
Scalable Estimation
on Linear and Nonlinear Regression Models

via Decentralized Processing:
Adaptive LMS Filter and Gaussian Process Regression

by Ayano NAKAI

Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Informatics

Supervisor: Toshiyuki TANAKA

November 2021

KYOTO UNIVERSITY

Abstract
Large amounts of data collected from a variety of Internet of Things (IoT) de-

vices or various services on the Internet give us rich information but in general
require high computational and/or communication costs and complicated process-
ing. Decentralization of the centralized data processing is a solution that enables
scalable data treatments. The idea of the decentralization is also beneficial for in-
network processing in terms of scalability in network size. However, performance
of decentralized processing can be degraded compared with that of the centralized
processing when the decentralized processing is derived by approximately dividing
the centralized processing. The purpose of the thesis is to enhance performance of
such decentralized processing.

The thesis covers two estimation problems, in-network adaptive least-mean-
square (LMS) filter and Gaussian process regression (GPR), as the specific themes
of the decentralization. The former aims at tracking an unknown deterministic
vector by using measurements at nodes obtained via linear regression models in
the network such as sensor networks. Full decentralization of the algorithm is
achieved by approximately dividing a cost function and by performing estimation
in cooperation with neighboring nodes. In the latter, desired outputs are predicted
by using training data under the assumption that the relation follows nonlinear
Gaussian process regression models. The algorithm yields flexible prediction but
requires a high computational cost. Partial decentralization of GPR is realized by
dividing the data and then aggregating locally processed estimations.

We tackle improvements of the decentralized algorithms. For the fully decen-
tralized adaptive LMS filter, we adopt a more efficient cooperation method known
as message propagation to reduce performance degradation caused by the approx-
imate divisions of the problem. We propose two types of algorithms with different
use of the message propagation method and extend the algorithm to be a sparsity-
aware one. For the partially decentralized GPR, we provide a reinterpretation of a
conventional decentralization by introducing the idea of sketching and propose a
novel algorithm that allows to balance computational complexity and performance.
The efficiency of the proposed algorithms is evaluated via computer simulations.

i

Acknowledgments
I would like to thank my supervisor Professor Toshiyuki Tanaka for his thought-

ful guidance through my doctoral course. I am also grateful to the members
of my thesis committee, Professor Hidetoshi Shimodaira and Associate Profes-
sor Kazunori Sakurama for their insightful comments. I also appreciate Professor
Kazunori Hayashi for his kind support since my master’s course. I have had the
encouragement of Associate Professor Tomoyuki Obuchi. I am grateful for the
assistance given by all members of our laboratory, Mathematical Information Sys-
tems Group. Finally, I thank my family for their generous support.

ii

List of Figures
1.1 Centralized and decentralized processing. 2

2.1 An example of a network with 10 nodes. Nk is the set of neighbors
of node k (including node k itself). 11

2.2 Two steps of D-LMS. 16
2.3 Update of message from node u to node k in the j-th iteration. The

message is generated from the messages received in the (j − 1)-th
iteration from its neighbors except for node k, and its initial value xu. 24

2.4 State update at node k. Node k calculates the estimate x[J]
k using

the messages received in the J-th iteration from its all neighbors. . 25

3.1 Network MSD learning curves of the proposed CP-LMS. 38
3.2 Network MSD learning curves of D-LMS with proposed CP rule. . 38
3.3 Network topologies with N = 20. 38
3.4 Network topologies. 39
3.5 Network MSD learning curves of proposed methods and conven-

tional methods versus number of communications. 41
3.6 Network MSD learning curves of LCP-LMS versus number of

communications. 42
3.7 Network MSD learning curves of proposed CP rule and conven-

tional static combination rules with N = 20. 43
3.8 Network MSD learning curves of proposed adaptive CP rule and

conventional combination rules with N = 20. 43

4.1 Network topologies. 54
4.2 Network MSD learning curves for 1-sparse. 55
4.3 Network MSD learning curves for 2-sparse. 56
4.4 Network MSD learning curves for 3-sparse. 57
4.5 Network MSD learning curves for comparison of ε. 58
4.6 Network MSD learning curves with N = 50 when unknown vector

has lower sparsity. 59
4.7 Network MSD learning curves with N = 50 when measurement

noise variance is larger. 59
4.8 Network topologies. 60
4.9 Network MSD learning curves for networks with different density. 61

iii

LIST OF FIGURES

5.1 MSE versus the number nt of test points. 83
5.2 MSLL versus the number nt of test points. 84
5.3 Computing time versus the number nt of test points. 85
5.4 Performance measures versus the number N of training data. . . . 86
5.5 Examples: Predictive distribution of NAE-IP with the means and

95% confidence intervals in case of N = 104, nt = 20. The dimen-
sion of NAE-IP except for NAE-IP-BT is nu = 1.5 × nt = 30. The
outside of vertical lines shows extrapolation. 89

5.6 Examples: Predictive distribution of conventional aggregation meth-
ods with the means and 95% confidence intervals in case of N =
104. The outside of vertical lines shows extrapolation. 90

iv

List of Tables
3.1 Computational complexity and communication cost for the pro-

posed algorithms and other conventional algorithms par one syn-
chronous communication at node k. 36

4.1 Computational complexity and communication cost for the pro-
posed and conventional rules par one synchronous communication
at node k. 53

5.1 Recommended weight choice for aggregation methods. The choice
marked † means that it lacks theoretical justification. 68

5.2 Definitions. 77
5.3 Time complexity of aggregation methods under sufficiently large

N, where α, β, and γ are constants larger than 1. 81
5.4 Significance of differences in performance. The methods with %

mean that performance of the methods is the best. The results with
†mean that differences between each of those and the method with
% are statistically significant (paired t-test with Bonferroni multiple
testing correction, P < 0.05/11). The results with ◦ mean that the
null hypothesis is not rejected. 87

5.5 Results of the aggregation methods on KIN8NM, SARCOS, and
POL datasets. The methods with % mean that performance of the
methods is the best. The unmarked results mean that differences
between each of those and the method with % are statistically sig-
nificant (Wilcoxon signed rank test with Bonferroni multiple test-
ing correction, P < 0.05/11). The results with ◦ mean that the null
hypothesis is not rejected. 88

v

List of Publications
Related Journal Papers

1. A. Nakai-Kasai and T. Tanaka, “Nested aggregation of experts using induc-
ing points for approximated Gaussian process regression,” Machine Learn-
ing, Springer. (accepted for publication)1

2. A. Nakai-Kasai and K. Hayashi, “An acceleration method of sparse diffu-
sion LMS based on message propagation,”’ IEICE Trans. Commun., vol.
E104-B, no.2, pp. 141–148, Feb. 2021. Copyright c© 2021 IEICE2

3. A. Nakai-Kasai and K. Hayashi, “Diffusion LMS based on message passing
algorithm,” IEEE Access, vol. 7, pp. 47022–47033, Apr. 2019. Copyright c©
2019 IEEE

Related International Conference Proceedings
4. A. Nakai-Kasai and K. Hayashi, “Optimal combination weight for sparse

diffusion least-mean-square based on consensus propagation,” Asia-Pacific
Signal and Information Processing Association Annual Summit and Confer-
ence (APSIPA ASC 2020), pp. 228–235, virtual conference, Dec. 2020.
Copyright c© 2020 IEEE

5. A. Nakai-Kasai and K. Hayashi, “Diffusion strategies based on consensus
propagation,” Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC 2018), no. TU-A1-9.15,
Honolulu, USA, Nov. 2018. Copyright c© 2018 IEEE

6. A. Nakai and K. Hayashi, “An adaptive combination rule for diffusion LMS
based on consensus propagation,” IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP 2018), pp. 3839–3843, Cal-
gary, Canada, Apr. 2018. Copyright c© 2018 IEEE

1Reproduced with permission from Springer Nature.
2Part I in this dissertation is based onʠAn acceleration method of sparse diffusion LMS based on

message propagationʡ[2], by the same author, which appeared in IEICE Transactions on Commu-
nications, Copyright c©2021 IEICE. The material in this dissertation was presented in part at IEICE
Transactions on Communications [2], and a part of the figures of this dissertation is reused from [2]
under the permission of the IEICE.

7. A. Nakai and K. Hayashi, “Diffusion LMS using consensus propagation,”
Asia-Pacific Signal and Information Processing Association Annual Sum-
mit and Conference (APSIPA ASC 2017), pp. 943–948, Kuala Lumpur,
Malaysia, Dec. 2017. Copyright c© 2017 IEEE

Other Journal Paper
8. R. Hayakawa, A. Nakai-Kasai, and K. Hayashi, “Discreteness and group

sparsity aware detection for uplink overloaded MU-MIMO systems,” AP-
SIPA Transactions on Signal and Information Processing, vol. 9, no. E21,
pp. 1–12, Oct. 2020.

Other International Conference Proceedings
9. K. Hayashi, A. Nakai-Kasai, A. Hirayama, H. Honda, T. Sasaki, H. Ya-

sukawa, and R. Hayakawa, “An overloaded IoT signal detection method
using non-convex sparse regularizers,” Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC 2020),
pp. 1490–1496, virtual conference, Dec. 2020.

10. K. Hayashi, A. Nakai-Kasai, and R. Hayakawa, “An overloaded SC-CP
IoT signal detection method via sparse complex discrete-valued vector re-
construction,” Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC 2019), pp. 1473–1478,
Lanzhou, China, Nov. 2019.

11. K. Hayashi, A. Nakai-Kasai, R. Hayakawa, and S. Ha, “Uplink overloaded
MU-MIMO OFDM signal detection methods using convex optimization,”
Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC 2018), pp. 1421–1427, Honolulu, USA, Nov.
2018.

Contents
Abstract i

Acknowledgments ii

List of Figures iii

List of Tables v

List of Publications vi

1 Introduction 1
1.1 Demand for Scalability . 1
1.2 Thesis Overview and Contributions 2

1.2.1 Objective and Overview of Thesis 2
1.2.2 Part I: Fully Distributed LMS based on Message Propagation 3
1.2.3 Part II: New Representation of Scalable GPR 4

1.3 Notations . 5
1.4 Organization . 5

I Fully Distributed LMS based on Message Propagation 7

2 Introduction of Distributed LMS 8
2.1 Introduction . 8

2.1.1 Background and Related Work 8
2.1.2 Contributions . 10

2.2 Preliminaries . 11
2.2.1 Network Model . 11
2.2.2 Diffusion LMS . 12
2.2.3 Consensus Propagation 22

2.3 Overview of Proposed Methods 24

3 D-LMS based on CP 27
3.1 D-LMS based on Exact CP . 27

3.1.1 Proposed Algorithm . 27
3.1.2 Convergence Analysis 28

3.2 D-LMS based on Loopy CP . 29

viii

CONTENTS

3.2.1 Proposed Algorithm – General Case 29
3.2.2 Proposed Algorithm – Special Case 30

3.3 Computational Complexity and Communication Cost 35
3.4 Simulation Results . 37

3.4.1 Settings . 37
3.4.2 Comparison with Theoretical Learning Curve 37
3.4.3 Performance of Proposed CP-LMS and D-LMS w/ Adap-

tive CP rule . 39
3.4.4 Performance of Proposed LCP-LMS 41
3.4.5 Proposed Rules vs Conventional Rules 42

3.5 Conclusion . 43

4 SD-LMS based on CP 45
4.1 SD-LMS based on Loopy CP . 45

4.1.1 Derivation . 45
4.1.2 Optimization and Adaptive Combination Weights 46
4.1.3 Convergence Analysis 52
4.1.4 Computational Complexity 53

4.2 Simulation Results . 54
4.2.1 Evaluation of Adaptive CP Rule 54
4.2.2 Evaluation of Adaptive CPO Rule 58

4.3 Conclusion . 59

II New Representation of Scalable GPR 62

5 Scalable GPR with Sketching 63
5.1 Introduction . 63

5.1.1 Background and Related Work 63
5.1.2 Contributions . 65

5.2 GPR and Its Approximation Methods 65
5.2.1 Full GPR . 65
5.2.2 Aggregation Methods . 67

5.3 GPR with Sketching . 70
5.3.1 Understanding of Aggregation Method as Sketching . . . 70
5.3.2 Proposed Algorithm: NAE-IP 73

5.4 Simulation Results . 82
5.4.1 Datasets and settings . 82
5.4.2 Synthetic data . 83
5.4.3 Real data . 85

ix

CONTENTS

5.5 Conclusion . 87

III Conclusion and Future Directions 91

6 Conclusion 92
6.1 Summary . 92
6.2 Future Directions . 93

Bibliography 96

x

1: Introduction
1.1 Demand for Scalability

Today large amounts of data (or big data) are collected from a lot of sensors
placed in equipment or spaces and from various services on the Internet. Improve-
ment of hardware performance has been promoting centralized analysis of such
data, which is providing new generation mobile communication systems or practi-
cal realization of machine learning technologies (Kambatla et al., 2014; Liu et al.,
2020b). However, the more we collect such data, generally the more difficulties we
are faced with in processing them. Large amounts of data require high computa-
tional and/or communication cost, and complicate the centralized processing oper-
ations. For scalability to the large amount of data, the idea of parallel or distributed
computing can be incorporated into algorithm designs (Dean and Ghemawat, 2004;
Low et al., 2010). The data themselves or (a part of) centralized processes are ex-
actly or approximately divided into sub-data or sub-tasks, respectively, which are
assigned to multiple processors or computers. This enables us to decentralize the
processing and handle large amounts of data while keeping the computational cost
low.

On the other hand, decentralized processing is also gathering much attention in
a perspective of scalability to large networks, especially in wireless communication
field. One of the important technologies for new standards, 5G or 6G, is communi-
cation including or among Internet of Things (IoT) devices having abilities of wire-
less communication, computation, and sensing (Gupta and Jha, 2015; Zhang et al.,
2019). The number of sensors equipped with the IoT devices is said to become a
million per square kilometer (Bi et al., 2015). This causes an enormous increase in
data traffic in a general centralized processing, which may result in communication
delays or failures of a central data processing unit. Moreover, the diversity of data
collected from different IoT devices complicates the processing. Even in such a
case, exact or approximate division of a part or all of the data processing can be
one of the solutions of the problems for preventing the concentration of load at the
central unit. The divided processes are assigned to local devices, which enables
decentralized processing in networks. For instance, in edge computing (Li et al.,
2018), data are partially processed at edge servers before being sent to the cloud; in
federated learning (Konečnỳ et al., 2016), data are learned at local IoT devices and
then sent to the central server; or in application to sensor networks or industrial IoT
(Dimakis et al., 2008; Savazzi et al., 2020), devices process data by themselves and

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Centralized and decentralized processing.

cooperate with the neighboring devices. Such decentralized processing may have
an additional advantage in applications that deal with personal data with privacy,
for example, as it does not exchange the raw data that may enable identification of
an individual.

In the thesis, we focus on decentralized processing composed of divided pro-
cesses of centralized processing for scalability in network size and the amounts of
data. The decentralized processing includes partially distributed processing that
supposes aggregation at the central processing unit and fully distributed process-
ing that does not suppose the existence of the central unit. Fig. 1.1 summarizes
conceptual diagrams, characteristics, and examples for the centralized, partially
distributed, and fully distributed processing. If a problem that should be originally
solved by centralized processing can be exactly divided into sub-problems, the so-
lution by the decentralized processing according to the division becomes identical
with that by the centralized one. On the other hand, if it cannot be done so and if an
approximated division is employed, performance of the decentralized processing
will be degraded. Therefore, it is required to develop a decentralized algorithm that
can reduce the degradation as much as possible.

1.2 Thesis Overview and Contributions
1.2.1 Objective and Overview of Thesis

The objective of the thesis is to enhance performance of decentralized pro-
cessing brought about by approximate divisions of the corresponding centralized

2

CHAPTER 1. INTRODUCTION

processing. In the thesis, we tackle two estimation problems, namely, in-network
adaptive least-mean-square (LMS) filter and Gaussian Process Regression (GPR),
as the specific themes of the decentralized processing. Decentralization of the
former problem is in demand to enhance scalability in network size, which is moti-
vated by IoT environments where the number of devices is increasing recently. On
the other hand, the latter problem is desired to be scalable in the amount of data be-
cause it requires high computational complexity. Some approximation methods of
GPR reduce the complexity by decentralization of a part of the processes. Decen-
tralization of both of the problems includes in common some degradation coming
from approximate divisions, so that there is some room for improving the perfor-
mance of the algorithms. In the following, the decentralization of each problem
and the contributions of the thesis are reviewed.

1.2.2 Part I: Fully Distributed LMS based on Message Propagation

Adaptive filters (Farhang-Boroujeny, 2013) aim to adaptively estimate filter
coefficients wo so that a system can yield desirable outputs, according to measure-
ments d(i) and inputs u(i) that can be observed at each time i. One may notice that
the settings are the same as online learning (Shalev-Shwartz, 2012) but the main
interest in online learning is often to estimate outputs corresponding to test inputs
instead of the filter coefficients. LMS is the simplest adaptive filter derived on the
basis of a mean-square error of a linear measurement model d(i) = u(i)Hwo + v(i),
where v(i) is additive noise, and has relatively low complexity because it does not
include calculations of matrix inversion or expectation.

LMS itself does not necessarily require high computational cost but the decen-
tralized estimation is in demand from the application side. In communication net-
works such as sensor networks and multi-agent systems (Olfati-Saber et al., 2007),
LMS can be used for model parameter tracking or target localization (Sayed, 2014)
on the basis of the measurements at the sensors or agents which are referred to as
nodes. For the centralized LMS, a central processor (or fusion node) collects all
the measurements and processes them. However, when the number of nodes in
the network is large, most of the load concentrates around the fusion node. The
heavily biased load may cause the failure of the fusion node and stop all the pro-
cessing. Under such a situation, there have been proposed fully distributed LMS
algorithms, where each node in the network iterates updates of its own estimate by
adaptation and by communications with its neighbors, to make the process scalable
and robust. The algorithms include approximated divisions of the centralized LMS
in order to run only with locally available information at each node, so that the
performance is generally degraded. Thus, it is important to reduce the degradation
caused by the approximated divisions and improve the performance of the fully

3

CHAPTER 1. INTRODUCTION

distributed LMS.
In the thesis, to reduce the degradation, we focus on ways for exchanging infor-

mation in a fully distributed LMS, which are significantly related to approximate
divisions of the problem considered in the centralized LMS. Specifically, we intro-
duce a message propagation algorithm as the method for information exchange to
achieve faster convergence or lower error than the conventional distributed LMS.
The detailed derivations are described and the performance is evaluated via com-
puter simulation shown in Chapter 3. We extend the proposed algorithm to the case
where the parameter of interest is sparse. The derivation and evaluation are shown
in Chapter 4.

