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Chapter 1

Introduction

The problem of integrability for ordinary differential equations is one of classical and
important topics in dynamical systems, as seen in Poincaré’s famous work [51, 52] on
the restricted three-body problem in 1890’s. The notion of integrability for Hamiltonian
systems has been well established and is called Liouville integrableity : If an m-degree-of-
freedom Hamiltonian system withm ∈ N is integrable in this sense, then it hasm (Poisson
commuting) first integrals (see [9, 43] for its precise definition). The Liouville-Arnold
theorem (see, e.g., Section 49 of [9]) states that such a Hamiltonian system can be solved
by quadrature. In his paper [15] published in 1998, Bogoyavlenskij extended the concept of
integrability to general ordinary differential equations including non-Hamiltonian systems,
using commutative vector fields as well as first integrals.

From the late 20th century to early 21st century, the theory of integrability for ordi-
nary differential equations has progressed remarkably. In 1980’s, Ziglin [79] developed a
method called the Ziglin analysis to obtain a sufficient condition for meromorphical nonin-
tegrability of complex Hamiltonian systems in which both the dependent and independent
variables are extended to complex ones. In his method, monodoromy matrices of the vari-
ational equations, i.e., linearized equations, along particular nonconstant solutions such
as periodic and homoclinic orbits are computed and their noncommutativity detects the
nonintegrability of Hamiltonian systems. Subsequently, Morales-Ruiz and Ramis [43, 47]
improved his method drastically using differential Galois theory [23,53], and developed a
stronger method which is now called the Morales-Ramis theory. In their method, the dif-
ferential Galois groups of the variational equations along particular nonconstant solutions
are used and the noncommutativity of their identity components detects the meromorphic
or rational nonintegrability of Hamiltonian systems. Moreover, Ayoul and Zung [12] used
a simple trick called the cotangent lift (see also Section 3.3 below) and showed that the
Morales-Ramis theory is also applicable to nonintegrability of non-Hamiltonian systems
in the sense of Bogoyavlenskij. These methods have been successfully applied to numer-
ous examples including general three-body problem [18, 19, 58, 59]. See [37, 45, 48] and
references therein for these results.

On the other hand, since the mid 20th century, including Ueda and his coworkers
(e.g., [29, 60]) on the forced Duffing oscillator, there has been many researches reporting
that nonlinear oscillators exhibit chaotic behavior in numerical simulations and/or exper-
iments. See [26, 62] and references therein. However, the nonintegrability and existence
of chaos in these nonlinear oscillators have not been mathematically proved except in
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CHAPTER 1. INTRODUCTION 4

special cases. It has also been reported that complicated dynamics such as chaos occur in
many noningrable systems (see, e.g., [38–40, 46, 70, 76, 77]), but there are many unknown
parts on the relationship between the nonintegrability of differential equations and their
dynamics.

In this thesis, we consider a class of ordinary differential equations including non-
Hamiltonian systems and nonlinear oscillators with parametric or external forcing, and
develop theories for their nonintegrability and related dynamics. In particular, we give
several necessary conditions for persistence of periodic and homoclinic orbits, first integrals
and commutative vector fields in perturbed systems, and for real-analytic integrability of
nearly integrable systems in the sense of Bogoyavlenskij such that the first integrals and
commutative vector fields also depend analytically on the perturbation parameter.

The rest of this thesis consists of the following chapters.
In Chapter 2, we discuss nonintegrability of parametrically forced nonlinear oscillators

which are represented by second-order homogeneous differential equations with trigono-
metric coefficients and contain the Duffing and van der Pol oscillators as special cases.
Specifically, we give sufficient conditions for their rational nonintegrability in the meaning
of Bogoyavlenskij, using Kovacic’s algorithm [34] as well as an extension of the Morales-
Ramis theory due to Ayoul and Zung. In application of the extended Morales-Ramis
theory, for the associated variational equations, the identity components of their differen-
tial Galois groups are shown to be not commutative even if the differential Galois groups
are triangularizable, i.e., they can be solved by quadrature. The obtained results are
very general and reveal their rational nonintegarbility for the wide class of parametrically
forced nonlinear oscillators. We also give two examples for the van der Pol and Duffing
oscillators to demonstrate our results.

In Chapter 3, we study persistence of periodic and homoclinic orbits, first integrals
and commutative vector fields in dynamical systems depending on a small parameter and
give several necessary conditions for their persistence. Here we treat homoclinic orbits not
only to equilibria but also to periodic orbits. We also discuss some relationships of these
results with the standard subharmonic and homoclinic Melnikov methods [26, 42, 62, 65]
for time-periodic perturbations of single-degree-of-freedom Hamiltonian systems, and with
another version of the homoclinic Melnikov method [61] for autonomous perturbations of
multi-degree-of-freedom Hamiltonian systems. In particular, we show that a first integral
which converges to the Hamiltonian or another first integral as the perturbation tends to
zero does not exist near the unperturbed periodic or homoclinic orbits in the perturbed
systems if the subharmonic or homoclinic Melnikov functions are not identically zero on
connected open sets. We illustrate our theory for four examples: The periodically forced
Duffing oscillator, two identical pendula coupled with a harmonic oscillator, a periodically
forced rigid body and a three-mode truncation of a buckled beam.

In Chapter 4, we study the existence of first integrals and integrability for perturba-
tions of integrable systems in the sense of Bogoyavlenskij including non-Hamiltonian ones.
We especially assume that there exists a family of periodic orbits on a regular level set
of the first integrals which has a connected and compact component and give sufficient
conditions for nonexistence of the same number of first integrals in the perturbed systems
as the unperturbed ones and for their nonintegrability near the level set such that the
first integrals and commutative vector fields depend analytically on the small parameter.
We compare our results with the classical results of Poincaré [51, 52] and Kozlov [35, 36]
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for systems written in action and angle coordinates and discuss their relationships with
the subharmonic and homoclinic Melnikov methods for periodic perturbations of single-
degree-of-freeedom Hamiltonian systems. We illustrate our theory for three examples
containing the periodically forced Duffing oscillator.

Finally, we give concluding remarks and some comments on future work in Chapter 5.



Chapter 2

Nonintegrability of Parametrically
Forced Nonlinear Oscillators

2.1 Introduction

We consider second-order homogeneous differential equations with trigonometric coeffi-
cients of the form

ẍ+ f(x, ẋ, cosωt, sinωt)x+ g(x, ẋ, cosωt, sinωt)ẋ = 0,

or equivalently as a first-order system,

ẋ1 = x2, ẋ2 = −f(x1, x2, cosωt, sinωt)x1 − g(x1, x2, cosωt, sinωt)x2, (2.1.1)

where the dot represents differentiation with respect to t; ω > 0 is a constant; and
f, g : R4 → R are rational and satisfy

f(0, 0, y1, y2) = f0 + f1y1, g(0, 0, y1, y2) = g0 + g1y1 + g2y2 (2.1.2)

for any y1, y2 ∈ R with constants f0, f1, g0, g1, g2 ∈ R. Even if f(0, 0, y1, y2) = f0 +
f1y1 + f2y2 with a constant f2 ̸= 0, then we can redefine the functions f and g so that
condition (2.1.2) holds, by shifting the independent variable t. Equation (2.1.1) represents
several parametrically forced nonlinear oscillators. For example, it reduces to the Duffing
oscillator when f(x1, x2, y1, y2) = f0 + f̄1x

2
1 and g(x1, x2, y1, y2) = g0, and the van der Pol

oscillator when f(x1, x2, y1, y2) = f0 and g(x1, x2, y1, y2) = g0(1 − x2
1), where f̄1 as well

as f0, g0 is a constant. These nonlinear oscillators often exhibit chaotic dynamics when
they are parametrically excited. See, e.g., [7, 28, 55]. A global perturbation technique
called Melnikov’s method [26,62] allows us to detect the existence of horseshoe dynamics
yielding chaos in some cases [7] but no mathematical explanation for the occurrence of
chaos has still been given in the other cases.

In this chapter we discuss the nonintegrability of (2.1.1), which provides another
reason why it may exhibit complicated dynamics such as chaotic motions. For general
Hamiltonian systems, Morales-Ruiz and Ramis [47] developed a strong method to present
a sufficient condition for their meromorphic or rational nonintegrability. Their theory,
which is now called the Morales-Ramis theory, states that complex Hamiltonian systems

6



CHAPTER 2. 7

are meromorphically or rationally nonintegrable if the identity components of the differ-
ential Galois groups [23, 53] for their variational equations (VEs) or normal variational
equations (NVEs) around particular nonconstant solutions such as periodic orbits are not
commutative. See also [43]. In application of the Morales-Ramis theory, a useful algorithm
which was proposed by Kovacic [34] for linear second order differential equations and is
now called the Kovacic algorithm has been frequently used to determine the differential
Galois groups of the associated VEs and NVEs. Moreover, Ayoul and Zung [12] showed
that the Morales-Ramis theory is also applicable for detection of meromorphic or rational
nonintegrability of non-Hamiltonian systems in the meaning of Bogoyavlenskij [15] (see
Definition 2.2.1).

Specifically, using the extended Morales-Ramis theory and the Kovacic algorithm, we
prove that an autonomous system corresponding to (2.1.1) (see Eq. (2.2.1)) is rationally
nonintegrable in the meaning of Bogoyavlenskij if (f0, f1) ̸= (0, 0), (f1, g1, g2) ̸= (0, 0, 0)
and ω > 0. This means that Eq. (2.1.1) has at most one rational first integral of
x1, x2, cosωt and sinωt. Moreover, it is shown to have no such rational first integral
if f(x1, x2, y1, y2) is independent of x2, g(x1, x2, y1, y2) ≡ 0, f1 ̸= 0 and ω > 0 under an
additional condition (see Theorem 2.2.3 below). In application of the extended Morales-
Ramis theory, for the associated VEs, the identity components of their differential Galois
groups are shown to be not commutative even if the differential Galois groups are tri-
angularizable, i.e., they can be solved by quadratures. We should also mention that
Acosta-Humánez [3] studied their nonintegrability for a class of single-degree-of-freedom
nonautonomous Hamiltonian systems which contains a special case of (2.1.1), using the
Morales-Ramis theory, and that Stachowiak [57] discussed the existence of hypergeometric
first integrals for autonomous Duffing and van der Pol oscillators.

The rest of this chapter is as follows: In Section 2.2 we state our main results. We
provide prerequisites on the differential Galois theory and the extension of the Morales-
Ramis theory due to Ayoul and Zung [12] in Section 2.3, and prove the main results
in Sections 2.4 and 2.5. Finally, we give two examples for the van der Pol and Duffing
oscillators with parametric forcing to demonstrate our results in Section 2.6. For the
reader’s convenience the Kovacic algorithm is also outlined in a minimum necessary form
for our application in Appendix 2.A.

2.2 Main Results

In this section we give our main results. We first complexify (2.1.1) and rewrite it as

ẋ1 = x2, ẋ2 = −f̂(x1, x2, y)x1 − ĝ(x1, x2, y)x2, ẏ = iωy, (2.2.1)

where

f̂(x1, x2, y) =f
�
x1, x2,

1
2
(y + y−1),−1

2
i(y − y−1)

�
,

ĝ(x1, x2, y) =g
�
x1, x2,

1
2
(y + y−1),−1

2
i(y − y−1)

�
.

Equation (2.2.1) is not Hamiltonian in general. We adopt the following definition of
integrability due to Bogoyavlenskij [15].
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Definition 2.2.1 (Bogoyavlenskij). Consider systems of of the form

ẋ = v(x), x ∈ D ⊂ Cn, (2.2.2)

where n > 0 is an integer, D is a region in Cn and v : D → Cn is holomorphic. Let
q be an integer such that 1 ≤ q ≤ n. Equation (2.2.2) is called (q, n − q)-integrable or
simply integrable if there exist q vector fields v1(x)(:= v(x)), v2(x), . . . , vq(x) and n − q
scalar-valued functions F1(x), . . . , Fn−q(x) such that the following two conditions hold:

(i) v1, . . . , vq are linearly independent almost everywhere and commute with each other,
i.e., [vj, vk] := (Dvk)vj − (Dvj)vk = 0 for j, k = 1, . . . , q;

(ii) DF1, . . . ,DFn−q are linearly independent almost everywhere and F1, . . . , Fn−q are
first integrals of v1, . . . , vq, i.e., (DFk)vj = 0 for j = 1, . . . , q and k = 1, . . . , n− q.

If v1, v2, . . . , vq and F1, . . . , Fn−q are meromorphic and rational, respectively, then Eq. (2.2.2)
is said to be meromorphically and rationally integrable.

Definition 2.2.1 is regarded as a generalization of the Liouville integrability for Hamil-
tonian systems since if a Hamiltonian system with n degrees of freedom is Liouville inte-
grable, then there exist n functionally independent first integrals and n linearly indepen-
dent vector fields corresponding to the first integrals (almost everywhere). The statement
similar to that of the Liouville-Arnold theorem [9] also holds for integrable systems in the
meaning of Bogoyavlenskij. See [15] for more details.

We now state our first main result as follows.

Theorem 2.2.2. Suppose that (f0, f1) ̸= (0, 0), (f1, g1, g2) ̸= (0, 0, 0) and ω > 0. Then
Eq. (2.2.1) is rationally nonintegrable.

We prove Theorem 2.2.2 in Section 2.4. The statement of the theorem is very gen-
eral and it is applicable to many parametrically forced nonlinear oscillators including
classical ones stated in Section 2.1. It also says that even linear oscillators subjected
to parametric forcing is rationally nonintegrable if the hypothesis of the theorem holds.
Moreover, it means that the two-dimensional nonautonomous system (2.1.1) has at most
one rational first integral of x1, x2, cosωt and sinωt under the general condition even
if it is linear. Here we say that F (x1, x2, cosωt, sinωt) is a first integral of (2.1.1) if
F (x1(t), x2(t), cosωt, sinωt) is independent of t when (x1(t), x2(t)) is a solution to (2.1.1).
However, Eq. (2.1.1) has no such rational first integral in a restricted case as follows.

Theorem 2.2.3. Suppose that f(x1, x2, y1, y2) is independent of x2, g(x1, x2, y1, y2) ≡ 0,
f1 ̸= 0 and ω > 0. Let

V (x, y) =

�
f̂(x, y)x dx, (2.2.3)

where we write f̂(x1, y) instead of f̂(x1, x2, y). If V (x, y) is a rational function of x and
y, then Eq. (2.1.1) has no rational first integral of x1, x2, cosωt and sinωt.

We prove Theorem 2.2.3 in Section 2.5. The hypothesis of the theorem also means
that Eq. (2.1.1) is an nonautonomous Hamiltonian system.
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2.3 Prerequisites

In this section, we provide prerequisites on differential Galois theory for linear differential
equations (see [23,53] for more details) and the generalization of the Morales-Ramis theory
[43,47] due to Ayoul and Zung [12].

2.3.1 Differential Galois Theory

Let K be a differential field with a derivation ∂ and let n be a positive integer. Consider
the n-dimensional system of linear first-order differential equations

∂ξ = Aξ, ξ ∈ Cn, (2.3.1)

where A is an n×n matrix with entries in K. For higher-order differential equations, one
can transform them into the form (2.3.1). Here the differential field K is also referred to
as the coefficient field for (2.3.1). The subfield CK = Ker ∂ ⊂ K is called the constant field
of K. A differential field extension L ⊃ K is a field extension such that L is a differential
field and the derivations on L and K coincide on K. It is also called a Picard-Vessiot
extension for (2.3.1) if it is generated by K and the entries of a fundamental matrix Ξ of
(2.3.1), and its constant field coincides with CK.

Fix a Picard-Vessiot extension L ⊃ K and a fundamental matrix Ξ. A K-differential
automorphism σ of L is a field automorphism of L such that

∀a ∈ K, σ(a) = a and ∀a ∈ L, ∂(σ(a)) = σ(∂a),

and all K-differential automorphisms of L form a group. We call the group the differen-
tial Galois group of (2.3.1) and denote it by DGal(L/K). The differential Galois group
DGal(L/K) is also regarded as a linear algebraic subgroup of GL(n,CK) and determined
up to conjugation by the choice of Ξ. A unique maximal connected linear algebraic
subgroup of DGal(L/K) containing the identity element is called its identity component,
which is denoted by DGal(L/K)0.

The differential Galois theory can determine whether one can solve differential equa-
tions by quadratures, as algebraic Galois theory can for solving algebraic equations by
radicals. Roughly speaking, a differential equation can be solved by quadratures if and
only if the identity component of its differential Galois group is solvable. We recommend
the reader who is interested in the details of the theory to consult, e.g., the books [23,53].

2.3.2 Generalization of the Morales-Ramis Theory

We turn to the general system (2.2.2). Let x = φ(t), t ∈ C, be its nonstationary particular
solution. The VE of (2.2.2) along x = φ(t) is given by

ξ̇ = Dv(φ(t))ξ, ξ ∈ Cn. (2.3.2)

Let Γ be a curve given by x = φ(t). Assume that its closure Γ̄ in Pn contains points at
infinity and the vector field v(x) can be meromorphically extended to a region containing
Γ̄ in Pn. We take the meromorphic function field on Γ̄ as the coefficient field K of (2.3.2).
Using arguments given by Morales-Ruiz and Ramis [43,47] and Ayoul and Zung [12], we
have the following result.
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Theorem 2.3.1. Let G be the differential Galois group of (2.3.2). Suppose that the VE
(2.3.2) has irregular singularities at infinity. If Eq. (2.2.2) is rationally integrable near Γ,
then the identity component G0 of G is commutative.

Remark 2.3.2.

(i) In the above statement, assume that the VE (2.3.2) has no irregular singularity at
infinity. Then we can replace the word “rationally” with “meromorphically” in the
conclusion. See Section 4.2 of [43] or Section 5.2 of [47] for the details.

(ii) Ayoul and Zung [12] treated the VE (2.3.2) only on Γ, but we can easily extend their
result to our situation using arguments given in Section 4.2 of [43] or Section 5.2
of [47] although the obtained result is weaker: only rational integrability is mentioned
instead of meromorphic one, as stated above. See also Section 2 of [6].

As described in [4,75], if Eq. (2.3.2) has an invariant manifold containing the particular
solution φ(t), then it becomes easier to check whether G0 is not commutative. For simplic-
ity, assume that the m-dimensional plane {x = (x1, . . . , xn) ∈ Cn | x1 = · · · = xn−m = 0}
is invariant for some positive integer m < n. Then the VE (2.3.2) can be written as

ξ̇ =

�
A0(t) 0
A1(t) A2(t)

�
ξ, (2.3.3)

where A0(t), A1(t) and A2(t) are, respectively, (n−m)× (n−m), m× (n−m) and m×m
matrices. Let Ĝ be a differential Galois group of the NVE

˙̄ξ = A0(t)ξ̄,

where ξ̄ = (ξ1, . . . , ξn−m). We have the following proposition.

Proposition 2.3.3. If G0 is commutative, then so is Ĝ0.

A proof of this proposition is essentially found in that of Theorem 3.4 of [4] although
only Hamiltonian systems were treated there. Thus, if Ĝ0 is not commutative, then so is
G0 and by Theorem 2.3.1 and Remark 2.3.2(i) Eq. (2.2.2) is rationally or meromorphically
nonintegrable near Γ under the condition that the VE (2.3.2) has an irregular singularity
at infinity or not.

2.4 Proof of Theorem 2.2.2

We now prove Theorem 2.2.2 using the theory of Section 2.3.2. Henceforth we assume
that (f0, f1) ̸= (0, 0), (f1, g1, g2) ̸= (0, 0, 0) and ω > 0, and take ω = 1 without loss of
generality. Actually, if ω ̸= 1, then we only have to replace t, fj and gj with ωt, fj/ω

2

and gj/ω for j = 0, 1 or 0, 1, 2.
First, we easily see that (x1, x2, y) = (0, 0, eit) is a particular solution to (2.2.1), and

obtain the VE of (2.2.1) around it as

ξ̇1 = ξ2, ξ̇2 = −(f0 + f1 cos t)ξ1 − (g0 + g1 cos t+ g2 sin t)ξ2, ξ̇3 = iξ3 (2.4.1)
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under condition (2.1.2). The y-axis is invariant for (2.2.1) and the VE (2.4.1) has the
form (2.3.3) with m = 1. So the associated NVE is given by

ξ̇1 = ξ2, ξ̇2 = −(f0 + f1 cos t)ξ1 − (g0 + g1 cos t+ g2 sin t)ξ2. (2.4.2)

Equation (2.4.2) has no singular point in C and an irregular singular point at t = ∞.
Hence, it follows from Theorem 2.3.1 and Proposition 2.3.3 that if the identity component
Ĝ0 of the differential Galois group Ĝ for (2.4.2) is not commutative, then Eq. (2.2.1)
is rationally nonintegrable near the y-axis in C3. In the following we use the Kovacic
algorithm [34] to show that Ĝ0 is not commutative. A necessary part of the algorithm is
briefly described in Appendix 2.A. See [23, 34] for more details on the algorithm.

We rewrite (2.4.2) as the second-order differential equation

ξ̈1 + (g0 + g1 cos t+ g2 sin t)ξ̇1 + (f0 + f1 cos t)ξ1 = 0. (2.4.3)

By changing the independent variable as z = eit, Eq. (2.4.3) becomes

ξ′′1 −
�
iĝ1 +

ig0 − 1

z
+

iĝ−1

z2

�
ξ′1 −

�
f1
2z

+
f0
z2

+
f1
2z3

�
ξ1 = 0, (2.4.4)

where the prime represents differentiation with respect to z and

ĝ1 =
1
2
(g1 − ig2), ĝ−1 =

1
2
(g1 + ig2).

The identity component of the differential Galois group of (2.4.4) with K = C(z) coincides
with that of (2.4.3) with K = C(eit) (see, e.g., Proposition 1 of [5]). Finally, by changing
the dependent variable as

ξ1 = exp

�
1
2

� �
iĝ1 +

ig0 − 1

z
+

iĝ−1

z2

�
dz

�
ζ,

Eq. (2.4.4) reduces to the form (2.A.1) with

r(z) =1
4

�
iĝ1 +

ig0 − 1

z
+

iĝ−1

z2

�2

− 1
2

d

dz

�
iĝ1 +

ig0 − 1

z
+

iĝ−1

z2

�
+

�
f1
2z

+
f0
z2

+
f1
2z3

�

=r4z
−4 + r3z

−3 + r2z
−2 + r1z

−1 + r0, (2.4.5)

where

r4 = −1
4
ĝ2−1, r3 =

1
2
(f1 − (g0 − i)ĝ−1),

r2 = −1
4
(g20 + 1)− 1

2
ĝ1ĝ−1 + f0, r1 =

1
2
(f1 − (g0 + i)ĝ1), r0 = −1

4
ĝ21.

We now apply the Kovacic algorithm. The function r(z) of (2.4.5) has a pole only at
z = 0, and its order e0 is 3 or 4, depending on whether ĝ−1 = 0 or not, since (f1, ĝ−1) ̸=
(0, 0). Note that ĝ−1 = 0 if and only if ĝ1 = 0, since g1, g2 ∈ R. The order e∞ of r(z) at
∞ is 1 if ĝ1 = 0, and it is 0 otherwise. Using Proposition 2.A.2, we obtain the following
observations on cases (a)-(c) of Proposition 2.A.1:

(i) If f1 ̸= 0 and ĝ1, ĝ−1 = 0, i.e., g1, g2 = 0, then cases (a) and (c) do not occur but
case (b) may occur;
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(ii) If (f0, f1) ̸= (0, 0) and ĝ1, ĝ−1 ̸= 0, i.e., (g1, g2) ̸= (0, 0), then cases (b) and (c) do
not occur but case (a) may occur.

Note that the identity components of the differential Galois groups for (2.A.1) with (2.4.5)
and for (2.4.3) are not commutative if cases (a)-(c) do not occur, and that they may be
noncommutative even if case (a) occurs.

For case (i) we use the algorithm of Appendic 2.A to show that case (d) of Proposi-
tion 2.A.1 occurs, since e0 = 3 and e∞ = 1 so that

de =
1
2
(1− 3) = −1,

which means no occurrence of case (b). Thus, Eq. (2.2.1) is rationally nonintegrable when
f1 ̸= 0 and g1, g2 = 0.

We turn to case (ii) and apply the algorithm of Appendix 2.A. We have the Laurent
series expansions of

�
r(z) at z = 0 and ∞ as

�
r(z) = − iĝ−1

2z2
+ · · ·

and �
r(z) = − iĝ1

2
+ · · · ,

respectively. We calculate (2.A.2) and (2.A.3) as

κ+
0 = 1

2

�
− 2r3
iĝ−1

+ 2

�
=

f1g2
g21 + g22

+ 1
2
+ i

�
f1g1

g21 + g22
− 1

2
g0

�
,

κ−
0 = 1

2

�
2r3
iĝ−1

+ 2

�
= − f1g2

g21 + g22
+ 3

2
− i

�
f1g1

g21 + g22
− 1

2
g0

�
,

κ±
∞ = ∓ r1

iĝ1
= ∓ f1g2

g21 + g22
± 1

2
± i

�
f1g1

g21 + g22
− 1

2
g0

�

and

ds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2f1g2
g21 + g22

for (s(0), s(∞)) = (+,+);

−1− i

�
2f1g1
g21 + g22

− g0

�
for (s(0), s(∞)) = (+,−);

−1 + i

�
2f1g1
g21 + g22

− g0

�
for (s(0), s(∞)) = (−,+);

2f1g2
g21 + g22

− 2 for (s(0), s(∞)) = (−,−),

respectively. Thus, ds can be a nonnegative integer if and only if

2f1g2
g21 + g22

∈ Z \ {1}. (2.4.6)

Hence, according to the recipe of the Kovacic algorithm stated in Appendix 2.A, if condi-
tion (2.4.6) does not hold, then case (d) of Proposition 2.A.1 occurs and consequently the
identity component Ĝ0 of the differential Galois group Ĝ for (2.4.2) is not commutative.

