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ABSTRACT: A mild and chemoselective three-component thioesterification using olefins, -ketoacids, and elemental sulfur has 

been developed. The photocatalytic activation of elemental sulfur, a cheap and abundant sulfur source, enables the rapid installation 

of a sulfur atom into molecules, reactions that ordinarily would require the use of reactive and malodorous sulfur-containing com-

pounds such as thiols and thioacids. This novel reaction is characterized by high yields and a broad substrate scope, which enables 

the introduction of thioester moieties into complex molecules including a steroid, a peptide, and a non-protected glycoside. Mecha-

nistic studies indicated that the success of this transformation depends on the multiple roles played by the elemental sulfur, including 

those of a sulfurizing agent, a terminal oxidant, and a HAT mediator. 

Sulfur-containing functional groups are versatile motifs that 

can be used to impart organic compounds with novel physical 

properties and/or bioactivity.1 Thioesters are active esters found 

in biosynthetic intermediates such as acetyl-CoA and are used 

synthetically as acyl-transfer agents for the preparation of vari-

ous carbonyl compounds and during native chemical ligation 

(NCL).2,3 Therefore, synthetic chemists have devoted substan-

tial effort to the development of methods for the rapid construc-

tion of thioesters. To date, approaches to this end have mainly 

focused on using thiols or thioacids (Scheme 1A).4-10 Most con-

ventional methods for the preparation of thioesters are based on 

the acylation of thiols with activated carboxylic-acid deriva-

tives (reaction (a), Scheme 1A).4a During the search for more 

efficient and chemoselective acylation methods, variants of this 

approach have arisen that use combinations of aldehydes5 or -

ketoacids6 and stoichiometric amounts of oxidants (reaction (b), 

Scheme 1A). Additionally, transition-metal-catalyzed car-

bonylative couplings of thiols (reaction (c), Scheme 1A) have 

been intensively investigated.7 Thioacids are alternative sulfur 

sources for the formation of thioesters and thiol-ene reactions 

with olefins (reaction (d), Scheme 1A)8 and SN2 reactions with 

alkyl halides (reaction (e), Scheme 1A) have been accom-

plished using this sulfur source.9 Although some of these trans-

formations give reliable results, both thiols and thioacids are 

highly reactive species that require special care during prepara-

tion and storage as they are oxidized easily and have unpleasant 

odors. Thus, a new synthetic approach for the formation of thi-

oesters using a readily available, easily handled sulfur source is 

highly desirable. 

Herein, we propose a strategy for a three-component reaction 

Scheme 1. Strategies for the synthesis of thioesters. 

 
 

for the formation of thioesters using elemental sulfur (S8),
11,12 

i.e., a sulfur source that is cheap, odorless, and stable under am-

bient conditions; however, S8 has not yet been used for the syn-

thesis of thioesters. The highly stable nature of S8 usually re-

quires the use of harsh activation conditions such as strong acids 

or bases, or high temperatures,11 all of which are incompatible 

with the formation of thioesters. Therefore, we envisioned that 

the photocatalytic single-electron reduction of S8 could effi-

ciently initiate a radical-mediated thioesterification. Although 



 

Table 1. Optimization of the reaction conditions.a 

 

entry PC 
redox potential (V) 

yield (%) 
[IrIII*/IrIV] [IrIII/IrIV] 

1 PC1 −1.00 +1.69 71 

2 PC2 −0.89 +1.69 83 

3 PC3 −0.96 +1.21 0 

4 PC4 −1.73 +0.77 0 

5 PC5 −1.91 +0.97 0 

 
aIsolated yields are shown. bThe number of equivalents was calcu-

lated relative to the number of S atoms. 

 

a photocatalytic reaction using S8 has been reported by Savateev 

in 2018,13 it was limited to a heterogeneous system for the syn-

thesis of disulfides and thioamides. S8 is easily reduced (E1/2 = 

−0.34 V vs NHE13a) and therefore we were able to design a pho-

tocatalyzed three-component coupling reaction of an -ke-

toacid and an olefin (Scheme 1B). We envisaged that S8 could 

potentially be reduced by an appropriate photoredox catalyst 

concomitant with the oxidation of an -ketoacid to produce a 

polysulfide radical anion and an acyl radical species. These in-

termediate radicals could then couple to form a carbonyl thiyl 

radical and, following a radical addition to an olefin and a hy-

drogen-atom transfer (HAT) step, provide a thioester. In the cat-

alytic cycle, S8 would act not only as a sulfur source, but also as 

a terminal oxidant and as the HAT mediator. We hoped that the 

multiple roles that S8 plays would simplify the reaction system 

whilst the use of -ketoacids as an acyl equivalent would pro-

vide unique chemoselectivity and increase the functional-group 

tolerance.14,15 

Initially, we investigated the reaction conditions for our pro-

posed thioesterification using model substrates, i.e., olefin 1 and 

-ketoacid 2 (Table 1). A screening of photocatalysts (PC) 