1.2.3 Part II: New Representation of Scalable GPR

GPR (Rasmussen and Williams, 2006) mainly aims to estimate output z cor-
responding to input x by using more flexible models than the linear measurement
model used in LMS, whose use is not limited to time-dependent data. It supposes
a nonlinear measurement model z = f (x) + ε, where f (·) follows a Gaussian pro-
cess and where ε is additive noise. The prediction can be obtained as the posterior
distribution of Bayesian estimation. GPR enables flexible estimation but is known
to require high computational cost when the number N of the input data is large
because of the inversion of an N × N matrix. Note that the linear measurement
model in LMS is actually included in GPR as a special case.

There exist a lot of approximation methods of GPR. One approach called ag-
gregation method divides all data into relatively small sub-datasets, runs GPR for
each local sub-dataset, and then aggregates the local predictions. This can be in-
terpreted as partially distributed GPR. Also in the aggregation method, the perfor-
mance is generally degraded compared with the centralized GPR because a part
of covariance information of the data is lost due to the division of the processing.
Thus, it is desirable to develop an algorithm that balances high availability of the
covariance information and low complexity.

In the thesis, we enhance performance of the conventional aggregation method
by adopting richer covariance information to reduce the degradation. We show
that the conventional aggregation method can be generalized via the concept of di-
mensionality reduction called sketching (Liberty, 2013; Woodruff, 2014) and pro-
pose a novel distributed GPR. The proposed algorithm can use richer information
at the cost of a slightly higher computational complexity than the conventional
method or can significantly reduce the complexity by using less information. The
detailed derivation is described and the performance is evaluated on synthetic and
real datasets shown in Chapter 5.

4

CHAPTER 1. INTRODUCTION

1.3 Notations
In the rest of the thesis, we use the following notations. Boldface indicates vec-

tor or matrix. Let R, C, and N be the sets of real numbers, complex numbers, and
nonnegative integers, respectively. Superscripts (·)T and (·)H denote the transpose
and the Hermitian transpose, respectively. E[·], det [·], Tr[·], and Re[·] stand for
the expectation, the determinant, the trace operators, and the real part of a complex
number, respectively. ‖w‖p for a vector w = [w1, . . . ,wM]T and p ≥ 1 is &p-norm

defined by
(∑M

m=1 |wm|p
)1/p

. The abbreviated form ‖ · ‖ represents &2-norm. ‖w‖0
for a vector w is the number of nonzero elements of w and is called &0-norm.
vec(·) and vec−1(·) denote the vectorization and the inverse vectorization operators.
⊗ denotes Kronecker product. diag[·] is the diagonal matrix composed of the el-
ements in the square brackets. The largest eigenvalue of matrix A is represented
as λmax(A). 0, 1, O, and I stand for the vectors where all elements are composed
of 0 or 1, zero matrix, and identity matrix, respectively. 1M and IM are also the
vector with size M where all elements are composed of 1 and identity matrix with
size M × M, respectively. N(m,Σ) is Gaussian distribution with mean m and
covariance Σ. Cov[x,y] means the covariance matrix of random vectors x and
y. kerA := {x : Ax = 0} is the kernel (null space) of the matrix A. [·]ab, [·]a,
and [·][a][b] denote the (a, b)th element of the matrix, the ath row of the matrix
or ath element of the vector, and the (a, b)th block of the block matrix, respec-
tively. sign(w) for w = [w1, . . . ,wM]T is a vector of size M whose m-th element
[sign(w)]m is defined as

[sign(w)]m =

{
wm/|wm|, if wm ! 0
0, if wm = 0. (m = 1, . . . ,M)

1.4 Organization
This thesis is organized as follows. In Part I, we discuss fully distributed LMS

based on message propagation method.

• Chapter 2: Network model and mathematical characterizations are presented.
Diffusion LMS (D-LMS), which is one of the decentralized LMS algorithms,
and consensus propagation (CP), which is employed in the thesis to improve
the performance of D-LMS, are introduced.

• Chapter 3: We propose two algorithms: 1. A novel distributed LMS based
on the exact version of CP, which runs by extracting a spanning tree from
the original network. This work is based on Nakai and Hayashi (2017);
Nakai-Kasai and Hayashi (2019). 2. D-LMS based on the suboptimal ver-
sion of CP, which can run even in a network with cycles and which results

5

CHAPTER 1. INTRODUCTION

in novel combination weights for D-LMS. This work is based on Nakai and
Hayashi (2018); Nakai-Kasai and Hayashi (2019). The convergence analysis
and computational complexity of the two proposed algorithms are discussed.
The performance is evaluated via computer simulation.

• Chapter 4: We propose an algorithm that extends the second algorithm in
Chapter 3 to a sparsity-aware variant of D-LMS. The convergence analysis
and computational complexity of the proposed algorithm are discussed. The
performance is evaluated via computer simulation. This work is based on
Nakai-Kasai and Hayashi (2020, 2021).

In Part II, we address the new representation of scalable GPR.

• Chapter 5: The centralized processing of GPR and its approximation meth-
ods are introduced. We show a generalization of one of the approximation
methods through a sketching technique which lowers a dimension of a large-
size vector by multiplying it by a matrix. The generalization brings about a
novel scalable approximation that uses some auxiliary points. There are five
options for the choice of the points, which affect the predictive performance
and the computational complexity. The proposed method has a theoretical
guarantee known as consistency. The performance of the proposed algorithm
with the five options is evaluated by using synthetic and real data. This work
is based on Nakai-Kasai and Tanaka (2021).

In Part III Chapter 6, the summary of the thesis and future directions are discussed.

6

Part I

Fully Distributed LMS based on
Message Propagation

7

2: Introduction of Distributed LMS
2.1 Introduction
2.1.1 Background and Related Work

On large-scale communication networks composed of a number of small nodes,
such as sensor networks and M2M (machine-to-machine), the subject of distributed
signal processing (Hara et al., 2006) is gathering much attention recently. For
the centralized method, all measurements at the nodes are processed at once in a
fusion node, but it suffers from problems that nodes around the fusion node tend
to consume much energy for the relaying and also that the network is vulnerable
to the failure of the fusion node. On the other hand, for the distributed processing,
each node processes by itself its own measurements and information obtained from
neighboring nodes and estimates a desired parameter. This method is scalable
in network size and robust because there is less imbalance of computation and
communication loads among the nodes.

For tracking unknown parameters of interest in networks, several interpreta-
tions of adaptive filters (Farhang-Boroujeny, 2013) as distributed signal processing
have been proposed (Sayed and Lopes, 2007; Cattivelli et al., 2008; Wang and
Dekorsy, 2019; Lopes and Sayed, 2008; Schizas et al., 2009; Cattivelli and Sayed,
2010; Sayed et al., 2013). The most famous and simplest adaptive filter, least-
mean-square (LMS) algorithm (Mandic et al., 2015), has also been decentralized
in various ways (Lopes and Sayed, 2007, 2008; Schizas et al., 2009; Cattivelli and
Sayed, 2010; Sayed et al., 2013). In these algorithms, each node iteratively up-
dates its estimate by the LMS algorithm using local measurements and by averag-
ing the estimates of its neighboring nodes obtained via wireless communications,
and finally all nodes in the network achieve a common estimate. The incremental
LMS (Lopes and Sayed, 2007) is applicable to any connected networks but it suf-
fers from slow convergence because it assumes that each node communicates only
with a single specific node among its neighboring nodes. In order to achieve faster
convergence, the Combine-then-Adapt (CTA) diffusion LMS (D-LMS) (Lopes and
Sayed, 2008) is derived by modifying the updating rules of the incremental LMS
so that it allows each node to utilize the estimates of all neighboring nodes. More-
over, the consensus-based LMS (Schizas et al., 2009) achieves faster convergence
than the CTA D-LMS (Lopes and Sayed, 2008) while it requires uneven processing
of the nodes. Furthermore, a modified D-LMS named Adapt-then-Combine (ATC)
D-LMS, which is obtained by just interchanging the order of the updating rules of

8

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

CTA diffusion (Lopes and Sayed, 2008), has been proposed in Cattivelli and Sayed
(2010). The ATC D-LMS can outperform not only the original version (Lopes and
Sayed, 2008) but also the consensus-based LMS (Schizas et al., 2009) in terms of
convergence rate. The estimate of D-LMS converges to that of the centralized solu-
tion if sufficiently small step-size parameters are employed (Zhao and Sayed, 2012;
Sayed et al., 2013; Sayed, 2014). More recently, some improvements have been
proposed such as a doubly-compressed D-LMS (Harrane et al., 2019) for com-
munication reduction and an Adapt-Multi-Combine (AMC) D-LMS (Kong et al.,
2017) for better convergence performance at the cost of frequent communications.
D-LMS for more specific settings has also attracted interests in the context of mul-
titask learning where each node in the network estimates its own target vector and
the neighboring nodes have related targets (Nassif et al., 2017).

In addition to this, in many applications, unknown parameters could be sparse
in some representation domain, meaning that most elements of the parameters are
zero or very small. It is known that compressed sensing (Donoho, 2006) is effec-
tive for the sparse signal estimation, and methods based on the compressed sens-
ing have been proposed for the distributed signal processing as well (Duarte et al.,
2005; Hayakawa et al., 2018; Wee and Yamada, 2013; Hu and Zhan, 2016). Among
such methods, an extension of D-LMS for sparse estimation has been proposed and
called sparse diffusion LMS (SD-LMS) (Lorenzo and Sayed, 2013). The theoret-
ical analysis in Lorenzo and Sayed (2013) guarantees convergence in the mean
sense and describes mean-square behaviors of SD-LMS. It has been also revealed
that SD-LMS shows better convergence performance than that of D-LMS in the
case of sparse estimation under realistic conditions.

Both D-LMS and SD-LMS are derived by approximately dividing each cor-
responding centralized problem into sub-problems that can be solved in a fully
distributed manner. The performance degradation by the approximate divisions is
compensated by cooperation with neighboring nodes. In D-LMS and SD-LMS,
conventional average consensus protocol (Olfati-Saber et al., 2007) has been em-
ployed for the cooperation, where all nodes in the network aim to obtain the av-
erage of all nodes’ initial state values by exchanging the current estimates of the
average with their neighbors. This protocol is known to require a lot of iterations
to achieve consensus, especially in large networks. It is also known that, even
in small-scale networks, the choice of combination weights used in the updates
has a great impact on the convergence performance of D-LMS (Takahashi et al.,
2010). Thus, several combination rules have been proposed in the literature, such
as uniform rule (Blondel et al., 2005), maximum degree rule (Scherber and Pa-
padopoulos, 2004), Metropolis rule (Xiao and Boyd, 2004), and relative degree
rule (Cattivelli and Sayed, 2010). More sophisticated static rules are considered

9

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

in Cattivelli and Sayed (2010); Takahashi et al. (2010); Zhao et al. (2012), which
are derived by solving some optimization problems. In particular, a closed-form
solution that minimizes the steady-state error has been derived in Tu and Sayed
(2011) and Zhao et al. (2012), which is referred to as relative-variance rule. Since
the relative-variance rule requires network statistics such as noise variance at all
nodes, which are not locally available at each node in general, adaptive estimation
methods of the parameters have been also proposed in Tu and Sayed (2011) and
Zhao et al. (2012). On the other hand, there exists another kind of average consen-
sus algorithms named consensus propagation (CP) (Moallemi and Roy, 2006). CP
is based on the efficient exchange of information called belief propagation (Pearl,
1988). The algorithm can be interpreted in two ways. The one is exact CP that
achieves exact average consensus with the minimum number of iterations required
for message propagation through the network, i.e., the diameter of the tree, while
it restricts the use to the specific structure of the network such as a tree. Another is
loopy CP that can be applied to networks with some cycles but becomes subopti-
mal. Convergence of the loopy CP is controlled by some constants whose optimal
values have not been known.

2.1.2 Contributions

In this thesis, we enhance the convergence performance of D-LMS (Cattivelli
and Sayed, 2010) and SD-LMS (Lorenzo and Sayed, 2013) by improving ways
for cooperation among nodes that compensate for performance degradation caused
by approximated divisions of the centralized LMS. Specifically, we first propose
a novel distributed LMS algorithm by applying the exact CP. Since networks for
in-network signal processing do not necessarily have a tree structure in general,
the proposed algorithm is applied to a spanning tree extracted from the original
network using some spanning tree protocols (Herzen et al., 2011; Bui et al., 2004).
Moreover, we apply the loopy CP to D-LMS and derive another novel distributed
LMS algorithm which is directly applicable to the original networks having cycles.
This thesis also extends it to an analytically tractable algorithm, which results in a
novel combination rule of D-LMS. The constants involved in the loopy CP control
the convergence property but they are known to be difficult to optimize in general.
We thus select the constants by minimizing an upper bound of steady-state mean-
squared-deviation (MSD) of D-LMS. We further extend the proposed combination
rule to an adaptive version, which can be implemented in a fully distributed man-
ner. Finally, we apply the above method to SD-LMS and optimize the constants
in terms of MSD at the steady-state under practical assumptions. We derive two
combination rules for SD-LMS according to different assumptions. Simulation re-
sults show the efficiency of the proposed methods. The proposed algorithms based

10

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

on the exact CP and the loopy CP can achieve faster convergence than the con-
ventional ATC D-LMS for large-scale network. The proposed combination rule
inspired by the loopy CP achieves better convergence performance than the con-
ventional combination rules. SD-LMS using the proposed method also achieves
faster convergence than that using conventional combination rules.

2.2 Preliminaries
2.2.1 Network Model

Consider a network G = {V,E}, where V is a set of nodes and E is a set of
edges, and where |V| = N. The network G is assumed to be fixed and connected,
i.e., there is at least one path for any pair of nodes in the network. The nodes that
are directly connected by edges can communicate and share information with each
other. Each node k ∈ V (k = 1, . . . ,N) can perform only single-hop communica-
tions with its neighbors. Nk is the set of the neighbors of node k including node k
itself, and Nk \ {k} is the set of the neighbors except for node k. Fig. 2.1 shows an
example of a network with N = 10. Weighted adjacency matrix adj(G) ∈ RN×N of
the network G is given by

[adj(G)]lk =

wlk, if l ∈ Nk \ {k},
0, if l " Nk \ {k},

for k, l ∈ V. (2.2.1)

where wlk > 0 is a weight of the edge between node l and k.

Figure 2.1: An example of a network with 10 nodes. Nk is the set of neighbors of
node k (including node k itself).

11

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

2.2.2 Diffusion LMS

D-LMS Algorithm

On a network G, consider a problem of tracking an unknown deterministic
vector of interest wo ∈ CM by using measurements on the unknown vector and
measurement vectors obtained at each node and each time that are related via lin-
ear regression model. For the centralized processing, the LMS filter (Mandic et al.,
2015) is employed to track the unknown vector in a low computational cost. In
this section, the fully distributed method, D-LMS (Lopes and Sayed, 2008; Cat-
tivelli and Sayed, 2010; Sayed et al., 2013; Sayed, 2014), is introduced, where all
nodes in the network track the unknown vector by themselves in a computation-
ally efficient manner by exploiting LMS-like updates and by cooperating with the
neighboring nodes. For simplicity, we assume that all communications between
neighboring nodes are perfect, i.e., we do not consider any communication error,
while the following discussion is applicable to networks with noisy links as consid-
ered in Zhao et al. (2012). Note that we also assume that nodes do not exchange the
raw measurements and measurement vectors but only estimates processed in some
way, which is convenient for private data for example, but the following discussion
can be extended to the more general situation where each node exchanges the raw
measurements and measurement vectors.

Consider random measurement process D(i)
k ∈ C at each node k ∈ V and time

i ∈ N given by the following linear model:

D(i)
k = U

(i)H
k wo +V(i)

k . (2.2.2)

U(i)
k ∈ CM is a random measurement vector process. V(i)

k ∈ C is a zero-mean
additive complex noise process with variance of σ2

k , which is pairwise independent
of V(j)

l for l ∈ V \ {k} and j ∈ N \ {i}, and is pairwise independent of U(j)
l for

all k, l ∈ V, i, j ∈ N. The variance σ2
k is assumed to be unknown to each node.

The measurement and measurement vector processes {D(i)
k ,U

(i)
k } at each node k

are assumed to be jointly wide-sense stationary and have zero-mean.
First, a global problem that should be considered at all nodes is shown and then

it is approximated to derive a fully distributed algorithm. All nodes in the network
aim to obtain a common estimate of wo basically by minimizing the following
global cost function (Cattivelli and Sayed, 2010):

Jglob(w) =
N∑

k=1

E
[∣∣∣∣D(i)

k −U
(i)H
k w

∣∣∣∣
2]
. (2.2.3)

The function also does not depend on time index i because of the joint wide-sense
stationarity. This includes all nodes’ information of random processes, but, in the

12

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

fully distributed situation, each node can directly obtain only a part of the informa-
tion, i.e., its own and neighbors’ information. In D-LMS, the following approxi-
mated local cost function has been considered at each node k,

J loc
k (w) = E

[∣∣∣∣D(i)
k −U

(i)H
k w

∣∣∣∣
2]
+

∑

l∈Nk\{k}
blk‖w − φ(i)

l ‖
2, (2.2.4)

where φ(i)
l ∈ CM is the current estimate of wo at node l, and where blk ≥ 0 is the

weight to be determined later. The second term on the right-hand side of (2.2.4)
means the penalty for the difference between node k’s and the neighbors’ estimates.
The local function J loc

k (w) is an approximate division of the global one Jglob(w)
and includes compensation by the second term. If each node k took the first term
on the right-hand side of (2.2.4) into account and if it knew moments related to
D(i)

k and U(i)
k , it could obtain the optimal value ŵ from the derivative of the first

term as
ŵ = R−1

uk
rdkuk ,

where rdkuk = E[D(i)
k U

(i)
k] and Ruk = E[U(i)

k U
(i)H
k], which are independent of time

index i because of the joint wide-sense stationarity of {D(i)
k ,U

(i)
k }. It coincides with

the unknown vector because the same formula can be obtained by multiplyingU(i)
k

and taking the expectation of both sides in (2.2.2). In other words, the unknown
vector could be calculated at each node k if the moments {rdkuk ,Ruk } were known.
However, in applications, each node cannot obtain the moments but realizations
of the processes. The second term of the function (2.2.4) is motivated to improve
convergence performance of the algorithm by cooperating with the neighboring
nodes.