We also have the following.
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Lemma 2.4.1. If (f0, f1), (g1, g2) ̸= (0, 0) and case (a) of Proposition 2.A.1 occurs for
(2.A.1) with (2.4.5), then Ĝ0 is not commutative.

See Appendix 2.B for a proof of this lemma. Thus, we prove that Ĝ0 is not commu-
tative and consequently Eq. (2.2.1) is rationally nonintegrable when (f0, f1) ̸= (0, 0) and
(g1, g2) ̸= (0, 0), whether case (a) or case (d) of Proposition 2.A.1 occurs. This completes
the proof of Theorem 2.2.2.

2.5 Proof of Theorem 2.2.3

We next prove Theorem 2.2.3. Henceforth we assume that the hypotheses of the theorem
hold: f(x1, x2, y1, y2) is independent of x2, g(x1, x2, y1, y2) ≡ 0, f1 ̸= 0, ω > 0 and V (x, y)
is a rational function of x and y (see Eq. (2.2.3) for the definition of V (x, y)). We also
take ω = 1 without loss of generality as in Section 4. We rewrite (2.1.1) and (2.2.1) as

ẋ1 = x2, ẋ2 = −f(x1, cos t, sin t)x1 (2.5.1)

and
ẋ1 = x2, ẋ2 = −f̂(x1, y)x1, ẏ = iy, (2.5.2)

respectively, where

f̂(x1, y) = f
�
x1,

1
2
(y + y−1),−1

2
i(y − y−1)

�
.

Define the Hamiltonian function

H(x1, x2, y1, y2) =
1
2
x2
2 + V (x1, y1) + iy1y2.

The associated Hamiltonian system is given by

ẋ1 = x2, ẋ2 = −f̂(x1, y1)x1,

ẏ1 = iy1, ẏ2 = −∂V

∂y1
(x1, y1)− iy2,

(2.5.3)

whose (x1, x2, y1)-components have the same form as (2.5.2). We easily see that (x1, x2, y1, y2) =
(0, 0, eiωt, e−iωt) is a particular solution to (2.5.3), along which the VE and NVE are give
by

ξ̇1 = ξ2, ξ̇2 = −(f0 + f1 cos t)ξ1, ξ̇3 = iξ3, ξ̇4 = −iξ4. (2.5.4)

and
ξ̇1 = ξ2, ξ̇2 = −(f0 + f1 cos t)ξ1, (2.5.5)

respectively. Note that

∂2V

∂x1∂y1
(0, y1) =

∂2V

∂y21
(0, y1) = 0 for y1 ̸= 0.

Equation (2.5.5) is a special case of (2.4.2) with g0, g1, g2 = 0. Hence, it follows from
the proof of Theorem 2.2.2 (for case (i)) in Section 2.4 that the identity component of
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its differential Galois group is not commutative. This implies via the standard Morales-
Ramis theory [43, 47] that the Hamiltonian system (2.5.3) is rationally nonintegrable in
the meaning of Liouville [9, 43], i.e., it has no additional rational first integral.

Suppose that Eq. (2.5.1) has a rational first integral F (x1, x2, cosωt, sinωt). Then
F (x1, x2,

1
2
(y1 + y−1

1 ),−1
2
i(y1 − y−1

1 )) is also a first integral for (2.5.3) although it is func-
tionally independent of H. This contradicts the rational nonintegrability of (2.5.3). Thus,
we obtain the desired result.

2.6 Examples

Finally, we give two examples for the van der Pol and Duffing oscillators to demonstrate
our results.

2.6.1 Van der Pol Oscillator

We first consider the van der Pol oscillator subjected to parametric forcing:

ẍ+ (g0(1− x2) + g1 cosωt+ g2 sinωt)ẋ+ (1 + f1 cosωt)x = 0, (2.6.1)

where f1, g0, g1, g2 and ω > 0 are constants as above. Equation (2.6.1) is a special case of
(2.1.1) with

f(x1, x2, y1, y2) = 1 + f1y1, g(x1, x2, y1, y2) = g0(1− x2
1) + g1y1 + g2y2.

Using Theorem 2.2.2 with f0 = 1 ̸= 0, we see that if (f1, g1, g2) ̸= (0, 0, 0), then the
associated three-dimensional system is rationally nonintegrable and Eq. (2.6.1) has at
most one rational first integral of x, ẋ, cosωt and sinωt. This statement is true even if
g0 = 0, i.e., Eq. (2.6.1) is linear.

2.6.2 Duffing Oscillator

We next consider the parametrically forced Duffing oscillator:

ẍ+ (g0 + g1 cosωt+ g2 sinωt)ẋ+ (f0 + f1 cosωt+ f̄1x
2)x = 0, (2.6.2)

where f̄1, f0, f1, g0, g1, g2 and ω > 0 are constants. Equation (2.6.2) is a special case of
(2.1.1) with

f(x1, x2, y1, y2) = f0 + f1y1 + f̄1x
2
1, g(x1, x2, y1, y2) = g0 + g1y1 + g2y2.

Using Theorem 2.2.2 and 2.2.3, we obtain the following results:

(i) Case of f0 ̸= 0: If (f1, g1, g2) ̸= (0, 0, 0), then the associated three-dimensional
system is rationally nonintegrable and Eq. (2.6.2) has at most one rational first
integral of x, ẋ, cosωt andf sinωt.

(ii) Case of f0 = 0: If f1 ̸= 0, then the associated three-dimensional system is rationally
nonintegrable and Eq. (2.6.2) has at most one rational first integral of x, ẋ, cosωt
andf sinωt.
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(iii) Case of g0, g1, g2 = 0: If f1 ̸= 0, then the associated three-dimensional system is
rationally nonintegrable and Eq. (2.6.2) has no rational first integral of x, ẋ, cosωt
and sinωt. Note that the function V (x, y) defined in (2.2.3) is rational on x and y.

We also remark that the above three statements hold even if f̄1 = 0, i.e., Eq. (2.6.2) is
linear.

2.A Kovacic Algorithm

Consider second-order differential equations of the form

d2ζ

dz2
= r(z)ζ, ζ ∈ C, (2.A.1)

where r(z) ∈ C(z) \ C. Let G be the differential Galois group of (2.A.1) over C(z).
We easily see that G is an algebraic subgroup of SL(2,C) (e.g., [33]). We also have the
following four cases for G (see [23, 34] for a proof).

Proposition 2.A.1 (Kaplansky [33], Kovacic [34]). One of the following four cases
occurs:

(a) G is triangularizable;

(b) G is conjugate to a subgroup of

D† =

��
c 0
0 c−1

� ���� c ∈ C∗
�
∪
��

0 c
−c−1 0

� ���� c ∈ C∗
�

but it is not triangularizable;

(c) G is finite but neither triangulariable nor conjugate to D†;

(d) G = SL(2,C).

If one of cases (a)-(c) of Proposition 2.A.1 occurs, then the connected identity compo-
nent G0 of G is solvable so that Eq. (2.A.1) is solvable. On the other hand, if cases (a)-(c)
do not occur, then G0 = G = SL(2,C).

Let r(z) = r1(z)/r2(z), where r1(z), r2(z) ∈ C[z] are relatively prime. Poles of r(z)
are zeros of r2(z) and their orders are the multiplicities of the zeros of r2(z). By the order
of r(z) at ∞, we also mean the order of ∞ as a zero of r(z), i.e., deg r2(z) − deg r1(z).
We have the following necessary conditions for cases (a)-(c) in the above proposition to
occur (see [23, 34] for a proof).

Proposition 2.A.2 (Kovacic [34]). The following conditions are necessary for the corre-
sponding cases in Proposition 2.A.1 to occur.

(a) No pole of r(z) is of odd order greater than 1, and the order of r(z) at ∞ is not an
odd less than 2.

(b) There exists a pole of r(z) such that its order is 2 or an odd greater than 2.
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(c) No pole of r(z) is of order greater than 2 and the order of r(z) at ∞ is greater than
1.

Note that cases (a), (b) and (c) of Proposition 2.A.1 may not occur even though
conditions (a), (b) and (c) hold, respectively. Especially, Proposition 2.A.2 only states
fewer conditions for case (c) than the original version in [34] since they are enough for
our application in Section 2.4. Kovacic [34] also gave an algorithm for finding a “closed-
form” solution and detecting whether cases (a)-(c) in Proposition 2.A.1 really occur or
not under conditions (a), (b) and (c), respectively. See also [23]. In the following we
describe necessary parts of his algorithm for cases (a) and (b) in the setting required in
Section 2.4: r(z) has a pole only at z = 0, its order is e0 > 2, and the order of r(z) at ∞
is e∞ < 2. See [23,34] for the full version of his algorithm and its proof.

2.A.1 Case (a)

Additionally, assume that condition (a) in Proposition 2.A.2 holds. For simplicity we also
assume that e0 = 4 and e∞ = 0, which hold in our application of Section 2.4.

Let b0 and b∞ be the coefficients of z−3 and z−1 in the Laurent series expansions of
r(z) at z = 0 and ∞, respectively. The Laurent series expansions of

�
r(z) at z = 0 and

∞ are also written as �
r(z) =

a0
z2

+ · · ·

and �
r(z) = a∞ + · · · ,

respectively. Let

κ±
0 = 1

2

�
± b0
a0

+ 2

�
, κ±

∞ = ± b∞
2a∞

, (2.A.2)

where the upper and lower signs are taken for the superscripts ‘+’ and ‘−’, respectively.
For each sequence s = {s(c)}c∈{0,∞} with s(c) = + or −, define

ds = κs(∞)
∞ − κ

s(0)
0 . (2.A.3)

If ds is not a nonnegative integer for any sequence s, then case (a) of Proposition 2.A.1
does not occur.

Assume that ds is a nonnegative integer for some sequence s. If there exists a monic
polynomial P (z) of degree ds satisfying the linear differential equation

P ′′ + 2θ(z)P ′ + (θ′(z) + θ2(z)− r(z))P = 0, (2.A.4)

then

ζ = P (z) exp

��
θ(z)dz

�

is a solution to (2.A.1) and hence case (a) of Proposition 2.A.1 occurs, where

θ(z) =
s(0)a0
z2

+
κ
s(0)
0

z
+ s(∞)a∞. (2.A.5)

If such a polynomial is not found for any sequence s, then it does not occur.
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2.A.2 Case (b)

Additionally, assume that condition (b) in Proposition 2.A.2 holds. Let

de =
1

2
(e∞ − e0).

If de is not a nonnegative integer, then case (b) of Proposition 2.A.1 does not occur. We
also have a further recipe similar to that of case (a) to determine whether it occurs or not
when de is a nonnegative integer although it is not given here since it is not necessary for
our purpose. The reader who is interested in it should consult [23, 34].

2.B Proof of Lemma 2.4.1

Suppose that the hypothesis of the lemma holds. Let G̃ be the differential Galois group
of (2.4.4). Then G̃ is triangularizable. We only have to show that its identity component
G̃0 is not commutative in this situation.

We first note that condition (2.4.6) holds and either d+ or d− is a nonnegative integer,
where

d+ = − 2f1g2
g21 + g22

, d− =
2f1g2
g21 + g22

− 2.

Moreover, Eq. (2.A.4) has a dsth degree monic polynomial solution P (z) and Eq. (2.A.1)
with (2.4.5) has a solution of the form

ζ = P (z) exp

�� �
∓ iĝ1

2
+

κ±
0

z
∓ iĝ−1

2z2

�
dz

�
,

where the upper or lower sign is taken, depending on whether d+ or d− is a nonnegative
integer. Let

d̃+ = − 2f1g1
g21 + g22

, d̃− =
2f1g1
g21 + g22

− 2.

If f1 = 0, then ds = d+ = 0, d̃+ = 0 and the function θ(z) defined in (2.A.5) becomes

θ(z) = − iĝ−1

2z2
− ig0 − 1

2z
− iĝ1

2
,

so that P (z) = 1 is not a solution to (2.A.4) since f0 ̸= 0 and

θ(z)2 + θ′(z)− r(z) = −f0
z2
.

Hence, we can assume that f1 ̸= 0.
We rewrite

κ+
0 = −1

2
(d+ − 1 + i(d̃+ + g0)), κ−

0 = −1
2
(d− − 1 + i(d̃− + 2− g0)).

We have a solution ξ1 = ξ̃1(z) to (2.4.4) given by

ξ̃1(z) = P (z) exp

�
−
�

d+ + id̃+
2z

dz

�
= P (z)z−(d++id̃+)/2
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if d+ ∈ Z≥0 = {d ∈ Z | d ≥ 0}, and

ξ̃1(z) =P (z) exp

�� �
iĝ1 +

−(d− + id̃−) + 2i(g0 − 1)

2z
+

iĝ−1

z2

�
dz

�

=P (z)z−(d−+id̃−)/2+i(g0−1)ei(ĝ1z−ĝ−1/z)

if d− ∈ Z≥0. Substituting ξ1 = ξ̃1(z)u(z) into (2.4.4), we have

u′′ +

�
2ξ̃′1(z)

ξ̃1(z)
− iĝ1 −

ig0 − 1

z
− iĝ−1

z2

�
u′ = 0.

We solve the above equation to obtain

u(z) =

�
ξ̃1(z)

−2zig0−1ei(ĝ1z−ĝ−1/z)dz, (2.B.1)

which yields another solution to (2.4.4) given by

ξ̃2(z) = ξ̃1(z)

�
ξ̃1(z)

−2zig0−1ei(ĝ1z−ĝ−1/z)dz.

In the following, we show that G̃0 is not commutative for d+ ∈ Z≥0 and d− ∈ Z≥0

separately, to complete the proof.

2.B.1 Case of d+ ∈ Z≥0

For σ ∈ G̃ we compute

σ(ξ̃1(z))
′

σ(ξ̃1(z))
=σ

�
ξ̃′1(z)

ξ̃1(z)

�
= σ

�
P ′(z)

P (z)
− d+ + id̃+

2z

�

=
P ′(z)

P (z)
− d+ + id̃+

2z
=

ξ̃′1(z)

ξ̃1(z)
,

which yields
σ(ξ̃1(z)) = C1ξ̃1(z), C1 ∈ C∗. (2.B.2)

Let
ϕ(z) = zig0−1ei(ĝ1z−ĝ−1/z).

Since
σ(ϕ(z)) = C2ϕ(z) (2.B.3)

for C2 ∈ C∗ similarly, we have

σ′(u(z)) = σ(u′(z)) = C−2
1 C2ξ̃1(z)

−2ϕ(z) = C−2
1 C2u

′(z), (2.B.4)

so that for some C3 ∈ C
σ(u(z)) = C−2

1 C2u(z) + C3 (2.B.5)



CHAPTER 2. 19

and
σ(ξ̃2(z)) = C−1

1 C2ξ̃2(z) + C1C3ξ̃1(z). (2.B.6)

Assume that C3 = 0 for any σ ∈ G̃. Let w(z) = u′(z)/u(z). Then by (2.B.4) and
(2.B.5) we have σ(w(z)) = w(z) for any σ ∈ G̃ so that w(z) ∈ C(z). Moreover,

u(z) = C4 exp

��
w(z)dz

�

for some C4 ∈ C∗ and consequently

u′(z) = C4w(z) exp

��
w(z)dz

�
. (2.B.7)

On the other hand, it follows from (2.B.1) that

u′(z) = P (z)−2zd+−1+i(g0+d̃+)ei(ĝ1z−ĝ−1/z). (2.B.8)

Comparing (2.B.7) and (2.B.8), we obtain

w(z) =i

�
ĝ1 +

ĝ−1

z2

�
+

α0

z
+

N�

j=1

αj

z − zj

=C−1
4 P (z)−2z−α0+d+−1+i(d̃++g0)

N�

j=1

(z − zj)
−αj , (2.B.9)

where N ∈ Z≥0 and α0,αj, zj ∈ C, j = 1, . . . , N , such that zj ̸= zk for j ̸= k and αj, zj ̸= 0
for j = 1, . . . , N while α0 and N are allowed to be zero. Hence

P (z)2 =
z−α0+d++1+i(d̃++g0)

�N
j=1(z − zj)

1−αj

C4P̂ (z)
, (2.B.10)

where

P̂ (z) = (iĝ1z
2 + α0z + iĝ−1)

N�

j=1

(z − zj) +
N�

k=1

αk

N�

j=1, j ̸=k

(z − zj)z
2.

Since ĝ1, ĝ−1 ̸= 0 by (g1, g2) ̸= (0, 0), we have P̂ (0), P̂ (zj) ̸= 0, j = 1, . . . , N . So the right
hand side of (2.B.10) is not a polynomial even if all the powers, −α0+d++1+ i(d̃++ g0)
and 1−αj, j = 1, . . . , N , in the numerator are nonnegative integers. This contradicts the
assumption that P (z) is a polynomial. Hence, C3 ̸= 0 for some σ ∈ G̃, so that G̃ is not
diagonalizable.

We represent G̃ as a subgroup of GL(2,C) with the fundamental solutions ξ̃j(z), j =
1, 2. Suppose that d̃+ ̸= 0, i.e., g1 ̸= 0. Then ξ̃1(z) is transcendental and consequently
there exists an element σ ∈ G̃ for any C1 ∈ C∗ such that the relation (2.B.2) holds. Since
u′(z) is transcendental, we can take C−2

1 C2 in (2.B.4) for some σ ∈ G̃ such that it is not
a root of the unity. Noting that G̃ is not diagonalizable, we see that

G̃ =

��
c1 µ
0 c2

� ��� c1, c2 ∈ C∗, µ ∈ C
�
,
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so that G̃0 is not commutative.
Next, suppose that d̃+ = 0, i.e., g1 = 0. Then d+ ̸= 0 by f1g2 ̸= 0, and C1 = 1

or C1 = −1 in (2.B.2) since ξ̃1(z) or ξ̃1(z)
2 becomes a rational function. However, since

ĝ1, ĝ−1 ̸= 0, ϕ(z) is transcendental and consequently there exists an element σ ∈ G̃ for
any C2 ∈ C∗ such that the relation (2.B.3) holds. Since G̃ is not diagonalizable, it follows
from (2.B.6) that

G̃0 =

��
1 µ
0 c

� ��� c ∈ C∗, µ ∈ C
�
,

which is not commutative.

2.B.2 Case of d− ∈ Z≥0

As in Section 2.B.1, we easily see that there exists an element σ ∈ G̃ for any C1 ∈ C∗

(resp. C2 ∈ C∗) such that the relation (2.B.2) (resp. (2.B.3)) holds, since ξ̃1(z) (resp.
ϕ(z)) is transcendental by ĝ1, ĝ−1 ̸= 0. In addition, the relation (2.B.6) holds for some
C3 ∈ C. We see that if C3 = 0 for any σ ∈ G̃, then instead of (2.B.9)

w(z) =− i

�
ĝ1 +

ĝ−1

z2

�
+

α0

z
+

N�

j=1

αj

z − zj

=C−1
4 P (z)−2z−α0+d−−1+i(d̃−−g0+2)

N�

j=1

(z − zj)
−αj ,

holds for some C4 ∈ C∗ and a contradiction also occurs. So G̃ is not diagonalizable.
Moreover, since u′(z) = ϕ(z)/ξ̃1(z)

2 is transcendental, we proceed in the same way as
when d̃+ ̸= 0 in Section 2.B.1 to show that G̃0 is not commutative.



Chapter 3

Persistence of Periodic and
Homoclinic Orbits, First Integrals
and Commutative Vector Fields

3.1 Introduction

Let M be an n-dimensional paracompact oriented C4 real manifold for n ≥ 2. Here
we require its paracompactness and orientedness for defining integrals on M . Consider
dynamical systems of the form

ẋ = Xε(x), x ∈ M , (3.1.1)

where ε is a small parameter such that 0 < ε ≪ 1, and the vector field Xε is C3 with
respect to x and ε. Let Xε(x) = X0(x)+ εX1(x)+O(ε2) for ε > 0 sufficiently small. The
system (3.1.1) becomes

ẋ = X0(x) (3.1.2)

when ε = 0, and it is regarded as a perturbation of (3.1.2). Assume that the unperturbed
system (3.1.2) has a periodic or homoclinic orbit and a first integral or commutative vector
field. Here we are mainly interested in their persistence in (3.1.1) for ε > 0 sufficiently
small.

Bogoyavlenskij [15] extended a concept of Liouville integraility [9,43], which is defined
for Hamiltonian systems, and proposed a definition of integrability for general systems.
For (3.1.1), its integrability means that there exist k (≥ 1) commutative vector fields
containing Xε and n − k (≥ 0) first integrals for them such that the vector fields and
first integrals are, respectively, linearly and functionally independent over a dense open
set in M . For integrable systems in this meaning, we have a statement similar to the
Liouville-Arnold theorem for Hamiltonian systems (e.g., Section 49 in Chapter 10 of [9]):
The flow on a level set of the first integrals is diffeomorphically conjugate to a linear flow
on the k-dimensional torus Tk if the level set is a k-dimensional compact manifold (see
Proposition 2 of [15]). Thus, the existence of first integrals and commutative vector fields
is closely related to integrability of (3.1.1).

Even if the unperturbed system (3.1.2) is integrable, the perturbed system (3.1.1) is
generally believed to be nonintegrable for ε > 0 small. For example, when the system

21
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(3.1.1) is analytic and Hamiltonian for ε ≥ 0, a famous result of Poincaré [52] says that its
analytic Liouville integrability does not persist for ε > 0 under some generic assumptions.
This means that not only first integrals independent of the Hamiltonian but also (Hamilto-
nian) vector fields commutative with X0 do not persist in general. See also [35] for a more
general result on nonexistence of first integrals, which was extended to non-Hamiltonian
systems in [36]. Moreover, Morales-Ruiz [44] studied time-periodic Hamiltonian perturba-
tions of single-degree-of-freedom Hamiltonian systems with homoclinic orbits, and showed
a relationship between their nonintegrability and a version due to Ziglin [78] of the Mel-
nikov method [42] by taking the time t and small parameter ε as state variables. Here the
Melnikov method enables us to detect transversal self-intersection of complex separatrices
of periodic orbits unlike the standard version [26, 42, 62]. More concretely, under some
restrictive conditions, he essentially proved that they are meromorphically nonintegrable
in the Bogoyavlenskij sense if the Melnikov functions are not identically zero, when a
generalization due to Ayoul and Zung [12] of the Morales-Ramis theory [43, 47], which
provides a sufficient condition for nonintegrability of dynamical systems, is applied. See
Section 3.4.1 below for more details. On the other hand, to the authors’ knowledge, the
persistence of first integrals and commutative vector fields, especially when the unper-
turbed system (3.1.2) is nonintegrable, in non-Hamiltonian systems has attracted little
attention.

In this chapter, we give several necessary conditions for persistence of periodic or ho-
moclinic orbits, first integrals or commutative vector fields in (3.1.1). In particular, we
treat homoclinic orbits not only to equilibria but also to periodic orbits. Moreover, we
see that persistence of periodic or homoclinic orbits and first integrals or commutative
vector fields near them have the same necessary conditions (cf. Theorems 3.2.1-3.2.4,
3.3.5, 3.3.8, 3.3.10 and 3.3.12). This indicates close relationships between the dynamics
and geometry of the perturbed systems. We also discuss some relationships of these re-
sults with the standard subharmonic and homoclinic Melnikov methods [26,42,62,65] for
time-periodic perturbations of single-degree-of-freedom Hamiltonian systems as in [44],
and with another version of the homoclinic Melnikov method due to Wiggins [61] for au-
tonomous Hamiltonian perturbations of multi-degree-of-freedom integrable Hamiltonian
systems. The subharmonic Melnikov method provides a sufficient condition for persis-
tence of periodic orbits in the perturbed system: If the subharmonic Melnikov functions
have a simple zero, then such orbits persist. For the latter homoclinic Melnikov method,
we restrict ourselves to the case in which the unperturbed systems have invariant mani-
folds consisting of periodic orbits to which there exist homoclinic orbits since only such a
situation can be treated in our result, although the technique was developed for more gen-
eral systems. These versions of the Melnikov methods are described shortly in Section 3.4
below. In particular, we show that a first integral which converges to the Hamiltonian
or another first integral as ε → 0 does not exist near the unperturbed periodic or homo-
clinic orbits in the perturbed system for ε > 0 sufficiently small if the subharmonic or
homoclinic Melnikov functions are not identically zero on connected open sets. We illus-
trate our theory for four examples: The periodically forced Duffing oscillator [26,62], two
identical pendula coupled with a harmonic oscillator, a periodically forced rigid body [72]
and a three-mode truncation of a buckled beam [67]. The persistence of first integrals is
discussed in the first and second examples, the persistence of a first integral and periodic
orbits in the third one and the persistence of commutaive vector fields in the fourth one.
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The outline of this chapter is as follows: In Sections 3.2 and 3.3, we present our main
results for first integrals and commutative vector fields, respectively, as well as for both of
periodic and homoclinic orbits. For the reader’s convenience, in Appendix 3.A, we collect
basic notions and facts on connections of vector bundles and linear differential equations
as auxiliary materials for Section 3.3. In Section 3.4, we describe some relationships
of the main results with the subharmonic and homoclinic Melnikov methods when the
unperturbed system (3.1.2) is a single-degree-of-freedom Hamiltonian system. Finally, we
give the four examples to illustrate our theory in Section 3.5.

