloids have attracted the attention of 

numerous synthetic organic chemists because of their distinc-

tive structures and biological activities.[3-5] Inubushi and Heath-

cock reported the pioneering total synthesis of the basic faw-

cettimine framework, which comprised a cis-hydrindanone (BD 

ring) fused with hydroazonine.[4a,b] Although various faw-

cettimine-type alkaloid syntheses have been reported to date, 

most of the strategies focus on the aminal- and enamine-type 



 

structures (Figure 1b,c).[5] To our knowledge, there is only one 

synthetic study regarding the basic amine-type skeleton, specif-

ically, lannotinidine B.[6] There are no known synthetic reports 

for the oxygen-functionalized amine-type skeleton, likely be-

cause the functional groups on the tetracyclic framework and 

the relatively lower oxidation state of C13 limit the strategies 

and reactions that can be applied to produce these structures. 

Therefore, a new synthetic approach is required to obtain ly-

conesidine B. 

The synthesis of lyconesidine B poses several challenges, in-

cluding the construction of a complex, oxygenated, tetracyclic 

skeleton, as well as the introduction of a quaternary carbon and 

six contiguous stereocenters, including an axial hydroxymethyl 

group on the D ring. The lyconesidine B (1) synthetic plan pre-

sented herein is based on a domino ene-yne metathesis reac-

tion,[7,8] which generates a decahydroazaazulen structure (AB 

ring), in combination with a cyclopropanation ring-opening 

method to obtain the decahydroquinoline (CD ring) (Scheme 

1).[9,10] We propose that the tetracyclic skeleton can be modified 

in a relatively late stage of the synthesis. Specifically, 1 is ob-

tained from a tetracyclic compound 2 by stereoselectively intro-

ducing a hydroxymethyl group. The AB ring framework is con-

structed from dieneyne 3, which is derived from compound 4. 

To control the reactivity of the double bonds in 3 during the 

metathesis, a crotyl group is introduced on one side. The deca-

hydroquinoline skeleton (CD ring) of 4 is constructed via intra-

molecular cyclopropanation of tetrahydropyridine 6, ring-open-

ing of cyclopropane 5, and reduction of the resulting iminium 

ion. This one-pot transformation generates the trans ring junc-

ture, including the quaternary carbon center. The cyclization 

precursor 6 is prepared from a known enol triflate 7.[11] While 

many approaches involve synthesizing the tetracyclic skeleton 

from the BD ring, then forming the azonine ring to construct the 

AC 

 

Scheme 1. Retrosynthesis of lyconesidine B. 

 

ring, the synthetic route described herein is unique because the 

CD ring is constructed first, followed by the AB ring. 

The synthesis began with a Suzuki-Miyaura coupling of enol 

triflate 7, which was prepared from δ-valerolactam in two 

steps,[11] with vinyl boronic ester 8 (Scheme 2).[12] The resulting 

unsaturated ester 9 was converted to 11 by Cu-catalyzed 1,4-

reduction[13] and introduction of an aldehyde moiety using the 

Vilsmeier reagent. Following the reduction of aldehyde 11 and 

silylation of the resulting alcohol, the diazonitrile unit was in-

troduced by treating with deprotonated acetonitrile and per-

forming diazotransfer with 2-azido-1,3-dimethylimidazolinium 

hexafluorophosphate[14] to afford the cyclization precursor 6. 

This compound can be converted into decahydroquinoline 4 us-

ing a one-pot process. Applying our previously developed pro-

cedure,[9] tetrahydropyridine 6 was treated with bis[rho-

dium(α,α,α′,α′-tetramethyl-1,3-benzenedipropionic acid)] 

(Rh2(esp)2),
[15] then trifluoroacetic acid (TFA) and 

NaBH(OAc)3. The reaction proceeded through cyclopropana-

tion, ring-opening of the unstable intermediate 5, and finally, 

reduction of an iminium ion to generate decahydroquinoline 4 

in 45% yield, along with a small amount of enecarbamate 13 as 

a byproduct. Because 13 could not be converted to 4, various 

reducing agents and Rh catalysts were investigated to improve 

the yield and suppress the formation of byproduct 13. It was 

determined that the combination of Rh2(NHCOtBu)4,
[16] bearing 

an amide ligand, and NaBH(O2CCF3)3 (1 equiv.), prepared from 

NaBH4 and TFA (1:3),[17] provided better results. The reaction 

under these optimized conditions proceeded smoothly to afford 

4 in 72% yield as the single product. These conditions were re-

liable and could be applied for decagram-scale synthesis of 4. 

The obtained decahydroquinoline skeleton 4 was then con-

verted to the domino ene-yne cyclization precursor 3. Follow-

ing O-allylation, the tert-butyldimethylsilyl (TBS) group was 

removed to afford the alcohol 14. Oxidation of that alcohol with 

tetra-n-propylammonium perruthenate (TPAP)[18] and introduc-

tion of an alkyne moiety using the Ohira-Bestmann reagent gen-

erated compound 15. It was essential to introduce the alkyne 

unit at this stage to avoid steric congestion. After a Claisen re-

arrangement, the nitrile and tert-butoxycarbonyl (Boc) groups 

were removed under Birch and acidic conditions, respectively. 