If we employ the steepest descent method (Farhang-Boroujeny, 2013) to min-
imize the function J loc

k , node k’s estimate φ(i)
k is updated by using the gradient

∇J loc
k (w) of (2.2.4) as

φ(i)
k = φ

(i−1)
k − µk

2
∇J loc

k (φ(i−1)
k)

= φ(i−1)
k + µk(rdkuk −Rukφ

(i−1)
k) + µk

∑

l∈Nk\{k}
blk(φ(i)

l − φ
(i−1)
k), (2.2.5)

where µk > 0 is a step-size parameter, which controls a balance between the con-
vergence rate and the steady-state error. Larger µk accelerates convergence to the
steady-state but error at the steady-state becomes larger. Smaller µk promotes
smaller steady-state error but the convergence becomes slower. One of the fa-
mous adaptive filters, LMS algorithm (Farhang-Boroujeny, 2013; Mandic et al.,
2015), replaces the moments in (2.2.5) with instantaneous values. Let a realiza-
tion of {D(i)

k ,U
(i)
k } be {d(i)

k ,u
(i)
k }. The moments are replaced as rdkuk * d(i)

k u(i)
k and

13

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Ruk * u(i)
k u(i)H

k , respectively. The LMS-type update is given by

φ(i)
k = φ

(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k) + µk

∑

l∈Nk\{k}
blk(φ(i)

l − φ
(i−1)
k). (2.2.6)

The equation (2.2.6) can be divided into two steps. Each node k first updates an
immediate estimateψ(i)

k ∈ CM by using its own measurement, and then updates the
estimate φ(i)

k by using ψ(i)
k and ψ(i)

l received from its neighbors l ∈ Nk \ {k}.

ψ(i)
k = φ

(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k), (2.2.7)

φ(i)
k = ψ

(i)
k + µk

∑

l∈Nk\{k}
blk(ψ(i)

l −ψ
(i)
k), (2.2.8)

where φ(i)
l and φ(i−1)

k in (2.2.6) are replaced with the immediate estimates ψ(i)
l and

ψ(i)
k , respectively. Here, let A = {alk} ∈ RN×N be

alk =

µkblk, if l ∈ Nk \ {k},
1 − µk

∑
l∈Nk\{k} blk, if l = k,

0, if l " Nk,
(2.2.9)

and then (2.2.8) can be rewritten as

φ(i)
k =

∑

l∈Nk

alkψ
(i)
l , (2.2.10)

where alk is the nonnegative combination weight defined in (2.2.9) and the matrix
A satisfies

1TA = 1T. (2.2.11)

The update (2.2.7) of the immediate estimate ψ(i)
k is called adaptation step and that

of φ(i)
k (2.2.10) is called combination step. From (2.2.4), (2.2.9), and (2.2.10), the

second term in (2.2.4) corresponds to the combination step of D-LMS.
The combination weight alk does not have to be necessarily determined by

the form in (2.2.9) but can be chosen freely as long as the constraint (2.2.11) is
satisfied. A specific choice of the combination weights is called combination rule
and has a great impact on the convergence performance of the algorithm (Takahashi
et al., 2010). There are two types of the combination rules; a static rule that is
independent of time index i and an adaptive rule that is dependent on i. Possible
choices for the static one will be uniform rule (Blondel et al., 2005)

aave
lk =

1/|Nk|, if l ∈ Nk,

0, otherwise,
(2.2.12)

Metropolis rule (Xiao and Boyd, 2004)

amet
lk =

1
max{|Nk |,|Nl |} , if l ∈ Nk \ {k},
1 −∑

l∈Nk\{k} a
met
lk , if l = k,

0, otherwise,
(2.2.13)

14

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Algorithm 1 D-LMS (ATC version) (Cattivelli and Sayed, 2010)

1: Initialize φ(−1)
k = 0, ∀k ∈ V

2: for each time i ∈ N and each node k ∈ V do
3: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k) (adaptation step)
4: φ(i)

k =
∑

l∈Nk alkψ
(i)
l (combination step)

5: end for

relative degree rule (Cattivelli and Sayed, 2010)

ard
lk =

|Nl |∑
m∈Nk |Nm | , if l ∈ Nk,

0, otherwise,
(2.2.14)

relative-variance rule (Tu and Sayed, 2011)

arv
lk =

[γ2
l]−1

∑
m∈Nk [γ2

m]−1 , if l ∈ Nk,

0, otherwise,
(2.2.15)

where γ2
l = µ

2
l σ

2
l Tr[Rul], and so on (Sayed, 2014). An example of the adaptive

rule is adaptive relative-variance rule (Zhao et al., 2012)

arv(i)
lk =

[(γ2
lk)(i)]−1

∑
m∈Nk [(γ2

mk)(i)]−1 , if l ∈ Nk,

0, otherwise,
(2.2.16)

where (γ2
lk)(i) = (1 − νk)(γ2

lk)(i−1) + νk
∥∥∥∥ψ(i)

l − φ
(i−1)
k

∥∥∥∥
2

and where 0 < νk < 1.
Summarizing the adaptation step (2.2.7) and the combination step (2.2.10), the

updating rules of D-LMS are shown in Algorithm 1 and outlined in Fig. 2.2. Note
that this formulations are called ATC version of D-LMS (Cattivelli and Sayed,
2010) and an alternative algorithm obtained by interchanging the order of the up-
dates (2.2.7) and (2.2.10) is referred to as CTA version (Lopes and Sayed, 2008).
In this part, we focus on ATC because it generally outperforms CTA (Sayed, 2014,
Table 6), (Zhao and Sayed, 2012), though the following discussion can hold in both
versions.

AMC diffusion LMS algorithm (Kong et al., 2017) has been also proposed
and is constructed on the basis of D-LMS. The algorithm iterates the combination
steps to collect more estimates and increase available information at each node.

15

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

averaging stepLMS step

node

LMS
update using local measurements update by averaging neighbors’ estimates

(a) Adaptation step

averaging stepLMS step

node

LMS
update using local measurements update by averaging neighbors’ estimates

(b) Combination step

Figure 2.2: Two steps of D-LMS.

The update rules are described as

ψ(i)
k = φ

(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k), (2.2.17)

φ(i)[1]
k =

∑

l∈Nk

a[1]
lk ψ

(i)
l , (2.2.18)

φ(i)[2]
k =

∑

l∈Nk

a[2]
lk φ

(i)[1]
l , (2.2.19)

...

φ(i)
k = φ

(i)[J′]
k =

∑

l∈Nk

a[J′]
lk φ

(i)[J′−1]
l , (2.2.20)

where J′ denotes the number of iterations of the combination steps, and where
ψ(i)[j′]

k ∈ CM and a[j′]
lk > 0 are the immediate estimate and a combination weight

at j′th iteration (j′ = 1, . . . , J′), respectively. The equations (2.2.18)–(2.2.20) are
summarized as follows:

φ(i)
k =

∑

l1∈Nk

a[J′]
l1k

∑

l2∈Nl1

a[J′−1]
l2l1

· · ·
∑

lJ′ ∈NlJ′−1

a[1]
lJ′ lJ′−1

ψ(i)
lJ′
. (2.2.21)

The adaptation step of AMC (2.2.17) is the same as that of D-LMS (2.2.7), but the

16

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

AMC diffusion LMS communicates J′ times to collect immediate estimates of the
nodes within J′ hops.

Connection with Discrete-time Average Consensus Protocol

The combination step (2.2.10) of D-LMS is closely related to conventional av-
erage consensus protocol using a weighted average of neighbors’ values in multi-
agent networked systems (Olfati-Saber et al., 2007). In the protocol, all nodes
in the network aim to obtain the average of all nodes’ initial state values by ex-
changing the current estimates of the average with their neighbors. This problem
is called average consensus problem. An iterative update equation of the conven-
tional discrete-time protocol is given by

x̂(i′+1)
k = x̄(i′)

k + µ
′

∑

l∈Nk\{k}
wlk(x̂(i′)

l − x̂(i′)
k), (2.2.22)

where x̂(i′)
k is the estimate at node k and time i′ and can be vector or scalar, and

where µ′ is a small positive number. In order to relate the combination step equa-
tion (2.2.10) with (2.2.22), we substitute φ(i)

k to x̂(i′+1)
k and ψ(i)

k to x̂(i′)
k . Then, we

have

φ(i)
k = ψ

(i)
k + µ

′
∑

l∈Nk\{k}
wlk(ψ(i)

l −ψ
(i)
k)

= (1 −
∑

l∈Nk\{k}
alk)ψ(i)

k +
∑

l∈Nk\{k}
alkψ

(i)
l

=
∑

l∈Nk

alkψ
(i)
l ,

where we set alk = µ′wlk. Therefore, the combination step (2.2.10) can be regarded
as an example of the conventional average consensus protocol.

Convergence Analysis

In this section, the convergence of D-LMS is discussed. We define convergence
in the mean sense as in the following definition.

Definition 1. Let {φ}i∈N be a sequence of estimates of wo generated by an algo-
rithm. We say that the algorithm converges in the mean sense when the estimation
error w̃(i) = wo − φ(i) satisfies limi→∞ E[w̃(i)] = 0.

The estimation error of D-LMS at node k and time i is given by

w̃(i)
k = wo − φ(i)

k . (2.2.23)

17

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Moreover, for the mean-square error analysis, we evaluate behaviors of E[‖w̃(i)
k ‖2]

at time i or at the steady-state. We define instantaneous network MSD, MSD at
each node k at time i, network MSD at time i, the steady-state MSD at each node
k, and the steady-state network MSD as

MSDnw,in =
1
N

N∑

k=1

‖w̃(i)
k ‖

2, (2.2.24)

MSDk,i = E[‖w̃(i)
k ‖

2], (2.2.25)

MSDnw
i =

1
N

N∑

k=1

MSDk,i = E
[
MSDnw,in

]
, (2.2.26)

MSDk = lim
i→∞

MSDk,i, (2.2.27)

MSDnw =
1
N

N∑

k=1

MSDk = lim
i→∞

MSDnw
i = lim

i→∞
E

[
MSDnw,in

]
, (2.2.28)

respectively.
We introduce the following two reasonable assumptions.

Assumption 1 (Cattivelli and Sayed (2010); Sayed (2014)). The measurement vec-
tor process {U(i)

k } is spatially independent and temporally white, i.e., E
[
U(i)

k U
(j)H
l

]
=

Rukδklδi j.

Assumption 2 (Lorenzo and Sayed (2013)). The step-sizes {µk} are sufficiently
small so that higher order terms of the step-sizes can be ignored.

Assumption 1 does not match actual measurement situations. However, not only
it simplifies the analysis of adaptive filters but also in general the analyzed per-
formance under Assumption 2 reproduces the actual situations reasonably well
(Sayed, 2011).

The convergence of D-LMS in the mean sense is guaranteed under Assump-
tion 1.

Theorem 1 (Cattivelli and Sayed (2010, Theorem 1), Sayed (2014, Theorem 6.1)).
Consider the measurement model given by (2.2.2) and the combination weight sat-
isfying (2.2.11). The convergence of D-LMS in the mean sense is guaranteed under
Assumption 1 if the step-sizes satisfy

0 < µk <
2

λmax(Ruk)
(k ∈ V).

Proof sketch: The error recursion can be expressed as

E
[
w̃(i)

]
= AT(INM −MD)E

[
w̃(i−1)

]
, (2.2.29)

18

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

where w̃(i) =
[
(w̃(i)

1)T, . . . , (w̃(i)
N)T

]T
, A = A ⊗ IM, D = diag

[
Ru1 , . . . ,RuN

]
, and

M = (diag
[
µ1, . . . , µN

]
)⊗IM. The recursion converges to zero if all the eigenvalue

of IMN −MD lie in a unit disc becauseA is composed of stochastic matrices, the
magnitude of whose eigenvalues is less than or equal to 1. Thus, the theorem is
derived by constraining the maximum eigenvalue of IMN −MD to be less than
1. !

Moreover, the transient behavior of the mean-square error is represented in Cat-
tivelli and Sayed (2010, Sect. 4) and Sayed (2014, Sect. 6) under Assumptions 1
and 2. Now let

F ′ = (I(MN)2 − IMN ⊗ (DM) − (DTM) ⊗ IMN) (A ⊗A) , (2.2.30)

and then the theoretical network MSD learning curve of D-LMS is given by

MSDnw
i = MSDnw

i−1 +
1
N
r′TF ′iq′ − 1

N
wT

[
vec−1

(
F ′i

[
I(MN)2 − F ′

]
q′

)]
w,

(2.2.31)
where r′ = vec

(
ATMGMA

)
, G = diag

[
σ2

1Ru1 , . . . ,σ
2
NRuN

]
, w = 1N ⊗wo, and

q′ = vec(IMN). The performance at the steady-state is given by

MSDnw =
1
N
r′T(I(MN)2 − F ′)−1q′, (2.2.32)

MSDk = r′T(I(MN)2 − F ′)−1p′, (2.2.33)

where p′ = vec(Ck) and Ck is a block diagonal matrix with size MN × MN whose
blocks are M × M matrices that are zero matrices for all blocks except for the
identity matrix on the k-th diagonal block.
Proof sketch: Consider weighted &2-norm of the error recursion (2.2.29) with any
weight Σ. If Σ = 1

N INM, the norm coincides with MSDnw
i and if Σ = Ck, it coincides

with MSDk,i. By calculating MSDnw
i directly under Assumptions 1 and 2, F ′ is

extracted as a coefficient matrix that does not depend on time indices. The learning
curve of the network MSD can be derived by the recursion for Σ = 1

N INM. Taking
the limit i→ ∞ yields the steady-state network MSD. !

SD-LMS Algorithm

SD-LMS is an extension of D-LMS which is applicable when the unknown
vector wo is known to be sparse. All nodes in the network aim to obtain a common
estimate of wo basically by minimizing the following global cost function (Lorenzo
and Sayed, 2013):

Jglob(w) =
N∑

k=1

E
[∣∣∣∣D(i)

k −U
(i)H
k w

∣∣∣∣
2]
+ λ′ f (w), (2.2.34)

19

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

where λ′ > 0 is a regularization parameter and f (w) is a real-valued sparsity-
promoting regularization function such as &1-norm of w motivated by least abso-
lute shrinkage and selection operator (LASSO) (Tibshirani, 1996), which is further
discussed later. In the same way as in Sect. 2.2.2, the alternative problem consid-
ered to perform at each node k is minimizing the following approximated local cost
function

J loc
k (w) = E

[∣∣∣∣D(i)
k −U

(i)H
k w

∣∣∣∣
2]
+ λ f (w) +

∑

l∈Nk\{k}
b′lk‖w − φ

(i)
l ‖

2, (2.2.35)

where λ > 0 is a regularization parameter and b′lk ≥ 0 is the weight to be determined
later. The LMS-type update for the local cost function can be derived by using the
gradient and replacing the moments with the instantaneous values, and also divided
into two steps as before, as

ψ(i)
k = φ

(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k) − µkλ∂ f (φ(i−1)
k), (2.2.36)

φ(i)
k = ψ

(i)
k + µk

∑

l∈Nk\{k}
b′lk(ψ(i)

l −ψ
(i)
k), (2.2.37)

where ∂ f (·) is the sub-gradient of f (·). Letting b′lk = blk and introducing A = {alk}
in (2.2.9) lead to

φ(i)
k =

∑

l∈Nk

alkψ
(i)
l . (2.2.38)

Summarizing the adaptation step (2.2.36) and the combination step (2.2.38), the
updating rules of SD-LMS (Lorenzo and Sayed, 2013) are shown in Algorithm 2.

Remark 1. SD-LMS is an extended algorithm of D-LMS (Cattivelli and Sayed,
2010) by adding the regularization term to the adaptation step.

As the regularization function f (w), a widely used form is &1-norm which en-
ables us to avoid solving &0-regularization problems, which are known to be NP-
hard, but in this thesis, we employ the following regularization function

f (w) = ‖Wεw‖1 =
M∑

m=1

1
ε + |wm|

|wm|, (2.2.39)

where wm is the m-th element of w, ε > 0 is a parameter, and Wε = diag
[

1
ε+|w1 | , . . . ,

1
ε+|wM |

]
.

This is regarded as reweighting of &1-norm (Candes et al., 2008) and, according to
Lorenzo and Sayed (2013), achieves better performance than &1-norm, as antici-
pated by the fact that it is a better approximation of ‖w‖0 than ‖w‖1 as long as ε
is sufficiently small. As an alternative to sub-gradient of (2.2.39), the following
formula is exploited:

∂ f (w) =Wεsign(w), (2.2.40)

20

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

where Wε in (2.2.39) are regarded as weights independent of w.
The convergence of SD-LMS in the mean sense is also guaranteed in Lorenzo

and Sayed (2013) under the same assumption as D-LMS.

Theorem 2 (Lorenzo and Sayed (2013, Theorem 1)). Consider the measurement
model given by (2.2.2) and the combination weight satisfying (2.2.11). Assume the
regularization function f (·) so that ∂ f (·) is bounded. The convergence of SD-LMS
in the mean sense is guaranteed under Assumption 1 if the step-sizes satisfy

0 < µk <
2

λmax(Ruk)
(k ∈ V).

Proof sketch: The error recursion can be expressed as

E
[
w̃(i)

]
= BE

[
w̃(i−1)

]
+ λATME

[
∂ f (φ(i−1))

]

= BiE
[
w̃(0)

]
+ λ

i−1∑

n=0

BnATME
[
∂ f (φ(i−n−1))

]
, (2.2.41)

where B = AT(INM −MD) and φ(i−1) =
[
(φ(i−1)

1)T, . . . , (φ(i−1)
N)T

]T
. The first term

on the right-hand side can be handled in the same manner as in Theorem 1. For
the convergence of the second term, comparison test is employed that bounds the
term by another series where the absolute convergence can be shown. From the
triangle inequality, each element of BnλATME

[
∂ f (φ(i−n−1))

]
can be bounded by

the norms of B and ∂ f (φ(·)). The norm of B is bounded under the discussion in
Theorem 1 and that of ∂ f (φ(·)) is also bounded from the assumption of the theorem.
Considering a series composed of these bounds, it becomes absolutely convergent,
so that the series of BnλATME

[
∂ f (φ(i−n−1))

]
in the second term of (2.2.41) is

bounded by the absolutely convergent series. Therefore the second term is also
absolutely convergent. !

The theoretical network MSD learning curve is expressed under Assumptions 1
and 2 as in D-LMS but has a more complicated form.