3.2 First Integrals

In this section, we discuss persistence of periodic and homoclinic orbits and first integrals
for (3.1.1). In the discussion here, less smoothness of M and Xε is needed: M and Xε

are C3 and C2, respectively.

3.2.1 Periodic orbits

We begin with a case in which the unperturbed system (3.1.2) has a periodic orbit in
(3.1.2). We make the following assumptions on (3.1.2):

(A1) There exists a T -periodic orbit γ(t) for some constant T > 0 in (3.1.2);

(A2) There exists a non-constant C3 first integral F (x) of (3.1.2), i.e.,

dF (X0) = 0,

near Γ = {γ(t) | t ∈ [0, T )}.
Define

IF,γ :=

� T

0

dF (X1)(γ(t))dt. (3.2.1)

We state our main results for persistence of periodic orbits and first integrals.

Theorem 3.2.1. Assume that (A1) and (A2) hold. If the perturbed system (3.1.1) has a
Tε-periodic orbit γε depending C2-smoothly on ε such that T0 = T and γ0 = γ, then the
integral IF,γ must be zero.

Proof. Assume that (A1) and (A2) hold and the system (3.1.1) has a periodic orbit
γε = γ +O(ε) for ε > 0. Since γε is a Tε-periodic orbit in (3.1.1), we compute

� Tε

0

dF (Xε)(γε(t))dt = F (γε(Tε))− F (γε(0)) = 0.

On the other hand, since F is a first integral of X0, we have dF (X0) = 0, so that

dF (Xε)(γε(t)) = εdF (X1)(γ(t)) +O(ε2).

Since Tε = T +O(ε), we see by the above two equations that
� Tε

0

dF (Xε)(γε(t))dt = ε

� T

0

dF (X1)(γ(t))dt+O(ε2) = εIF,γ +O(ε2) = 0.

Thus, we obtain IF,γ = 0.
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Theorem 3.2.2. Assume that (A1) and (A2) hold. If the perturbed system (3.1.1) has a
C3 first integral Fε(x) depending C2-smoothly on ε near Γ such that F0(x) = F (x), then
the integral IF,γ must be zero.

Proof. Assume that (A1) and (A2) hold and the system has a first integral Fε = F +
εF 1 +O(ε2) near Γ. Since γ is a T -periodic orbit in (3.1.2), we have

� T

0

dFε(X0)(γ(t))dt = Fε(γ(T ))− Fε(γ(0)) = 0. (3.2.2)

On the other hand, since dFε(Xε) = 0 and

dFε(Xε) = dFε(X
0) + εdFε(X

1) +O(ε2),

we have

dFε(X
0) = −εdFε(X

1) +O(ε2) (3.2.3)

near Γ. From (3.2.2) and (3.2.3) we obtain

� T

0

dFε(X
0)(γ(t))dt =− ε

� T

0

dFε(X
1)(γ(t))dt+O(ε2)

=− εIF,γ +O(ε2) = 0,

which yields the desired result.

Theorems 3.2.1 and 3.2.2 mean that if IF,γ ̸= 0, then neither the periodic orbit γ nor
first integral F persists in (3.1.1) for ε > 0.

3.2.2 Homoclinic orbits

We next consider a case in which the unperturbed system (3.1.2) has a homoclinic orbit
to an equilibrium or to a periodic orbit in (3.1.2). Instead of (A1) and (A2), we assume
the following on (3.1.2):

(A1’) There exists a homoclinic orbit γh(t) to a T -periodic orbit γp(t) in (3.1.2);

(A2’) There exists a non-constant C3 first integral F (x) of (3.1.2) near Γh = {γh(t) | t ∈
R} ∪ Γp, where Γp = {γp(t) | t ∈ [0, T )}.

In assumption (A1’) γp may be an equilibrium. As seen below we have statements similar
to Theorems 3.2.1 and 3.2.2 in this case but another idea is needed for their proofs since
the situation is not simple when γh(t) is a homoclinic orbit to a periodic orbit.

We first define an integral which plays a similar role as IF,γ in Section 3.2.1 (see
Eq. (3.2.1)). Let γp be not an equilibrium. Choose a point x0 = γp(0) and take an
(n − 1)-dimensional hypersurface Σ as the Poincaré section such that γp intersects Σ
transversely at x0. Restricting Σ to a sufficiently small neighborhood of x0 if necessary,
we can assume that γh(t) intersects Σ transversely infinitely many times, say at Tj ∈ R
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γ (t)p

x 0

γ (t)h

t =Tj

Σ

Figure 3.1: Poincaré section Σ.

with Tj−1 < Tj, j ∈ Z, such that limj→−∞ Tj = −∞ and limj→+∞ Tj = +∞, since it
converges to γp(t). In particular,

lim
j→±∞

γh(Tj) = x0.

See Fig. 3.1. So we formally define

ĨF,γh := lim
k→+∞

� Tk

T−k

dF (X1)(γh(t))dt. (3.2.4)

If γp
ε is an equilibrium, then Eq. (3.2.4) is reduced to

ĨF,γh :=

� ∞

−∞
dF (X1)(γh(t))dt (3.2.5)

by taking any sequence {Tj}∞−∞ such that limj→±∞ Tj = ±∞.
We now state our main results for persistence of homoclinic orbits and first integrals.

Theorem 3.2.3. Assume that (A1’) and (A2’) hold and that there exists a periodic orbit
γp
ε depending C2-smoothly on ε in (3.1.1) such that γp

0 = γp. If the perturbed system
(3.1.1) has a homoclinic orbit γh

ε to γp
ε depending C2-smoothly on ε such that γh

0 = γh,
then the limit in the right hand side of (3.2.4) exists and ĨF,γh = 0.

Proof. Assume that the hypotheses of this theorem hold, γp is not an equilibrium but
periodic orbit, and the system (3.1.1) has a homoclinic orbit γh

ε = γh+O(ε) to a periodic
orbit γp

ε = γp + O(ε). For ε > 0 sufficiently small, the periodic orbit γp
ε intersects

the Poincaré section Σ transversely, say at t = 0. Similarly, γh
ε intersects Σ transversely

infinitely many times, say at T ε
j ∈ R with T ε

j+1 < T ε
j , j ∈ Z, such that limj→±∞ T ε

j = ±∞.
Moreover,

lim
j→±∞

γh(T ε
j ) = xε := γp

ε (0).

We easily see that

lim
k→+∞

� T ε
k

T ε
−k

dF (Xε)(γ
h
ε (t))dt = lim

k→+∞

�
F (γh

ε (T
ε
k ))− F (γh

ε (T
ε
−k))

�
= 0. (3.2.6)
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Introduce a metric in a neighborhood of x0 using the standard Euclidean one in the
coordinates. For δ > 0 sufficiently small, let k > 0 be an integer such that γh(T±j) lie in
a δ-neighborhood of x0 for j > k. We can choose ε > 0 sufficiently small such that on
[T ε

−k, T
ε
k ]

γh
ε (t) = γh(t) +O(ε),

which yields T ε
j = Tj +O(ε) for |j| ≤ k and

dF (Xε)(γ
h
ε (t)) = εdF (X1)(γh(t)) +O(ε2)

since dF (X0) = 0. Hence,

� T ε
k

T ε
−k

dF (Xε)(γ
h
ε (t))dt = ε

� T ε
k

T ε
−k

dF (X1)(γh(t))dt+O(ε2). (3.2.7)

Taking δ → 0, we have T ε
±k → ±∞, so that by (3.2.6) and (3.2.7) the limit in the right

hand side of (3.2.4) exists and it must be zero.

Theorem 3.2.4. Assume that (A1’) and (A2’) hold. If the perturbed system (3.1.1) has
a C3 first integral Fε depending C2-smoothly on ε near Γh such that F0 = F , then the
limit in the right hand side of (3.2.4) exists and ĨF,γh = 0.

Proof. Assume that the hypotheses of the theorem hold, γp is not an equilibrium but
periodic orbit, and the system (3.1.1) has a first integral Fε = F + εF 1 + O(ε2) near Γh.
We compute

lim
k→+∞

� Tk

T−k

dFε(X
0)(γh(t))dt = lim

k→+∞

�
Fε(γ

h(Tk))− Fε(γ
h(T−k))

�
= 0. (3.2.8)

On the other hand, by (3.2.3)

� Tk

T−k

dF (X0)(γh(t))dt = −ε

� Tk

T−k

dF (X1)(γh(t))dt+O(ε2). (3.2.9)

As in the proof of Theorem 3.2.2, it follows from (3.2.8) and (3.2.9) that the limit in the
right hand side of (3.2.4) exists and it must be zero.

Remark 3.2.5.

(i) In the proofs of Theorems 3.2.3 and 3.2.4, when γp is an equilibrium, we only have
to choose any strictly monotonically increasing and diverging sequences {T ε

j }∞−∞,
{Tj}∞−∞ such that T ε

j = Tj +O(ε), j ∈ Z, and to apply the same arguments.

(ii) In Theorem 3.2.3, if the periodic orbit (or equilibrium) γp is hyperbolic, then the
condition on existence of γp

ε is not needed since such a periodic orbit (or equlibrium)
necessarily exists.

Theorems 3.2.3 and 3.2.4 mean that if ĨF,γh ̸= 0, then neither the homoclinic orbit
γh nor first integral F persists in (3.1.1) for ε > 0.
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3.3 Commutative Vector Fields

In this section, we discuss persistence of periodic and homoclinic orbits and commutative
vector fields for (3.1.1).

3.3.1 Variational and adjoint variational equations

Before stating the main results, we give some preliminary results on variational and adjoint
variational equations. A similar treatment in a complex setting are found in [11, 22, 47].
For the reader’s convenience, some auxiliary materials are provided in Appendix 3.A.

Let M be an n-dimensional paracompact oriented C3 real manifold as in Section 3.2.
Let X be a C2 vector field on M and let Γφ be an integral curve given by a non-stationary
solution x = φ(t) to the associated differential equation

ẋ = X(x). (3.3.1)

The immersion i : Γφ → M induces a subbundle TΓφ
:= i∗TM of the vector bundle TM ,

where i∗ represents the pullback of i. Let s : Γφ → TΓφ
be a C1 section of TΓφ

. We define
the variational equation (VE) of X along Γφ as

∇s := dt⊗ LXY |Γφ
= 0, (3.3.2)

where “⊗” represents the tensor product, Y is any C1 vector field extension of s to M ,
LX represents the Lie derivative along X, and “dt⊗” is frequently omitted in references.
Here ∇ is a connection of TΓφ

, and s is a horizontal section of ∇ if it satisfies the VE
(3.3.2) (see Appendix 3.A.1). Locally, Eq. (3.3.2) is expressed as

dÛ

dt
=

∂X

∂x
(φ(t))Û (3.3.3)

in the frame

�
∂

∂x1

, . . . ,
∂

∂xn

�
associated with the coordinates (x1, ..., xn), where

s =
n�

j=1

Ξj
∂

∂xj

.

See Appendix 3.A.2 for the derivation of (3.3.3).
Let T ∗

Γφ
be the dual bundle of TΓφ

, and let α : Γφ → T ∗
Γφ

be a C1 section of T ∗
Γφ
.

Lemma 3.3.1. The dual connection ∇∗ of ∇ (see Appendix 3.A.1) is given by

∇∗α = dt⊗ LXω|Γφ
, (3.3.4)

where ω : M → T ∗M is any C1 differential 1-form extension of α.

Proof. Let s be a section of TΓφ
and let Y be its vector field extension as above. The Lie

derivative LX satisfies
LX⟨Y,ω⟩ = ⟨LXY,ω⟩+ ⟨Y,LXω⟩,



CHAPTER 3. 28

which yields
dt⊗ LX⟨Y,ω⟩|Γφ

= ⟨∇s,α⟩+ ⟨s, dt⊗ LXω|Γφ
⟩

when restricted to Γφ, where ⟨·, ·⟩ denotes the natural pairing by the duality. On the
other hand, since Γφ is an integral curve of X, we have

d⟨s,α⟩ = d⟨Y,ω⟩|Γφ
= dt⊗X(⟨Y,ω⟩)|Γφ

= dt⊗ LX⟨Y,ω⟩|Γφ
.

By definition, we obtain (3.3.4).

We call
∇∗α = 0 (3.3.5)

the adjoint variational equation (AVE) of X along Γφ. Thus, α is a horizontal section of
∇∗ if it satisfies the AVE (3.3.5). Locally, Eq. (3.3.5) is expressed as

dη

dt
= −

�
∂X

∂x
(φ(t))

�T

η (3.3.6)

in the frame (dx1, . . . , dxn), where the superscript “T” represents the transpose operator
and

α =
n�

j=1

ηjdxj.

See Appendix 3.A.2 for the derivation of (3.3.6).

Lemma 3.3.2. (i) If X has a first integral F , then the following hold:

(ia) The section α = dF |Γφ
of T ∗

Γφ
satisfies the AVE (3.3.5) of X along Γφ;

(ib) ⟨s, dF |Γφ
⟩ is a first integral of the VE (3.3.2) of X along Γφ, i.e.,

d⟨s, dF |Γφ
⟩ = 0

if the section s of TΓφ
satisfies (3.3.2).

(ii) If X has a commutative vector field Z, i.e.,

[X,Z] = 0,

where [·, ·] denotes the Lie bracket, then the following hold:

(iia) The section s = Z|Γφ
of TΓφ

satisfies the VE (3.3.2);

(iib) ⟨Z|Γφ
,α⟩ is a first integral of the AVE (3.3.5), i.e.,

d⟨Z|Γφ
,α⟩ = 0

if the section α of T ∗
Γφ

satisfies (3.3.5).
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Proof. Let s and α satisfy the VE (3.3.2) and AVE (3.3.5), respectively. Since

d⟨s,α⟩ = ⟨∇s,α⟩+ ⟨s,∇∗α⟩ = ⟨0,α⟩+ ⟨s, 0⟩ = 0,

we see that ⟨s,α⟩ is a constant. Hence, parts (ib) and (iib) immediately follow from (iia)
and (ia), respectively.

Now we show (ia) and (iia). If X has a first integral F , then by Cartan’s formula (see,
e.g., Theorem 4.2.3 of [41]) we have

LXdF = d(iX(dF )) + iX(d
2F ) = 0,

where iX denotes the interior product of X. This yields (ia) when restricted to Γφ. If X
has a commutative vector field Z, then we obtain (iia) since LXZ|Γφ

= [X,Z]|Γφ
= 0.

Similar results to Lemma 3.3.2 for symplectic connections can be proven by using the
musical isomorphism of symplectic forms (see Lemma 4.1 of [47] and Chapter 4 of [52]).

3.3.2 Periodic orbits

We turn to the issue of persistence of periodic orbits and commutative vector fields in
(3.1.1). Instead of (A2), we assume the following on (3.1.2):

(A3) The unperturbed system (3.1.2) has a C3 commutative vector field Z, i.e.,

[X0, Z] = 0,

near Γ, such that it is linearly independent of X0.

Lemma 3.3.3. Under assumption (A1), the connection ∇∗ of T ∗
Γ has a nontrivial hori-

zontal section ω : Γ → T ∗
Γ, i.e., ω satisfies the AVE (3.3.5) of X0 along Γ.

Proof. Let ψt denote the flow of X0 and let x0 = γ(0) ∈ Γ. For any p ∈ Γ, there exists a
unique time tp ∈ [0, T ) such that γ(tp) = ψtp(x0) = p. Define θ : Γ → [0, T ) by θ(p) := tp.
Since θ ◦ γ = id, we have

d

dt
θ(γ(t)) = 1, (3.3.7)

where id represents the identity map. On the other hand, by the tubular neighborhood
theorem (e.g., Theorem 5.2 in Chapter 4 of [30]), there is a neighborhood N (Γ) of Γ
which is diffeomorphic to the normal bundle NΓ of Γ in M . Let f : N (Γ) → NΓ

be the diffeomorphism, and let π : NΓ → Γ be the natural projection. Define a map
Θ : N (Γ) → R by Θ := f∗π∗θ. Since f |Γ = id and π|Γ = id, we have

Θ|Γ = θ. (3.3.8)

Using (3.3.7) and (3.3.8), we show that for x ∈ Γ

(iXdΘ)x = (LXΘ)x = lim
t→0

Θ(ψt(x))−Θ(x)

t
= lim

t→0

θ(ψt(x))− θ(x)

t
= 1,

which yields

LX(dΘ)|Γ = (iXd
2Θ+ diXdΘ)|Γ = d((iXdΘ)|Γ) = 0

by Cartan’s formula. Hence, by Lemma 3.3.1 we see that ω = dΘ|Γ is a nontrivial
horizontal section of ∇∗ since θ is not a constant.
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Remark 3.3.4.

(i) Let M = Rn. We see that γ̇(t) is a periodic solution to the VE (3.3.3) and conse-
quently its Floquet exponents (see, e.g., Section 2.4 of [21]) include one. Hence, the
AVE (3.3.6) possesses one as its Floquet exponent and consequently it has a periodic
solution, which provides a horizontal section of ∇∗ as guaranteed by Lemma 3.3.3.

(ii) Assume that (A1) and (A2) hold. From Lemma 3.3.2 (ia) we see that dF |Γ is a
horizontal section of ∇∗.

Let ω be a horizontal section of ∇∗ as stated in Lemma 3.3.3, and define the integral

Jω,Z,γ :=

� T

0

ω([X1, Z])(γ(t))dt. (3.3.9)

We now state our result on persistence of commutative vector fields.

Theorem 3.3.5. Assume that (A1) and (A3) hold. If the perturbed system (3.1.1) has
a C3 commutative vector field Zε depending C2-smoothly on ε near Γ such that Z0 = Z,
then the integral Jω,Z,γ is zero.

For the proof of Theorems 3.3.5 we use the cotangent lift trick [12], and rewrite (3.1.1)
as a Hamiltonian system. In this situation the persistence of commutative vector fields
of (3.1.1) is reduced to that of first integrals of the lifted Hamiltonian system. We first
explain the trick in a general setting, following [12]. See Chapter 5 of [41] for necessary
information on Hamiltonian mechanics.

Let T ∗M be the cotangent bundle of M and let π : T ∗M → M be the natural
projection. Define a differential 1-form λ : T ∗M → T ∗(T ∗M ), which is often called a
(Poincaré-)Liouville form, as

λz = p(dπz(·)),
where z = (x, p) ∈ T ∗M . Letting Ω0 = dλ, we have a symplectic manifold (T ∗M ,Ω0). In
the local coordinates (x1, ..., xn, p1, ..., pn), λ and Ω0 are written as

λ =
n�

k=1

pkdxk and Ω0 =
n�

k=1

dpk ∧ dxk,

respectively.
Let X be a smooth vector field on M , and define a function hX : T ∗M → R as

hX(x, p) = ⟨p,X(x)⟩, (3.3.10)

where (x, p) ∈ T ∗M . Then the Hamiltonian vector field X̂ with the Hamiltonian hX on the
symplectic manifold (T ∗M ,Ω0) is called the cotangent lift of X. Note that the smoothness
of X̂ is less by one than that of X. In the local coordinates (x1, ..., xn, p1, ..., pn), the vector
field X̂ is expressed as

dx

dt
= X(x)

�
=

∂hX

∂p

�
,

dp

dt
= −∂X(x)

∂x

T

p

�
= −∂hX

∂x

�
, (3.3.11)

the second equation of which has the same form as the AVE (3.3.6) when x = φ(t).
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Lemma 3.3.6. For any vector fields X and Z on M we have

{hX , hZ} = h[X,Z]

(see Eq. (3.3.10)), where {·, ·} denotes the Poisson bracket for the symplectic form Ω0.

Proof. In the local coordinates (x1, ..., xn, p1, ..., pn), we write

X =
n�

i=1

Xi
∂

∂xi

, Z =
n�

j=1

Zj
∂

∂xj

, p =
n�

l=1

pl dx
l.

We compute

{hX , hZ} ={⟨p,X(x)⟩, ⟨p, Z(x)⟩} =

�
n�

i=1

piXi(x),
n�

j=1

pjZj(x)

�

=
n�

k=1

�
Xk

n�

i=1

pi
∂Zi

∂xk

− Zk

n�

j=1

pj
∂Xj

∂xk

�

=
n�

i=1

pi

n�

k=1

�
Xk

∂Zi

∂xk

− Zk
∂Xi

∂xk

�
= ⟨p, [X,Z]⟩ = h[X,Z],

which yields the desired result.

We also need the following fact, which was used in the proof of Proposition 2 of [12].

Lemma 3.3.7. If Z is a commutative vector field of X, then hZ is a first integral for the
cotangent lift X̂ of X.

Proof. It follows from Lemma 3.3.6 that dhZ(X̂) = {hX , hZ} = h[X,Z]. Hence, dhZ(X̂) = 0
if [X,Z] = 0.

We are now in a position to prove Theorem 3.3.5.

Proof of Theorem 3.3.5. Assume that the hypotheses of the theorem hold. Let X̂ε be the
cotangent lift of Xε. By Lemma 3.3.3 there exists a section ω of T ∗

Γ satisfying the AVE
(3.3.5) of X0 along Γ and γ̂(t) = (γ(t),ωγ(t)) is a T -periondic solution for X̂0. Moreover,

by Lemma 3.3.7 X̂0 has a first integral hZ .
Suppose that the system (3.1.1) has a commutative vector field Zε = Z+O(ε) near Γ.

Then by Lemma 3.3.7 hZε = hZ+O(ε) is a first integral of X̂ε near Γ̂ = {γ̂(t) | t ∈ [0, T )}.
Using Lemma 3.3.6, we compute

IhZ ,γ̂ =

� T

0

dhZ(X̂
1)(γ̂(t))dt =

� T

0

{hX1 , hZ}(γ̂(t))dt

=

� T

0

h[X1,Z](γ̂(t))dt =

� T

0

⟨ω, [X1, Z]⟩γ(t)dt

=

� T

0

ω([X1, Z])γ(t)dt = Jω,Z,γ (3.3.12)

for X̂ε. We apply Theorem 3.2.2 to complete the proof.
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Theorem 3.3.5 means that if Jω,Z,γ ̸= 0, then the commutative vector field Z does
not persist in (3.1.1) for ε > 0.

As in the proof of Theorem 3.3.5, we see that if γε(t) is a Tε-periodic orbit in (3.1.1),
then by Lemma 3.3.3 there exists a section ωε = ω + O(ε) of T ∗

Γε
satisfying the AVE

(3.3.5) of Xε along Γε and γ̂(t) = (γε(t),ωε,γε(t)) is a Tε-periodic orbit for the cotangent

lift X̂ε of Xε, where Γε = {γε(t) | t ∈ [0, Tε)}. Here the section ω of T ∗
Γ satisfies the AVE

(3.3.5) of X0 along Γ. Applying Theorem 3.2.1 to X̂ε and using (3.3.12), we obtain the
following result on persistence of periodic orbits.

Theorem 3.3.8. Assume that (A1) and (A3) hold. If the perturbed system (3.1.1) has a
Tε-periodic orbit γε depending C2-smoothly on ε such that T0 = T and γ0 = γ, then the
integral Jω,Z,γ is zero for some section ω of T ∗

Γ satisfying the AVE (3.3.5) of X0 along
Γ.

Theorem 3.3.8 means that if Jω,Z,γ ̸= 0 for any horizontal section ω of ∇∗, then the
periodic orbit γ does not persist in (3.1.1) for ε > 0.

3.3.3 Homoclinic orbits

We next discuss the persistence of homoclinic orbits and commutative vector fields in
(3.1.1). Instead of (A3) we assume the following on (3.1.2):

(A3’) The unperturbed system (3.1.2) has a C3 commutative vector field Z near Γh, such
that it is linearly independent of X0.

In the proof of Lemma 3.3.3, we did not essentially use the fact that γ(t) is periodic.
So we prove the following lemma similarly.

Lemma 3.3.9. Under assumption (A1’), the connection ∇∗ of T ∗
Γh′ has a nontrivial hor-

izontal section ωh : Γh′ → T ∗
Γh′, i.e., ω

h satisfies the AVE (3.3.5) of X0 along Γh′ where
Γh′ := {γh(t) | t ∈ R}.

Let ωh be such a horizontal section of ∇∗ as stated in Lemma 3.3.9, and define

J̃ωh,Z,γh := lim
k→+∞

� Tk

T−k

ωh([X1, Z])γh(t)dt, (3.3.13)

where the sequence {Tj}∞j −∞ is taken as in (3.2.4). If γp is an equilibrium, then Eq. (3.3.13)
is reduced to

J̃ωh,Z,γh =

� ∞

−∞
ωh([X1, Z])γh(t)dt (3.3.14)

like (3.2.5).

Theorem 3.3.10. Assume that (A1’) and (A3’) hold. If the perturbed system (3.1.1) has
a C3 commutative vector field Zε depending C2-smoothly on ε near Γh such that Z0 = Z,
then the limit in the right hand side of (3.3.13) exists and J̃ωh,Z,γ = 0.
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Proof. If γp is a periodic orbit, then by Lemma 3.3.3 there exists a horizontal section ωp

of T ∗
Γp satisfying the AVE (3.3.5) of X0 along Γp and (γp(t),ωp

γp(t)) is a periodic orbit for

the cotangent lift X̂0 of X0. Similarly, by assumptions (A1’) and Lemma 3.3.9, we have
a homoclinic orbit (γh(t),ωh

γh(t)
) to the periodic orbit (γp(t),ωp

γp(t)) for X̂
0, where ωh is a

horizontal section of ∇∗ for T ∗
Γh . By applying Theorem 3.2.4 to the cotangent lift X̂ε of

Xε, the rest of the proof is done similarly as in Theorem 3.3.5.