The resulting amine 17 was treated with crotyl bromide and a 

base (K2CO3) to afford the cyclization precursor 3, which was 

used for initial attempts of domino ene-yne metathesis. 

First, 3 was treated with 5 mol% Grubbs 2nd generation cata-

lyst, but the desired cyclized product 2 was only obtained in 5% 

yield. When 50 mol% of Grubbs 2nd catalyst was used, 2 was 

produced in up to 50% yield, depending on the amount of the 

catalyst. These results suggested that the catalyst was deac-

tivated by the bridge-head tertiary amine of the product 

(Scheme 3, path a). Therefore, the addition of Lewis and 

Brønsted acids, including Ti(OiPr)4
[19] and HCl,[8h] was exam-

ined as a method to prevent the deactivation of the Grubbs cat-

alyst. However, these conditions did not improve yields, be-

cause the crotyl group avoided inversion and remained at the 

equatorial position. Therefore, to achieve the domino ene-yne 

metathesis, it is necessary to minimize the tertiary amine’s de-

activation of the Grubbs catalyst while positioning the crotyl 

group in the axial conformation for the second cyclization. 

 

Scheme 2. Synthesis of the tetracyclic core of lyconesidine B. 



 

 

JohnPhos = 2-(di-tert-butylphosphino)biphenyl, PMHS = polymethylhydrosiloxane, LDA = lithium diisopropylamide, TBAF = tetra-n-bu-

tylammonium fluoride, NMO = N-methylmorpholine N-oxide, MS 4A = molecular sieves 4Å. 

 

 

Scheme 3. Constructing of the tetracyclic skeleton via domino 

ene-yne metathesis. 

 

 

 

Thus, we expected that the quaternary ammonium salt 18 

would meet these requirements, although the additional substit-

uent must be removed after the cyclization (path b). The second 

crotyl group would be best because there is no need to distin-

guish between the two substituents on the nitrogen atom. It was 

regioselectively introduced to compound 3 at elevated temper-

ature, without using a base (K2CO3) to generate a thermody-

namically-stable linear-crotyl product 18a (Scheme 2). The ob-

tained quaternary ammonium salt 18a was treated with 11 

mol% Grubbs 2nd catalyst, and the desired domino cyclization 

proceeded smoothly to give compound 19a in good yield. The 

crotyl group could be readily removed by treating with Na2S to 

obtain the tetracyclic compound 2. The overall yield was 67% 

through crotylation, domino ene-yne metathesis, and de-cro-

tylation. Although it takes 19 steps to access the key tetracyclic 

skeleton 2, from the known triflate 7, this synthetic route gen-

erates enough material (over 500 mg) to synthesize the natural 

product. 

After construction of the tetracyclic compound 2, the total 

synthesis of lyconesidine B requires regio- and stereoselective 

introduction of a hydroxymethyl group and an oxygen function-

ality. Epoxidation of 2 with H2O2 and trichloroacetonitrile[20] af-

forded 20 as a single diastereomer, along with oxidation of the 

bridge-head amine to an N-oxide (Scheme 4). After reductive 

ring-opening of the epoxide, the resulting allyl alcohol 21 was 

converted to 22 through silylation and diastereoselective hydro-

genation. The newly generated stereochemistry of 22 was con-

firmed by X-ray crystallographic analysis of its salt (22·HCl), 

as shown in Scheme 4. Diastereoselective introduction of the 

axial hydroxymethyl group was achieved by Mukaiyama aldol 

reaction of a silyl enol ether, prepared from ketone 22, with for-

maldehyde in the presence of Sc(OTf)3.
[21] The -hy-

droxyketone 23 was produced as a single diastereomer by 

shielding one side of the silyl enol ether with a bulky siloxane 

group. After a protecting group manipulation, ketone 25 was 

reduced diastereoselectively using the hydroxy group on C5 as 

the directing group. Selective oxidation of the resulting diol 26 

with 2-azaadamantane-N-oxyl (AZADO)[22] was followed by 

the removal of the triethylsilyl (TES) group to give lyconesidine 

B (1). The spectral data (high-resolution mass spectrometry 

(HRMS) and 1H and 13C NMR) obtained for the synthetic ly-

conesidine B matched well with those of the natural product. 

Thus, we achieved the total synthesis of lyconesidine B.[1] 

Scheme 4. Total synthesis of lyconesidine B. 



 

 

TMS = trimethylsilyl, DMAP = 4-dimethylaminopyridine. 

In summary, we have accomplished the total synthesis of ly-

conesidine B by applying an original synthetic strategy employ-

ing domino reactions to generate a framework comprising dec-

ahydroquinoline (CD ring) and decahydroazaazulen (AB ring). 

The CD ring, which contains a quaternary carbon center at the 

angular position, was constructed via cyclopropanation of a 

tetrasubstituted enecarbamate, followed by ring-opening and 

diastereoselective reduction. The AB ring was obtained through 

a domino ene-yne metathesis, in which a quaternary ammonium 

ion played an important role in minimizing the deactivation of 

the Grubbs catalyst and positioning the crotyl group in the axial 

conformation to allow the second cyclization. The developed 

synthetic route enabled easy access to the oxygenated amine-

type tetracyclic skeleton, which cannot be readily obtained us-

ing other established strategies. Follow-up studies are currently 

underway to investigate the biological activity of these syn-

thetic analogs. 
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