MSDnw
i = MSDnw

i−1 +
1
N
r′TF ′iq′ − 1

N
wT

[
vec−1

(
F ′i

[
I(MN)2 − F ′

]
q′

)]
w

+ g(i)
q′/N +

i−1∑

j=0

(
g(j)

(F ′)i− jq′/N − g(j)
(F ′)i− j−1q′/N

)
, (2.2.42)

where g(j)
σ =

λ
N

(
λg(j)

1,σ − g(j)
2,σ

)
, and where

g(j)
1,σ = E

[
∂ f (φ(j−1))HMA

(
vec−1(σ)

)
ATM∂ f (φ(j−1))

]
, (2.2.43)

21

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Algorithm 2 SD-LMS (Lorenzo and Sayed, 2013)

1: Initialize φ(−1)
k = 0, ∀k ∈ V

2: for each time i ∈ N and each node k ∈ V do
3: ψ(i)

k = φ
(i−1)
k +µku

(i)
k (d(i)

k −u
(i)H
k φ(i−1)

k)−µkλ∂ f (φ(i−1)
k) (adaptation step)

4: φ(i)
k =

∑
l∈Nk alkψ

(i)
l (combination step)

5: end for

g(j)
2,σ = −2E

[
∂ f (φ(j−1))HMA

(
vec−1(σ)

)
Bw̃(j−1)

]
, (2.2.44)

for any vector σ. The steady-state network MSD and the steady-state MSD at each
node k are shown in Lorenzo and Sayed (2013, Sect. 3) and given by

MSDnw =
1
N
r′T(I(MN)2 − F ′)−1q′ +

1
N
λg1,Σ,∞

(
λ − g2,Σ,∞

g1,Σ,∞

)
, (2.2.45)

MSDk = r′T(I(MN)2 − F ′)−1p′ + λg1,Σk ,∞

(
λ − g2,Σk ,∞

g1,Σk ,∞

)
, (2.2.46)

respectively, where

g1,Σ,∞ = lim
i→∞

g(i)
1,(I(MN)2−F ′)−1q′/N , (2.2.47)

g1,Σk ,∞ = lim
i→∞

g(i)
1,(I(MN)2−F ′)−1Ck

. (2.2.48)

g2,Σ,∞ = lim
i→∞

g(i)
2,(I(MN)2−F ′)−1q′/N , (2.2.49)

g2,Σk ,∞ = lim
i→∞

g(i)
2,(I(MN)2−F ′)−1Ck

, (2.2.50)

The derivation is done in the same manner as D-LMS. Compared with (2.2.32)
and (2.2.33), the last terms in (2.2.45) and (2.2.46) result from the regularization
term and complicate the analysis of the steady-state performance. If the last terms
are negative, SD-LMS is superior to the original D-LMS. In Lorenzo and Sayed
(2013, Sect. 3-C), this is likely to be true in sparse estimation under the condition
that g2,Σk ,∞ > 0 under Assumption 2 and that the regularization parameter satisfies
0 < λ < g2,Σk ,∞

g1,Σk ,∞
.

2.2.3 Consensus Propagation

CP (Moallemi and Roy, 2006) is an iterative algorithm to achieve the average
consensus by regarding an undirected network as a bidirectional network and by
using the idea of message passing algorithm (Pearl, 1988). Assume that each node
k has an initial state value xk ∈ C. The goal of CP is the same as that of average
consensus protocol (Olfati-Saber et al., 2007), that each node obtains the average
of the initial state values x̄ = 1

N
∑N

k=1 xk. The formulations of CP can be categorized

22

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

into two schemes: one is for a tree structured network and another is for the other
structures that include some cycles. We name in the thesis the former exact CP and
the latter loopy CP.

In the network with a tree structured network, exact CP can obtain the exact
average. CP consists of two types of updates, namely, message update between
neighboring nodes and state update at each node, to calculate the average using
locally available information only. The updates of exact CP at the j-th iteration
(j ∈ N \ {0}) are given as follows:

K[j]
(u→k) = 1 +

∑

m∈Nu\{k,u}
K[j−1]

(m→u), (2.2.51)

θ[j]
(u→k) =

xu +
∑

m∈Nu\{k,u} K
[j−1]
(m→u)θ

[j−1]
(m→u)

1 +
∑

m∈Nu\{k,u} K
[j−1]
(m→u)

, (2.2.52)

where K[0]
(u→k) = 0, ∀u, k ∈ V, and where K[j]

(u→k) and θ[j]
(u→k) are the messages sent

from node u to k. After iterating (2.2.51) and (2.2.52) between all neighboring
nodes with the same number J as the diameter of the tree, the estimate of the
average x̄ at node k is given by

x[J]
k =

xk +
∑

u∈Nk\{k} K
[J]
(u→k)θ

[J]
(u→k)

1 +
∑

u∈Nk\{k} K
[J]
(u→k)

, (2.2.53)

x[J]
k is exactly identical with x̄ meaning that all nodes obtain x̄. Figs. 2.3 and 2.4

show the updates at node k and its neighbors. Since the diameter is the minimum
number of iterations required for the message propagation through the entire net-
work, exact CP is a fast and efficient algorithm to achieve average consensus.

For networks involving some cycles, loopy CP is employed where the update
of the message K[j]

(u→k) is replaced with

K[j]
(u→k) =

1 +
∑

m∈Nu\{k,u} K
[j−1]
(m→u)

1 + 1
βk

(1 +
∑

m∈Nu\{k,u} K
[j−1]
(m→u))

. (2.2.54)

Here, βk is a positive constant and it should be noted that βk can be also made de-
pendent on u as βk,u so that it depends not only on k but also on u. However, unlike
the exact CP, what the sufficient number of iterations is has not been understood
yet. By iterating (2.2.54) and (2.2.52) T times, the messages are shown to con-
verge to unique constants as T → ∞ and the resulting value of x[T]

k also becomes a
constant, which is an estimate of the average. The convergence time for networks
of any structure has not been fully understood.1 It is known that βk in (2.2.54)

1The convergence time for regular graphs has been analyzed in Moallemi and Roy (2006) but we
now consider broader classes of networks.

23

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Figure 2.3: Update of message from node u to node k in the j-th iteration. The
message is generated from the messages received in the (j− 1)-th iteration from its
neighbors except for node k, and its initial value xu.

plays an important role for the convergence, but, to the best of our knowledge, the
optimal value of βk in terms of the convergence time has not been derived.

The message updates of CP can be represented by the non-backtracking oper-
ator (Coja-Oghlan et al., 2009; Decelle et al., 2011; Krzakala et al., 2013), which
is a matrix defined in terms of connections between edges. We expect that the rep-
resentation may enable the convergence analysis of loopy CP by using a spectrum
of the operator (Bordenave et al., 2015).

2.3 Overview of Proposed Methods
In this part, we aim to reduce performance degradation of D-LMS and SD-

LMS caused by approximate divisions of the cost functions and improve the part
related to the compensation of the local cost functions in the algorithms, i.e., the
combination steps which are closely related to the conventional average consensus
protocol. Specifically, we propose three novel distributed LMS algorithms that
employ CP as the alternative to the average consensus protocol to achieve better
convergence performance.

The first algorithm is based on exact CP which converges to the exact aver-
age on the network with a tree structure. It requires extraction of a spanning tree

24

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Figure 2.4: State update at node k. Node k calculates the estimate x[J]
k using the

messages received in the J-th iteration from its all neighbors.

beforehand because the network of interest is not necessarily a tree. We then con-
struct the algorithm by substituting the combination step of D-LMS with exact CP.
Unlike the original D-LMS that iterates a pair of one adaptation step and one com-
bination step, the proposed algorithm iterates a set of one adaptation step and J
updates of exact CP (i.e., iterations of exact CP until achieving average consen-
sus). Although in small networks the proposed algorithm may take more iterations
than D-LMS, it expects faster convergence, especially in large networks, as long as
the diameter of the tree is not so large. The algorithm is named CP-LMS.

The second algorithm is based on loopy CP. It does not require extraction of a
spanning tree and can perform on networks of general structure. There can be two
approaches to apply loopy CP to the distributed LMS. One approach is to replace
the exact CP of CP-LMS with the loopy CP. However, constants involved in the ap-
proach and the required iteration number cannot be determined because appropriate
values for them in loopy CP have not been known. Another approach considers a
special case that employs only one iteration of loopy CP. This approach actually
results in the proposal of a novel combination rule of D-LMS in this thesis and en-
ables us to analyze convergence performance. The combination rule is named CP
rule. Moreover, it enables optimization of the constant involved in loopy CP and
extension to an adaptive version of the combination rule. The adaptive extension
is named adaptive CP rule.

The last algorithm is an extension to SD-LMS. We apply the latter approach
mentioned above to SD-LMS. In this case, there are two methods for the optimiza-
tion of the constant involved in loopy CP. One method introduces a rough approxi-
mation, which results in the same combination rule as the above, adaptive CP rule.

25

CHAPTER 2. INTRODUCTION OF DISTRIBUTED LMS

Another method relaxes the approximation and yields a novel combination rule of
SD-LMS. The rule is named adaptive CP with Optimization (CPO) rule.

26

3: D-LMS based on CP
3.1 D-LMS based on Exact CP
3.1.1 Proposed Algorithm

In the first approach CP-LMS, we firstly extract a spanning tree from the orig-
inal network which possibly has some cycles using some centralized or distributed
spanning tree protocol such as Herzen et al. (2011) and Bui et al. (2004). For ex-
ample, we can use the distributed algorithm in Bui et al. (2004) to find a minimum
diameter spanning tree of any graph G = {V, E} with O(|V |) time complexity and
O(|V ||E|) message complexity. We then apply exact CP in the combination step of
D-LMS on the extracted tree network. Every time each node obtains a linear mea-
surement, the estimate ψ(i)

k at node k is updated by the adaptation step (2.2.7) as in
the conventional method. The subsequent estimate φ(i)

k is obtained as the consen-
sus value achieved by exact CP on each element of the vector ψ(i)

k , i.e., the average
of all nodes’ estimates at time i. After each node performs the same number of
exaxt CP updates as the diameter J of the spanning tree, the average is substituted
to the new estimate φ(i)

k , and then the algorithm proceeds to the next step.
The proposed updating rules are summarized in Algorithm 3. K(i)[j]

p,(k→l) and

θ(i)[j]
p,(k→l) are the p-th elements (p = 1, . . . ,M) of the messages transmitted from

node k to node l at the j-th iteration of exact CP at time i. (φ(i)
k)p becomes the p-th

element of the average of all nodes’ estimates at time i.

Algorithm 3 CP-LMS
1: Extract a spanning tree
2: Initialize φ(−1)

k = 0, ∀k ∈ V
3: for each time i ∈ N, each node k ∈ V, and each element p = 1, . . . ,M do
4: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k)
5: θ(i)[0]

p,(k→l) = 0, K(i)[0]
p,(k→l) = 0

6: for j = 1 to J do
7: K(i)[j]

p,(k→l) = 1 +
∑

u∈Nk\{l,k} K
(i)[j−1]
p,(u→k)

8: θ(i)[j]
p,(k→l) =

(ψ(i)
k)p+

∑
u∈Nk\{l,k} K(i)[j−1]

p,(u→k)θ
(i)[j−1]
p,(u→k)

K(i)[j]
p,(k→l)

9: end for
10: (φ(i)

k)p =
(ψ(i)

k)p+
∑

u∈Nk\{k} K(i)[J]
p,(u→k)θ

(i)[J]
p,(u→k)

1+
∑

u∈Nk\{k} K(i)[J]
p,(u→k)

11: end for

27

CHAPTER 3. D-LMS BASED ON CP

3.1.2 Convergence Analysis

In this section, we analyze the convergence in the mean sense and the mean-
square behavior of the proposed CP-LMS. In order to make the analysis tractable,
we appropriately use the assumptions in Sect. 2.2.2.

It should be noted here that the proposed CP-LMS realizes the centralized
fusion-based solution known as block LMS (Cattivelli and Sayed, 2011; Zhao and
Sayed, 2012), where a fusion node collects measurements and measurement vec-
tors of all other nodes, in a fully distributed manner if we introduce further assump-
tion:

Assumption 3. All nodes have the same step-size parameter, i.e., µk = µ for all k,

because all nodes can collect all nodes’ estimates at each iteration after J updates
of exact CP. To be more specific, under Assumption 3, the update equations of
CP-LMS can be summarized as

ψ(i)

k = φ
(i−1)
k + µu(i)

k
(
d(i)

k − u
(i)H
k φ(i−1)

k
)
,

φ(i)
k =

1
N

∑N
l=1ψ

(i)
l .

Since φ(i)
k does not depend on k, we replace φ(i)

k with a new notation ψ(i), and then
the whole update is simplified as

ψ(i) =
1
N

N∑

l=1

[
ψ(i−1) + µu(i)

l
(
d(i)

l − u
(i)H
l ψ(i−1))]

= ψ(i−1) +
µ

N

N∑

l=1

u(i)
l
(
d(i)

l − u
(i)H
l ψ(i−1)), (3.1.1)

which corresponds to the centralized block LMS algorithm. This means that the
conventional performance analysis for the block LMS (Cattivelli and Sayed, 2011,
Sect. 4-B) is directly applicable to the proposed CP-LMS. For example, the fol-
lowing theorem, which was originally proved for the block LMS, is valid for the
CP-LMS as well.

Theorem 3. Consider the measurement model given by (2.2.2). The convergence
of CP-LMS in the mean sense is guaranteed under Assumptions 1 and 3 if the
step-size satisfies

0 < µ <
2

λmax(R)
,

where R =
∑N

k=1 Ruk .

28

CHAPTER 3. D-LMS BASED ON CP

The transient behavior of CP-LMS can be also represented by the same expres-
sion as the conventional block LMS (Cattivelli and Sayed, 2011, Sect. 4-C) under
Assumptions 1 and 3. Now let ruk = vec(Ruk) and

F = IM2 − µ′(IM ⊗R) − µ′(RT ⊗ IM) + µ′2(RT ⊗R) + µ′2
N∑

k=1

rukr
H
uk
,

where µ′ = µ/N. The theoretical network MSD learning curve of the CP-LMS
algorithm is given by

MSDnw
i = MSDnw

i−1 + µ
′2

N∑

k=1

σ2
kr

H
uk
F iq −woH

[
vec−1

(
F i [IM2 − F]

q
)]
wo,

(3.1.2)
where q = vec(IM). It is clear that MSDk = MSDnw holds in the case of CP-LMS
because all nodes obtain the same estimateψ(i) at each step i. Thus, the steady-state
MSD is given by

MSDk = MSDnw = µ′2
N∑

l=1

σ2
l r

H
ul

(IM2 − F)−1q. (3.1.3)

Note that it is one of the important merits of CP-LMS that the transient behavior
can be described by the same expression as that of the centralized solution. Unlike
the conventional D-LMS, the calculation of the theoretical transient behavior of the
centralized solution requires much smaller computational complexity than that of
the conventional D-LMS.

3.2 D-LMS based on Loopy CP
3.2.1 Proposed Algorithm – General Case

The extraction of a spanning tree in the algorithm in Sect. 3.1.1 can ensure
the perfect consensus at each iteration of LMS. However, the use of a spanning
tree may also degrade the convergence performance because some communication
links available in the original network are not utilized at all in the algorithm work-
ing on the extracted spanning tree. In this section, we consider applying loopy CP
to D-LMS without extracting any spanning tree.

Here, we describe a modified CP-LMS that can be directly applicable to net-
works with some cycles. Every time each node obtains a linear measurement, the
estimate ψ(i)

k at node k is updated by LMS (2.2.7) as in the conventional method.
Since it is difficult to know the required number of updates for the case of loopy CP,
we set a fixed number of updates. After each node performs the updates of loopy

29

CHAPTER 3. D-LMS BASED ON CP

Algorithm 4 LCP-LMS
1: Set T > 0, βk > 0,∀k ∈ V
2: Initialize φ(−1)

k = 0, βk > 0, ∀k ∈ V, T > 0
3: for each time i ∈ N, each node k ∈ V, and each element p = 1, . . . ,M do
4: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k)
5: θ(i)[0]

p,(k→l) = 0, K(i)[0]
p,(k→l) = 0

6: for t = 1 to T do
7: K(i)[t]

p,(k→l) =
1+

∑
u∈Nk\{l,k} K(i)[t−1]

p,(u→k)

1+ 1
βl

(1+
∑

u∈Nk\{l,k} K(i)[t−1]
p,(u→k))

8: θ(i)[t]p,(k→l) =
(ψ(i)

k)p+
∑

u∈Nk\{l,k} K(i)[t−1]
p,(u→k)θ

(i)[t−1]
p,(u→k)

1+
∑

u∈Nk\{l,k} K(i)[t−1]
p,(u→k)

9: end for
10: (φ(i)

k)p =
(ψ(i)

k)p+
∑

u∈Nk\{k} K(i)[T]
p,(u→k)θ

(i)[T]
p,(u→k)

1+
∑

u∈Nk\{k} K(i)[T]
p,(u→k)

11: end for

CP T times, the calculated estimate is assigned to the p-th element of the new es-
timate φ(i)

k , and then the algorithm proceeds to the next step. Note that (φ(i)
k)p will

not be exactly the same as the average of the p-th elements of ψ(i)
k in general for

any T .
The proposed updating rules are summarized in Algorithm 4. We call this algo-

rithm Loopy CP-LMS (LCP-LMS). As mentioned in Sect. 2.2.3, the sufficient num-
ber of iterations for convergence has not been understood and the optimal value of
constants βk that minimizing convergence time has not been derived, so that the
behavior of LCP-LMS cannot be also analyzed. It is necessary to adjust values of
T and βk (∀k ∈ V) depending on a structure of a network or desired performance.

3.2.2 Proposed Algorithm – Special Case

Derivation

LCP-LMS has difficulties in analyzing the performance and determining the
constants βk because the behavior of loopy CP has not been fully understood. How-
ever, we can analytically evaluate the convergence performance if we consider a
special case that the number T of iterations of loopy CP updates is limited to one.
This idea also brings about an advantage to track fluctuations of an unknown vector
more quickly than CP-LMS or the general case of LCP-LMS which repeat com-
munications while keeping information of measurements fixed. We describe the
algorithm for the special case that employs only one update of loopy CP and then
the method turns out to be D-LMS using a novel combination rule. We show how
to determine the constants βk in terms of the performance of D-LMS. This idea
that T is limited to one does not enjoy benefits of CP but we focus on the analytical

30

CHAPTER 3. D-LMS BASED ON CP

aspect and further extend the proposed combination rule to an adaptive one.
From the first updates of the messages in Algorithm 4, we have

K(i)[1]
p,(u→k) =

βk

1 + βk
, (3.2.1)

θ(i)[1]
p,(u→k) = x(i)[0]

p,u = (ψ(i)
u)p. (3.2.2)

We omit the subscript p in K(i)[1]
p,(u→k) as K(i)[1]

(u→k) because K(i)[1]
p,(u→k) does not depend

on p, and thus the element-wise update rule in Algorithm 4 can be rewritten as a
vector-wise update as

K(i)[1]
(u→k) =

βk

1 + βk
, (3.2.3)

θ(i)[1]
(u→k) = ψ

(i)
u . (3.2.4)

Moreover, deriving x(i)[1]
k , namely, φ(i)

k by using (3.2.3) and (3.2.4) gives

φ(i)
k =

1 + βk

1 + |Nk|βk
ψ(i)

k +
βk

1 + |Nk|βk

∑

u∈Nk\{k}
ψ(i)

u =
∑

l∈Nk

alkψ
(i)
l . (3.2.5)

This can be regarded as a novel combination rule summarized as

alk =

βk
1+|Nk |βk

, if l ∈ Nk \ {k},
1+βk

1+|Nk |βk
, if k = l,

0, otherwise,
(3.2.6)

which satisfies 1TA = 1T.