Theorem 3.3.10 means that if Jωh,Z,γh ̸= 0, then the commutative vector field Z does
not persist in (3.1.1) for ε > 0.

Remark 3.3.11. Using Theorems 3.2.2, 3.2.4, 3.3.5 and 3.3.10, we can determine whether
given first integrals and commutative vector fields do not persist in (3.1.1) but there still ex-
ist a sufficient number of first integrals and commutative vector fields depending smoothly
on the parameter ε. For example, the unperturbed system (3.1.2) may have different first
integrals and commutative vector fields which persist. So we have to overcome this dif-
ficulty to extend the results of Poincaré [52] and Kozlov [35, 36] and obtain a sufficient
condition for such nonintegrability of the perturbed systems.

As in the proof of Theorem 3.3.10, if γp
ε = γp + O(ε) is a Tε-periodic orbit with

Tε = T + O(ε) and γh
ε = γh + O(ε) is a homoclinic orbit to γp

ε in (3.1.1), then by
Lemmas 3.3.3 and 3.3.9 there exist horizontal sections ωp

ε = ωp+O(ε) and ωh
ε = ωh+O(ε)

of ∇∗ for Γp
ε = {γh

ε (t) | t ∈ [0, Tε)} and Γh′
ε = {γh

ε (t) | t ∈ R}, respectively, so that for
the cotangent lift X̂ε of Xε (γ

p
ε (t),ω

p
ε,γp(t)) is a periodic orbit to which (γh

ε (t),ω
h
ε,γh(t)

) is a

homoclinic orbit. Here the section ωh of ∇∗ satisfies the AVE (3.3.5) along Γh. Applying
Theorem 3.2.1 to X̂ε, we obtain the following.

Theorem 3.3.12. Assume that (A1’) and (A3’) hold and that there exists a periodic orbit
γp
ε depending C2-smoothly on ε such that γp

0 = γp. If the perturbed system (3.1.1) has a
homoclinic orbit γh

ε depending C2-smoothly on ε in (3.1.1) such that γh
0 = γh, then the

limit in the right hand side of (3.3.13) exists and J̃ωh,Z,γ = 0 for some section ω of T ∗
Γh

satisfying the AVE (3.3.5) along Γh.

Theorem 3.3.12 means that if J̃ωh,Z,γh ̸= 0 for any horizontal section ωh of ∇∗ for Γh,
then the homoclinic orbit γh does not persists in (3.1.1) for ε > 0.

3.4 Some relationships with the Melnikov Methods

In this section, we discuss some relationships of the main results in Sections 3.2 and 3.3
with the standard, subharmonic and homoclinic Melnikov methods [26, 42, 62, 65], which
provide sufficient conditions for persistence of periodic and homoclinic orbits, respectively,
in time-periodic perturbations of single-degree-of-freedom Hamiltonian systems, and with
another version of the homoclinic Melnikov method due to Wiggins [61] for autonomous
perturbations of multi-degree-of-freedom Hamiltonian systems.

3.4.1 Standard Melnikov methods

We first review the standard Melnikov methods for subharmonic and homoclinic orbits.
See [26, 62, 65] for more details.
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We consider systems of the form

ẋ = J2DH(x) + εg(x, t), x ∈ R2, (3.4.1)

where ε is a small parameter as in the previous sections, H : R2 → R and g : R2×R → R2

are, respectively, C3 and C2 in x, g(x, t) is T -periodic in t with T > 0 a constant, and J2
is the 2× 2 symplectic matrix,

J2 =

�
0 1
−1 0

�
.

When ε = 0, Eq. (4.5.1) becomes a single-degree-of-freedom Hamiltonian system with the
Hamiltonian H(x),

ẋ = J2DH(x). (3.4.2)

Let θ = t mod T so that θ ∈ S1
T , where S1

T = R/TZ. We rewrite (4.5.1) as an autonomous
system,

ẋ = J2DH(x) + εg(x, θ), θ̇ = 1. (3.4.3)

We begin with the subharmonic Melnikov method [26,62,65], and make the following
assumption:

(M) The unperturbed system (4.5.2) possesses a one-parameter family of periodic orbits
qα(t) with period Tα, α ∈ (α1,α2), for some α1 < α2.

Fix the value of α ∈ (α1,α2) such that

lT α = mT (3.4.4)

for some relatively prime integers l,m > 0. When ε = 0, Eq. (4.5.3) has a one-parameter
family ofmT -periodic orbits (x, θ) = (qα(t−τ), t), τ ∈ [0, T ). Note that (x, θ) = (qα(t−τ−
jT ), t) represents the same periodic orbit in the phase space R2×S1

T for j = 0, 1, . . . ,m−1.
Define the subharmonic Melnikov function as

Mm/l(τ) :=

� mT

0

DH(qα(t)) · g(qα(t), t+ τ)dt, (3.4.5)

where the dot ‘·’ represents the standard inner product in R2. We have the following
(see [26, 62,65] for the proof).

Theorem 3.4.1. If the subharmonic Melnikov function M l/m(τ) has a simple zero at
τ = τ0 ∈ S1

T , then for ε > 0 sufficiently small Eq. (4.5.3) has a periodic orbit of period
mT near the unperturbed periodic orbit (x, θ) = (qα(t− τ0), t) satisfying (3.4.4).

Theorem 3.4.1 means that the periodic orbit (x, θ) = (qα(t− τ0), t) persists in (4.5.3)
for ε > 0 sufficiently small if Mm/l(τ) has a simple zero at τ = τ0. The stability of the
perturbed periodic orbit can be also determined easily [65]. Moreover, several bifurcations
of the periodic orbits were discussed in [65, 68,69].

We next review the homoclinic Melnikov method [26,42,62] and assume the following
instead of (M):
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(M’) The unperturbed system (4.5.2) possesses a hyperbolic saddle point p connected to
itself by a homoclinic orbit qh(t).

When ε = 0, Eq. (4.5.3) has a hyperbolic T -periodic orbit (x, θ) = (p, t) with a one-
parameter family of homoclinic orbits (x, θ) = (qh(t − τ), t), τ ∈ S1

T . Note that (x, θ) =
(qh(t − τ − jT ), t) represents the same homoclinic orbit in the phase space R2 × S1

T for
j = 0, 1, . . . ,m − 1. We easily show that there exists a hyperbolic periodic orbit near
(x, θ) = (p, t) (see [26, 62] for the proof). Define the homoclinic Melnikov function as

M(τ) :=

� ∞

−∞
DH(qh(t)) · g(qh(t), t+ τ)dt (3.4.6)

We have the following (see [26, 42, 62] for the proof).

Theorem 3.4.2. If the homoclinic Melnikov function M(τ) has a simple zero at τ = τ0 ∈
S1
T , then for ε > 0 sufficiently small Eq. (4.5.3) has a transverse homoclinic orbit to the

hyperbolic periodic orbit near (x, θ) = (qh(t− τ0), t).

Theorem 3.4.2 means that the homoclinic orbit (x, θ) = (qh(t−τ0), t) persists in (4.5.3)
for ε > 0 sufficiently small if M(τ) has a simple zero at τ = τ0. By the Smale-Birkhoff
theorem [26,62], the existence of transverse homoclinic orbits to hyperbolic periodic orbits
implies that chaotic motions occur in (4.5.3), i.e., in (4.5.1).

We now describe some relationships of our results on persistence of first integrals
with the standard Melnikov methods for (4.5.3), which has the Hamiltonian H(x) is a
first integral when ε = 0. We first state the relationship for the subharmonic Melnikov
method.

Theorem 3.4.3. Suppose that assumption (M) and the resonance condition lT α = mT
hold for l,m > 0 relatively prime integers. If Eq. (4.5.3) has a C3 first integral Fε(x, t) =
H(x) +O(ε) depending C2-smoothly on ε in a neighborhood of

Γα
τ0
= {(qα(t− τ0), t) | t ∈ [0,mT )}

with τ0 ∈ S1
T , then there exists a connected open set Π ⊂ S1

T such that τ0 ∈ Π and the
subharmonic Melnikov function Mm/l(τ) is zero on Π.

Proof. Assume that the hypotheses of the theorem hold and Fε is a first integral of
(4.5.3). Then γ̂

m/l
τ (t) = (qα(t− τ), t) is an mT -periodic orbit in (4.5.3) with ε = 0 for any

τ ∈ [0, T ). Letting F = H, we write the integral (3.2.1) as

I
H,γ̂

m/l
τ

=

� mT

0

DH(qα(t− τ)) · g(qα(t− τ), t)dt

=

� mT

0

DH(qα(t)) · g(qα(t), t+ τ)dt,

which coincides with Mm/l(τ). We choose a connected open set Π ⊂ S1
T such that the

neighborhood of Γα
τ0

contains
�

τ∈Π Γα
τ . Applying Theorem 3.2.2 to the unperturbed pe-

riodic orbit γ̂
m/l
τ for τ ∈ Π, we obtain the desired result.
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Theorem 3.4.3 means that if there exists a connected open set Π ⊂ S1
T such that

Mm/l(τ) ̸≡ 0 on Π, then the first integral H does not persist near
�

τ∈Π Γα
τ in (4.5.3) for

ε > 0.

Remark 3.4.4. Under the hypotheses of Theorem 3.4.3 the following hold:

(i) It follows from Theorem 3.2.1 that if the periodic orbit (x, θ) = (qα(t− τ), t) persists
in (4.5.3), then Mm/l(τ) = 0;

(ii) If Eq. (4.5.3) has such a first integral near
�

τ∈S1T
Γα
τ , then Mm/l(τ) is identically

zero on S1
T ;

(iii) If H, g are analytic and Eq. (4.5.3) has such a first integral near Γα
τ0

with some
τ0 ∈ S1

T , then Mm/l(τ) is identically zero on S1
T .

The statement of part (i) consists with Theorem 3.4.1. Part (iii) follows from the identity
theorem (e.g., Theorem 3.2.6 of [1]) since Mm/l(τ) is also analytic.

Similarly, we have the following result for the homoclinic Melnikov method.

Theorem 3.4.5. Suppose that assumption (M’) holds. If Eq. (4.5.3) has a C3 first integral
Fε(x, t) = H(x) +O(ε) depending C2-smoothly on ε in a neighborhood of

Γh
τ0
= {(qh(t− τ0), t) | t ∈ R}

with τ0 ∈ S1
T , then there exists a connected open set Π ⊂ S1

T such that τ0 ∈ Π and the
homoclinic Melnikov function M(τ) is zero on Π.

Proof. Assume that (M’) holds. Then in (4.5.3) with ε = 0, (p, t) represents a periodic
orbit, to which γ̂h

τ (t) = (qh(t− τ), t) is a homoclinic orbit, for any τ ∈ [0, T ). We take the
Poincaré section Σ = {(x, θ) ∈ R2 × S1

T | θ = 0} and set Tj = jT , j ∈ Z. Letting F = H,
we write the integral in (3.2.4) as

� jT

−jT

DH(qh(t− τ)) · g(qh(t− τ), t)dt =

� jT

−jT

DH(qh(t)) · g(qh(t), t+ τ)dt,

which converges to M(τ) as j → ∞. We choose a connected open set Π ⊂ S1
T such that

the neighborhood of Γh
τ0

contains
�

τ∈Π Γh
τ . Applying Theorem 3.2.4 to the unperturbed

homoclinic orbit γ̂h
τ for τ ∈ Π, we obtain the desired result.

Theorem 3.4.5 means that if there exists a connected open set Π ∈ S1
T such that

M(τ) ̸≡ 0 on Π, then the first integral H does not persist near
�

τ∈Π Γh
τ in (4.5.3) for

ε > 0.

Remark 3.4.6. Under the hypotheses of Theorem 3.4.5 the following hold, as in Re-
mark 3.4.4:

(i) It follows from Theorem 3.2.3 that if the homoclinic orbit (x, θ) = (qh(t − τ), t)
persists in (4.5.3), then M(τ) = 0;

(ii) If Eq. (4.5.3) has such a first integral near
�

τ∈S1T
Γh
τ , then M(τ) is identically zero

on S1
T ;

(iii) If H, g are analytic and Eq. (4.5.3) has such a first integral near Γh
τ0

with some
τ0 ∈ ST , then M(τ) is identically zero on S1

T .

The statement of part (i) consists with Theorem 3.4.2.
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3.4.2 Another version of the homoclinic Melnikov method

We next consider (m+ 1)-degree-of-freedom Hamiltonian systems of the form

ẋ = J2mDxH
0(x, I) + εJ2mDxH

1(x, I, θ),

İ = −εDθH
1(x, I, θ),

θ̇ = DIH
0(x, I) + εDIH

1(x, I, θ),

(x, I, θ) ∈ R2m × V × S1
2π, (3.4.7)

for which Hε(x, I, θ) = H0(x, I) + εH1(x, I, θ) is the Hamiltonian, where m ≥ 1 is an
integer, V ⊂ R is an open interval, H0(x, I), H1(x, I, θ) are C3 in (x, I, θ), and J2m is the
2m× 2m symplectic matrix given by

J2m =

�
0 idm

−idm 0

�
,

where idm is the m×m identity matrix. When ε = 0, Eq. (3.4.7) becomes

ẋ = J2mDxH
0(x, I), İ = 0, θ̇ = DIH

0(x, I). (3.4.8)

Note that I and θ are scalar variables. We assume the following on the unperturbed
system (3.4.8):

(W1) For each I ∈ V , the first equation is has m C3 first integrals Fj(x, I), j = 1, . . . ,m,
with F1(x, I) = H0(x, I) such that DxFj(x, I), j = 1, . . . ,m, are linearly inde-
pendent except at equilibria and they are in involution, i.e., {Fi(x, I), Fj(x, I)} :=
DxFi(x, I) · J2mDxFj(x, I) = 0, i, j = 1, . . . ,m.

(W2) For each I ∈ V the first equation has a hyperbolic equilibrium xI and an (m− 1)-
parameter family of homoclinic orbits qI(t;α), α ∈ V̄ ⊂ Rm−1, to xI , where xI and
qI(t;α) depend C2-smoothly on I and α, and V̄ is an connected open in Rm−1.

(W3) DIH
0(qI(t;α), I) > 0 for (I,α) ∈ V × V̄ .

Obviously, I is a first integral of (3.4.8) as well as Fj(x, I), j = 1, . . . ,m, so that the
Hamiltonian system (3.4.7) is Liouville integrable [9,43]. Thus, Eq. (3.4.7) is a special case
in a class of systems called “System III” in Chapter 4 of [61], in which very wide classes of
systems containing more general Hamiltonian systems, especially having multiple action
and angular variables such as the scalar variables I and θ in (3.4.7), were discussed.

In (3.4.8) N0 = {(xI , I, θ) | I ∈ V, θ ∈ S1
2π} is a two-dimensional normally hyperbolic

invariant manifold with boundary whose stable and unstable manifolds coincide along the
homoclinic manifold

Γ̄h = {(qI(t;α), I, θ) | I ∈ V,α ∈ V̄ , θ ∈ S1
2π}.

Here “normal hyperbolicity” means that the expansive and contraction rates of the flow
generated by (3.4.8) normal to N0 dominate those tangent to N0. Note that (x, I, θ) =
(xI0 , I0, DIH

0(xI0 , I0)t + θ0) represents a periodic orbit on N0 for (I0, θ0) ∈ V × S1
2π.

Using the invariant manifold theory [63], we show that when ε ̸= 0 Eq. (3.4.7) also has
a two-dimensional normally hyperbolic invariant manifold Nε near N0 and its stable and
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unstable manifolds are close to those of N0. Moreover, the invariant manifold Nε consists
of periodic orbits γp

I,ε, which are given as intersections between Nε and the level sets

Hε(x, I, θ) = const. since DIH
0(xI , I) > 0 by (W3), near γp

I = {(xI , I, θ)|θ ∈ S1
2π} for

I ∈ V . Note that Nε can be invariant by taking two periodic orbits as its boundary as in
Proposition 2.1 of [66].

Let θ = θI(t;α) denote the solution to

θ̇ = DIH
0(qI(t;α), I)

with θ(0) = 0, i.e.,

θI(t;α) =

� t

0

DIH
0(qI(t;α), I)dt.

Then γh
I,α,θ0

(t) = (qI(t;α), I, θI(t;α)+ θ0) is a homoclinic orbit to the periodic orbit γp
I in

(3.4.8) for any θ0 ∈ S1
2π. Let {T

I,α
j }∞j=−∞ be a sequence for (I,α) ∈ V × V̄ such that

θI(T I,α
j ;α) = 0, j ∈ Z, and lim

j→±∞
T I,α
j = ±∞. (3.4.9)

By assumption (W3) there exists such an sequence {T I,α
j }∞j=−∞. Define the Melnikov

functions for (3.4.7) as

M̄ I
1 (θ0,α) = lim

j→∞

� T I,α
j

T I,α
−j

DθH
1(qI(t;α), I, θI(t;α) + θ0)dt (3.4.10)

and

M̄ I
k (θ0,α)

= lim
j→∞

� T I,α
j

T I,α
−j

�
DxFk(q

I(t;α), I) · J2mDxH
1(qI(t;α), I, θI(t;α) + θ0)

−DIFk(q
I(t;α), I)DθH

1(qI(t;α), I, θI(t;α) + θ0)
�
dt (3.4.11)

for k = 2, . . . ,m. Note that the definitions of the Melnikov functions M̄ I
k , k ≥ 2, are

different from the original ones of [61]. We call M̄ I = (M̄ I
1 , . . . , M̄

I
m) the Melnikov vector.

From Theorem 4.1.19 of [61] we obtain the following result for (3.4.7).

Theorem 3.4.7. Suppose that assumptions (W1)-(W3) hold. If for some I ∈ V

(i) M̄ I(θ,α) = 0;

(ii) detDM̄ I(θ,α) ̸= 0

at (θ,α) = (θ0,α0), then the (m+ 1)-dimensional stable and unstable manifolds W s(γp
I,ε)

and W u(γp
I,ε) intersect transversely near (x, I, θ) = (qI(0;α0), I, θ0) on the level set of

Hε(γ
p
I,ε).

Proof. Assume that the hypotheses of Theorem 3.4.7 hold. Let M̃ I
1 (θ,α) = M̄ I

1 (θ,α) and

M̃ I
k (θ,α) = M̄ I

k (θ,α) +DIFk(xI , I)M̄
I
1 (θ,α), k = 2, . . . ,m,
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and let M̃ I = (M̃ I
1 , . . . , M̃

I
m), which is the original Melnikov vector defined in [61] for

(3.4.7). Note that in [61], although a time sequence does not appear in its formulas
(4.1.84) and (4.1.85) or (4.1.101) and (4.1.102), such conditional convergences of the
integrals as (3.4.10) and (3.4.11) are implicitly assumed (see his arguments on system III
in part iii) of Section 4.1d of [61]). We see that if M̄ I(θ,α) satisfies conditions (i) and (ii) at
(θ,α) = (θ0,α0), then M̃ I(θ0,α0) = 0 and detDM̃ I(θ0,α0) ̸= 0, since detDM̃ I(θ0,α0) =
detDM̄ I(θ0,α0), which follows from

DM̃ I(θ0,α0) =

⎛

⎜⎜⎜⎝

DθM̄
I
1 (θ0,α0), DαM̄

I
1 (θ0,α0)

DθM̄
I
2 (θ0,α0), DαM̄

I
2 (θ0,α0)

...
DθM̄

I
m(θ0,α0), DαM̄

I
m(θ0,α0)

⎞

⎟⎟⎟⎠

+

⎛

⎜⎜⎜⎝

0
DIF2(xI , I)(DθM̄

I
1 (θ0,α0), DαM̄

I
1 (θ0,α0))

...
DIFm(xI , I)(DθM̄

I
1 (θ0,α0), DαM̄

I
1 (θ0,α0))

⎞

⎟⎟⎟⎠
.

We obtain the desired result from Theorem 4.1.19 of [61].

Remark 3.4.8. The Melnikov vector M̄ I(θ,α) does not depend on the choice of time
sequence {T I,α

j }∞j=−∞. Actually, letting {T̂ I,α
j }∞j=−∞ be a different time sequence satisfying

θI(T̂ I,α
j ;α) = θ̂0, j ∈ Z, and lim

j→±∞
T̂ I,α
j = ±∞

instead of (3.4.9), we have

M̂ I
1 (θ,α) := lim

j→∞

� T̂ I,α
j

T̂ I,α
−j

DθH
1(qI(t;α), I, θI(t;α) + θ)dt

=M̄ I
1 (θ,α) + lim

j→∞

�� T I,α
−j

T̂ I,α
−j

+

� T̂ I,α
j

T I,α
j

�
DθH

1(qI(t;α), I, θI(t;α) + θ)dt

=M̄ I
1 (θ,α)

since

lim
t→±∞

DθH
1(qI(t;α), I, θ) = DθH

1(xI , I, θ),

lim
t→±∞

DIH
0(qI(t;α), I) = DIH

0(xI , I)

and

�� T I,α
−j

T̂ I,α
−j

+

� T̂ I,α
j

T I,α
j

�
DθH

1(xI , I, θI(t;α) + θ)DIH
0(qI(t;α), I)dt

=

�� T I,α
−j

T̂ I,α
−j

+

� T̂ I,α
j

T I,α
j

�
d

dt
H1(xI , I, θI(t;α) + θ) dt = 0.
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Similarly, we show

M̂ I
k (θ,α) := lim

j→∞

� T̂ I,α
j

T̂ I,α
−j

�
DxFk(q

I(t;α), I) · J2mDxH
1(qI(t;α), I, θI(t;α) + θ)

−DIFk(q
I(t;α), I)DθH

1(qI(t;α), I, θI(t;α) + θ)
�
dt

=M̄ I
k (θ,α), k = 2, . . . ,m.

Theorem 3.4.7 means that the homoclinic orbit γh
I,α,θ0

(t) persists in (3.4.7) for ε > 0
sufficiently small if the Melnikov vector M̄ I(θ,α) satisfies its hypotheses. By the Smale-
Birkhoff theorem [26, 62], such transverse intersection between the stable and unstable
manifolds of periodic orbits implies that chaotic motions occur in (3.4.7).

We now describe a relationship of our results on persistence of first integrals with the
homoclinic Melnikov methods for (3.4.7), in which the Hamiltonian Hε(x, I, θ) is always
a persisting first integral. We have the following result.

Theorem 3.4.9. Suppose that assumptions (W1)-(W3) hold. If the Hamiltonian sys-
tem (3.4.7) has a C3 first integral Fk,ε(x, I, θ) = Fk(x, I) + O(ε) (resp. Fm+1,ε(x, I, θ) =
I +O(ε)) depending C2 smoothly on ε in a neighborhood of

Γ̄h
I0,θ0,α0

= {(qI0(t;α0), I0, θ
I0(t;α0)) | t ∈ R}

for some k = 2, . . . ,m, then there exists a connected open set Π̄ ⊂ V × S1
2π × V̄ such that

(I0, θ0,α0) ∈ Π̄ and the Melnikov function M̄ I
k (θ,α) = 0 (resp. M̄ I

1 (θ,α) = 0) on Π̄.

Proof. Assume that (W1)-(W3) hold. We choose the Poincaré section Σ = {(x, I, θ) ∈
R2m × V × S1

2π | θ = θ0} and take Tj = T I,α
j , j ∈ Z (cf. Eq. (3.4.9)). Letting F = Fk for

k = 2, . . . ,m (resp. F = I), we write the integral in (3.2.4) as

� T I,α
j

T I,α
−j

�
DxFk(q

I(t;α), I) · J2mDxH
1(qI(t;α), I, θI(t;α) + θ0)

−DIFk(q
I(t;α), I)DθH

1(qI(t;α), I, θI(t;α) + θ0)
�
dt

�
resp.

� T I,α
j

T I,α
−j

DθH
1(qI(t;α), I, θI(t;α) + θ0)dt

�

for the homoclinic orbit γh
I,θ,α0

(t). We choose a connected open set Π̄ ⊂ V ×S1
2π × V̄ such

that the neighborhood of Γ̄h
I0,θ0,α0

contains
�

(I,θ,α)∈Π̄ Γ̄h
I,θ,α. Applying Theorem 3.2.4 to the

unperturbed homoclinic orbit γh
I,θ,α(t) for (I, θ,α) ∈ Π̄, we obtain the desired result.

Remark 3.4.10. Under the hypotheses of Theorem 4.5.5 the following hold as in Re-
marks 3.4.4 and 3.4.6:

(i) It follows from Theorem 3.2.3 that if the homoclinic orbit γh
I0,θ0,α0

(t) persists in
(3.4.7), then M̄ I0(θ0,α0) = 0;

(ii) If Eq. (3.4.7) has such a first integral near Γ̄h, then the corresponding Melnikov
function is identically zero on V × S1

2π × V̄ ;

(iii) If H0, H1 are analytic and Eq. (3.4.7) has such a first integral except for Hε near
Γ̄h
I0,θ0,α0

with some (I0, θ0,α0) ∈ Π̄, then M̄ I(θ) = 0 is identically zero on Γ̃h.

The statement of part (i) consists with Theorem 3.4.7.
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Figure 3.2: Phase portraits of (4.6.3) with ε = 0: (a) a = 1; (b) a = −1.