revealed that in the presence of S8 and 2,4,6-collidine in 

MeCN16 under blue LEDs irradiation, PC1 (E1/2[Ir
III*/IrIV] = 

−1.00 V vs SCE and E1/2[Ir
III/IrIV] = +1.69 V vs SCE17) and PC2 

(E1/2[Ir
III*/IrIV] = −0.89 V vs SCE and E1/2[Ir

III/IrIV] = +1.69 V vs 

SCE18) could efficiently provide the desired thioester 3 in 71% 

and 83% yield, respectively (entries 1 and 2).19,20 In contrast, 

PC3,17 PC4,21 and PC522 did not promote the reaction, despite 

their excited complexes having sufficient reducing power for 

the reduction of S8 (E1/2 = −0.57 V vs SCE23) (entries 3-5). 

These results and the redox potential of -ketocarboxylate (Epa 

= +1.12 V vs SCE23) suggest that a highly oxidizing photocata-

lyst is essential for a successful transformation. 

Scheme 2. Substrate scope of the thioesterification reaction.a 

 
 aIsolated yields are shown. b-Ketoacid (2.0 equiv.), S8 (4.0 

equiv.), and 2,4,6-collidine (2.0 equiv.). c-Ketoacid (3.0 equiv.), 

S8 (6.0 equiv.), and 2,4,6-collidine (3.0 equiv.). d-Ketoacid (2.5 

equiv.), S8 (5.0 equiv.), and 2,4,6-collidine (2.5 equiv.). eTHF was 

used as solvent. fCH2Cl2 was used as solvent. gThioester 22 was 

obtained in an : ratio of 5.3:1, as 3-(D-glucopyranosyl-1-pro-

pene (: = 5.3:1) was used as the olefinic substrate. 

 

With the optimum reaction conditions (Table 1, entry 2) in 

hand, we investigated the substrate scope in order to verify the 

chemoselectivity and functional-group tolerance of the thi-

oesterification reaction (Scheme 2). -Ketoacids with aryl or 

branched alkyl substituents provided thioesters 4 and 5 in 60% 

and 83% yield, respectively. The reaction of pyruvic acid, a 

cheap and abundant -ketoacid that is metabolically converted 

into Acetyl-CoA, afforded thioacetylated product 6 in good 

yield. Additionally, a long-chain fatty acid and a functionalized 

3-aminopropanoic moiety were successfully incorporated into 

thioesters 7 and 8. Next, we explored the scope of the reaction 

with respect to the olefin moiety. Simple hydrocarbons such as 

n-hexene, 4-phenyl-1-butene, or methylenecyclohexane pro-

vided thioesters 9-11 in excellent yield, albeit the aryl alkenes 

did not result in good yields (<20% yield). We then applied our 

standard conditions to olefins bearing thioethers, anilides, alde-

hydes, and unprotected carboxy groups; we found that these 



 

Scheme 3. Mechanistic analysis of the reaction intermedi-

ates. 

 
 

functional groups do not affect the yield of the resulting thioe-

sters (12-15). It should be noted here that although 16 and 17 

contain an unprotected hydroxy group and a p-toluenesulfonyl 

ester, both of which could potentially be functionalized during 

conventional thioesterification reactions, they still gave the de-

sired products in 91% and 66% yield, respectively. In addition, 

a diene was successfully converted into bisthioester 18 by dou-

bling the amount of reagent used. We also applied this method 

to the synthesis of thioesters derived from various biologically 

active compounds. The thioesterification of camphene, a bicy-

clic monoterpene, proceeded successfully to afford 19. Pregne-

nolone, a prohormone that has been used as a medication, pro-

vided the corresponding thioester 20 in 69% yield as a single 

diastereomer. Remarkably, a peptide and a glycoside could also 

be thioesterified effectively under the optimized reaction con-

ditions to provide 21 and 22. 

Next, we conducted a mechanistic analysis of the three-com-

ponent thioesterification. We initially confirmed that the addi-

tion of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a 

radical scavenger to the standard reaction shut off the formation 

of the thioester and this result indicates that the reaction pro-

ceeds via a radical pathway (for details, see the Supporting In-

formation).24 In addition, the use of a deuterated -ketoacid pro-

vided thioester 3 with 52% incorporation of deuterium at the -

position relative to the sulfur functionality (eq. 1).25 These re-

sults suggest that the reaction proceeds via the addition of a thiyl 

radical to the alkene followed by a HAT step between the -

alkylradical and a protonated species such as a hydropolysulfide. 

In order to gain insight into the reaction intermediates we con-

ducted a reaction using benzoic thioacid 23 and found that un-

der the optimal conditions, the thiol-ene reaction9 proceeds 

smoothly (eq. 2). However, in the absence of an olefin (eq. 3) 

under otherwise optimal conditions, the reaction of -ketoacid 

24 did not afford a significant amount of thioacid 23, probably 

due to the imbalance of the redox potentials of the -ketocar-

boxylate A (Epa = +1.12 V vs SCE) and the thiocarboxylate C  

(Epa = +0.61 V vs SCE23). These results indicate that a thioacid 

does not form during the thioesterification and that a carbonyl 

thiyl radical B derived from a -ketoacid and S8 are directly 

Scheme 4. Mechanistic analysis of the reactive species. 