Optimal Combination Weights

As mentioned in Sect. 2.2.3, how to select βk has been an open issue (Moallemi
and Roy, 2006). In this section, we choose βk in terms of the steady-state network
MSD of D-LMS (2.2.28). The steady-state network MSD itself includes an infinite
sum and has a complicated form, but an upper bound of it can be expressed simply
by a product of some parameters. We thus optimize βk by minimizing the upper
bound of the steady-state network MSD.

Under Assumptions 1 and 2 in Sect. 2.2.2, the steady-state network MSD can
be rewritten by expanding

(
I(MN)2 − F ′

)−1
as

MSDnw =
1
N

∞∑

j=0

Tr
[
B jATMGMA

(
BH

) j
]
, (3.2.7)

where B = AT (I −MD). The right-hand side can be shown to be bounded
(Sayed, 2014, Sect. 8.2) such that

MSDnw ≤ cTr
[
ATMGMA

]
, (3.2.8)

31

CHAPTER 3. D-LMS BASED ON CP

where c is a positive constant. Recalling the definitions A = A ⊗ IM, M =

(diag[µ1, . . . , µN]) ⊗ IM, and G = diag[σ2
1Ru1 , . . . ,σ

2
NRuN], the trace can be cal-

culated as follows (Tu and Sayed, 2011; Zhao et al., 2012; Sayed, 2014):

Tr
[
ATMGMA

]
=

N∑

k=1

N∑

l=1

γ2
l a2

lk, (3.2.9)

where γ2
l = µ

2
l σ

2
l Tr[Rul]. For the proposed combination rule (3.2.6), the optimiza-

tion problem to determine {βk} is written as

{βopt
k }

N
k=1 = arg min

{βk}Nk=1

N∑

k=1

N∑

l=1

γ2
l a2

lk,

s.t. (3.2.6), βk > 0 (k = 1, . . . ,N), (3.2.10)

where the constraint βk > 0 comes from the definition in loopy CP. By substitut-
ing (3.2.6) into the problem, this optimization problem can be separated into N
independent subproblems as

βopt
k = arg min

βk

h(βk), (3.2.11)

where

h(βk) = γ2
k

(1 + βk

1 + |Nk|βk

)2
+

∑

l∈Nk\{k}
γ2

l

(βk

1 + |Nk|βk

)2
.

The above function h(βk) is differentiable and we have

∂h
∂βk
=

2
(1 + |Nk|βk)3

∑

l∈Nk

γ2
l − |Nk|γ2

k

 βk − (|Nk| − 1)γ2

k

 . (3.2.12)

In line with this equation, the shape of the cost function h(βk) largely depends on
Γk =

∑
l∈Nk γ

2
l − |Nk|γ2

k ! 0 in the first term of the right-hand side of (3.2.12).
When Γk > 0, the function h(βk) has a global minimum in βk > 0 and the optimal
value is obtained as

βmin
k =

(|Nk| − 1)γ2
k

Γk
. (3.2.13)

On the other hand, it becomes a monotonically decreasing function of βk > 0 when
Γk < 0. Thus, in summary, the optimum βk is given by

βopt
k =

{
βmin

k , if Γk > 0,
+∞, otherwise, (3.2.14)

and the corresponding combination weights are given by

acp
lk =

βopt
k

1+|Nk |βopt
k
, if l ∈ Nk \ {k},

1+βopt
k

1+|Nk |βopt
k
, if k = l,

0, otherwise.

(3.2.15)

32

CHAPTER 3. D-LMS BASED ON CP

We name this combination rule as CP rule. Note that if Γk < 0, i.e., βopt
k = +∞, the

weight acp
lk coincides with the uniform rule (2.2.12).

In the existing works (Tu and Sayed, 2011; Zhao et al., 2012; Sayed, 2014),
{alk} in (2.2.10) is directly derived by minimizing the upper bound (3.2.9) of MSDnw

with respect to {alk} as

{aopt
lk }

N
k=1 = arg min

{alk}Nk=1

N∑

l=1

γ2
l a2

lk, (3.2.16)

s.t.
N∑

l=1

alk = 1, alk = 0 if l " Nk.

The solution results in the relative-variance rule (2.2.15) (Tu and Sayed, 2011)
given by

arv
lk =

[γ2
l]−1

∑
m∈Nk [γ2

m]−1 , if l ∈ Nk,

0, otherwise.
(3.2.17)

Adaptive Combination Weights

The CP rule (3.2.15) and the relative-variance rule (3.2.17) require the knowl-
edge of γ2

l , which depends on locally unavailable network statistics such as the
correlation matrices Rul of the measurement vectors and the measurement noise
variance σ2

l . Thus, we employ adaptive estimations of γ2
l for D-LMS proposed

in Tu and Sayed (2011); Zhao et al. (2012); Sayed (2014). The estimate φ(i)
k should

approach the unknown vector wo as the algorithm iterates (2.2.36) and (2.2.38),
and reach the steady-state under Assumption 2. By using (2.2.36) and (2.2.2), the
estimate ψ(i)

l can be rewritten as

ψ(i)
l ≈ wo + µlU(i)

l V
(i)
l .

Taking the expectation leads to

E
[∥∥∥∥ψ(i)

l −w
o
∥∥∥∥

2]
≈ µ2

l σ
2
l Tr(Rul).

The right-hand side is γ2
l itself. To estimate it adaptively, the instantaneous values

are substituted into the expectation. Let (γ2
lk)(i) be an estimate of γ2

l at node k and
time i. Such an estimate (γ2

lk)(i) is obtained by employing the following update:

(γ2
lk)(i) = (1 − νk)(γ2

lk)(i−1) + νk
∥∥∥∥ψ(i)

l − φ
(i−1)
k

∥∥∥∥
2
, (3.2.18)

where νk (0 < νk < 1) is the forgetting factor. By using this estimate, the adaptive
version of (3.2.17) named the adaptive relative-variance rule (2.2.16) is proposed

33

CHAPTER 3. D-LMS BASED ON CP

Algorithm 5 D-LMS with adaptive relative-variance rule (Zhao et al., 2012)

1: Initialize φ(−1)
k = 0, ∀k ∈ V

2: for each time i ∈ N, each node k ∈ V, and each neighbor l ∈ Nk do
3: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k)
4: (γ2

lk)(i) = (1 − νk)(γ2
lk)(i−1) + νk‖ψ(i)

l − φ
(i−1)
k ‖2

5: a(i)
lk =

[(γ2
lk)(i)]−1

∑
m∈Nk [(γ2

mk)(i)]−1

6: φ(i)
k =

∑
l∈Nk a(i)

lkψ
(i)
l

7: end for

in Zhao et al. (2012) as

arv(i)
lk =

[(γ2
lk)(i)]−1

∑
m∈Nk [(γ2

mk)(i)]−1 , if l ∈ Nk,

0, otherwise.
(3.2.19)

In the same manner, the adaptive version of the CP rule is given by

β(i)
k =

(|Nk |−1)(γ2
kk)(i)

Γ
(i)
k

, if Γ(i)
k > 0,

+∞, otherwise,
(3.2.20)

acp(i)
lk =

β(i)
k

1+|Nk |β(i)
k
, if l ∈ Nk \ {k},

1+β(i)
k

1+|Nk |β(i)
k
, if k = l,

0, otherwise,

(3.2.21)

where Γ(i)
k =

∑
l∈Nk (γ

2
lk)(i) − |Nk|(γ2

kk)(i).
The algorithms of D-LMS using the conventional adaptive combination rule

in (3.2.19) and the proposed rule in (3.2.21) are summarized in Algorithm 5 and
Algorithm 6, respectively. The computational complexity of Algorithm 5 and Al-
gorithm 6 are almost the same because the complexity of the proposed rule (3.2.21)
becomes comparable to that of the conventional rule (3.2.19) by substituting (3.2.20)
into (3.2.21).

Convergence Analysis

In this section, we discuss the convergence of D-LMS using static (i.e., non-
adaptive) CP rule (3.2.15) in the mean sense and the mean-square behavior. Note
that the transient behavior for the adaptive combination rules (not only adaptive
CP rule but also adaptive relative-variance rule) remains an open issue. So, the
theoretical network MSD learning curve below will not be valid for the adaptive
CP rule, while theoretical results at the steady-state are applicable to the adaptive
CP rule as well. The conventional performance analysis framework for D-LMS in

34

CHAPTER 3. D-LMS BASED ON CP

Algorithm 6 D-LMS with proposed adaptive CP rule

1: Initialize φ(−1)
k = 0, ∀k ∈ V

2: for each time i ∈ N, each node k ∈ V, and each neighbor l ∈ Nk do
3: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k)
4: (γ2

lk)(i) = (1 − νk)(γ2
lk)(i−1) + νk‖ψ(i)

l − φ
(i−1)
k ‖2

5: if
∑

l∈Nk (γ
2
lk)(i) − (γ2

kk)(i)|Nk| > 0 then
6: β(i)

k =
(|Nk |−1)(γ2

kk)(i)
∑

l∈Nk (γ2
lk)(i)−(γ2

kk)(i) |Nk |

7: a(i)
lk =

β(i)
k

1+|Nk |β(i)
k

(l ∈ Nk \ {k}),
1+β(i)

k

1+|Nk |β(i)
k

(l = k)

8: else
9: a(i)

lk =
1
|Nk |

10: end if
11: φ(i)

k =
∑

l∈Nk a(i)
lkψ

(i)
l

12: end for

Sect. 2.2.2 is applicable to the proposed D-LMS using CP rule because CP rule can
be regarded as one of the combination rules.

Corollary 1. Consider the measurement model given by (2.2.2) and the combi-
nation weight given by CP rule (3.2.15). The convergence of D-LMS using the
proposed CP rule in the mean sense is guaranteed under Assumption 1 if the step-
sizes satisfy

0 < µk <
2

λmax(Ruk)
(k ∈ V).

The theoretical network MSD learning curve of D-LMS using CP rule (3.2.15)
can be represented by the same expression as (2.2.31) given by

MSDnw
i = MSDnw

i−1 +
1
N
r′TF ′iq′ − 1

N
wT

[
vec−1

(
F ′i

[
I(MN)2 − F ′

]
q′

)]
w.

(3.2.22)
The steady-state network MSD and the steady-state MSD at each node k are also
represented by the same expressions as (2.2.32) and (2.2.33) given by

MSDnw =
1
N
r′T(I(MN)2 − F ′)−1q′, (3.2.23)

MSDk = r′T(I(MN)2 − F ′)−1p′, (3.2.24)

respectively.

3.3 Computational Complexity and Communication Cost
We compare the computational complexity and the communication cost of the

proposed schemes with those of the conventional methods in this section. Table 3.1

35

CHAPTER 3. D-LMS BASED ON CP

shows the complexity and the cost of the proposed algorithms and other algorithms
in each combination step at a node. The computational complexity is defined as
the number of scalar multiplication (division) or addition (subtraction) par one-way
synchronous communications to node k from its neighboring nodes (for example
for CP-LMS, not added up J times). The communication cost is defined as the
number of scalar values that node k has to receive par one synchronous communi-
cation (for CP-LMS, not added up J times). Note that, since the adaptation step
is common for all algorithms including the proposed schemes, the complexities
only related to the combination step are evaluated. We can find that the proposed
CP-LMS and LCP-LMS require higher computational complexity and communi-
cation cost than other algorithms because they contain exchanges of two types
of messages between nodes. However, for all the algorithms compared here the
communication cost is of the same order. As the communication time typically
dominates the execution time in applications such as wireless sensor networks, one
may conclude that the required time is comparable.

Here, we also mention communication cost of centralized block LMS. In this
case, a fusion node collects measurements and measurement vectors of all other
nodes, so that it receives M + 1 scalar values from N − 1 nodes, namely, the com-
munication cost is (M + 1)(N − 1). This is higher than those of the distributed
methods discussed here in terms of cost par a processing node and the difference
will be remarkable, especially in large-scale networks.

Table 3.1: Computational complexity and communication cost for the proposed
algorithms and other conventional algorithms par one synchronous communication
at node k.

Algorithm ×,÷ +,− Communication
cost

D-LMS w/ static
rules

M|Nk | M(|Nk | − 1) M(|Nk | − 1)

AMC diffusion M|Nk | M(|Nk | − 1) M(|Nk | − 1)

CP-LMS (pro-
posed)

M
(
(|Nk | − 1)2

+|Nk |/J
) 2M(|Nk | − 1)

·(|Nk | − 2 + 1/J) 2M(|Nk | − 1)

LCP-LMS (pro-
posed)

M
(|Nk |2 − 1
+|Nk |/T

) M(|Nk | − 1)
·(3|Nk | − 5 + 2/T) 2M(|Nk | − 1)

D-LMS w/ adap-
tive relative-
variance rule

(2M + 5)|Nk | (3M+2)|Nk |−M−1 M(|Nk | − 1)

D-LMS w/ adap-
tive CP rule (pro-
posed)

(2M + 4)|Nk | + 3 (3M+3)|Nk |−M+2 M(|Nk | − 1)

36

CHAPTER 3. D-LMS BASED ON CP

3.4 Simulation Results
3.4.1 Settings

In this section, we compare the learning curves of instantaneous network MSD,
MSDnw,in, of the proposed schemes with the theoretical results and those of the
conventional schemes via computer simulations. All the simulation results were
obtained by using MATLAB, and we implemented all algorithms by ourselves
without any toolbox. We assumed that the measurement vectors {u(i)

k } were zero-
mean real Gaussian random vectors with size M = 5 and had time-correlated shift
structures (Lopes and Sayed, 2007). The specific structure was given by

u(i)
k = [uk(i), uk(i − 1), · · · , uk(i − M + 1)]T, (3.4.1)

where
uk(i) = αkuk(i − 1) +

√
σ2

uk (1 − α2
k)zk(i). (i ∈ N) (3.4.2)

αk ∈ [0, 1) and σ2
uk
∈ (0, 1] were chosen from uniform distribution. zk(i) was a

white Gaussian process with zero mean and unit variance, and independent of zl(j)
for l ∈ V\{k} and j ! i. The initial value uk(0) was also chosen from i.i.d. Gaussian
with zero mean and unit variance. In this case, the trace of the correlation matrix is
Tr[Ruk] = Mσ2

uk
. We used the common step-size parameters µk = µ, the common

forgetting factors νk = ν, and the common initial values (γ2
lk)(0) = (γ2)(0), for all

k, l. The unknown vector was set to be wo = 1√
M
1M. All simulation results were

obtained by averaging over 100 independent trials. All networks considered in the
following sections were connected and the topologies were fixed throughout the
simulations.

3.4.2 Comparison with Theoretical Learning Curve

In Figs. 3.1 and 3.2, we compare the learning curves of the CP-LMS and D-
LMS using the static CP rule (3.2.15) obtained by simulations with the theoretical
curves using (3.1.2) and (3.2.22), respectively. We used only a small network with
N = 20 in Fig. 3.3 due to the computational difficulty in obtaining the theoretical
values. The simulation of CP-LMS and its theoretical calculation were performed
on the spanning tree shown in Fig. 3.3 (b), and that of D-LMS using CP rule and its
theoretical calculation were performed on the original network shown in Fig. 3.3
(a). The step-size parameters were µ = 0.08 (µ′ = 0.004) in CP-LMS and µ = 0.01
in D-LMS with CP rule, respectively. The measurement noise power was set to
σ2

k = 10−3 (k = 1, . . . ,N). Fig. 3.1 shows that the simulation result agrees well
with the theoretical curve. On the other hand, in Fig. 3.2, the curve before the
steady-state matches the theoretical one but we found a slight disagreement be-
tween the simulation and the theoretical results at the steady-state. This may be

37

CHAPTER 3. D-LMS BASED ON CP

0 200 400 600 800 1000
of LMS Iterations

-60

-50

-40

-30

-20

-10

0
N

et
w

or
k

M
SD

 (d
B)

CP-LMS, simulation
CP-LMS, theory

Figure 3.1: Network MSD learning
curves of the proposed CP-LMS.

0 1000 2000 3000 4000
of LMS Iterations

-60

-50

-40

-30

-20

-10

0

N
et

w
or

k
M

SD
 (d

B)

Diffusion LMS w/ CP rule, simulation
Diffusion LMS w/ CP rule, theory

Figure 3.2: Network MSD learning
curves of D-LMS with proposed CP
rule.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a)
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b)(a) Original network

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a)
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b)(b) Spanning tree

Figure 3.3: Network topologies with N = 20.

due to the gap between the model of measurement vectors (3.4.1) and Assump-
tion 1 that imposes the temporal whiteness. Although this gap also affects Fig. 3.1,
the disagreement becomes more pronounced in Fig. 3.2 because, even before the
assumption is introduced, the theoretical result of D-LMS is more complicated than
that of CP-LMS so that more information is lost in the former in approximation by
introducing the assumption.

38

CHAPTER 3. D-LMS BASED ON CP

-5 0 5
-5

0

5

(a)
-5 0 5

-5

0

5

(b)(a) Original network N = 200

-5 0 5
-5

0

5

(a)
-5 0 5

-5

0

5

(b)(b) Spanning tree N = 200

-6 -4 -2 0 2 4

-4

-2

0

2

4

6

(a)
-6 -4 -2 0 2 4

-4

-2

0

2

4

6

(b)(c) Original network N = 500

-6 -4 -2 0 2 4

-4

-2

0

2

4

6

(a)
-6 -4 -2 0 2 4

-4

-2

0

2

4

6

(b)(d) Spanning tree N = 500

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

(a)
-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

(b)(e) Original network N = 1000

-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

(a)
-6 -4 -2 0 2 4

-6

-4

-2

0

2

4

6

(b)(f) Spanning tree N = 1000

Figure 3.4: Network topologies.