3.5 Examples

We now illustrate the above theory for four examples: The periodically forced Duffing
oscillator [26,62,64,65], two identical pendula coupled with a harmonic oscillator, a peri-
odically forced rigid body [72] and a three-mode truncation of a buckled beam [67].

3.5.1 Periodically forced Duffing oscillator

We first consider the periodically forced Duffing oscillator

ẋ1 = x2, ẋ2 = ax1 − x3
1 + ε(β cosωt− δx2), (3.5.1)

where x1, x2 ∈ R, a = 1 or −1, and β, δ,ω are positive constants. When ε = 0, Eq. (4.6.3)
becomes a single-degree-of-freedom Hamiltonian system with the Hamiltonian

H = −1

2
ax2

1 +
1

4
x4
1 +

1

2
x2
2, (3.5.2)

and it is a special case of (4.5.3). See Fig. 3.2 for the phase portraits of (4.6.3) with ε = 0.
We begin with the case of a = 1. When ε = 0, in the phase plane there exist a pair of

homoclinic orbits
qh±(t) = (±

√
2 sech t,∓

√
2 sech t tanh t),

a pair of one-parameter families of periodic orbits

qk±(t) =

�
±

√
2√

2− k2
dn

�
t√

2− k2

�
,

∓
√
2k2

2− k2
sn

�
t√

2− k2

�
cn

�
t√

2− k2

��
, k ∈ (0, 1),

inside each of them, and a one-parameter periodic orbits

q̃k(t) =

� √
2k√

2k2 − 1
cn

�
t√

2k2 − 1

�
,

−
√
2k

2k2 − 1
sn

�
t√

2k2 − 1

�
dn

�
t√

2k2 − 1

��
, k ∈

�
1/
√
2, 1

�
,
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outside of them, as shown in Fig. 3.2(a), where sn, cn and dn represent the Jacobi elliptic
functions with the elliptic modulus k. See [20] for general information on elliptic functions.
The periods of qk±(t) and q̃k(t) are given by T k = 2K(k)

√
2− k2 and T̃ k = 4K(k)

√
2k2 − 1,

respectively, where K(k) is the complete elliptic integral of the first kind. See also [26,62].
Assume that the resonance conditions

lT k =
2πm

ω
, i.e., ω =

2πm

2lK(k)
√
2− k2

, (3.5.3)

and

lT̃ k =
2πm

ω
, i.e., ω =

2πm

4lK(k)
√
2k2 − 1

, (3.5.4)

hold for qk±(t) and q̃k(t), respectively, with l,m > 0 relatively prime integers. We compute
the subharmonic Melnikov function (4.5.5) for qk±(t) and q̃k(t) as

M
m/l
± (τ) = −δJ1(k, l)± βJ2(k,m, l) sin τ

and
M̃m/l(τ) = −δJ̃1(k, l) + βJ̃2(k,m, l) sin τ,

respectively, where

J1(k, l) =
4l[(2− k2)E(k)− 2k′2K(k)]

3(2− k2)3/2
,

J2(k,m, l) =

⎧
⎨

⎩

√
2πω sech

�
mπK(k′)

K(k)

�
(for l = 1);

0 (for l ̸= 1),

J̃1(k, l) =
8l[(2k2 − 1)E(k) + k′2K(k)]

3(2k2 − 1)3/2
,

J̃2(k,m, l) =

⎧
⎨

⎩
2
√
2πω sech

�
mπK(k′)

2K(k)

�
(for l = 1 and m odd);

0 (for l ̸= 1 or m even).

Here E(k) is the complete elliptic integral of the second kind and k′ =
√
1− k2 is the com-

plimentary elliptic modulus. We see that the subharmonic Melnikov functions M
m/l
± (τ)

and M̃m/l(τ) are not identically zero on any connected open set in S1
T . We also compute

the homoclinic Melnikov function (4.5.7) for qh±(t) as

M±(τ) = −4

3
δ ±

√
2πωβ csch

�πω
2

�
sin τ,

which is not identically zero on any connected open set in S1
T . See also [26, 62] for the

computations of the Melnikov functions.
Let

R = {k ∈ (0, 1) | k satisfies (4.6.5) for m, l ∈ N},
R̃ =

�
k ∈

�
1/
√
2, 1

�
| k satisfies (4.6.6) for m, l ∈ N

�
,
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and let

Sk
± = {(x, θ) ∈ R2 × S1

T | x = qk±(t), },
S̃k = {(x, θ) ∈ R2 × S1

T | x = q̃k(t)},
Sh
± = {(x, θ) ∈ R2 × S1

T | x = qh±(t)}.

Applying Theorems 3.4.3 and 3.4.5, we obtain the following.

Proposition 3.5.1. The first integral (3.5.2) does not persist near Sk
± for k ∈ R, S̃k for

k ∈ R̃, and Sh
± in (4.6.3) with a = 1 for ε > 0.

Remark 3.5.2. When β > 0 but δ = 0, so that Eq. (4.6.3) is Hamiltonian, the statement
of Proposition 3.5.1 still holds near Sk

± for k ∈ R1, S̃
k for k ∈ R̃o, and Sh

±, where

R1 = {k ∈ (0, 1) | k satisfies (4.6.5) with l = 1},
R̃o =

�
k ∈

�
1/
√
2, 1

�
| k satisfies (4.6.6) with l = 1 and m odd

�
,

We turn to the case of a = −1. When ε = 0, in the phase plane there exists a
one-parameter family of periodic orbits

γk(t) =

� √
2k√

1− 2k2
cn

�
t√

1− 2k2

�
,

−
√
2k

1− 2k2
sn

�
t√

1− 2k2

�
dn

�
t√

1− 2k2

��
, k ∈

�
0, 1/

√
2
�
,

as shown in Fig. 3.2(b), and their period is given by T̂ k = 4K(k)
√
1− 2k2. See also [64,65].

Assume that the resonance conditions

lT̂ k =
2πm

ω
, i.e., ω =

πm

2lK(k)
√
1− 2k2

(3.5.5)

holds for l,m > 0 relatively prime integers. We compute the subharmonic Melnikov
function (4.5.5) for γk(t) as

M̂m/l(τ) = −δĴ1(k, l)± βĴ2(k,m, l) sin τ,

where

Ĵ1(k, l) =
8l[(2k2 − 1)E(k) + k′2K(k)]

3(1− 2k2)3/2
,

Ĵ2(k,m, l) =

⎧
⎪⎨

⎪⎩

√
2π2m

K(k)
√
1− 2k2

sech

�
πmK(k′)

2K(k)

�
(for l = 1 and m odd);

0 (for l ̸= 1 or m even).

See also [64, 65] for the computations of the Melnikov function. Thus, the Melnikov
function M̄m/l(τ) is not identically zero on any connected open set in S1

T .
Let

R̂ =
�
k ∈

�
0, 1/

√
2
�
| k satisfies (4.6.8) for m, l ∈ N

�

and let
Ŝk = {(x, θ) ∈ R2 × S1

T | x = γk(t)}.
Applying Theorem 3.4.3, we obtain the following.
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Figure 3.3: Two identical pendula coupled with a harmonic oscillator.

Proposition 3.5.3. The first integral (3.5.2) does not persist near Ŝk for k ∈ R̂ in (4.6.3)
with a = −1 for ε > 0.

Remark 3.5.4. When β > 0 but δ = 0, i.e., Eq. (4.6.3) is Hamiltonian, the statement of
Proposition 4.6.6 still holds near Ŝk for k ∈ R̂o, where

R̂o =
�
k ∈

�
0, 1/

√
2
�
| k satisfies (4.6.8) with l = 1 and m odd

�
.

3.5.2 Two pendula coupled with a harmonic oscillator

We next consider the three-degree-of-freedom Hamiltonian system

ẋ1 = x3, ẋ3 = − sin x1 − εy1 sin x1,

ẋ2 = x4, ẋ4 = − sin x2 − εy1 sin x2,

ẏ1 = y2, ẏ2 = −ω2
0y1 + ε(cos x1 + cosx2)

(3.5.6)

with the Hamiltonian

H = − cos x1 − cos x2 +
1

2
(x2

3 + x2
4 + ω2

0y
2
1 + y22)− εy1(cosx1 + cosx2),

where x1, x2 ∈ S1
2π, x3, x4, y1, y2 ∈ R and ω0 is a positive constant. The system (3.5.6)

represents non-dimensionalized equations of motion for two identical pendula coupled with
a harmonic oscillator shown in Fig. 3.3. Here the gravitational force acts downwards, and
the spring K generates a restoring force Ky1, where y1 is the displacement of the mass
M = m from the pivot of the pendula. Linear restoring forces with a spring constant of
O(ε) and zero natural length also occur between the two masses m and the mass M . In
particular, ω2

0 = Kℓ/Mg + O(ε), where g is the gravitational acceleration and ℓ is the
length from the pivot to the mass m.

Introduce the action-angle coordinates (I, θ) ∈ R+ × S1
2π such that

y1 =

�
2I

ω0

sin θ, y2 =
�

2ω0I cos θ
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and rewrite (3.5.6) as

ẋ1 = x3, ẋ3 = − sin x1 − ε

�
2I

ω0

sin θ sin x1,

ẋ2 = x4, ẋ4 = − sin x2 − ε

�
2I

ω0

sin θ sin x2,

İ = ε

�
2I

ω0

cos θ(cosx1 + cosx2),

θ̇ = ω0 − ε
sin θ√
2ω0I

(cosx1 + cosx2),

(3.5.7)

which has the form (3.4.7) with

H0(x, I) = − cos x1 − cos x2 +
1

2
(x2

3 + x2
4) + ω0I,

H1(x, I, θ) = −
�

2I

ω0

sin θ(cosx1 + cosx2).

where R+ denotes the set of nonnegative real numbers. When ε = 0, the x-component of
(3.5.7) has a first integral

F2(x, I) = − cos x1 +
1

2
x2
3

and a hyperbolic equilibrium xI = (π, π, 0, 0) to which there exist four one-parameter
families of homoclinic orbits

qI±,+(t;α) = (±2 arcsin(tanh t), 2 arcsin(tanh(t+ α)),±2 sech t, 2 sech(t+ α)),

qI±,−(t;α) = (±2 arcsin(tanh t),−2 arcsin(tanh(t+ α))± 2 sech t,−2 sech(t+ α)),

where α ∈ R. Thus, assumptions (W1)-(W3) hold with m = 2.
We compute (3.4.11) for the homocloinic orbits (x, I, θ) = (qI±,±(t;α), I,ω0t+ θ0) as

M̄ I
2 (θ0,α) =−

�
2I

ω0

� ∞

−∞
2 sin(ω0t+ θ0) sech t sin(2 arcsin(tanh t))dt

=− 4

�
2I

ω0

cos θ0

� ∞

−∞
sech2 t tanh t sinω0t dt

=− π
�

8ω3
0I csch

�πω0

2

�
cos θ0.

On the other hand, letting {T I,α
j }∞j=−∞ be a time sequence satisfying (3.4.9), we write the
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integral in (3.4.10) as

−
�

2I

ω0

� T I,α
j

T I,α
−j

cos(ω0t+ θ0)(cos(2 arcsin(tanh t))

+ cos(2 arcsin(tanh(t+ α))))dt

= −
�

2I

ω0

�
cos θ0

� T I,α
j

T I,α
−j

(1− 2 tanh2 t) cosω0t dt

− sin θ0

� T I,α
j

T I,α
−j

(1− 2 tanh2 t) sinω0t dt

+ cos(θ0 − αω)

� T I,α
j +α

T I,α
−j +α

(1− 2 tanh2 t) cosω0t dt

− sin(θ0 − αω)

� T I,α
j +α

T I,α
−j +α

(1− 2 tanh2 t) sinω0t dt

�
.

Since
lim

j→±∞
ω0T

I,α
j = 0 mod 2π,

we have

lim
j→∞

� T I,α
j

T I,α
−j

(1− 2 tanh2 t) cosω0t dt

= lim
j→∞

� T I,α
j

T I,α
−j

2(1− tanh2 t) cosω0t dt− lim
j→∞

� T I,α
j

T I,α
−j

cosω0t dt

= 2πω0 csch
�πω0

2

�

and

lim
j→∞

� T I,α
j

T I,α
−j

(1− 2 tanh2 t) sinω0t dt

= lim
j→∞

� T I,α
j

T I,α
−j

2(1− tanh2 t) sinω0t dt− lim
j→∞

� T I,α
j

T I,α
−j

sinω0t dt = 0.

Hence, we obtain

M̄ I
1 (θ0,α) = −π

�
8ω3

0I csch
�πω0

2

�
(cos θ0 + cos(θ0 − ω0α)).

We see that M̄ I
k (θ0,α), k = 1, 2, are not identically zero on any connected open set in

R+ × S1
2π × R. Applying Theorem 4.5.5, we obtain the following.

Proposition 3.5.5. The first integrals F2(x, I) and I do not persist near

Γ̄h = Γ̄h
+,+ ∪ Γ̄h

+,− ∪ Γ̄h
−,+ ∪ Γ̄h

−,−

in (3.5.7) for ε > 0, where

Γ̄h
±,± = {(qI±,±(t;α), I, θ) | t ∈ R, I ∈ R+, θ ∈ S1

2π}.
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Ω4

Ω1

Ω2

Ω3

ω ω
ω

2 1
3

Figure 3.4: Mathematical model for a quadrotor helicopter.

Remark 3.5.6. We have

detDM̄ I(θ,α) = −4π2ω2
0I csch2

�πω0

2

�
sin θ0 sin(θ0 − ωα).

Hence, if M̄ I(θ,α) = 0, then detDM̄ I(θ,α) ̸= 0. From Theorem 3.4.7 we see that the
stable and unstable manifolds of the perturbed periodic orbit near γp

I = {(xI , I, θ) | θ ∈ S1
2π}

intersect transversely on its level set for ε > 0 sufficiently small.

3.5.3 Periodically forced rigid body

We next consider a three-dimensional system

ω̇1 =
I2 − I3

I1
ω2ω3 −

I0
I1
Ωω2 +

ℓb

I1
V1,

ω̇2 =
I3 − I1

I2
ω3ω1 +

I0
I2
Ωω1 +

ℓb

I2
V2,

ω̇3 =
I1 − I2

I3
ω1ω2 +

ℓd

I3
V3,

(3.5.8)

which provides a mathematical model for a quadrotor helicopter shown in Fig. 3.4. In
the model, ωj∈ R and Ij> 0, j = 1, 2, 3, respectively, denote the angular velocities and
moments of inertia about the quadrotor’s principal axes, ℓ represents the length from the
center of mass to the rotational axis of the rotor, and I0, b and d represent the rotor’s
moment of inertia about the rotational axis, thrust factor and drag factor, respectively.
Moreover,

Ω = Ω2 + Ω4 − Ω1 − Ω3

and
V1 = Ω2

4 − Ω2
2, V2 = Ω2

3 − Ω2
1, V3 = Ω2

2 + Ω2
4 − Ω2

1 − Ω2
3,

where Ωj is the angular velocity of the jth rotor for j = 1-4. See [17,27] for the derivation
of (3.5.8). In particular, the quadrotor can hover only if

Ωj = Ω0 :=
1

2

�
m0g

b
, j = 1-4,

where m0 and g are, respectively, the quadrotor’s mass and gravitational acceleration.
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Let T > 0 be a constant, and let Ωj = Ω0 + ε∆Ωj(t), where ∆Ωj(t) is a T -periodic
function, for j = 1-4. This corresponds to a situation in which the quadrotor is subjected
to periodic perturbations when hovering. Let

v1(t) = ∆Ω4(t)−∆Ω2(t), v2(t) = ∆Ω3(t)−∆Ω1(t),

v3(t) = ∆Ω4(t) +∆Ω2(t)−∆Ω3(t)−∆Ω1(t)

and
β0 = I0Ω0, β1 = β2 = 2ℓbΩ2

0, β3 = 2ℓdΩ2
0.

Equation (3.5.8) is written as

ω̇1 =
I2 − I3

I1
ω2ω3 + ε

�
−β0

I1
v3(t)ω2 +

β1

I1
v1(t)

�
+O(ε2),

ω̇2 =
I3 − I1

I2
ω3ω1 + ε

�
β0

I2
v3(t)ω1 +

β2

I2
v2(t)

�
+O(ε2),

ω̇3 =
I1 − I2

I3
ω1ω2 + ε

β3

I3
v3(t) +O(ε2),

(3.5.9)

in which chaotic motions were discussed in [72] when β1 = 0 and v2(t) = v3(t) = sin νt
with ν > 0 a constant. When ε = 0, Eq. (3.5.9) has a first integral

F (ω) =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3)

and nonhyperbolic equilibria at

p1±(c1) = (±c1, 0, 0), p2±(c2) = (0,±c2, 0), p3±(c) = (0, 0,±c3)

on the level set F (ω) = c > 0, where cj =
�

2c/Ij, j = 1, 2, 3. The first integral F (ω)
corresponds to the (Hamiltonian) energy of the unperturbed rigid body.

Let Xε(ω, t) = X0(ω) + εX1(ω, t) + O(ε2) denote the non-autonomous vector field
of (3.5.9) and define the corresponding autonomous vector field X̃ε(ω, θ) = X̃0(ω, θ) +
εX̃1(ω, θ) +O(ε2) on R3 × S1

T like (4.5.3), where

X̃0(ω, θ) =

�
X0(ω)

1

�
, X̃1(ω, θ) =

�
X1(ω, θ)

1

�
.

The unperturbed vector field X̃0(ω, θ) has six one-parameter families of nonhyperbolic
periodic orbits γj±,cj(t) = (pj±(cj), t), j = 1, 2, 3. We compute the integral (3.2.1) as

IF,γj±,cj
=

� T

0

dF (X̃1)(pj(cj), t)dt = ±cjβj

� T

0

vj(t)dt, j = 1, 2, 3,

and apply Theorems 3.2.1 and 3.2.2 to obtain the following.

Proposition 3.5.7. For j = 1, 2, 3, if

βj

� T

0

vj(t) ̸= 0,
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u

P

z=0

z=1

P

Figure 3.5: Buckeled beam. The variables u and P represent the deflection and compres-
sive force, respectively. The length of the beam when u ≡ 0 is non-dimensionalized to the
unity.

then the periodic orbit γj±,cj(t) does not persist for any cj > 0 and the first integral F (ω)
does not persist near

{(pj+(cj), θ) ∈ R | cj > 0, θ ∈ S1
T} ∪ {(pj−(cj), θ) ∈ R | cj > 0, θ ∈ S1

T}

in (3.5.9).

Remark 3.5.8.

(i) In [72], when β1 = 0 and v2(t) = v3(t) = sin νt with ν > 0 a constant, it was shown
that the periodic orbits γ2±,c2 persist for c2 > 0 if and only if β0 = 0 or β3 = 0 (see
Proposition 2 of [72]).

(ii) The unperturbed vector field X0(ω) has another first integral

F̃ (ω) = (I21ω
2
1 + I22ω

2
2 + I23ω

2
3),

which corresponds to the angular momentum of the rigid body. We compute the
integral (3.2.1) as

IF̃ ,γ =

� T

0

dF̃ (X̂1)(pj(cj), t)dt = ±2cjIjβj

� T

0

vj(t)dt, j = 1, 2, 3,

so that the same statement as Proposition 4.6.6 holds for F̃ (ω).

3.5.4 Three-mode truncation of a buckled beam

Finally, we consider a six-dimensional autonomous system

ẋ1 = x4, ẋ4 = x1 − (x2
1 + β1x

2
2 + β2x

2
3)x1,

ẋ2 = x5, ẋ5 = −ω2
1x2 − β1(x

2
1 + β1x

2
2 + β2x

2
3)x2,

ẋ3 = x6, ẋ6 = −ω2
2x3 − β2(x

2
1 + β1x

2
2 + β2x

2
3)x3,

(3.5.10)



CHAPTER 3. 50

which represents a three-mode truncation of a buckled beam shown in Fig. 3.5, where
xj ∈ R, j = 1-6, ωj, βj > 0, j = 1, 2, are constants such that ω1 < ω2. See [67] for the
details on the model. In (3.5.10) there is a saddle-center equilibrium at (x1, . . . , x6) =
(0, . . . , 0) and it has a homoclinic orbit. It was also shown in [71] that for almost all pairs
of β1, β2 > 0 the system (3.5.10) exhibits chaotic motions and it is nonintegrable.

Let xj =
√
εyj, j = 1-6, with the small parameter ε. We rewrite (3.5.10) as

ẏ1 = y4, ẏ4 = y1 − ε(y21 + β1y
2
2 + β2y

2
3)y1,

ẏ2 = y5, ẏ5 = −ω2
1y2 − εβ1(y

2
1 + β1y

2
2 + β2y

2
3)y2,

ẏ3 = y6, ẏ6 = −ω2
2y3 − εβ2(y

2
1 + β1y

2
2 + β2y

2
3)y3,

(3.5.11)

which is regarded as as a perturbation of a linear system. When ε = 0, Eq. (3.5.11) has
two one-parameter families of periodic orbits

γ1,c(t) = (0, c sinω1t, 0, 0, cω1 cosω1t, 0),

γ2,c(t) = (0, 0, c sinω2t, 0, 0, cω2 cosω2t)

for c > 0, three first integrals

F1(y) = −y21 + y24, F2(y) = ω2
1y

2
2 + y25, F3(y) = ω2

2y
2
3 + y26,

and six commutative vector fields

Z1 = (y1, 0, 0, y4, 0, 0), Z2 = (y4, 0, 0, y1, 0, 0),

Z3 = (0, y2, 0, 0, y5, 0), Z4 = (0, y5, 0, 0,−ω2
1y2, 0),

Z5 = (0, 0, y3, 0, 0, y6), Z6 = (0, 0, y6, 0, 0,−ω2
2y3).

Moreover, the AVE of (3.5.11) with ε = 0 is given by

η̇1 = −η4, η̇2 = ω2
1η5, η̇3 = ω2

2η6,

η̇4 = −η1, η̇5 = −η̂2, η̇6 = −η3,

which has four linearly independent periodic solutions

γ̃1(t) = (0,ω1 sinω1t, 0, 0, cosω1t, 0),

γ̃2(t) = (0,ω1 cosω1t, 0, 0,− sinω1t, 0),

γ̃3(t) = (0, 0,ω2 sinω2t, 0, 0, cosω2t),

γ̃4(t) = (0, 0,ω2 cosω2t, 0, 0,− sinω2t)

and two linearly independent unbounded solutions. We compute (3.2.1) and (3.3.9) as

IFj ,γℓ,c =

� 2π/ωℓ

0

dFj(X1)(γℓ,c(t))dt = 0, j = 1, 2, 3 and ℓ = 1, 2,

and

Jγ̃j ,Zk,γℓ,c =

� 2π/ωℓ

0

γ̃j(t) · [X1, Zk]γℓ,c(t)dt

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3

2
πβ2

1c
3 if (j, k, ℓ) = (2, 3, 1);

3

2
πβ2

2c
3 if (j, k, ℓ) = (4, 5, 2);

0 otherwise,

(3.5.12)
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where X1 represents the O(ε)-terms of the vector field in (3.5.11). In (3.5.12), the sub-
script j is allowed to take 1 or 2 for ℓ = 1, and 3 or 4 for ℓ = 2. Theorems 3.2.1, 3.2.2
and and 3.3.8 give no meaningful information on persistence of periodic orbits and first
integrals, but application of Theorem 3.3.5 yields the following.

Proposition 3.5.9. The commutative vector fields Z3 and Z5 do not persist near the
(y2, y5)- and (y3, y6)-planes, respectively, in (3.5.11). Moreover, in (3.5.10), near the
origin, there is no commutative vector field which has the linear term

Z̃3 = (0, x2, 0, 0, x5, 0) or Z̃5 = (0, 0, x3, 0, 0, x6).

Proof. The first part immediately follows from application of Theorem 3.3.5. The sec-
ond part is easily proven since a vector field having such a linear term for (3.5.10) is
transformed to Z3 +O(ε) or Z5 +O(ε) for (3.5.11).

Remark 3.5.10.

(i) By the Lyapunov center theorem (e.g., Theorem 5.6.7 of [2]), there exist two families
of periodic orbits in (3.5.10) if ω2/ω1,ω1/ω2 /∈ Z. Hence, the periodic orbits γj,c,
j = 1, 2, persist in (3.5.11) for such values of ωj, j = 1, 2, at least.

(ii) As shown in [71], the Hamiltonian system (3.5.10) is nonintegrable for almost all
pairs of βj, j = 1, 2. Hence, the three first integrals Fj(y), j = 1, 2, 3, do not persist
in (3.5.11) for such values of βj, j = 1, 2, at least.

3.A Some auxiliary materials for Section 3.3

In this appendix, we provide some prerequisites for Section 3.3: Basic notions and facts
on connections of vector bundles and linear differential equations. Similar materials are
found in [22, 32, 47]. See, e.g., [16] for necessary information on vector bundles.

3.A.1 Connections and horizontal sections

We begin with connections of vector bundles and their horizontal sections. Henceforth M
represents a C1 m-dimensional manifold for m ∈ N, and E represents a C1 vector bundle
of rank r over M with a projection π : E → M for some m, r ∈ N. Let C(M) be a set
of all C1 R-valued functions on M and let C(M,E) be a set of all C1 sections of E. Let
T ∗M be the cotangent bundle of M . Note that T ∗M ⊗E is also a C1 vector bundle. We
first give basic definitions.