 
 

consumed in the following radical addition. 

Next, we performed luminescence-quenching experiments 

on the iridium photocatalysts to gain insight into the reaction 

intermediates. Stern-Volmer plots revealed that an excited state 

of PC2 is most efficiently quenched by S8 and can therefore be 

expected to initiate the thioesterification via the reduction of S8 

as originally expected (Scheme 4A, left). However, the screen-

ing of photocatalyst PC6 (Scheme 4A, right), which has little 

reducing power in the oxidative quenching (OQ) cycle 

(E1/2[Ir
III*/IrIV] = −0.43 V vs SCE26), showed that it could also 

provide the desired thioester 3 and was quenched only by the 

combination of the -ketoacid and 2,4,6-collidine. These re-

sults indicate that both the single-electron reduction of S8 and 

the single-electron oxidation of -ketocarboxylate could initi-

ate the photocatalytic cycle, and that the resulting S8 radical an-

ion and -ketocarboxy radical, which would be immediately 

converted into an acyl radical, could act as key intermediates in 

the reaction. Subsequently, we conducted experiments where a 

1,3-diyne was added to the thioesterification in order to obtain 

evidence of the fragmentation of S8 during photocatalysis. Pre-

vious reports have shown that anionic sulfur species such as hy-

drosulfides, S3 radical anions, and trithiocarbonate anions can 

couple with 1,4-diphenyl-1,3-butadiyne 25 to provide a 1,4-di-

phenylthiophene 26.12b,27 We obtained thiophene 28 in 91% 

yield following the reaction of 1,3-diyne 25 under the optimal 



 

 

Figure 1. A plausible mechanism for the thioesterification reaction. 

 

conditions in conjunction with the complete cessation of the thi-

oesterification reaction and full recovery of -ketoacid 2 

(Scheme 4B, eq. 4). Moreover, we found that the use of diphe-

nyltetrasulfide 2728 (E1/2 = −0.53 V vs SCE23) instead of S8 also 

afforded thioester 3 and a similar inhibition of the thioesterifi-

cation as seen in eq. 4 was observed (eq. 5). These results indi-

cate that the ring opening and subsequent fragmentation of the 

reduced S8 occurs easily and that the fragmented sulfur species 

might be involved in the sulfurizing step. In addition, we con-

firmed the requirement for continuous irradiation with visible 

light by performing light on-off experiments and monitoring us-

ing React IR, and the consumption of substrate and the for-

mation of product were observed just under photo irradiation 

(for details, see the Supporting Information). This result ex-

clude the possibility that the reaction proceeds via a radical-

chain pathway. 

Based on the experiments described above, a plausible rec-

tion mechanism is shown in Figure 1. Under irradiation from 

blue LEDs, IrIII catalyst PC2 (E1/2[Ir
III*/IrIV] = −0.89 V vs SCE) 

is excited and, following oxidative quenching by S8 (E1/2 = 

−0.57 V vs SCE), furnishes an IrIV complex and a polysulfide 

radical anion. Then, the single-electron oxidation of an -keto-

carboxylate (Epa = +1.12 V vs SCE) with IrIV (E1/2[Ir
III/IrIV] = 

+1.69 V vs SCE) affords an acyl radical via a decarboxylation 

with concomitant regeneration of the IrIII catalyst. Acyl radical 

A couples with the polysulfide radical anion or S8 and the re-

sulting intermediate is converted into carbonyl thiyl radical B. 

The addition of radical B to the olefin and a subsequent HAT 

step with the hydropolysulfide species provides the desired thi-

oester. The exact identities of the sulfur species in the reaction 

system are still not clear because the cleavage of an S−S bond 

in the polysulfide species is likely to be a facile process;12b this 

complicates the reaction system and renders the actual reactive 

species undetectable at present. However, the mechanistic anal-

ysis showed that the multiple roles played by S8 are definitely 

crucial to the success and the utility of this transformation. 

In summary, we have developed a three-component thi-

oesterification of olefins, -ketoacids, and S8. Employing S8 as 

a cheap and easily employed sulfur source avoids the use of un-

stable sulfur-containing compounds such as thiols and thioacids. 

Furthermore, the mild activation of S8 via photocatalysis en-

sures that the reaction can tolerate a wide variety of functional 

groups that include unprotected alcohols and carboxylic acids. 

These reaction characteristics allow introducing a thioester 

moiety into complex molecules such as peptides and non-pro-

tected glycosides. A mechanistic analysis implied that S8 may 

not only serve as a sulfur source but also act as an oxidant and 

a HAT mediator. The multiple roles played by sulfur in this re-

action and the mechanistic details of the transformation are cur-

rently under investigation together with further applications of 

this strategy. 
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