3.4.3 Performance of Proposed CP-LMS and D-LMS w/ Adaptive CP
rule

Here, we compare the performance of the proposed CP-LMS and D-LMS using
the proposed adaptive CP rule (3.2.21) with that of D-LMS and the AMC diffusion

39

CHAPTER 3. D-LMS BASED ON CP

LMS using the conventional Metropolis rule (2.2.13). In order to compare the
performance in networks of different sizes, we have generated Erdős-Rényi random
networks with N = 200, 500, and 1000 as shown in Figs. 3.4 (a), (c), and (e),
whose average degree was set to 6. Figs. 3.4 (b), (d), and (f) show the spanning
trees extracted from the original networks so that the diameter of the tree becomes
the smallest among all possible choices, i.e., the minimum diameter spanning trees.
The diameters of the trees with N = 200, 500, and 1000 were J = 8, 10, and 10,
respectively. Here, we adopted the minimum diameter spanning trees to CP-LMS
and the original connected networks to D-LMS algorithms. The reason of the
latter is that the original networks have more edges than the trees, which increases
available information at the combination step in D-LMS. The number of iterations
of the AMC diffusion LMS and the measurement noise power were set to J′ = 2
and σ2

k = 10−3 (k = 1, . . . ,N), respectively. The performance of centralized block
LMS in a star topology where measurements of all nodes were collected in a single
synchronous communication was also evaluated.

Fig. 3.5 shows the network MSD learning curves of the centralized block LMS
at a star topology, the proposed methods, and the conventional methods for the
networks with different sizes versus the number of communications. The number
of communications is defined as the number of the combination steps, where the
exchanges of measurements, messages, or immediate estimates are assumed to be
synchronous among all nodes. We have controlled the step-size parameters of the
algorithms so that the steady-state performance becomes comparable for all algo-
rithms. In the figures, D-LMS using the proposed adaptive CP rule outperformed
the conventional diffusion methods for all cases. As for CP-LMS, though the con-
ventional methods achieved faster convergence in Fig. 3.5 (a), CP-LMS converged
faster as the number of nodes increases and it outperformed the conventional meth-
ods and D-LMS using the proposed adaptive CP rule in Fig. 3.5 (c). These results
are consistent with the expectation that the proposed CP-LMS would be useful,
especially for large-scale networks. This is because the consensus protocol em-
ployed in the conventional LMS generally achieves slower convergence when the
network size is large, while the convergence rate of CP depends only on the diam-
eter of the graph. Note that the reason why the AMC diffusion LMS converged
slower than D-LMS was that this chapter evaluated the network MSD with respect
to the number of communications instead of the number of the adaptation steps.
The centralized block LMS achieved the fastest convergence if it worked on a star
topology but the convergence became slower in a case of relaying measurements
in the networks shown in Fig. 3.4, which was understood from the reason that the
situation can be regarded as CP-LMS.

40

CHAPTER 3. D-LMS BASED ON CP

(a) N = 200 (b) N = 500

(c) N = 1000

Figure 3.5: Network MSD learning curves of proposed methods and conventional
methods versus number of communications.

3.4.4 Performance of Proposed LCP-LMS

Next, we evaluated the performance of LCP-LMS where the iteration number
T was varied from 1 to 9. For performance comparison in a small network, we used
Erdős-Rényi random networks with N = 50 shown in Fig. 3.6 (a) and, for that in a
large network, we used the network with N = 1000 in Fig. 3.4 (e). The constant and
the measurement noise power were set to βk = 104 and σ2

k = 10−3 (k = 1, . . . ,N),
respectively.

Figs. 3.6 (b) and (c) show the network MSD learning curves for the proposed
LCP-LMS for the networks with different sizes versus the number of communica-
tions. We compare the performance of LCP-LMS in the small network with the
conventional D-LMS in Fig. 3.6 (b). In this case, convergence of LCP-LMS with
T > 1 was slower than D-LMS, so that the method could not work well in the small
network. In Fig. 3.6 (c), we compare the performance of LCP-LMS in the large
network with the proposed CP-LMS that achieved the best performance in Fig. 3.5
(c). The performance of LCP-LMS with T = 4 and T = 5 was the best among the

41

CHAPTER 3. D-LMS BASED ON CP

(a) Network N = 50

(b) Learning curves (N = 50) (c) Learning curves (N = 1000)

Figure 3.6: Network MSD learning curves of LCP-LMS versus number of com-
munications.

methods in this case. The figure suggests that LCP-LMS achieves faster conver-
gence than CP-LMS and conventional diffusion schemes in large scale networks if
we can set an appropriate value of T .

3.4.5 Proposed Rules vs Conventional Rules

Finally, we compare the performance of the proposed D-LMS using the static
CP rule (3.2.15) and the adaptive CP rule (3.2.21) with that of conventional D-LMS
using the static Metropolis rule (2.2.13), the static relative-variance rule (3.2.17),
and the adaptive relative-variance rule (3.2.19) in a small network. We used the
network with N = 20 shown in Fig. 3.3 (a). The measurement noise power σ2

k
was varied among nodes in order to confirm the estimation ability of the proposed
adaptive CP rule. We set σ2

k in proportion to the square of the distance of node k
from the origin (0, 0) of Fig. 3.3 (a). This setting can be alternatively understood
as assuming the situation that the observation target is located at the origin, and the
power of the target signal decays with the square of the distance while keeping the
measurement noise power to be uniform for all observation nodes. The initial value
and the forgetting factor of the adaptation were (γ2)(0) = 4.5×10−2 and ν = 0.07 in

42

CHAPTER 3. D-LMS BASED ON CP

0 500 1000 1500 2000
of Iterations

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
N

et
w

or
k

M
SD

 (d
B)

Diffusion LMS w/ Metropolis rule
Diffusion LMS w/ relative-variance rule
Diffusion LMS w/ CP rule

Figure 3.7: Network MSD learn-
ing curves of proposed CP rule and
conventional static combination rules
with N = 20.

0 500 1000 1500 2000
of Iterations

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

N
et

w
or

k
M

SD
 (d

B)

Diffusion LMS w/ Metropolis rule
Diffusion LMS w/ adaptive relative-variance rule
Diffusion LMS w/ adaptive CP rule

Figure 3.8: Network MSD learning
curves of proposed adaptive CP rule
and conventional combination rules
with N = 20.

both Algorithms 5 and 6. We have controlled the step-size parameters of the algo-
rithms so that the steady-state performance becomes comparable for all methods.
Fig. 3.7 shows the learning curves of D-LMS using the static CP rule, Metropolis
rule, and the static relative-variance rule in terms of the network MSD assuming
that true γ2

l s were known to each node. In the figure, we see that D-LMS using the
CP rule converged faster than that using other rules. Fig. 3.8 shows the learning
curves of D-LMS using the proposed adaptive CP rule, Metropolis rule, and the
adaptive relative-variance rule in order to verify the influence of weight adaptation.
The adaptive CP rule achieved comparable performance as in Fig. 3.7, while the
performance of the adaptive relative-variance rule was significantly degraded in the
settings here.

3.5 Conclusion
In this chapter, we have proposed novel D-LMS algorithms for in-network sig-

nal processing on the basis of the idea of the message passing algorithm of CP. By
using exact CP on the spanning tree of the original network, CP-LMS can achieve
the same solution as the centralized LMS in a fully distributed manner. LCP-LMS
and its special case of CP rule are based on loopy CP, and we have optimized
the constants involved in CP rule in terms of the steady-state MSD of D-LMS.
Moreover, we have shown that their theoretical learning curves and steady-state
MSDs can be obtained using existing frameworks. Also, we have extended the
CP rule to an adaptive implementation named adaptive CP rule. Simulation results
have shown that the proposed CP-LMS and LCP-LMS with an appropriate itera-
tion number achieved better performance than the conventional D-LMS, especially

43

CHAPTER 3. D-LMS BASED ON CP

in large-scale networks, and that D-LMS with the static and the adaptive CP rules
achieved better performance than that with the conventional combination rules.

Future work includes extension of the proposed CP rule to more flexible weight
control methods using asymmetric updates in loopy CP, i.e., using different con-
stant at each node depending on the direction of the messages.

44

4: SD-LMS based on CP
4.1 SD-LMS based on Loopy CP
4.1.1 Derivation

We discuss the case that the unknown vector wo is known to be sparse. SD-
LMS (Lorenzo and Sayed, 2013) is an extension of D-LMS for estimating suf-
ficiently sparse unknown vectors. To improve the performance of SD-LMS, we
apply loopy CP, instead of the conventional average consensus protocol, to SD-
LMS. Especially in this chapter, to focus on analytical tractability of the algorithm,
we deal with a special case of loopy CP, where only the first iteration (T = 1)
is employed, in the same way as Sect. 3.2.2. This section shows that combining
the special case of loopy CP with SD-LMS results in an SD-LMS that employs
the same combination weight as that derived in Sect. 3.2.2, which includes the
constant βk. Optimization of βk is discussed in the next section.

We apply the special case of loopy CP to the combination step of SD-LMS (2.2.38)
and describe the update by using the messages of loopy CP, K[1]

(u→k) and θ[1]
(u→k). The

former is directly calculated as

K[1]
(u→k) =

βk

1 + βk
. (4.1.1)

Substituting the current estimateψ(i)
k in (2.2.36) for the initial value xk of loopy CP

in (2.2.52) (k = 1, 2, . . . ,N), we have

θ[1]
(u→k) = xu = ψ

(i)
u . (4.1.2)

Moreover, the estimate φ(i)
k is obtained by the derivation of x[1]

k in (2.2.53) instead
of (2.2.38) and can be calculated as

φ(i)
k =

xk +
∑

u∈Nk\{k} K
[1]
(u→k)θ

[1]
(u→k)

1 +
∑

u∈Nk\{k} K
[1]
(u→k)

=
1 + βk

1 + |Nk|βk
ψ(i)

k +
βk

1 + |Nk|βk

∑

u∈Nk\{k}
ψ(i)

u

=
∑

l∈Nk

acp
lkψ

(i)
l ,

where

alk =

βk
1+|Nk |βk

, if l ∈ Nk \ {k},
1+βk

1+|Nk |βk
, if l = k,

0, otherwise.
(4.1.3)

45

CHAPTER 4. SD-LMS BASED ON CP

This coincides with (3.2.6) for D-LMS. Therefore, the proposed method results in
SD-LMS algorithm that uses the parameter βk for the combination weights as in
Sect. 3.2.2.

4.1.2 Optimization and Adaptive Combination Weights

Optimization Problem

In the following sections, we optimize βk in (4.1.3) in terms of an upper bound
of the steady-state network MSD of SD-LMS in the same way as Sect. 3.2.2. First,
we introduce a specific formula of the steady-state network MSD of SD-LMS,
MSDnw

spa, that has been concretely calculated in Lorenzo and Sayed (2013) as

MSDnw
spa = MSDnw

dif +
1
N
λgλ,ε(A), (4.1.4)

where MSDnw
dif is the steady-state network MSD of D-LMS (2.2.32), where gλ,ε(A)

is a function depending on the parameters λ and ε, and where A is the matrix
composed of the combination weights {alk}. The specific formula of gλ,ε(A) has
been shown in Lorenzo and Sayed (2013) as

gλ,ε(A) = λg1,Σ,∞ − g2,Σ,∞, (4.1.5)

where
g1,Σ,∞ = lim

i→∞
E

[
∂ f (φ(i−1))HMAΣATM∂ f (φ(i−1))

]
, (4.1.6)

g2,Σ,∞ = −2 lim
i→∞

E
[
∂ f (φ(i−1))HMAΣAT(INM −MD)w̃(i−1)

]
, (4.1.7)

and where Σ = vec−1
(
(I(MN)2 − F ′)−1q′/N

)
. Equations (4.1.6) and (4.1.7) are

the same as (2.2.47) and (2.2.49), respectively, but they are reproduced here for
convenience. Remark 1 in Sect. 2.2.2 demonstrates that the second term of (4.1.4)
is due to the regularization term of SD-LMS.

Adaptive CP rule

The function gλ,ε(A) has the complicated form so that it is difficult to use
MSDnw

spa directly for the optimization of βk. We thus derive an upper bound of
MSDnw

spa by introducing some approximations.
In this section, we consider approximating gλ,ε(A) * gλ,ε(IN), that is, the sec-

ond term in (4.1.4) is assumed not to depend on A, i.e., βk. This is motivated by
the fact that only the adaptation step includes the regularization term and that any
information is not exchanged between nodes in the step. From the approximation,
we only need to find an upper bound of MSDnw

dif because the second term of (4.1.4)

46

CHAPTER 4. SD-LMS BASED ON CP

is independent of βk. The optimization problem is identical with (3.2.10), so that
we can derive the optimal parameter βopt

k in the same manner, namely,

βopt
k =

(|Nk |−1)γ2
k

Γk
, if Γk > 0,

+∞, otherwise.
(4.1.8)

The resulting combination weight using (4.1.8) has been named CP rule. As dis-
cussed in Sect. 3.2.2, in the case of βopt

k = ∞, the resulting combination weight (4.1.3)
coincides with the uniform rule (2.2.12).

Furthermore, we can also derive an adaptive solution to estimate γ2
l = µ

2
l σ

2
l Tr(Rul)

and then update βk in a similar way to that of D-LMS (shown in Sect. 3.2.2) to avoid
the direct calculation of γ2

l that depends on locally unavailable network statistics
such as noise variance σ2

l and the correlation matrix Rul . The estimate φ(i)
k ap-

proaches the unknown vector wo as the algorithm iterates (2.2.36) and (2.2.38),
and reaches steady-state under the assumption that the step-sizes are sufficiently
small. By using (2.2.36) and (2.2.2), we can rewrite

ψ(i)
l ≈ wo + µlU(i)

l V
(i)
l − µlλ∂ f (wo).

Taking the expectation leads to

E
[∥∥∥∥ψ(i)

l −w
o + µlλ∂ f (wo)

∥∥∥∥
2]
≈ µ2

l σ
2
l Tr(Rul).

We substitute the instantaneous values into the expectation and use it to estimate
γ2

l . Let (γ2
lk)(i) be the estimate of γ2

l at node k and time i. We adaptively obtain the
estimate by employing the following update:

(γ2
lk)(i) = (1 − νk)(γ2

lk)(i−1) + νk
∥∥∥∥ψ(i)

l − φ
(i−1)
k + µlλ∂ f (φ(i−1)

k)
∥∥∥∥

2
, (4.1.9)

where νk (0 < νk < 1) is the forgetting factor.
The subsequent estimate β(i)

k of βopt
k and the combination weight acp,(i)

lk at time i
are described as

β(i)
k =

(|Nk |−1)(γ2
kk)(i)

Γ
(i)
k

, if Γ(i)
k > 0,

+∞, otherwise,
(4.1.10)

acp(i)
lk =

β(i)
k

1+|Nk |β(i)
k
, if l ∈ Nk \ {k},

1+β(i)
k

1+|Nk |β(i)
k
, if k = l,

0, otherwise.

(4.1.11)

This combination weight has been named adaptive CP rule. SD-LMS using the
adaptive CP rule is summarized in Algorithm 7.

47

CHAPTER 4. SD-LMS BASED ON CP

Algorithm 7 SD-LMS with adaptive CP rule

1: Initialize φ(−1)
k = 0, (γ2

lk)(−1), ∀k ∈ V, l ∈ Nk
2: for each time i ∈ N, each node k ∈ V, and each neighbor l ∈ Nk do
3: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k) − µkλ∂ f (φ(i−1)
k)

4: (γ2
lk)(i) = (1 − νk)(γ2

lk)(i−1) + νk
∥∥∥∥ψ(i)

l − φ
(i−1)
k + µlλ∂ f (φ(i−1)

k)
∥∥∥∥

2

5: if
∑

l∈Nk (γ
2
lk)(i) − (γ2

kk)(i)|Nk| > 0 then
6: β(i)

k =
(|Nk |−1)(γ2

kk)(i)
∑

l∈Nk (γ2
lk)(i)−(γ2

kk)(i) |Nk |
7: else
8: β(i)

k = +∞ (large positive constant)
9: end if

10: a(i)
lk =

β(i)
k

1+β(i)
k |Nk |

(l ∈ Nk \ {k}),
1+β(i)

k

1+β(i)
k |Nk |

(l = k)

11: φ(i)
k =

∑
l∈Nk a(i)

lkψ
(i)
l

12: end for

Adaptive CPO rule

The optimization in Sect. 4.1.2 has some room for improvement because it
has been derived by ignoring the influence of the sparsity-promoting regularization
term in MSDnw

spa (4.1.4) by approximating gλ,ε(A) * gλ,ε(IN). In this section, we
introduce another approximation to capture the contribution of gλ,ε(A) on MSDnw

spa
and optimize the constant βk.

For the first term of (4.1.4), we utilize the upper bound as in the discussion
above. The following upper bound has been already derived in Cattivelli and Sayed
(2010) as

MSDnw
dif ≤ c

N∑

k=1

∑

l∈Nk

γ2
l a2

lk. (4.1.12)

By substituting (4.1.3), the equation (4.1.12) can be rewritten as

MSDnw
dif ≤

N∑

k=1

cγ

2
k

(
1 + βk

1 + |Nk|βk

)2

+
∑

l∈Nk\{k}
cγ2

l

(
βk

1 + |Nk|βk

)2

 . (4.1.13)

The second term of (4.1.4) is difficult to directly express as a function of βk

because it takes the limit i→ ∞ and the expectation. Thus, we consider simplifying
(4.1.6) and (4.1.7) by introducing three approximations. First, since the step-sizes
are sufficiently small under Assumption 2, we ignore the term in (4.1.7) which is
quadratic inM and approximate it as

g2,Σ,∞ * −2 lim
i→∞

E
[
∂ f (φ(i−1))TMAΣATw̃(i−1)

]
. (4.1.14)

48

CHAPTER 4. SD-LMS BASED ON CP

Second, we remove the limit and the expectation in (4.1.6) and (4.1.7), and use the
instantaneous values. Third, we approximate Σ = I . This approximation of Σ
is reasonable because the instantaneous approximation of gλ,ε(A) actually corre-
sponds to the fourth term of (2.2.42) when the coefficient is ignored and because
vec−1(q′) = vec−1(vec(I)) = I . Specifically, the approximated values of g1,Σ,∞
and g2,Σ,∞ are given by

g1,i * ∂ f (φ(i−1))HMAATM∂ f (φ(i−1)), (4.1.15)

g2,i * −2∂ f (φ(i−1))HMAATw̃(i−1), (4.1.16)

respectively. By using these terms, we have the approximated gλ,ε(A) as

gλ,ε(A) ≈ λg1,i − g2,i

=

N∑

k=1

∑

j∈Nk

∑

l∈Nk

[
λµ jµla jkalk∂ f (φ(i−1)

j)H∂ f (φ(i−1)
l)

+ 2µ ja jkalk∂ f (φ(i−1)
j)H

(
wo − φ(i−1)

l

)]
. (4.1.17)

It seems hard to optimize N2 combination weights {alk} directly from (4.1.17) but
it can be captured by the optimization of N coefficients {βk} in our framework
assuming (4.1.3). Substituting (4.1.3) into (4.1.17) leads to

gλ,ε(A) ≈
N∑

k=1

-̃

(i)
k

(
1 + βk

1 + |Nk|βk

) (
βk

1 + |Nk|βk

)
+ ε̃(i)

k

(
1 + βk

1 + |Nk|βk

)2

+ ς̃(i)
k

(
βk

1 + |Nk|βk

)2 ,

(4.1.18)
where

-̃(i)
k =

∑

l∈Nk\{k}
Re

[
µk∂ f (φ(i−1)

k)H
{
λµl∂ f (φ(i−1)

l) + 2
(
wo − φ(i−1)

l

)}]

+
∑

l∈Nk\{k}
Re

[
µl∂ f (φ(i−1)

l)H
{
λµk∂ f (φ(i−1)

k) + 2
(
wo − φ(i−1)

k

)}]
,

ε̃(i)
k = Re

[
µk∂ f (φ(i−1)

k)H
{
λµk∂ f (φ(i−1)

k) + 2
(
wo − φ(i−1)

k

)}]
,

ς̃(i)
k =

∑

l∈Nk\{k}

∑

j∈Nk\{k}
Re

[
µ j∂ f (φ(i−1)

j)H
{
λµl∂ f (φ(i−1)

l) + 2
(
wo − φ(i−1)

l

)}]
.