Definition 3.A.1. An R-linear map

∇ : C(M,E) → C(M,T ∗M ⊗ E)

is called a connection of the vector bundle E if

∇(fs) = df ⊗ s+ f∇s (3.A.1)

for any f ∈ C(M) and s ∈ C(M,E). A section s ∈ C(M,E) is said to be horizontal for
the connection ∇ if ∇s = 0.
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Let U ⊂ M be an open neighborhood and let {ej}rj=1 be a frame on U , so that any
section s ∈ C(M,E) is expressed as

s =
r�

j=1

sjej (3.A.2)

on U for some sj ∈ C(M) for j = 1, . . . , r.

Definition 3.A.2. For each i = 1, . . . , r we can write

∇ei =
�

j

θji ⊗ ej, (3.A.3)

where θji : M → T ∗M , j = 1, . . . , r. The r × r matrix θ = (θji ) is called the connection
form of ∇ on U in the frame {ej}rj=1.

Let s ∈ C(M,E). Using (3.A.1) and (3.A.3), we compute

∇s =
r�

j=1

∇(sjej) =
r�

j=1

(dsj ⊗ ej + sj∇ej)

=
r�

i=1

dsi ⊗ ei +
r�

i=1

si
� r�

j=1

θji ⊗ ej

�
=

r�

i=1

�
dsi +

r�

j=1

sjθij

�
⊗ ei.

Hence, the condition for the section s to be horizontal, ∇s = 0, is equivalent to

dsi +
r�

j=1

sjθij = 0, i = 1, ..., r, (3.A.4)

on U .

Definition 3.A.3. Let E∗ be the dual bundle of E. A connection ∇∗ of E∗ given by

d⟨s,α⟩ = ⟨∇s,α⟩+ ⟨s,∇∗α⟩ (3.A.5)

for any s ∈ C(M,E) and α ∈ C(M,E∗) is called a dual connection of ∇.

Let {ej}rj=1 be the dual frame for the frame {ej}rj=1, i.e.,

⟨ei, ej⟩ = δij, i, j = 1, . . . , r, (3.A.6)

where δij is Kronecker’s delta. We have the following relation between connections and
their dual connections.

Proposition 3.A.4. Let θ = (θji ) be the connection form of a connection ∇ on U . Then
the connection form θ∗ of the dual connection ∇∗ is given by θ∗i

j = −θij on U .
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Proof. Using (3.A.5) and (3.A.6), we compute

0 = d⟨ei, ej⟩ = ⟨∇ei, e
j⟩+ ⟨ei,∇∗ej⟩.

Since by (3.A.3) and (3.A.6)

⟨∇ei, e
j⟩ =

�
r�

k=1

θki ⊗ ek, e
j

�
= θji =

�
ei,

r�

k=1

θjk ⊗ ek

�
,

we obtain �
ei,

r�

k=1

θjk ⊗ ek +∇∗ej

�
= 0, i, j = 1, . . . , r.

Hence,

∇∗ej =
r�

k=1

−θjk ⊗ ek

for j = 1, . . . , r.

3.A.2 Connections and linear differential equations

Let m = 1 and assume that the one-dimensional manifold M is paracompact and con-
nected. We will see below that a connection of the vector bundle E defines a linear
differential equation and horizontal sections of the connection correspond to solutions to
the differential equations.

Take an open neighborhood U ⊂ M and its local coordinate t ∈ R. Let ∇ be a
connection and let s ∈ C(M,E) be a horizontal section of ∇ given by (3.A.2). We write
the connection form θ = (θji ) as

θji = aij(t)dt

for some aij(t) ∈ C(M). Then Eq. (3.A.4) is expressed as

dsi +
r�

j=1

aji(t)s
jdt = 0, i = 1, ..., r. (3.A.7)

Let A(t) = (Aij(t)) be an r × r matrix with Aij(t) := −aji(t) and let ŝ(t) =
(s1(t), ..., sr(t))T. From (3.A.7) we obtain a linear differential equation

d

dt
ŝ(t) = A(t)ŝ(t). (3.A.8)

Thus, the relation ∇s = 0 is locally represented by a linear differential equation. Below
we apply the above argument to the VE (3.3.2) and AVE (3.3.5) to derive (3.3.3) and
(3.3.6), respectively.
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Derivation of (3.3.3)

We consider the VE (3.3.2) and set M = Γ and E = TΓ with r = n. Choose the frame�
∂

∂x1

, . . . ,
∂

∂xn

�
and write

X =
n�

j=1

Xj
∂

∂xj

locally. We compute

∇ ∂

∂xi

=dt⊗ LX

�
∂

∂xi

�����
Γ

= dt⊗
� n�

j=1

Xj
∂

∂xj

,
∂

∂xi

�

Γ

=dt⊗
�
−

n�

j=1

∂Xj

∂xi

∂

∂xj

�����
Γ

= −
n�

j=1

∂Xi

∂xj

(φ(t))dt⊗ ∂

∂xi

, i = 1, . . . , n,

so that

θji = −∂Xj

∂xi

(φ(t))dt, i.e., Aij(t) =
∂Xi

∂xj

(φ(t)), i, j = 1, . . . , n. (3.A.9)

This yields (3.3.3) along with (3.A.8).

Derivation of (3.3.6)

We next consider the AVE (3.3.5).Choose the frame (dx1, . . . , dxn). Using Proposi-
tion 3.A.4 and (3.A.9), we obtain

θ∗ji =
∂Xi

∂xj

(φ(t)) i.e., Aij(t) = −∂Xj

∂xi

(φ(t)), i, j = 1, . . . , n.

This yields (3.3.6) along with (3.A.8).



Chapter 4

Nonintegrability of Nearly
Integrable Systems

4.1 Introduction

In his famous memoir [51], which was related to a prize competition celebrating the 60th
birthday of King Oscar II, Henri Poincaré studied two-degree-of-freedom Hamiltonian sys-
tems depending on a small parameter, say ε here although he used the letter µ instead,
such that they are integrable when ε = 0, and showed the nonexistsnce of first integrals
which are analytic in the state variables and parameter ε and functionally independent
of Hamiltonians, under some nondegenerate conditions. If there exists such a first in-
tegral, then the Hamiltonian systems are integrable for |ε| ≥ 0 sufficiently small in the
sense of Liouville [9, 43]. The result was improved significantly in the first volume of his
masterpieces [52] published two years later, so that more-degree-of-freedom Hamiltonian
systems can be treated. Using these results, he discussed the nonexistence of such first
integrals in the restricted planar and spacial three-body problem there. See also [14] for
an account of his work from a mathematical and historical perspectives. Subsequently,
his results were sophisticated and generalized to non-Hamiltonian systems [35, 36]. In
particular, Kozlov [36] treated multi-dimensional systems of the form

İ = εh(I, θ; ε), θ̇ = ω(I) + εg(I, θ; ε), (I, θ) ∈ Rℓ × Tm, (4.1.1)

where ε is a small parameter such that |ε| ≪ 1, Tm =
�m

j=1 S1 with S1 = R/2πZ is an
m-dimensional torus and h(I, θ; ε), ω(I) and g(I, θ; ε) are analytic in (I, θ, ε). Note that
the system (4.1.1) is Hamiltonian if ℓ = m as well as ε = 0 or

DIh(I, θ; ε) = −Dθg(I, θ; ε),

and non-Hamiltonian if not. When ε = 0, Eq. (4.1.1) becomes

İ = 0, θ̇ = ω(I) (4.1.2)

which we refer to as the unperturbed system for (4.1.1). We often use this terminology for
other systems below. Here we state some details of his result.

We expand h(I, θ; 0) in Fourier series as

h(I, θ; 0) =
�

r∈Zm

ĥr(I) exp(ir · θ), (4.1.3)

55
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where ĥr(I), r ∈ Zm, are the Fourier coefficients and “·” represents the inner product.
We assume the following for (4.1.1):

(K1) The system (4.1.1) has s first integrals Fj(I, θ; ε), j = 1, . . . , s, which are analytic
in (I, θ, ε);

(K2) If r ∈ Zm and r · ω(I) = 0 for any I ∈ Rℓ, then r = 0.

If assumption (K2) holds, then we say that the unperturbed system (4.1.2) is nondegen-
erate. Under (K1) and (K2) we can show that Fj(I, θ; 0), j = 1, . . . , s, are independent
of θ (see Lemma 1 in Section 1 of Chapter IV of [36]), and write Fj0(I) = Fj(I, θ; 0) and
F0(I) = (F10(I), . . . , Fs0(I)). We refer to Ps ⊂ Rℓ as a Poincaré set if for each I ∈ Ps

there exists linearly independent vectors rj ∈ Zm, j = 1, . . . , ℓ− s, such that

(i) rj · ω(I) = 0, j = 1, . . . , ℓ− s;

(ii) ĥrj(I), j = 1, . . . , ℓ− s, are linearly independent.

Let U be a domain in Rℓ. A set ∆ ⊂ U is called a key set (or uniqueness set) for Cω(U)
if any analytic function vanishing on ∆ vanishes on U . For example, any dense set in U
is a key set for Cω(U). In this situation, we have the following theorem (see Section 1 of
Chapter IV of [36] for its proof).

Theorem 4.1.1 (Kozlov). Suppose that assumptions (K1) and (K2) hold, the Jacobian
matrix DF0(I) has the maximum rank at a point I0 ∈ Rℓ and a Poincaré set Ps ⊂ U is
a key set for Cω(U), where U is a neighborhood of I0. Then the system (4.1.1) has no
first integral which is real-analytic in (I, θ, ε) and functionally independent of Fj(I, θ; ε),
j = 1, . . . , s, near ε = 0.

A version of Theorem 4.1.1 for the Hamiltonian case ℓ = m was given in [35] (see
also Theorem 7.1 of [10]). The Hamiltonian case of s = 1 with a dense Poincaré set in
Theorem 4.1.1 was treated by Poincaré for ℓ = m ≥ 2 in [52]. When s = 0 in (K1),
Theorem 4.1.1 means that under its hypotheses there exists no first integral which is
analytic in (I, θ, ε). When s = 1 in (K1), which always occurs if the system (4.1.1) is
Hamiltonian, it means that under its hypotheses there exists no first integral which is
analytic in (I, θ) ∈ U × Tm and ε near ε = 0 and functionally independent of F1(I, θ, ε).
When s = m − 1 in (K1), if besides (K1) and (K2) there exists a key set ∆ for Cω(U)
such that r · ω(I) = 0 and hr(I) ̸= 0 on ∆ for some r ∈ Zm \ {0}, there exists no
additional first integral which is analytic in (I, θ, ε). For Hamiltonian systems, if they are
not Liouville-integrable for any |ε| > 0 sufficiently small, then there does not exist such a
first integral. For non-Hamiltonian systems this may be true in an appropriate meaning
but some additional ingredients are needed as seen below.

In this chapter we study more general dynamical systems of the form

ẋ = Xε(x), x ∈ M , (4.1.4)

where ε is a small parameter such that |ε| ≪ 1, M is an n-dimensional analytic manifold
for n ≥ 2 and the vector field Xε is analytic in x and ε. Let Xε = X0 + εX1 + O(ε2) for
|ε| > 0 sufficiently small. When ε = 0, the system (4.1.4) becomes

ẋ = X0(x), (4.1.5)
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which is assumed to be analytically (q, n − q)-integrable in the following meaning of Bo-
goyavlenskij [15] for some positive integer q ≤ n.

Definition 4.1.2 (Bogoyavlenskij). The system (4.1.5) is called (q, n − q)-integrable or
simply integrable if there exist q vector fields Y1(x)(:= X0(x)), Y2(x), . . . , Yq(x) and n− q
scalar-valued functions F1(x), . . . , Fn−q(x) such that the following two conditions hold:

(i) Y1(x), . . . , Yq(x) are linearly independent almost everywhere and commute with each
other, i.e., [Yj, Yk](x) ≡ 0 for j, k = 1, . . . , q, where [·, ·] denotes the Lie bracket;

(ii) F1(x), . . . , Fn−q(x) are functionally independent, i.e., dF1(x), . . . , dFn−q(x) are lin-
early independent almost everywhere, and F1(x), . . . , Fn−q(x) are first integrals of
Y1, . . . , Yq, i.e., dFk(Yj) = 0 for j = 1, . . . , q and k = 1, . . . , n− q.

If Y1, Y2, . . . , Yq and F1, . . . , Fn−q are analytic (resp. meromorphic), then Eq. (4.1.5) is
said to be analytically (resp. meromorphic) integrable.

Definition 4.1.2 is considered as a generalization of Liouville-integrability for Hamilto-
nian systems [9,43] since an m-degree-of-freedom Liouville-integrable Hamiltonian system
with m ≥ 1 has not only m functionally independent first integrals but also m linearly in-
dependent commutative (Hamiltonian) vector fields generated by the first integrals. The
(ℓ+m)-dimensional system (4.1.2) is (m, ℓ)-integrable in the Bogoyavlenskij sense.

The system (4.1.4) is regarded as a perturbation of the analytically integrable system
(4.1.5). If there exist q′ linearly independent, analytic commutative vector fields and
n − q′ functionally independent, analytic first integrals depending on ε analytically near
ε = 0 for some positive integter q′ ≤ n, then the perturbed system (4.1.4) is analytically
(q′, n − q′)-integrable for |ε| ≥ 0 sufficiently small. We especially assume that there
exists a q-parameter family of periodic orbits on a regular level set of the n − q first
integrals having a connected and compact component (see Section 4.2 for our precise
definitions containing this one) and give sufficient conditions for nonexistence of such
n − q real-analytic first integrals and for real-analytic nonintegrability of the perturbed
system (4.1.4) near the regular level set such that the first integrals and commutative
vector fields depend analytically on ε near ε = 0. The persistence of such first integrals
and commutative vector fields in the perturbed system (4.1.4) along with that of periodic
and homoclinic orbits was previously discussed in Chapter 3. Our approach is different
from those of Poincaré [51,52] and Kozlov [35,36] and based on the technique of Chapter 3.
Recently, another sufficient condition for nonintegrability of nearly integrable dynamical
systems near resonant periodic orbits was also obtained using a different approach in [73]
and the theory was applied to prove the nonintegrability of the restricted three-body
problem in [74], when the independent and state variables are extended to complex ones.

The unperturbed system (4.1.5) can be transformed to (4.1.2) under our assumptions,
as stated in Proposition 4.2.1 below. However, Theorem 4.1.1 only says in our setting
for (4.1.1) that there exists no such additional first integral even if its hypotheses hold.
In particular, it does not allow us to determine the nonintegrability of (4.1.4) in the
Bogoyavlenskij sense when it is non-Hamiltonian. We also describe a consequence of our
results to (4.1.1) and show how it improves the results of Poincaré [52] and Kozlov [35,36].

Moreover, we discuss a relationship between our results and the subharmonic and
homoclinic Melnikov methods [26,62,65] for time-periodic perturbations of single-degree-
of-freedom analytic Hamiltonian systems, which can be transformed to the form of (4.1.4)
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with ℓ = 1 and m = 2, i.e, (2, 1)-integrable, and have a one-parameter family of periodic
orbits when ε = 0. As well known, if the subharmonic Melnikov functions have a simple
zero, then the corresponding unperturbed periodic orbits persist in the perturbed systems.
Morales-Ruiz [44] studied the Hamiltonian perturbation case in which the unperturbed
systems have homoclinic orbits, and showed a relationship between their nonintegrability
and a version due to Ziglin [78] of the homoclinic Melnikov method when the indepen-
dent and state variables are extended to complex ones and the small parameter ε is also
regarded as a state variable. More concretely, under some restrictive conditions, based on
the generalized version due to Ayoul and Zung [12] of the Morales-Ramis theory [43,47],
which provides a sufficient condition for nonintegrability of autonomous dynamical sys-
tems, he essentially proved that they are meromorphically nonintegrable if the homoclinc
Melnikov functions which are obtained as integrals along closed loops on the complex
plane are not identically zero. Here the version of the Melnikov method enables us to
detect transversal self-intersection of complex separatrices of periodic orbits and to prove
its analytic nonintegrability, unlike the standerd version [26, 42, 62]. Here we prove two
variants of Morales-Ruiz [44] for periodic orbits: if the subharmonic Melnikov functions
for a dense set of the unperturbed periodic orbits are not identically zero, then there exists
no first integral depending analytically on ε near ε = 0; and if the ‘standard’ homoclinic
Melnikov functions [26, 42, 62] are not identically zero, then the perturbed systems are
not Bogoyavlenskij-integarble such that the commutative vector fields and first integrals
depend analytically on ε near ε = 0.

We illustrate our theory for three examples: Simple pendulum with a constant torque,
second-order coupled oscillators and the periodically forced Duffing oscillator [26, 31, 62].
Real-analytic nonintegrability is discussed in special cases of the second and third exam-
ples while existence of real-analytic first integrals in the rest. In particular, the special
case of the third one is shown to be nonintegrable in the above meaning even if it does
not have transverse homoclinic orbits to a periodic orbit.

This chapter is organized as follows: In Section 4.2, we state our precise assumptions
and main theorems. In Section 4.3, we give proofs of the main theorems. We describe
a consequence of our results to (4.1.1) in Section 4.4 and discuss a relationship between
our results and the subharmonic and homoclinic Melnikov methods for time-periodic
perturbations of single-degree-of-freedom Hamiltonian systems in Section 4.5. Finally, we
give the three examples in Section 4.6.

4.2 Main Results

In this section, we state our main results for (4.1.4). We first make the following assump-
tions on the unperturbed system (4.1.5):

(A1) For some positive integer q < n, the system (4.1.5) is analytically (q, n−q) Bogoyavlenskij-
integrable, i.e., there exist q analytic vector fields Y1(x)(:= X0(x)), . . . , Yq(x) and
n − q analytic scalar-valued functions F1(x), . . . , Fn−q(x) such that conditions (i)
and (ii) of Definition 4.1.2 hold.

(A2) Let F (x) = (F1(x), . . . , Fn−q(x)). There exists a regular value c ∈ Rn−q of F , i.e.,
rank dF (x) = n− q when F (x) = c, such that F−1(c) has a connected and compact
component and Y1(x), . . . , Yq(x) are linearly independent on F−1(c).
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Henceforth we assume without loss of generality that F−1(c) is connected and compact
itself in (A2), by reducing the domain of F if necessary. Under (A1) and (A2) we have
the following result like a well-known theorem for Hamiltonian systems [9] (see [15,80,81]
for the details).

Proposition 4.2.1 (Liouville-Miuner-Arnold-Jost). Suppose that assumptions (A1) and
(A2) hold. Then we have the following:

(i) The level set F−1(c) is analytically diffeomorphic to the q-dimensional torus Tq;

(ii) There exists an analytic diffeomorphism ϕ : U × Tq → U , where U and U are,
respectively, neighborhoods of I = I0 in Rn−q and of F−1(c) in M for some I0 ∈
Rn−q, such that

(iia) ϕ({I0}× T) = F−1(c);

(iib) F ◦ ϕ(I, θ) depends only on I, where (I, θ) ∈ U × Tq;

(iic) The flow of X0 on U is analytically conjugate to that of (4.1.2) with ℓ = n− q
and m = q on U × Tq.

The variables I and θ are called the action and angle variables as in Hamiltonian
systems, and ω(I) is referred to as the angular frequency vector. Let ωj(I) be the jth
component of ω(I) for j = 1, . . . , q. Henceforth U denotes the neighborhood of I = I0 in
Proposition 4.2.1. Moreover, we assume the following on (4.1.2) along with (K2):

(A3) There exists a key set DR for Cω(U) such that for I ∈ DR a resonance of multiplicity
q − 1,

dimQ⟨ω1(I), . . . ,ωq(I)⟩ = 1,

occurs with ω(I) ̸= 0, i.e., there exists a positive constant ω0(I) depending on I
such that

ω(I)

ω0(I)
∈ Zq \ {0}.

We choose ω0(I) as large as possible below.

We easily see that if rankDω(I∗) = q for some I∗ ∈ U , then both (K2) and (A3) hold.
Assumption (A3) also implies that if I ∈ DR, then the system (4.1.2) has a q-parameter
family of periodic orbits

(I, θ) = (I,ω(I)t+ τ), τ ∈ Tq, (4.2.1)

with the period T I = 2π/ω0(I). Note that the periodic orbits (4.2.1) is parameterized by
(q − 1) parameters essentially since two periodic orbits (I,ω(I)t + τ) and (I,ω(I)t + τ0)
represent the same orbit if τ − τ0 = ω(I)t0 for some t0 ∈ R. We also have a q-parameter
(but essentially (q − 1)-parameter) family of periodic orbits

γI
τ (t) = ϕ(I,ω(I)t+ τ), (I, τ) ∈ DR × Tq,

with the period T I in the unperturbed system (4.1.5). Define the integrals

I I
Fk
(τ) :=

� T I

0

dFj(X
1)γI

τ (t)
dt, k = 1, . . . , n− q, (4.2.2)
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for I ∈ DR and set I I
F (τ) := (I I

F1
(τ), . . . ,I I

Fn−q
(τ)). Note that

I I
Fk
(τ + ω(I)t) = I I

Fk
(τ)

for τ ∈ Tq and t ∈ R. We state the first of our main results as follow.

Theorem 4.2.2. Suppose that assumptions (A1)-(A3) and (K2) hold. If there exists a
key set D ⊂ DR for Cω(U) such that I I

F (τ) is not identically zero for any I ∈ D, then the
perturbed system (4.1.4) does not have n− q real-analytic first integrals in a neighborhood
of F−1(c) near ε = 0 such that they are functionally independent for |ε| ̸= 0 and depend
analytically on ε.

We prove Theorem 4.2.2 in Section 4.3.1.
We next consider a special case in which Eq. (4.1.4) is a two- or more-degree-of-freedom

Hamiltonian system. For an integer m ≥ 2, let (M ,Ω) be a 2m-dimensional analytic
symplectic manifold with a symplectic form Ω, and let Hε(x) = H0(x) + εH1(x) +O(ε2)
be an analytic Hamiltonian for (4.1.4) and depend analytically on ε near ε = 0. We
assume the following:

(A1’) The unperturbed Hamiltonian system (4.1.5) with the Hamiltonian H0(x) is real-
analytically Liouville-integrable, i.e., there existm functionally independent analytic
first integrals F1(x)(:= H0(x)), F2(x), . . . , Fm(x) such that they are pairwise Poisson
commutative, i.e., {Fj, Fk} = 0 for j, k = 1, . . . ,m, where {·, ·} denotes the Poisson
bracket for the symplectic form Ω.

Assumption (A1’) means (A1) with q = m and Yj = XFj
for j = 1, . . . ,m, where XFj

denotes the Hamiltonian vector field for the Hamiltonian Fj(x). So we immediately obtain
the following from Theorem 4.2.2.

Corollary 4.2.3. Suppose that (A1’), (A2), (A3) and (K2) hold. If there exists a key set
D ⊂ DR for Cω(U) such that I I

F (τ) with X1 = XH1 is not identically zero for any I ∈ D,
then the perturbed Hamiltonian system for the Hamiltonian Hε(x) is not real-analytically
Liouville-integrable in a neighborhood of F−1(c) near ε = 0 such that m − 1 additional
first integrals also depend analytically on ε.

For integrability of non-Hamiltonian systems (4.1.4), we have to consider not only
first integrals but also commutative vector fields. So we need the following assumption
additionally:

(A4) For some I∗ ∈ U , the Jacobian matrix Dω(I∗) is injective, i.e.,

rankDω(I∗) = n− q.

Note that (A4) holds only when n − q ≤ q. Finally, we state the second main result as
follows.

Theorem 4.2.4. Suppose that assumptions (A1)-(A4) and (K2) hold. If there exists a
key set D ⊂ DR for Cω(U) such that I I

F (τ) is not constant for any I ∈ D, then for
|ε| ̸= 0 sufficiently small the perturbed system (4.1.4) is not real-analytically integrable in
the Bogoyavlenskij sense near F−1(c) such that the first integrals and commutative vector
fields depend analytically on ε near ε = 0: In particular there exists only such n − q − 1
first integrals and such q − 1 commutative vector fields at most.
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Remark 4.2.5.

(i) Theorems 4.2.2 and 4.2.4 exclude even the possibility that the first integrals are
functionally independent for |ε| ̸= 0 sufficiently small but not for ε = 0.

(ii) Theorem 4.2.4 does not exclude the possibility that the system (4.1.4) is real-analytically
integrable in the Bogoyavlenskij sense near F−1(c) such that in a punctured neigh-
borhood of ε = 0 there exist such n−q′(≥ 0) first integrals and q′ commutative vector
fields for some q′ > q.

We prove Theorem 4.2.4 in Section 4.3.2.

4.3 Proofs of the main theorems

In this section, we prove Theorems 4.2.2 and 4.2.4. The proofs are based on the results
of Chapter 3. Henceforth we mean real-analyticity when saying analyticity.

4.3.1 Proof of Theorem 4.2.2

We first prove Theorem 4.2.2. Henceforth we assume that conditions (A1)-(A3) and (K2)
hold. We begin with the following lemma.

Lemma 4.3.1. Suppose that G1(x), . . . , Gk(x) are analytic first integrals of the unper-
turbed system (4.1.5) near F−1(c) for k ≥ 1 and they may be functionally dependent.
Let G(x) = (G1(x), . . . , Gk(x)) and let φt denote the flow generated by (4.1.5). Then the
following statements hold:

(i) There exists an analytic map ψ : F (U) → Rk satisfying G = ψ◦F in a neighborhood
U of F−1(c) in M .

(ii) If dG1, . . . , dGk are linearly independent at x ∈ M , then so are they at φt(x).

Proof. For the proof of part (i) we first transform (4.1.5) to (4.1.2) with ℓ = n − q and
m = q, based on Proposition 4.2.1. In particular, by Proposition 4.2.1(iia) F ◦ ϕ(I, θ)
depends only on I. Let F̃ (I) = F ◦ ϕ(I, θ). On the other hand, we use Lemma 1
in Section 1 of Chapter IV of [36] to show that G(ϕ(I, θ)) depends only on I. Let
G̃(I) = G(ϕ(I, θ)). So we have

G = G̃ ◦ ϕ−1 = G̃ ◦ F̃−1 ◦ F̃ ◦ ϕ−1

and take ψ = G̃ ◦ F̃−1 to obtain part (i).
We turn to the proof of part (ii). Since the pull-back of Gj by φt satisfies φ

∗
tGj = Gj

for j = 1, . . . , k, we have

φ∗
t (dG1 ∧ · · · ∧ dGk)x = (φ∗

tdG1 ∧ · · · ∧ φ∗
tdGk)x

= (d(φ∗
tG1) ∧ · · · ∧ d(φ∗

tGk))x = (dG1 ∧ · · · ∧ dGk)x ̸= 0,

where ‘∧’ represents the wedge product. On the other hand, by the definition of pull-back

φ∗
t (dG1 ∧ . . . ∧ dGk)x = (dG1 ∧ . . . ∧ dGk)φt(x) ◦ (dφt)x.
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Since φt is a diffeomorphism, we see that (dφt)x is regular. Hence,

(dG1 ∧ . . . ∧ dGk)φt(x) ̸= 0,

which yields part (ii).

Using Theorem 3.2.2 on persistence of first integrals and Lemma 4.3.1, we obtain the
following result.

Lemma 4.3.2. Let I ∈ DR. Suppose that near ε = 0 the perturbed system (4.1.4) has
n − q analytic first integrals Gε

1, . . . , G
ε
n−q near TI = {γI

τ | τ ∈ Tq} in M such that they
are functionally independent on TI and depend analytically on ε. Then I I

F (τ) must be
identically zero.

Proof. Assume that the hypothesis of the lemma holds. Theorem 3.2.2, we have

I I
G0(τ) =

� T I

0

dG0(X1)γI
τ (t)

dt = 0.

On the other hand, by Lemma 4.3.1, G0 := (G0
1, . . . , G

0
n−q) is expressed as G0 = ψ ◦F for

some analytic map ψ : F (U) → Rn−q, where U is a neighborhood of F−1(c). Since F is
constant along the periodic orbit γI

τ (t), we have dG0
γI
τ (t)

= dψF (γI
τ (0))

dFγI
τ (t)

, so that

I I
G0(τ) =

� T I

0

dψF (γI
τ (0))

dFγτ (t)(Xγτ (t))dt = dψF (γI
τ (0))

I I
F (τ).

Since dG0 and dF have the maximum rank on γI
τ (t) so that rank dψF (γI

τ (0))
= n − q, we

obtain I I
F (τ) = 0 for any τ ∈ Tq.

For the proof of Theorem 4.2.2 we also need the following result (see Appendix 4.A
for its proof).

Proposition 4.3.3. Let k ≤ n− q be a positive integer. Suppose that in a neighborhood
of F−1(c) the perturbed system (4.1.4) has k first integrals that are analytic in (x, ε) near
ε = 0. If they are functionally independent for ε ̸= 0, then in a neighborhood of F−1(c)
there exist k first integrals that are analytic in (x, ε) and functionally independent near
ε = 0.

Remark 4.3.4. From Proposition 4.3.3 we also see that the condition for DF0(I) to have
a maximum rank at a point I0 ∈ Rℓ was unnecessary in Theorem 4.1.1.

Proof of Theorem 4.2.2. Suppose that I I
F (τ) is not identically zero for any I ∈ D. Using

Lemma 4.3.2 for each I ∈ D, we see that the perturbed system (4.1.4) does not have
n − q analytic first integrals near TI such that they are functionally independent on TI

and depend analytically on ε near ε = 0.
Additionally, suppose that there are n − q analytic first integrals such that they are

functionally independent for |ε| ̸= 0 sufficiently small but not at ε = 0 and depend
analytically on ε near ε = 0. Then by Proposition 4.3.3 there exist n − q analytic first
integrals Gε

1, . . . , G
ε
n−q which are functionally independent and depend analytically on

ε near ε = 0. Hence, dG0
1, . . . , dG

0
n−q are linearly dependent on TI for I ∈ D. As

in the proof of Lemma 4.3.1 (i), we consider the transformed system (4.1.2) and write
G̃j(I) = Gj(ϕ(I, θ)) for j = 1, . . . n − q. Let G̃(I) = (G̃1(I), . . . , G̃n−q(I)). We see that
the determinant of the Jacobi matrix of G̃(I) is zero for I ∈ D, so that it is identically
zero on U since D is a key set for Cω(U). This yields a contradiction.
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4.3.2 Proof of Theorem 4.2.4

We turn to the proof of Theorem 4.2.4. Henceforth, we assume that conditions (A1)-(A4)
and (K2) hold.

We begin with the following lemma. Recall that Yl(x), l = 1, . . . , q, are commutative
vector fields for the unperturbed system (4.1.5).

Lemma 4.3.5. An analytic vector field Z(x) commutes with the vector field X0(x) if
and only if it can be written as Z(x) =

�q
l=1 ρl(F (x))Yl(x), where ρl : Rn−q → R,

l = 1, . . . , n−q, are analytic. In particular, the vector field X0(x) has only q commutative
vector fields which are linearly independent almost everywhere.

Proof. By Proposition 4.2.1, we may consider (4.1.2). So we prove that it is necessary and
sufficient for an analytic vector field Z(I, θ) to commute with the vector field of (4.1.2)
that it can be written as

Z(I, θ) =

q�

l=1

ρl(I)
∂

∂θl
. (4.3.1)

The sufficiency is obvious. The necessity follows from assumptions (K2) and (A4) by
Lemma 1 in Section 3 of Chapter IV of [36].

Using Theorem 3.3.5 on persistence of commutative vector fields and Lemma 4.3.5,
we obtain the following.

Lemma 4.3.6. Let I ∈ DR. Suppose that near ε = 0 the perturbed system (4.1.4) has q
analytic commutative vector fields Zε

1(x), . . . , Z
ε
q (x) near TI = {γI

τ | τ ∈ Tq} in M such
that they are linearly independent on TI and depend analytically on ε. Then I I

F (τ) must
be constant.

Proof. We first transform (4.1.4) to (4.1.1) with ℓ = n− q and m = q, as in the proof of
Lemma 4.3.1. Assume that the hypothesis of the lemma holds. Then by Lemma 4.3.5,
Z0

j (I, θ) has the form (4.3.1) with ρl(I) = ρjl(I), l = 1, . . . , q, for j = 1, . . . q. Let

X̃1(I, θ) =
ℓ�

j=1

hj(I, θ; 0)
∂

∂Ij
+

m�

k=1

gk(I, θ; 0)
∂

∂θk

where hj(I, θ; ε) (resp. gk(I, θ; ε)) is jth (resp. kth) component of h(I, θ; ε) (resp.
g(I, θ; ε)) for j = 1, . . . , ℓ (for k = 1, . . . ,m). Using Theorem 3.3.5, we have

0 =

� T I

0

dI
��

Z0
j (I, θ), X̃

1(I, θ)
��

θ=ω(I)t+τ
dt

=

q�

l=1

ρjl(I)

�� T I

0

∂h

∂θl
(I,ω(I)t+ τ ; 0)dt

�
=

q�

l=1

ρjl(I)
dI I

I

dτl
(τ).

Since Z0
1 , . . . , Z

0
q are linearly independent on TI , the q×q matrix (ρjl)j,l=,1,...,q is invertible,

so that by n− q ≤ q, (dI I
I /dτ)(τ) = O, i.e., I I

I (τ) is constant.
On the other hand, by Lemma 4.3.1, there exists an analytic map ψ : F (U) → Rk such

that I = ψ ◦ F (x). As in the proof of Lemma 4.3.2, we show that rank dψF (γI(0)) = n− q
and I I

I (τ) = dψF (γI(0))I
I
F (τ). Hence, I I

F (τ) is also constant.
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Proof of Theorem 4.2.4. Suppose that I I
F (τ) is not constant for any I ∈ D. From Theo-

rem 4.2.2 we see that there exist only n− q − 1 first integrals at most such that they are
functionally independent and depend analytically on ε near ε = 0.

Assume that there exist q analytic commutative vector fields Zε
1 , . . . , Z

ε
q such that for

ε = 0 they are linearly independent almost everywhere and depend analytically on ε.
Applying Lemma 4.3.6 for each I ∈ D, we see that the perturbed system (4.1.4) does not
have q analytic commutative vector fields near TI such that they are linearly independent
on TI and depend analytically on ε near ε = 0. Hence, Zε

1 , . . . , Z
ε
q are linearly dependent

on TI for I ∈ D at ε = 0 if they depend analytically on ε near ε = 0. As in the proof of
Lemma 4.3.6, we consider the transformed system (4.1.2) and use Lemma 4.3.5 to write
Z0

j (I, θ) in the form (4.3.1) with ρl(I) = ρjl(I), l = 1, . . . , q, for j = 1, . . . q. We see that
the determinant of the matrix (ρjl(I))j,l=,1,...,q is zero for I ∈ D, so that it is identically
zero on U since D is a key set for Cω(U). This yields a contradiction. So we obtain the
desired result.

4.4 Consequences of the Theory to (4.1.1)

In this section, we consider nearly integrable systems of the form (4.1.1) written in the
action-angle coordinates and describe consequences of Theorems 4.2.2 and 4.2.4 to it.
The unperturbed system (4.1.2) is (m, ℓ)-integrable in the Bogoyavlenskij sense and has
ℓ first integrals I1, . . . , Iℓ and m commutative vector fields ω(I) ∂

∂θ1
, ∂
∂θ2

, . . . , ∂
∂θm

. Thus,
conditions (A1) and (A2) with n = ℓ+m and q = m already hold. In particular, the level
set of I = c given by {c}× Tm is connected and compact. Take some I0 ∈ Rℓ and let U
be its neighborhood in Rℓ, as in the preceding sections.

We first discuss consequences of Theorem 4.2.2 to (4.1.1) and assume that condi-
tions (K2) and (A3) with n = ℓ+m and q = m hold. For I ∈ DR the unperturbed system
(4.1.2) has an m-parameter family of periodic orbits given by (4.2.1) with q = m. The
integrals given by (4.2.2) for the ℓ first integrals I = (I1, . . . , Iℓ) become

I I
I (τ) =

� T Ī

0

h(I,ω(I)t+ τ ; 0)dt,

where τ ∈ Tm.
Assume that m > 1. Using the Fourier expansion of h(I, θ; 0) given in (4.1.3), we

rewrite the above integral as

I I
I (τ) =

� T Ī

0

�

r∈Zm

ĥr(I) exp(ir · (ω(I)t+ τ))dt = T I
�

r∈ΛI

ĥr(I)e
ir·τ , (4.4.1)

where ΛI = {r ∈ Zm | r · ω(I) = 0}. Applying Theorem 4.2.2, we obtain the following
result for (4.1.1). Recall that ĥr(I), r ∈ Zm, represent the Fourier coefficients of h(I, θ; 0)
(see Eq. (4.1.3)).

Theorem 4.4.1. Let m > 1, and suppose that assumptions (K2) and (A3) with n = ℓ+m
and q = m hold. If there exists a key set D ⊂ DR for Cω(U) such that ĥr(I) ̸= 0 for
some r ∈ ΛI with I ∈ D, then the perturbed system (4.1.1) does not have ℓ real-analytic
first integrals in a neighborhood of the level set {c} × Tm near ε = 0 such that they are
functionally independent for |ε| ̸= 0 and depend analytically on ε.
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Remark 4.4.2.

(i) From the proof given in [36] we see that the conclusion of Theorem 4.1.1 also holds
even if the zero vector is taken as one of rj ∈ Zm, j = 1, . . . , ℓ− s, in the definition
of a Poincaré set. This fact was overlooked in [36].

(ii) If a Poincaré set Pℓ−1 ⊂ U modified as stated in part (i) is a key set for Cω(U),
then condition (A3) holds. Moreover, there exists a key set D ⊂ DR for Cω(U)
such that ĥr(I) ̸= 0 with some r ∈ ΛI for I ∈ D if and only if such a Poincaré set
Pℓ−1 ⊂ U is a key set for Cω(U).

(iii) The hypothesis of Theorem 4.4.1 holds if both of ω(I) and ĥ0(I) are not identically
zero in U .

(iv) If the system (4.1.1) is Hamiltonian, then ĥ0(I) ≡ 0.

(v) From Theorem 3.2.2 and Eq. (4.4.1) we see that the first integrals I1, . . . , Im do not
persist in (4.1.1) near the resonant torus {I}× Tm if ĥr(I) ̸= 0 for some r ∈ ΛI .

Let m = 1 and assume that ω(I) ̸= 0. Then the integral (4.4.1) becomes

I I
I (τ) =

� 2π/ω(I)

0

h (I,ω(I)t+ τ ; 0) dt =
2πĥ0(I)

ω(I)
(4.4.2)

since ΛI = {0} ⊂ Z. Noting that assumptions (K2) and (A3) hold if ω(I) ̸= 0 for some
I ∈ U , we obtain the following.

Theorem 4.4.3. Let m = 1. If ω(I) ̸= 0 and ĥ0(I) ̸= 0 for some I ∈ U , then the
perturbed system (4.1.1) does not have ℓ real-analytic first integrals in a neighborhood of
{c} × S1 near ε = 0 such that they are functionally independent for |ε| ̸= 0 and depend
analytically on ε.

Assuming the existence of ℓ−1 functionally independent first integrals in the perturbed
system (4.1.1) and taking Remarks 4.4.2(i) and (ii) into account, we obtain the same result
as Theorems 4.4.1 and 4.4.3 from Theorem 4.1.1 (see also Remark 4.3.4). Moreover,
when the existence of such only s (< ℓ − 1) first integrals is assumed, Theorem 4.1.1
guarantees the nonexistence of no additional first integral if a Poincaré set Ps modified
in Remark 4.4.2(i) is a key set for Cω(U), in particular ĥrj(I), j = 1, . . . , ℓ− s (> 1), are
linearly independent. Note that such a Poincaré set Ps does not exist when m = 1 and
s < ℓ− 1.

We next apply Theorem 4.2.4 to (4.1.1). When m = 1, the integral I I
I (τ) is constant

by (4.4.2), so that Theorem 4.2.4 does not apply. Thus, we obtain the following result.

Theorem 4.4.4. Let m > 1, and suppose that assumptions (K2), (A3) and (A4) hold.
If there exists a key set D ⊂ DR for Cω(U) such that ĥr(I) ̸= 0 for some r ∈ ΛI \ {0}
with I ∈ D, then for |ε| ̸= 0 sufficiently small the perturbed system (4.1.1) is not real-
analytically integrable in the meaning of Theorem 4.2.4 near {c}× Tm.
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4.5 Relationships with the Melnikov Methods

In this section, we discuss relationships of our main results in Section 4.2 with the sub-
harmonic and homoclinic Melnikov methods for time-periodic perturbations of single-
degree-of-freedom Hamiltonian systems. See [26,42,62,65] for the details of the Melnikov
methods. A concise review of the methods was also given in Section 3.4.1.

Consider systems of the form

ẋ = JDH(x) + εu(x, νt), x ∈ R2, (4.5.1)

where ε is a small parameter as in the preceding sections, ν > 0 is a constant, H : R2 → R
and u : R2 × S → R2 are analytic, and J is the 2× 2 symplectic matrix,

J =

�
0 1
−1 0

�
.

Equation (4.5.1) represents a time-periodic perturbation of the single-degree-of-freedom
Hamiltonian system

ẋ = JDH(x), (4.5.2)

with the Hamiltonian H(x). Letting φ = νt mod 2π such that φ ∈ S1, we rewrite (4.5.1)
as an autonomous system,

ẋ = JDH(x) + εu(x,φ), φ̇ = ν. (4.5.3)

We easily see that assumptions (A1) and (A2) hold in (4.5.3) with ε = 0: H(x) is a
first integral and (0, 1) ∈ R2 × R is a commutative vector field. We make the following
assumptions on the unperturbed system (4.5.2):

(M1) There exists a one-parameter family of periodic orbits xα(t) with period T̂α > 0,
α ∈ (α1,α2), for some α1 < α2. Moreover, T̂ α is not constant as a function of α.

(M2) xα(t) is analytic with respect to α ∈ (α1,α2).

Note that in (M1) xα(t) is automatically analytic with respect to t since the vector field
of (4.5.2) is analytic.

We assume that at α = αl/n

2π

T̂ α
=

n

l
ν, (4.5.4)

where l and n are relatively prime integers. We define the subharmonic Melnikov function
as

M l/n(φ) =

� 2πl/ν

0

DH(xα(t)) · u(xα(t), νt+ φ)dt, (4.5.5)

where α = αl/n. Let T α = nT̂ α = 2πl/ν for α = αl/n. If M l/n(φ) has a simple zero
at φ = φ0 and dT̂ α/dα ̸= 0 at α = αl/n, then for |ε| > 0 sufficiently small there exists
a T α-periodic orbit near (x,φ) = (xα(t), νt + φ0) in (4.5.3). See Theorem 3.1 of [65].
A similar result is also found in [26, 62]. The stability of the periodic orbit can also be
determined easily [65]. Moreover, several bifurcations of periodic orbits when dT̂ α/dα ̸= 0
or not were discussed in [65, 68,69].
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On the other hand, since it is a single-degree-of-freedom Hamiltonian system, the
unperturbed system (4.5.2) is integrable, so that it can be transformed into the form
(4.1.2) with ℓ,m = 1. So the perturbed system (4.5.3) is transformed into the form (4.1.1)
with ℓ = 1 and m = 2. Here we take I = α unlike [65, 73], and have ω(I) = (Ω(I), ν),
where

Ω(α) =
2π

T̂ α
.

We remark that the transformed system is not Hamiltonian even when ε = 0, unlike
[65, 73]. Choose a point α = α0 ∈ (α1,α2) such that dT̂ α/dα ̸= 0, and let U be a
neighborhood of α0. We see that assumptions (K2) and (A3) hold for

DR = {αl/n | l, n ∈ N} ∩ U.

Let α = αl/n and let γα
τ (t) = (xα(t + τ1), ν(t + τ1) + τ2). We see that γα

τ (t) is a
Tα-periodic orbit in (4.5.3) with ε = 0. Note that γα

τ (t) is essentially parameterized by
a single parameter, say φ := ντ1 + τ2. So we write γα

φ (t) = (xα(t), νt + φ). The integral
(4.2.2) for H(x) along γα

φ (t) becomes

I α
H(φ) =

� 2πl/ν

0

DH(xα(t)) · u(xα(t), νt+ φ)dt = M l/n(φ) (4.5.6)

by (4.5.5). As stated above, if M l/n(φ) has a simple zero at φ = φ0, then there exists a
T α-periodic orbit near γα

φ0
(t). Applying Theorems 4.2.2 and 4.2.4, we have the following

two results.

Theorem 4.5.1. Suppose that there exists a key set D ⊂ DR for Cω(U) such that M l/n(φ)
is not identically zero for αl/n ∈ D. Then for |ε| ̸= 0 sufficiently small the system (4.5.3)
has no real-analytic first integral in a neighborhood of {xα0(t) | t ∈ [0, T̂ α0)} × S1 such
that it depends analytically on ε near ε = 0.

Theorem 4.5.2. Suppose that there exists a key set D ⊂ DR for Cω(U) such that M l/n(φ)
is not constant for αl/n ∈ D. Then for |ε| ̸= 0 sufficiently small the system (4.5.3) is
not real-analytically integrable in the meaning of Theorem 4.2.4 in a neighborhood of
{xα0(t) | t ∈ [0, T̂ α0)}× S1.

Remark 4.5.3.

(i) If D has an accumulation point, then it becomes a key set for Cω(U).

(ii) If the system (4.5.1) is Hamiltonian, then the hypotheses of Theorems 4.5.1 and 4.5.2
are equivalent to the condition that M l/n(φ) has a simple zero. Actually, letting

u(x,φ) = JDxH
1(x,φ) = J

�

r∈Z

DĤ1
r (x)e

irφ,

we have

M l/n(φ) =

� 2πl/ν

0

DH(xα(t)) · JDxH
1(xα(t), νt+ φ)dt

=
�

r∈Z

eirφ
� 2πl/ν

0

DH(xα(t)) · JDĤ1
r (x

α(t))eirνtdt



CHAPTER 4. 68

x α(t)

x h (t)

x0
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Figure 4.1: Assumption (M3).

and

� 2πl/ν

0

DH(xα(t)) · JDĤ1
0 (x

α(t))dt

= −
� 2πl/ν

0

DĤ1
0 (x

α(t)) · JDH(xα(t))dt

= −
� 2πl/ν

0

DĤ1
0 (x

α(t)) · ẋα(t)dt = 0,

where Ĥ1
r (x), r ∈ Z, represent the Fourier coefficients of H1(x,φ). Thus, we obtain

the claim.

We additionally assume the following on the unperturbed system (4.5.2):

(M3) There exists a hyperbolic saddle x0 with a homoclinic orbit xh(t) such that

lim
α→α2

sup
t∈R

d(xα(t),Γ) = 0,

where Γ = {xh(t) | t ∈ R} ∪ {x0} and d(x,Γ) = infy∈Γ |x− y|. See Fig. 4.1.

We define the homoclinic Melnikov function as

M(φ) =

� ∞

−∞
DH(xh(t)) · u(xh(t), t+ φ)dt. (4.5.7)

If M(φ) has a simple zero, then for |ε| > 0 sufficiently small there exist transverse ho-
moclinic orbits to a periodic orbit near {x0}× S1 in (4.5.3) [26, 42, 62]. The existence of
such transverse homoclinic orbits implies that the system (4.5.3) exhibits chaotic motions
by the Smale-Birkhoff theorem [26,62] and has no resl-analytic (additional) first integral
(see, e.g., Chapter III of [49]). We easily show that

lim
l→∞

M l/1(φ) = M(φ) (4.5.8)

for each φ ∈ S1 (see Theorem 4.6.4 of [26]). Let U be a neighborhood of α = α2. It follows
from (4.5.8) that ifM(φ) is not identically zero or constant, then for l > 0 sufficiently large
neither isM l/1(φ). Let Û ⊂ R2 be a region such that ∂Û ⊃ Γ and Û ⊃ {xα(t) | t ∈ [0, T̂α)}
for some α ∈ (α1,α2). We obtain the following from Theorems 4.5.1 and 4.5.2.
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Theorem 4.5.4. Suppose that M(φ) is not identically zero Then for |ε| ̸= 0 sufficiently
small the system (4.5.3) has no real-analytic first integral in Û × S1such that it depends
analytically on ε near ε = 0.

Theorem 4.5.5. Suppose that M(φ) is not constant. Then for |ε| ̸= 0 sufficiently small
the system (4.5.3) is not real-analytically integrable in the meaning of Theorem 4.2.4 in
Û × S1.

Remark 4.5.6.

(i) Theorems 4.5.4 and 4.5.5, respectively, mean that the system (4.5.3) has no first
integral and is nonintegrable even if the Melnikov function M(φ) does not have a
simple zero, i.e., there may exist no transverse homoclinic orbit to the periodic orbit
in (4.5.3), but it is not identically zero and constant. See Section 4.6.3.

(ii) As in Remark 4.5.3(ii), if the system (4.5.1) is Hamiltonian, then the hypotheses of
Theorems 4.5.4 and 4.5.5 are equivalent to the condition that M l/n(φ) has a simple
zero.

(iii) In the statements of Theorems 4.5.4 and 4.5.5, the region Û × S1 may be replaced
with a neighborhood of Γ× S1 although they are weakened.

4.6 Examples

We now illustrate the above theory for four examples: Simple pendulum with a constant
torque, second-order coupled oscillators, the periodically forced Duffing oscillator [26,31,
62].

4.6.1 Simple pendulum with a constant torque

Consider a simple pendulum with a constant torque:

İ = ε(β sin θ + 1), θ̇ = I, (I, θ) ∈ R× T (4.6.1)

where β ∈ R is a constant. Equation (4.6.1) is of the form (4.1.1) with m = ℓ = 1. Using
Theorem 4.4.3, we obtain the following.

Proposition 4.6.1. The system (4.6.1) has no real-analytic first integral depending an-
alytically on ε near ε = 0.

Remark 4.6.2.

(i) The system (4.6.1) has the first integral

F (I, θ; ε) =
1

2
I2 + ε(β cos θ − θ)

and is (1, 1)-integrable as a system on R × R, although F (I, θ; ε) is not even a
function on R× S1.

(ii) Let β = 0. Then the system (4.6.1) is (2, 0)-integrable when ε ̸= 0, where the vector
fields ε ∂

∂I
+ I ∂

∂θ
and ∂

∂θ
are commutative and linearly independent. However, when

ε = 0, the two vector fields are linearly dependent and Eq. (4.6.1) is not (2, 0)-
integrable. See also Remark 4.2.5(ii).
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4.6.2 Second-order coupled oscillators

Consider

İj =ε

�
−δIj + Ωj +

ℓ�

i=1

�

k∈N2

ak sin(k1θj − k2θi)

�
,

θ̇j =Ij, j = 1, . . . , ℓ,

(4.6.2)

where δ,Ωj ≥ 0, j = 1, . . . , ℓ, and ak, k = (k1, k2) ∈ N2, are constants such that |ak| ≤
Me−(k1+k2)δ for some M, δ > 0. We see by the remark after Lemma 2 in Section 12 of
Chapter 3 in [8] that the vector field of (4.6.2) is analytic. Equation (4.6.2) has the form
(4.1.1) with m = ℓ and is rewritten in a system of second-order differential equations as

θ̈j + εδθ̇ = ε

�
Ωj +

ℓ�

i=1

�

k∈N2

ak sin(k1θj − k2θi)

�
, j = 1, . . . , ℓ,

which reduces to the second-order Kuramoto model [54] when ak ̸= 0 for k = (1, 1)
and ak = 0 for k ̸= (1, 1). Obviously, assumptions (K2), (A3) and (A4) hold. Using
Theorems 4.4.1 and 4.4.4, we obtain the following.