In the above equations, we extract real parts of terms to guarantee that MSDnw
spa and

resulting weights are real numbers.
By incorporating (4.1.13) and (4.1.18), we can obtain an approximated upper

49

CHAPTER 4. SD-LMS BASED ON CP

bound of MSDnw
spa as

MSDnw
spa " c

N∑

k=1

∑

l∈Nk

γ2
l a2

lk +
λ

N
gλ,ε(A) (4.1.19)

=

N∑

k=1

[λ
N
-̃(i)

k

(
1 + βk

1 + |Nk|βk

) (
βk

1 + |Nk|βk

)

+
(
cγ2

k +
λ

N
ε̃(i)

k

) (1 + βk

1 + |Nk|βk

)2

+

∑

l∈Nk\{k}
cγ2

l +
λ

N
ς̃(i)

k

(
βk

1 + |Nk|βk

)2]

=

N∑

k=1

-

(i)
k

(
1 + βk

1 + |Nk|βk

) (
βk

1 + |Nk|βk

)
+ ε(i)

k

(
1 + βk

1 + |Nk|βk

)2

+ ς(i)
k

(
βk

1 + |Nk|βk

)2

#
N∑

k=1

Fk(βk), (4.1.20)

where -(i)
k =

λ
N -̃

(i)
k , ε(i)

k = cγ2
k +

λ
N ε̃

(i)
k , and ς(i)

k =
∑

l∈Nk\{k} cγ
2
l +

λ
N ς̃

(i)
k . Hence, we

optimize {βk}Nk=1 by minimizing the approximated upper bound (4.1.20), i.e.,

min
{βk}Nk=1

N∑

k=1

Fk(βk). (4.1.21)

We can divide the problem into the following N problems,

βopt
k = arg min

βk
Fk(βk) k = 1, . . . ,N. (4.1.22)

The derivative of Fk with respect to βk can be calculated as

∂Fk

∂βk
=

[{
2ς(i)

k − 2(|Nk| − 1)ε(i)
k − (|Nk| − 2)-(i)

k

}
βk

−
{
2(|Nk| − 1)ε(i)

k − -
(i)
k

}]
· 1

(1 + |Nk|βk)3 . (4.1.23)

Since the denominator is positive, ∂Fk
∂βk
= 0 when

βk =
2(|Nk| − 1)ε(i)

k − -
(i)
k

2ς(i)
k − 2(|Nk| − 1)ε(i)

k − (|Nk| − 2)-(i)
k

. (4.1.24)

We put Γ′k = 2ς(i)
k − 2(|Nk| − 1)ε(i)

k − (|Nk| − 2)-(i)
k and Λ′k = 2(|Nk| − 1)ε(i)

k − -
(i)
k .

Considering βk > 0, we can derive the following optimal parameter:

βopt
k =

Λ′k
Γ′k
, if Γ′k > 0 and Λ′k > 0,

βopt
k → +0, if Γ′k > 0 and Λ′k ≤ 0,
βopt

k → +∞, if Γ′k ≤ 0.
(4.1.25)

50

CHAPTER 4. SD-LMS BASED ON CP

Note that sufficiently small βk implies that the node does not use the neighbors’ es-
timates at the combination step but only uses its own information. When βk is very
large, the resulting combination weight (4.1.3) coincides with the conventional uni-
form rule (2.2.12).

The optimal parameter (4.1.25) includes unavailable information such as the
unknown vector wo, noise variance {σ2

k}, correlation matrices {Ruk }, and the num-
ber N of all nodes in the network. Therefore, we consider approximating the un-
known vector and plugging in adaptive estimates to the other factors, and derive an
adaptive algorithm. First, as an adaptive update of the estimate of γ2

l , we adopt the
same equation as (4.1.9). Second, we approximate the unknown vector wo and the
number N of all nodes with the instantaneous estimate ψ(i)

k and the number |Nk| of
neighbors, respectively. The coefficients ε(i)

k , -(i)
k , and ς(i)

k are redefined as

ε̂(i)
k = c(γ2

kk)(i) +
λ

|Nk|
µkRe

[
∂ f (φ(i−1)

k)H
{
λµk∂ f (φ(i−1)

k) + 2
(
ψ(i)

k − φ
(i−1)
k

)}]
,

(4.1.26)

-̂(i)
k =

λ

|Nk|
Re

[
ζ(i)H

k

{
λµk∂ f (φ(i−1)

k) + 2
(
ψ(i)

k − φ
(i−1)
k

)}
+ µk∂ f (φ(i−1)

k)Hι(i)k

]
,

(4.1.27)

ς̂(i)
k = c

∑

l∈Nk\{k}
(γ2

lk)(i) +
λ

|Nk|
Re

[
ζ(i)T

k ι(i)k

]
, (4.1.28)

where ζ(i)
k =

∑
j∈Nk\{k} µ j∂ f (φ(i−1)

j) and ι(i)k = λζ
(i)
k +2(|Nk|−1)ψ(i)

k −2
∑

j∈Nk\{k}φ
(i−1)
j .

We further redefine Γ′k and Λ′k by using (4.1.26)–(4.1.28) as

Γ
′(i)
k = 2ς̂(i)

k − 2(|Nk| − 1)ε̂(i)
k − (|Nk| − 2)-̂(i)

k , (4.1.29)

Λ
′(i)
k = 2(|Nk| − 1)ε̂(i)

k − -̂
(i)
k , (4.1.30)

respectively.
Summarizing these plug-ins, we can derive an adaptive form of the parameter

βk as follows:

βo,(i)
k =

Λ
′(i)
k

Γ
′(i)
k

, if Γ
′(i)
k > 0 and Λ

′(i)
k > 0,

βo,(i)
k → +0, if Γ

′(i)
k > 0 and Λ

′(i)
k ≤ 0,

βo,(i)
k → +∞, if Γ

′(i)
k ≤ 0.

(4.1.31)

The corresponding combination weight acpo(i)
lk is described as

acpo(i)
lk =

βo,(i)
k

1+|Nk |βo,(i)
k
, if l ∈ Nk \ {k},

1+βo,(i)
k

1+|Nk |βo,(i)
k
, if l = k,

0, otherwise.

(4.1.32)

51

CHAPTER 4. SD-LMS BASED ON CP

Algorithm 8 SD-LMS with adaptive CPO rule

1: Initialize φ(−1)
k = 0, {(γ2

lk)(−1)}, ∀k ∈ V, l ∈ Nk
2: for each time i ∈ N, each node k ∈ V, and each neighbor l ∈ Nk do
3: ψ(i)

k = φ
(i−1)
k + µku

(i)
k (d(i)

k − u
(i)H
k φ(i−1)

k) − µkλ∂ f (φ(i−1)
k)

4: (γ2
lk)(i) = (1 − νk)(γ2

lk)(i−1) + νk
∥∥∥∥ψ(i)

l − φ
(i−1)
k + µlλ∂ f (φ(i−1)

k)
∥∥∥∥

2

5: Calculate ε̂(i)
k , -̂

(i)
k , ς̂

(i)
k as in (4.1.26)–(4.1.28)

6: Calculate Γ
′(i)
k and Λ

′(i)
k as in (4.1.29) and (4.1.30)

7: if Γ
′(i)
k > 0 then

8: if Λ
′(i)
k > 0 then

9: β(i)
k =

Λ
(i)
l

Γ
′(i)
k

10: else
11: β(i)

k = +0 (small positive constant)
12: end if
13: else
14: β(i)

k = +∞ (large positive constant)
15: end if
16: a(i)

lk =
β(i)

k

1+|Nk |β(i)
k

(l ∈ Nk \ {k}),
1+β(i)

k

1+|Nk |β(i)
k

(l = k)

17: φ(i)
k =

∑
l∈Nk a(i)

lkψ
(i)
l

18: end for

SD-LMS using the proposed adaptive optimization is summarized in Algorithm 8.
We name this weight adaptive CPO rule.

4.1.3 Convergence Analysis

In this section, we discuss the convergence of SD-LMS using static CP rule (3.2.15),
adaptive CP rule (4.1.11), and adaptive CPO rule (4.1.32) in the mean sense and
the mean-square behaviors. The conventional performance analysis framework for
SD-LMS in Sect. 2.2.2 is applicable to the proposed SD-LMS with CP and CPO
rules because the rules can be regarded as ones of the combination rules.

Corollary 2. Consider the measurement model given by (2.2.2) and the combi-
nation weight given by CP rule (3.2.15), adaptive CP rule (4.1.11), and adaptive
CPO rule (4.1.32). The convergence of SD-LMS using the proposed rules in the
mean sense is guaranteed under Assumption 1 if the step-sizes satisfy

0 < µk <
2

λmax(Ruk)
(k ∈ V).

If we use the static CP rule (3.2.15), the mean-square behaviors can be ex-
pressed as in Sect 2.2.2. The theoretical network MSD learning curve of SD-LMS

52

CHAPTER 4. SD-LMS BASED ON CP

Table 4.1: Computational complexity and communication cost for the proposed
and conventional rules par one synchronous communication at node k.

Algorithm ×,÷ +,− Communication
cost

SD-LMS w/ static
rules

M|Nk | M(|Nk | − 1) M(|Nk | − 1)

SD-LMS w/
adaptive relative-
variance rule

(3M + 6)|Nk | (4M+2)|Nk |−M−1 M(|Nk | − 1)

SD-LMS w/ adap-
tive CP rule (pro-
posed)

(3M + 5)|Nk | + 3 (4M+3)|Nk |−M+2 M(|Nk | − 1)

SD-LMS w/ adap-
tive CPO rule (pro-
posed)

(4M + 5)|Nk | +
10M + 20

(6M+3)|Nk |+6M+
4

2M(|Nk | − 1)

for the static CP rule can be represented by the same expression as (2.2.42) given
by

MSDnw
i = MSDnw

i−1 +
1
N
r′TF ′iq′ − 1

N
wT

[
vec−1

(
F ′i

[
I(MN)2 − F ′

]
q′

)]
w

+ g(i)
q′ +

i−1∑

j=0

(
g(j)

(F ′)i− jq′
− g(j)

(F ′)i− j−1q′

)
. (4.1.33)

The steady-state network MSD and the steady-state MSD at each node k under
Assumptions 1 and 2 are also the same as (2.2.45) and (2.2.46) given by

MSDnw =
1
N
r′T(I(MN)2 − F ′)−1q′ +

1
N
λβΣ,∞

(
λ − αΣ,∞
βΣ,∞

)
, (4.1.34)

MSDk = r′T(I(MN)2 − F ′)−1p′ + λβΣk ,∞

(
λ − αΣk ,∞
βΣk ,∞

)
, (4.1.35)

respectively.

4.1.4 Computational Complexity

We discuss the computational complexity and the communication cost of SD-
LMS using the proposed and conventional rules. Table 4.1 shows the complexity
and the cost in each combination step at a node, whose definitions are the same as in
Sect. 3.3. Note that, since the common adaptation step and calculation of ∂ f (·) are
required for all algorithms, the complexities only related to the combination step
are evaluated. Adaptive CPO rule (Algorithm 8) requires higher computational
complexity than the conventional rules and adaptive CP rule (Algorithm 7) be-
cause it computes additional coefficients given by (4.1.26)–(4.1.28). Moreover, the

53

CHAPTER 4. SD-LMS BASED ON CP

(a) N = 50 (b) N = 100

(c) N = 500 (d) N = 1000

Figure 4.1: Network topologies.

communication cost of the adaptive CPO rule becomes twice because it requires
exchanging φ̄(i−1)

l with neighboring nodes to calculate the additional coefficients
but the order is the same as those of the other rules. As mentioned in Sect. 3.3, the
communication time typically dominates the execution time in applications such as
wireless sensor networks, one may conclude that the required time is comparable.

4.2 Simulation Results
4.2.1 Evaluation of Adaptive CP Rule

In this section, we verify the performance of SD-LMS with the proposed adap-
tive CP rule via computer simulations. All the simulation results were obtained
by using MATLAB. In order to compare the performance in networks of different
sizes, we have generated Erdős-Rényi random networks with N = 50, 100, 500,
and 1000, as shown in Figs. 4.1 (a)–(d). The average degree of each network was
fixed to 6. Note that for the adaptive rules, the results in this subsection employed
(3.2.18) for the estimation of γ2

l . We have used node-independent step-size param-
eters µk = µ, forgetting factors νk = ν, and initial values (γ2

lk)(i) = (γ2)(i), for all k,
l. The initial values (γ2)(−1) were set to be 0.1 and the forgetting factor was fixed
to be ν = 0.05. The size of the measurement vector was set to be M = 20. We

54

CHAPTER 4. SD-LMS BASED ON CP

(a) N = 50 (b) N = 100

(c) N = 500 (d) N = 1000

Figure 4.2: Network MSD learning curves for 1-sparse.

have investigated instantaneous network MSD MSDnw,in of the proposed method
and conventional methods.

All the simulation results were obtained by averaging over 20 independent tri-
als. The measurement noise power σ2

k was independently generated by uniform
distribution over [0.01, 0.02]. The measurement vectors {u(i)

k } had the same struc-
tures as (3.4.1) except that αk is set to 0 for all k. The indices of the non-zero
elements of unknown vector were randomly selected in each trial.

We compare the convergence performance of SD-LMS with that of D-LMS,
both of which employ the proposed adaptive CP rule (4.1.11). Also, we have eval-
uated the performance of SD-LMS using conventional weights, static Metropolis
rule amet

lk (2.2.13) and adaptive RV rule arv(i)
lk (3.2.19). The unknown vector was

assumed to be 1-sparse whose non-zero element is equal to 1. We have fixed the
regularization parameter as λ = 0.0005 for Metropolis rule and λ = 0.00025 for
adaptive relative-variance rule and adaptive CP rule, with which the steady-state
performance of each rule has become the best among our trials. We have controlled
the step-size parameters of the algorithms so that the steady-state performance be-

55

CHAPTER 4. SD-LMS BASED ON CP

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0
N

e
tw

o
rk

 M
S

D
 (

d
B

)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(a) N = 50

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0

N
e

tw
o

rk
 M

S
D

 (
d

B
)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(b) N = 100

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0

N
e

tw
o

rk
 M

S
D

 (
d

B
)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(c) N = 500

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0

N
e

tw
o

rk
 M

S
D

 (
d

B
)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(d) N = 1000

Figure 4.3: Network MSD learning curves for 2-sparse.

came comparable for all algorithms. The parameter ε in the regularization func-
tion (2.2.39) was set to be ε = 0.01. Figs. 4.2 (a)–(d) show the learning curves
for the networks of different sizes. The figures demonstrated that SD-LMS with
the proposed adaptive CP rule achieved faster convergence than D-LMS and than
SD-LMS with the conventional weights regardless of the network size. It should
be noted here that we do not see so much difference in the convergence rate among
different network sizes. This may be because a larger network has more mea-
surements, which will be beneficial for faster convergence, while a larger network
requires more steps for average consensus, so that one can understand both types
of the influences have been canceled. We further evaluated the performance when
the unknown vector was 2-sparse and 3-sparse. Fig. 4.3 shows the learning curves
for 2-sparse and Fig. 4.4 is those for 3-sparse. The figures indicate that the validity
of the proposed method is not specific to 1-sparse.

Finally, we verify the impact of the choice of ε on the convergence performance
of SD-LMS using the proposed adaptive CP rule (4.1.11). Figs. 4.5 (a)–(d) show

56

CHAPTER 4. SD-LMS BASED ON CP

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0
N

e
tw

o
rk

 M
S

D
 (

d
B

)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(a) N = 50

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0

N
e

tw
o

rk
 M

S
D

 (
d

B
)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(b) N = 100

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0

N
e

tw
o

rk
 M

S
D

 (
d

B
)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(c) N = 500

0 100 200 300
Number of Iterations

-40

-30

-20

-10

0

N
e

tw
o

rk
 M

S
D

 (
d

B
)

D-LMS w/Adaptive CP
SD-LMS w/Metropolis
SD-LMS w/Adaptive relative-variance
SD-LMS w/Adaptive CP

(d) N = 1000

Figure 4.4: Network MSD learning curves for 3-sparse.

the learning curves for the networks of different sizes with ε = 0.001, 0.01, 0.1, 0.5.
We have fixed step-size parameters µ = 0.098 in Fig. 4.5 (a), µ = 0.1 in Fig. 4.5 (b),
µ = 0.108 in Fig. 4.5 (c), and µ = 0.109 in Fig. 4.5 (d). The rest of the parameters
were the same as in Fig. 4.2. In our settings, ε = 0.01 was the best regardless of
the network size and the worst choice resulted in degradation of about 3dB.

We have also evaluated the optimal value of ε for the case with different sparsity
and measurement noise variance. Fig. 4.6 demonstrates the learning curves for the
network with N = 50 shown in Fig. 4.1 (a) when the unknown vector had lower
sparsity, namely 10-sparse. Fig. 4.7 shows those when the measurement noise
power σ2

k was larger, which was independently generated by uniform distribution
over [0.11, 0.12]. The rest of the parameters in each experiment were the same as
in Fig. 4.2. From the figures, we can see that the optimal value of ε in Fig. 4.6 was
the same as that in Fig. 4.5 (a), while it was different in Fig. 4.7. Thus, the value of
ε should be appropriately determined, especially depending on the signal-to-noise
ratio of measurements.