Proposition 4.6.3. The following statements hold for (4.6.2):

(i) If one of δ and Ωj, j = 1, . . . , ℓ, is nonzero at least, then the system (4.6.2) does
not have ℓ real-analytic first integrals near ε = 0 such that they are functionally
independent for |ε| ̸= 0 and depend analytically on ε;

(ii) If K1 = {k1/k2 | ak, k2 ̸= 0} or K2 = {k2/k1 | ak, k1 ̸= 0} has an accumulation
point, then for |ε| ̸= 0 sufficiently small the system (4.6.2) is not real-analytically
integrable in the meaning of Theorem 4.2.4.

Proof. Part (i) immediately follows from Theorem 4.4.1 and Remark 4.4.2(iii) since ĥ0(I)
is not identically zero if one of δ and Ωj, j = 1, . . . , ℓ, is nonzero at least.

We turn to the proof of part (ii). Let D1 = {I ∈ Rℓ | k1Ij − k2Ii = 0, i, j =
1, . . . , ℓ, k1/k2 ∈ K1} and D2 = {I ∈ Rℓ | k1Ij − k2Ii = 0, i, j = 1, . . . , ℓ, k2/k1 ∈
K2}. If K1 (resp. K2) has an accumulation point, then D1 (resp. D2) is a key set
for Cω(Rℓ). Their claim is shown as follows. Assume that K1 has an accumulation
point. Let f(I) ∈ Cω(Rℓ) be an analytic function which vanishes on D1, and take a
line Lb := {I ∈ Rℓ | (I1, . . . , Iℓ−1) = b} for b = (b1, . . . , bℓ−1) ∈ Rℓ−1 fixed . Then
(b1, . . . , bℓ−1, k1b1/k2) ∈ Lb ∩ D1 for all k1/k2 ∈ K1, so that f(I) is identically zero on
Lb. This means that f(I) is identically zero in Rℓ, and consequently D1 is a key set for
Cω(Rℓ). Similarly, we see that the claim is true for K2 and D2. Applying Theorem 4.4.4,
we obtain the desired result.

4.6.3 Periodically forced Duffing oscillator

Consider the periodically forced Duffing oscillator

ẋ1 = x2, ẋ2 = ax1 − x3
1 + ε(β cos νt− δx2), (4.6.3)
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Figure 4.2: Phase portraits of (4.6.3) with ε = 0: (a) a = 1; (b) a = −1.

where ν > 0 and β, δ ≥ 0 are constants, and a = −1 or 1. The system (4.6.3) has the
form (4.5.1) with

H = −1

2
ax2

1 +
1

4
x4
1 +

1

2
x2
2

and the autonomous system (4.5.3) becomes

ẋ1 = x2, ẋ2 = ax1 − x3
1 + ε(β cos θ − δx2), φ̇ = ν, (4.6.4)

where (x,φ) ∈ R2 × S. See Fig. 4.2 for the phase portraits of (4.6.3) with ε = 0.
We begin with the case of a = 1. When ε = 0, in the phase plane there exist a pair of

homoclinic orbits
xh
±(t) = (±

√
2 sech t,∓

√
2 sech t tanh t),

a pair of one-parameter families of periodic orbits

xk
±(t) =

�
±

√
2√

2− k2
dn

�
t√

2− k2

�
,

∓
√
2k2

2− k2
sn

�
t√

2− k2

�
cn

�
t√

2− k2

��
, k ∈ (0, 1),

inside each of them, and a one-parameter periodic orbits

x̃k(t) =

� √
2k√

2k2 − 1
cn

�
t√

2k2 − 1

�
,

−
√
2k

2k2 − 1
sn

�
t√

2k2 − 1

�
dn

�
t√

2k2 − 1

��
, k ∈

�
1/
√
2, 1

�
,

outside of them, as shown in Fig. 4.2(a), where sn, cn and dn represent the Jacobi elliptic
functions with the elliptic modulus k. The periods of xk

±(t) and x̃k(t) are given by T̂ k =

2K(k)
√
2− k2 and T̃ k = 4K(k)

√
2k2 − 1, respectively, whereK(k) is the complete elliptic

integral of the first kind. Note that xk
±(t) approaches xh

±(t) as k → 1. See [26, 62]. See
also [20] for general information on elliptic functions.

Assume that the resonance conditions

lT̂ k =
2πn

ν
, i.e., ν =

2πn

2lK(k)
√
2− k2

, (4.6.5)
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and

lT̃ k =
2πn

ν
, i.e., ν =

2πn

4lK(k)
√
2k2 − 1

, (4.6.6)

hold for xk
±(t) and x̃k(t), respectively, with l, n > 0 relatively prime integers. Then the

subharmonic Melnikov function (4.5.5) for xk
±(t) and x̃k(t) are

M
n/l
± (τ) = −δJ1(k, l)± βJ2(k, n, l) sin τ

and
M̃n/l(τ) = −δJ̃1(k, l) + βJ̃2(k, n, l) sin τ,

respectively, where

J1(k, l) =
4l[(2− k2)E(k)− 2k′2K(k)]

3(2− k2)3/2
,

J2(k, n, l) =

⎧
⎨

⎩

√
2πν sech

�
nπK(k′)

K(k)

�
(for l = 1);

0 (for l ̸= 1),

J̃1(k, l) =
8l[(2k2 − 1)E(k) + k′2K(k)]

3(2k2 − 1)3/2
,

J̃2(k, n, l) =

⎧
⎨

⎩
2
√
2πν sech

�
nπK(k′)

2K(k)

�
(for l = 1 and n odd);

0 (for l ̸= 1 or n even).

Here E(k) is the complete elliptic integral of the second kind and k′ =
√
1− k2 is the com-

plimentary elliptic modulus. When δ ̸= 0, the subharmonic Melnikov functions M
n/l
± (τ)

and M̃n/l(τ) are not identically zero for any relatively prime integers n, l > 0 since J1(k, l)
and J̃1(k, l) are not zero. Moreover, the homoclinic Melnikov function (4.5.7) for xh

±(t) is

M±(τ) = −4

3
δ ±

√
2πνβ csch

�πν
2

�
sin τ,

which is not identically zero for β ̸= 0. See [26, 62] for the computations of the Melnikov
functions.

Let

R = {k ∈ (0, 1) | k satisfies (4.6.5) for n, l ∈ N},
R̃ =

�
k ∈

�
1/
√
2, 1

�
| k satisfies (4.6.6) for n, l ∈ N

�
,

and let

Sk
± = {(xk

±(t), θ) ∈ R2 × S1 | t ∈ [0, T̂ k), θ ∈ S1},
S̃k = {(x̃k(t), θ) ∈ R2 × S1 | t ∈ [0, T̃ k), θ ∈ S1},
Γ± = {xh

±(t) ∈ R2 | t ∈ R} ∪ {0}.

Noting that
lim
n→∞

M̃2n+1/1(τ) = M+(τ) +M−(τ)

and applying Theorems 4.5.1, 4.5.4, 4.5.5 and their slight extensions, we have the follow-
ing.
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Proposition 4.6.4. The system (4.6.4) with a = 1 has no real-analytic first integral
depending analytically on ε in neighborhoods of Sk

± for k ∈ R, of S̃k for k ∈ R̃, and of Sh
±

near ε = 0 if δ ̸= 0.

Proposition 4.6.5. Let Û± (resp. Ũ) be regions (resp. a region) in R2 such that ∂Û± ⊃
Γ± (resp. ∂Ũ ⊃ Γ+ ∪ Γ−) and Û± ⊃ {xk

±(t) | t ∈ [0, T̂α)} (resp. Ũ ⊃ {x̃k(t) | t ∈ [0, T̃ k)}
for some k ∈ (0, 1) (resp. k ∈ (1/

√
2, 1)). For |ε| ̸= 0 sufficiently small the system (4.6.4)

with a = 1 is not real-analytically integrable in the regions Û± × S1 (resp. Ũ × S1) in the
meaning of Theorem 4.2.4 if β ̸= 0.

If β ̸= 0 and

δ

β
<

3

4

√
2πν csch

�πν
2

�
, (4.6.7)

then M±(τ) has a simple zero, so that for |ε| > 0 sufficiently small there exist transverse
homoclinic orbits to a periodic orbit near the origin and chaotic dynamics may occur
in (4.6.4) with a = 1, as stated in Section 4.5. From Proposition 4.6.5 we see that the
system (4.6.4) is nonintegrable in the meaning of Theorem 4.2.4 even if condition (4.6.7)
does not hold, i.e., there may exist no transverse homoclinic orbit to the periodic orbit,
as stated in Remark 4.5.6(i). On the other hand, when the system (4.6.3) is Hamiltonian,
i.e., δ = 0, condition (4.6.7) always holds and such inconsistency does not occur. See also
Remark 4.5.6(ii).

We turn to the case of a = −1. When ε = 0, in the phase plane there exists a
one-parameter family of periodic orbits

x̂k(t) =

� √
2k√

1− 2k2
cn

�
t√

1− 2k2

�
,

−
√
2k

1− 2k2
sn

�
t√

1− 2k2

�
dn

�
t√

1− 2k2

��
, k ∈

�
0, 1/

√
2
�
,

as shown in Fig. 4.2(b), and their period is given by T̂ k = 4K(k)
√
1− 2k2. See [64, 65].

Assume that the resonance conditions

lT̂ k =
2πn

ν
, i.e., ν =

πn

2lK(k)
√
1− 2k2

(4.6.8)

holds for l, n > 0 relatively prime integers. We compute the subharmonic Melnikov
function (4.5.5) for x̂k(t) as

M̂n/l(τ) = −δĴ1(k, l)± βĴ2(k, n, l) sin τ,

where

Ĵ1(k, l) =
8l[(2k2 − 1)E(k) + k′2K(k)]

3(1− 2k2)3/2
,

Ĵ2(k, n, l) =

⎧
⎪⎨

⎪⎩

√
2π2n

K(k)
√
1− 2k2

sech

�
πnK(k′)

2K(k)

�
(for l = 1 and n odd);

0 (for l ̸= 1 or n even).
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See also [64,65] for the computations of the Melnikov function. When δ ̸= 0, the subhar-
monic Melnikov function M̂n/l(τ) is not identically zero for any relatively prime integers
n, l > 0 since J1(k, l) is not zero.

Let

R̂ =
�
k ∈

�
0, 1/

√
2
�
| k satisfies (4.6.8) for n, l ∈ N

�
,

and let
Ŝk = {(x̂k(t), θ) ∈ R2 × S1 | t ∈ [0, T̂ k), θ ∈ S1}.

Applying Theorem 4.5.1, we obtain the following.

Proposition 4.6.6. The system (4.6.4) with a = −1 has no real-analytic first integral
depending analytically on ε in a neighborhood of Ŝk for k ∈ R̂ near ε = 0 if δ ̸= 0.

Remark 4.6.7.

(i) Since the subharmonic Melnikov function M̂n/l(τ) is constant for l ̸= 1, Theo-
rem 4.5.2 is not applicable to (4.6.4) with a = −1. So we cannot exclude the
possibility that the system (4.6.4) with a = −1 is (3, 0)-integrable in the meaning of
Theorem 4.2.4 when β, δ ̸= 0.

(ii) It was shown in [73] that the system (4.6.4) with a = −1 is meromorphically non-
integrable in a meaning similar to that of Theorem 4.2.4 when the independent and
state variables are extended to complex ones.

4.A Proof of Proposition 4.3.3

In this Appendix, we prove Proposition 4.3.3. We begin with the following lemma.

Lemma 4.A.1. Let Ω be an open subset of Rk and let χj : Ω → R, j = 1, . . . ,m, be
analytic, where k,m ∈ N. Let χ(x) = (χ1(x), . . . ,χm(x)). If rank dχ is constant on Ω and
less than m, then for any x ∈ Ω there exists a neighborhood V of x on which χ1, . . . ,χm

are analytically dependent, i.e., there exist an open set Ω′ ⊂ Rm and a non-constant
analytic map ζ : Ω′ → R such that χ(V ) ⊂ Ω′ and ζ(χ(y)) = 0 for any y ∈ V .

Proof. Using Theorem 1.3.14 of [50] and an argument in the proof of Theorem 1.4.15
of [50], we can immediately obtain the desired result as follows. The theorem says that
there exist a neighborhood V (resp. V ′) of x (resp. of χ(x)), a cube Q (resp. Q′) in Rk

(resp. in Rm) and analytic isomorphisms u : Q → V and u′ : V ′ → Q′ such that the
composite map u′ ◦ χ ◦ u has the form (x1, . . . , xk) → (x1, . . . , xm′ , 0, . . . , 0), where xj is
the jth element of x for j = 1, . . . , k and m′ = rank dχ < m. Here a cube in Rk is an open
set of the form

{x | |xj − aj| < rj, j = 1, . . . , k}

for some aj ∈ R and rj > 0, j = 1, . . . , k. Letting u′ = (u′
1, . . . , u

′
m) and ζ = u′

m, we have
ζ(χ(y)) = 0 for every y ∈ V .
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Let fε : M → R be an analytic function such that it depends on ε analytically. We
expand it near ε = 0 as fε(x) =

�∞
j=0 f

j(x)εj, where f j(x), j ∈ Z0 := N ∪ {0}, are
analytic functions on M . Define the order function σ(fε) by

σ(fε) := min{j ∈ Z0 | f j(x) ̸≡ 0}

if fε ̸≡ 0 and σ(0) := +∞, as in [13].

Lemma 4.A.2. Suppose that fε(x) is a nonconstant analytic first integral of (4.1.4)
depending analytically on ε near ε = 0. Then there exists an analytic first integral f̃ε(x) =
f̃ 0(x) +O(ε) depending analytically on ε near ε = 0 such that f̃ 0(x) is not constant.

Proof. Since fε is not constant, σ(dfε) takes a finite value. Let k = σ(dfε) and fε(x) =�∞
j=0 ε

jf j(x). Define

f̃ε(x) :=
1

εk

�
fε(x)−

k−1�

j=0

εjf j(x)

�
.

Then f̃ε(x) = fk(x) + O(ε) and f̃ 0(x) = fk(x) is not constant. Moreover, f̃ε(x) is a first
integral of (4.1.4) since Xε(fε) = 0 and

�k−1
j=0 ε

jf j is constant.

Proof of Proposition 4.3.3. Modifying the proof of Ziglin’s lemma [11, 22, 79] slightly, we
prove this proposition. For k = 1 the statement of the proposition holds by Lemma 4.A.2.
Let k > 1 and suppose that it is true up to k − 1. Let Gε

1(x), . . . , G
ε
k(x) be analytic first

integrals of (4.1.4) in a neighborhood of F−1(c) near ε = 0 such that they are function-
ally independent for ε ̸= 0 and depend analytically on ε. Without loss of generality,
we assume that G0

1(x), . . . , G
0
k−1(x) are functionally independent near F−1(c). Letting

Gε(x) = (Gε
1(x), . . . , G

ε
k(x)), we see that G0(ϕ(I, θ)) depends only on I, as in the proof

of Lemma 4.3.1(i), where ϕ denotes the analytic diffeomorphism in Proposition 4.2.1(ii).
Let G̃j(I) = G0

j(ϕ(I, θ)) for j = 1, . . . , k. Note that, if dG̃1(I), . . . , dG̃k(I) are linearly
independent at I = I0 ∈ U , then so are dG1(x), . . . , dGk(x) on ϕ({I0}× Tq) ⊂ U .

Assume that G̃1(I), . . . , G̃k−1(I), G̃k(I) are functionally dependent in an open set
U ′ ⊂ U . So Ω := {p ∈ U ′ | rank dpG̃ = k − 1} contains a dense open set in U ′

since dG̃1(I), . . . , dG̃k−1(I) are functionally independent on U . By Lemma 4.A.1, there
exist an open set Ω′ ⊂ Rk and a nonzero analytic function ζ : Ω′ → R such that
G̃(V ) = (G̃1(V ), . . . , G̃k(V )) ⊂ Ω′ and

ζ(G̃1(I), . . . , G̃k(I)) = 0

in a neighborhood V of p ∈ Ω. Moreover, there is a positive integer s such that
(∂sζ/∂ysk)(G̃(I)) ̸= 0, since if not, then ζ(G̃1(I), . . . , G̃k−1(I), yk) depends on yk near G̃(V )
and consequently G̃1(I), . . . , G̃k−1(I) are functionally dependent. Let s be the smallest
one of such integers and let ζ̃(y) = (∂s−1ζ/∂ys−1

k )(y). Then ζ̃ satisfies

ζ̃(G̃1(I), . . . , G̃k(I)) = 0

and (∂ζ̃/∂yk)(G̃(I)) ̸= 0 on V . Hence,

ζ̃(G0(x)) = 0 (4.7.1)
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and (∂ζ̃/∂yk)(G
0(x)) ̸= 0 on ϕ(V × Tq).

Let Ĝε
k(x) = ζ̃(Gε(x))/ε. By (4.7.1) Ĝε

k is an analytic first integral depending analyt-
ically on ε. We have

dĜε
k = ε−1d(ζ̃(Gε(x))) = ε−1

k�

j=1

∂ζ̃

∂yj
(Gε(x))dGε

j

and

N(Ĝε) := dGε
1 ∧ . . . ∧ dGε

k−1 ∧ dĜε
k = ε−1 ∂ζ̃

∂yk
(Gε(x))dGε

1 ∧ . . . ∧ dGε
k.

Since (∂ζ̃/∂yk)(G
0(x)) ̸= 0 on ϕ(V × Tq), we have σ((∂ζ̃/∂yk)(G

0(x))) = 0, so that

σ(N(Ĝε)) = σ(ε−1N(Gε)) + σ

�
∂ζ̃

∂yk
(Gε(x))

�
= σ(N(Gε))− 1.

Repeating this procedure till σ(N(Ĝε)) = 0, we obtain

dG0
1 ∧ . . . ∧ dG0

k−1 ∧ dĜ0
k ̸= 0,

which means the desired result.
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Conclusions

In this thesis, we considered a class of ordinary differential equations including non-
Hamiltonian systems and nonlinear oscillators with parametric or external forcing, and
developed theories for their nonintegrability and related dynamics. In particular, we gave
several necessary conditions for persistence of periodic and homoclinic orbits, first integrals
and commutative vector fields in perturbed systems, and for real-analytic integrability of
nearly integrable systems in the sense of Bogoyavlenskij [15] such that the first integrals
and commutative vector fields also depend analytically on the perturbation parameter.

In Chapter 2, we discussed nonintegrability of parametrically forced nonlinear oscil-
lators which are represented by second-order homogeneous differential equations with
trigonometric coefficients and contain the Duffing and van der Pol oscillators as special
cases. Specifically, we gave sufficient conditions for their rational nonintegrability in the
meaning of Bogoyavlenskij, using Kovacic’s algorithm [34] as well as an extension of the
Morales-Ramis theory [43,47] due to Ayoul and Zung [12]. In application of the extended
Morales-Ramis theory, for the associated variational equations, the identity components
of their differential Galois groups were shown to be not commutative even if the differ-
ential Galois groups are triangularizable, i.e., they can be solved by quadratures. The
obtained results were very general and reveal their rational nonintegarbility for the wide
class of parametrically forced nonlinear oscillators. We also gave two examples for the
van der Pol and Duffing oscillators to demonstrate our results.

In Chapter 3, we studied persistence of periodic and homoclinic orbits, first integrals
and commutative vector fields in dynamical systems depending on a small parameter
and gave several necessary conditions for their persistence. Here we treated homoclinic
orbits not only to equilibria but also to periodic orbits. We also discussed some rela-
tionships of these results with the standard subharmonic and homoclinic Melnikov meth-
ods [26,42,62,65] for time-periodic perturbations of single-degree-of-freedom Hamiltonian
systems, and with another version of the homoclinic Melnikov method [61] for autonomous
perturbations of multi-degree-of-freedom Hamiltonian systems. In particular, we showed
that a first integral which converges to the Hamiltonian or another first integral as the
perturbation tends to zero does not exist near the unperturbed periodic or homoclinic
orbits in the perturbed systems if the subharmonic or homoclinic Melnikov functions are
not identically zero on connected open sets. We illustrated our theory for four examples:
The periodically forced Duffing oscillator, two identical pendula coupled with a harmonic
oscillator, a periodically forced rigid body and a three-mode truncation of a buckled beam.
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In Chapter 4, we studied the existence of first integrals and integrability for perturba-
tions of integrable systems in the sense of Bogoyavlenskij including non-Hamiltonian ones.
We especially assumed that there exists a family of periodic orbits on a regular level set
of the first integrals which has a connected and compact component and gave sufficient
conditions for nonexistence of the same number of first integrals in the perturbed systems
as the unperturbed ones and for their nonintegrability near the level set such that the
first integrals and commutative vector fields depend analytically on the small parameter.
We compared our results with classical results of Poincaré [51,52] and Kozlov [35,36] for
systems written in action and angle coordinates and discussed their relationships with
the subharmonic and homoclinic Melnikov methods for periodic perturbations of single-
degree-of-freeedom Hamiltonian systems. We illustrated our theory for three examples
containing the periodically forced Duffing oscillator.

In closing this thesis, we give some comments on future work. In Chapter 2, using the
extension due to Ayoul and Zung of the Morales-Ramis theory, we showed that paramet-
rically forced nonlinear oscillators of the form (2.1.1) are rationally nonintegrable under
weak conditions even if the parametric forcing is not small, as stated in Theorem 2.2.2.
So one may expect a similar result for externally forced nonlinear oscillators such as
Eq. (4.6.3) although the nonintegrability of (4.6.3) in the meaning of Theorem 4.2.4 or in
a similar one, i.e., such that the first integrals and commutative vector fields also depend
analytically or meromorphically on the parameter ε, was proved for a = 1 in Chapter 4 and
for a = −1 in [73]. However, it is difficult to apply the extended Morales-Ramis theory to
them since their particular solutions are not easily found. To prove their nonintegrability
when ε is fixed or not small, we need to develop a new technique.

In Chapter 3, we discussed the persistence of periodic orbits, homoclinic orbits to
equilibria or periodic orbits, and first integrals and commutative vector fields near these
orbits. So it is interesting to extend the results of Chapter 3 to more general invariant
sets such as invariant tori and to homoclinic orbits to such invariant sets. Moreover, one
may be interested in relationships of the results to be obtained with several versions of the
Melnikov method developed in [24, 25, 61] for such homoclinic orbits and with the KAM
theory [10].



Acknowledgements

I would like to thank my supervisor Professor Kazuyuki Yagasaki for his many instructions
and helpful discussions. Without his persistent support, I would not have completed this
thesis. I am grateful to all members of the Dynamical Systems Group at Graduate
School of Informatics, Kyoto University, particularly Professors Mitsuru Shibayama and
Yoshiyuki Yamaguchi, for their considerable encouragement. I would like to express my
gratitude to Professor Ken Umeno for his fruitful suggestions. I would also like to thank
Professors Hidekazu Ito, Hiroshi Kokubu, Haruo Yoshida, Juan Morales-Ruiz and Andrzej
Maciejewski for their valuable comments. Finally, I would like to thank my family for
their long-term support.

79



Bibliography

[1] M.J. Ablowitz and A.S. Fokas, Complex Variables: Introduction and Applications,
2nd ed., Cambridge University Press, Cambridge, 2003.

[2] R. Abraham and J.E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin/
Cummings Publishing, Reading, MA, 1978.
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of the dumbbell and point mass problem, Celestial Mech. Dynam. Astronom., 117
(2013), 315–330.

[40] A.J. Maciejewski, M. Przybylska and T. Stachowiak, Non-integrability of Gross-
Neveu systems, Phys. D, 201 (2005), 249–267.

[41] J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry, 2nd ed.,
Springer, New York, 1999.

[42] V.K. Melnikov, On the stability of the center for time periodic perturbations, Trans.
Moscow Math. Soc., 12 (1963), 1–56.

[43] J.J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian
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[52] H. Poincaré, New Methods of Celestial Mechanics, Vol. 1, AIP Press, New York, 1992
(original 1892).

[53] M. van der Put and M.F. Singer, Galois Theory of Linear Differential Equations,
Springer, Berlin, 2003.

[54] F.A. Rodrigues, T.K.D. Peron, P. Ji and J. Kurths, The Kuramoto model in complex
networks, Phys. Rep., 610 (2016), 1–98.

[55] N.E. Sanchez and A.H. Nayfeh, Prediction of bifurcations in a parametrically excited
Duffing oscillator, Internat. J. Non-Linear Mech., 25 (1990), 163–176.

[56] J.A. Sanders, F. Verhulst and J. Murdock, Averaging Methods in Nonlinear Dynam-
ical Systems, 2nd ed., Springer, New York, 2010.

[57] T. Stachowiak, Hypergeometric first integrals of the Duffing and van der Pol oscilla-
tors, J. Differential Equations, 266 (2019), 5895–5911.
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