57

CHAPTER 4. SD-LMS BASED ON CP

(a) N = 50 (b) N = 100

(c) N = 500 (d) N = 1000

Figure 4.5: Network MSD learning curves for comparison of ε.

4.2.2 Evaluation of Adaptive CPO Rule

In order to compare the performance in networks of different density, we have
generated Erdős-Rényi random networks with N = 20 where the mean degrees are
D = 12, 14, 16, and 18, as shown in Figs. 4.8 (a)–(d). The step-size parameter,
the forgetting factor, and the parameter in the regularization function were fixed
to be µ = 0.05, ν = 0.005, and ε = 0.001, respectively. In this subsection, the
equation (4.1.9) was employed for the estimation of γ2

l . The initial values (γ2)(−1)

were set to be 1. We have fixed the regularization parameter as λ = 0.0005 for
D = 12 and 14, and λ = 0.0004 for D = 16 and 18, with which the steady-
state performance has become the best among our trials. The parameter c that
controls the balance of MSD (4.1.19) has been chosen as c = 0.1, 1, or 5. The
unknown vector was with size M = 100 and the number of nonzero element was 1,
where the index of the nonzero element switches every 1000 iterations in order to
evaluate the tracking performance of the proposed and conventional methods. The
measurement vectors {u(i)

k } had the same structures as (3.4.1) except that αk was set
to 0 for all k. All simulation results were obtained by averaging 100 independent

58

CHAPTER 4. SD-LMS BASED ON CP

Figure 4.6: Network MSD learning
curves with N = 50 when unknown
vector has lower sparsity.

Figure 4.7: Network MSD learning
curves with N = 50 when measure-
ment noise variance is larger.

trials. The measurement noise power σ2
k was independently generated by uniform

distribution over [0.1, 0.2] in each trial. We compare learning curves of SD-LMS
in terms of instant network MSD 1

N
∑N

k=1 ‖φ
(i)
k −wo‖2 using the proposed adaptive

CPO rule (4.1.32) with that using the adaptive CP rule (4.1.11), static Metropolis
rule (2.2.13), and adaptive relative-variance (RV) rule (3.2.19).

Figs. 4.9 (a)–(d) show the learning curves in the case of D = 12, 14, 16, and
18, respectively. In Fig. 4.9 (a), the adaptive RV rule converged slightly slower
than the proposed adaptive CPO rule and CP rule but achieved the lowest error.
However, as the density of the network increased, the algorithm with the proposed
adaptive CPO rule achieved faster convergence and lower MSD under the suitable
choice of c than that with all the other rules. Namely, the proposed adaptive CPO
rule showed the best tracking performance to the change of the unknown vector.

4.3 Conclusion
This chapter has considered achieving faster convergence of SD-LMS for the

adaptive sparse signal processing in networks. We have applied loopy CP to SD-
LMS and shown that the proposed algorithm results in SD-LMS that uses CP rule
determined by the parameters of CP. We have further optimized the parameters in
terms of the steady-state MSD of SD-LMS and extended the weight to an adap-
tive version, adaptive CP rule. We have further improved the approximation of the
optimization problem to achieve better convergence performance and robustness,
and optimized the parameters. Moreover, we have shown an adaptive implemen-
tation for tracking the optimal coefficients, which has been named adaptive CPO
rule. Simulation results demonstrated that the proposed method achieves faster
convergence than the original SD-LMS. We have also numerically verified that the

59

CHAPTER 4. SD-LMS BASED ON CP

(a) D = 12 (b) D = 14

(c) D = 16 (d) D = 18

Figure 4.8: Network topologies.

optimal value of ε in the regularization function with respect to the convergence
performance of the proposed adaptive CP rule significantly depended not on the
sparsity of unknown vector but on the signal-to-noise ratio of measurements. The
algorithm with the proposed adaptive CPO rule has shown better tracking perfor-
mance for the change of the unknown vector, especially in dense networks, under
the suitable choice of the parameter c, at the cost of a slightly higher computational
complexity.

60

CHAPTER 4. SD-LMS BASED ON CP

0 1000 2000 3000
Number of Iterations

-30

-25

-20

-15

-10

-5

0

5

N
et

w
or

k
M

SD
 (d

B)

(a) D = 12

0 1000 2000 3000
Number of Iterations

-30

-25

-20

-15

-10

-5

0

5

N
et

w
or

k
M

SD
 (d

B)

(b) D = 14

0 1000 2000 3000
Number of Iterations

-30

-25

-20

-15

-10

-5

0

5

N
et

w
or

k
M

SD
 (d

B)

(c) D = 16

0 1000 2000 3000
Number of Iterations

-30

-25

-20

-15

-10

-5

0

5

N
et

w
or

k
M

SD
 (d

B)

(d) D = 18

0 1000 2000 3000
Number of Iterations

-30

-20

-10

0

N
et

w
or

k
M

SD
 (d

B)

Metropolis rule
Adaptive RV rule
Adaptive CP rule
Adaptive CPO rule, c=0.1
Adaptive CPO rule, c=1
Adaptive CPO rule, c=5

Figure 4.9: Network MSD learning curves for networks with different density.

61

Part II

New Representation of Scalable
GPR

62

5: Scalable GPR with Sketching
5.1 Introduction
5.1.1 Background and Related Work

Gaussian process regression (GPR or full GPR) (Rasmussen and Williams,
2006) is a non-parametric regression model that assumes a Gaussian process prior
on regression functions. This is also known as Kriging (Cressie, 1993; Stein,
2012) especially in geostatistics, geoscience, and mining. Its application in ma-
chine learning includes data visualization (Lawrence, 2005), reinforcement learn-
ing (Deisenroth et al., 2015), multi-task learning (Ashton and Sollich, 2012), dis-
tributed learning (Tavassolipour et al., 2020), to mention a few. Despite its advan-
tage of allowing nonlinear regression, its computational complexity and required
memory can be a serious problem in the cases where the number N of training
data is large. Full GPR (which we mean the GPR with no approximation) includes
inversion of an N × N matrix, so that it takes O(N3) time complexity1 (via conven-
tional methods like Gauss-Jordan elimination and LU decomposition) for training.
This would restrict the applicability of full GPR to problems with N # 104.

In order to circumvent the limitation, various approximation methods have
been proposed. These can be divided into two main categories, global and local ap-
proximations (Liu et al., 2020a). The global approximations replace the global rep-
resentation of the N×N matrix with small-sized matrices. The simplest approach is
Subset-of-Data (SoD) (Quiñonero-Candela and Rasmussen, 2005; Chalupka et al.,
2013), which uses the only m (< N) data out of all data. The time complexity
can be reduced to O(m3). Although the sophisticated selections of the subset have
been proposed in Lawrence et al. (2003) and Keerthi and Chu (2005), but the rest
of the data becomes wasteful. For the approaches that adopt information of all
the data, compactly supported covariance functions such as Wu (1995); Gneiting
(2002); Melkumyan and Ramos (2009) help the covariance matrix to be sparse
(Furrer et al., 2006; Gu and Hu, 2012), which reduce the complexity to O(αN3),
where the parameter 0 < α < 1 is defined depending on the sparsity. However,
some functions do not make the covariance matrix positive-definite (Wendland,
2004). The idea that is categorically termed sparse GP typically uses some training
points or virtual points, called inducing points or pseudo datapoints (Snelson and
Ghahramani, 2005; Quiñonero-Candela and Rasmussen, 2005; Wilson and Nick-

1In what follows we consider time complexity under the assumption that arithmetic with matrix
elements has complexity O(1).

63

CHAPTER 5. SCALABLE GPR WITH SKETCHING

isch, 2015; Bauer et al., 2016). Sparse GP using m inducing points can reduce
time complexity to O(Nm2). Locations of the inducing points can furthermore be
optimized via stochastic variational inference (Hensman et al., 2013). However,
the sparse GP methods are not suitable when the underlying function has quick-
varying features because in such cases they require a large number of inducing
points to achieve good performance, yielding high complexity (Bui and Turner,
2014).

The local approximations first split training data into a number of sub-datasets,
then assign an “expert” to each of them, and finally summarize local predictions
made by these experts to arrive at the final prediction. The procedure enables us
to capture such quick-varying features. Models based on Gaussian mixture of the
experts (Yuan and Neubauer, 2009; Zhang and Williamson, 2019) mainly focus
on tracking non-stationary features by exploiting MCMC (Markov Chain Monte
Carlo). One of the state-of-the-art local approximations is the aggregation method,
which includes product-of-experts (PoE) (Hinton, 2002), generalized PoE (GPoE)
(Cao and Fleet, 2014), Bayesian committee machine (BCM) (Tresp, 2000), ro-
bust BCM (RBCM) (Deisenroth and Ng, 2015), generalized RBCM (GRBCM)
(Liu et al., 2018), query-aware BCM (QBCM) (He et al., 2019). Different aggre-
gation methods summarize the local predictions of the experts by using different
schemes under some assumptions of independence of the experts. In the meth-
ods, covariance information of data is partially lost by approximate divisions of
the processing into the experts and the more covariance information becomes lost
due to the independence assumptions. One of the aggregation methods known as
nested pointwise aggregation of experts (NPAE) (Rullière et al., 2018) does not
assume the independence of the experts at the cost of higher computational com-
plexity. The time complexity of the aggregation methods except for NPAE with
sub-dataset size n0 is reduced to O(Nn2

0) + O(CNn0), where C is independent of N
and varies depending on the method.

An important theoretical property for the aggregation methods is consistency,
which means that the aggregated prediction converges to the value of the true un-
derlying function when N approaches infinity. The aggregation methods without
consistency do not necessarily yield good predictions even in large-sample situa-
tions. NPAE and GRBCM are proven to have consistency under appropriate con-
ditions (Bachoc et al., 2017, 2021; Liu et al., 2018). Furthermore, NPAE usually
achieves better predictive performance than other methods by using richer infor-
mation but at the same time requires higher computational complexity.

64

CHAPTER 5. SCALABLE GPR WITH SKETCHING

5.1.2 Contributions

In this thesis, we aim to improve performance of the conventional aggregation
method by focusing on the use of covariance information of data that is lost by
the approximate divisions. Specifically, we propose a novel aggregation method
inspired by NPAE. We first generalize the prediction of NPAE via an idea of low-
dimensional projection known as sketching (Liberty, 2013; Woodruff, 2014) of the
training samples, and then extend it to more informative versions via introduc-
ing inducing points. With its higher flexibility, this method is expected to achieve
a better trade-off between predictive performance and computational complexity.
We name the proposed method Nested Aggregation of Experts using Inducing
Points (NAE-IP). The Gaussian process approximation via sketching has also been
considered by Calandriello et al. (2019) but their construction is based on ma-
trix sketching and falls within the category of sparse GP methods. On the other
hand, the dimensionality reduction in NAE-IP is different from that of sparse GP
in that NAE-IP exploits linear sketching of signals, extending NPAE. Furthermore,
NAE-IP, similarly to NPAE, allows parallelization of some part of processing by
employing a block-diagonal sketching matrix. NAE-IP is expected to be advan-
tageous in two alternative fronts: one is that it prioritizes predictive performance
at the cost of an increase of computational complexity, and another is that it uses
a less informative set of inducing points while allowing reduction of the compu-
tational complexity. Furthermore, we prove that NAE-IP has consistency under
certain conditions. Simulation results show that the proposed method achieves
lower prediction errors than conventional aggregation methods, while keeping less
computing time than the original NPAE.

5.2 GPR and Its Approximation Methods
5.2.1 Full GPR

Consider a problem that predicts the corresponding output given any input on
a region Q ⊂ RD by using training data composed of pairs of input and noisy
output, namely, regression problem. In the full GPR, given a training dataset with
N samples, D = {(xn, zn) ∈ Q × R}n=1,...,N , the following regression model is
assumed:

zn = f (xn) + εn, (5.2.1)

where the regression function f is assumed to follow a Gaussian process (GP), and
where the residual error εn is assumed to be a white Gaussian noise with mean 0
and variance σ2, that is, one has [ε1, . . . , εN]T ∼ N(0,σ2I). The mean function of
the GP can be assumed to be 0 without loss of generality. The covariance function

65

CHAPTER 5. SCALABLE GPR WITH SKETCHING

k(·, ·) of the GP represents properties of the regression function. Commonly used
covariance functions are the squared exponential (SE) function:

k(x,x′) = σ2
f exp

(
−r2

2

)
, (5.2.2)

and the Matérn-(ν + 1/2) function:

k(x,x′) = σ2
f exp

(
−
√

2ν + 1r
) ν!

(2ν)!

ν∑

ν′=0

(ν + ν′)!
ν′!(ν − ν′)!

(
2
√

2ν + 1r
)ν−ν′
, (5.2.3)

where r =
√

(x − x′)TL−1(x − x′) is the Mahalanobis distance between x and x′

and covariance matrix L = diag[&1, . . . , &D], where ν ∈ N+ is a model parameter for
Matérn function, and where σ2

f > 0 and &d > 0 (d = 1, . . . ,D) are hyperparameters.
The hyperparameters of these models are thus Θ = {σ2

f , {&d}d=1,...,D,σ2}, the values
of which may be determined via maximizing the log-marginal likelihood

log p(z|X ,Θ) = −1
2

(
zT(K(X ,X) + σ2I)−1z + log det

[
K(X ,X) + σ2I

])
,

(5.2.4)
where X = [x1, · · · ,xN]T ∈ RN×D, z = [z1, · · · , zN]T ∈ RN , and where the
covariance matrix K(X ,X ′) is such that [K(X ,X ′)]nn′ = k(([X]n)T, ([X ′]n′)T).

Assume that we wish to estimate the values of f at NT test points {x∗t }t=1,...,NT .
All the test points and the corresponding outputs are summarized as X∗ = [x∗1, · · · ,x∗NT

]T ∈
RNT×D and z∗ = [z∗1, . . . , z

∗
NT

]T ∈ RNT , respectively. The values of the regression
function corresponding to X and X∗ are summarized as f = [f (x1), · · · , f (xN)]T ∈
RN and f ∗ = [f (x∗1), · · · , f (x∗NT

)]T ∈ RNT , respectively. On the assumption that
the prior of f is GP, the joint distribution of z and f ∗ is given by

p
([

z
f ∗

])
= N

(
0,

[
K(X ,X) + σ2I K(X ,X∗)

K(X∗,X) K(X∗,X∗)

])
. (5.2.5)

The predictive distribution of f ∗ givenD is obtained as p(f ∗|X∗,D) = N (µfull(X∗),Σfull(X∗)),
where

µfull(X∗) =K(X∗,X)(K(X ,X) + σ2I)−1z, (5.2.6)

Σfull(X∗) =K(X∗,X∗) −K(X∗,X)(K(X ,X) + σ2I)−1K(X ,X∗). (5.2.7)

The prediction of z∗ is similarly obtained as p(z∗|X∗,D) = N
(
µfull(X∗),Σfull(X∗) + σ2I

)
.

The matrix inversion in (5.2.6) and (5.2.7) has O(N3) time complexity and O(N2)
memory consumption, so that various approximations have been proposed to cir-
cumvent the complexity.

66

CHAPTER 5. SCALABLE GPR WITH SKETCHING

5.2.2 Aggregation Methods

Problem Settings and Training

In this subsection, we introduce the common settings among the aggrega-
tion methods. The whole training dataset is first divided into p subsets, Di =

(Xi, zi) (i = 1, . . . , p), where each subset has n(i) data points, namely, Xi ∈ Rn(i)×D

and zi ∈ Rn(i) . Sub-models that make predictions using the sub-datasets are re-
ferred to as “experts”. Each expert Mi makes own predictions by using its own
sub-dataset Di. The local prediction pi(z∗|x∗,Di) = N

(
µi(x∗),σ2

i (x∗)
)

at a test
point x∗t # x∗ (t = 1, . . . ,NT) is obtained by applying full GPR to the sub-dataset
Di, as

µi(x∗) =K∗i
(
Kii + σ

2I
)−1

zi, (5.2.8)

σ2
i (x∗) = k(x∗,x∗) −K∗i

(
Kii + σ

2I
)−1

Ki∗ + σ
2, (5.2.9)

respectively, where K∗i = K(x∗,Xi), Ki∗ = KT
∗i, and Ki j = K(Xi,X j) for

i, j = 1, . . . , p. Aggregation methods described in the subsequent sections integrate
the experts’ predictions and yield the final prediction in different manners.

For learning hyperparameters Θ, it is reasonable under these settings to intro-
duce a factorized training process (Deisenroth and Ng, 2015). In the process, the
exact marginal likelihood (5.2.4) is approximated by assuming independence of
the marginal likelihoods of the experts, i.e.,

p(z|X ,Θ) ≈
p∏

i=1

pi(zi|Xi,Θ), (5.2.10)

where the experts share the same hyperparameters Θ. The computational com-
plexity for the training process can be reduced compared with full GPR thanks to
the independence assumption.

Predictions That Ignore Some Covariance of Expert

PoE (Hinton, 2002), gPoE (Cao and Fleet, 2014), BCM (Tresp, 2000), and
rBCM (Deisenroth and Ng, 2015) are aggregation methods that ignore covariance
between experts. The original PoE and gPoE assume independence of experts
{Mi}i=1,...,p. Specifically, the following product approximation is employed,

p(z∗|x∗,D) =
p∏

i=1

(
pi(z∗|x∗,Di)

)βi1 , (5.2.11)

where βi1 is the weight assigned to expertMi. BCM and rBCM assume conditional
independence of experts Di ⊥ D j | z∗ for i, j = 1, . . . , p and i ! j, the specific

67

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Table 5.1: Recommended weight choice for aggregation methods. The choice
marked † means that it lacks theoretical justification.

Method βi1 βi2 Constraint
PoE 1 1/p
gPoE 1/p† 1/p

∑p
i=1 βi1 = 1

BCM 1 βi1

rBCM logσ2
∗∗−logσ2

i
2 † βi1

approximation of which is given by

p(z∗|x∗,D) =
∏p

i=1 (pi(z∗|x∗,Di))βi1

(p(z∗|x∗))
∑p

i=1 βi1−1
. (5.2.12)

The local prediction pi(z∗|x∗,Di) is Gaussian with mean (5.2.8) and variance (5.2.9),
so that the aggregated prediction p(z∗|x∗,D), i.e., p

(
z∗

∣∣∣x∗, {µi(x∗),σ2
i (x∗)}i=1,...,p

)
,

becomes also Gaussian. Thus the resulting prediction with mean µpoe/bcm(x∗) and
variance σ2

poe/bcm(x∗) can be collectively formulated as

µpoe/bcm(x∗) = σ2
poe/bcm(x∗)

p∑

i=1

βi1σ
−2
i (x∗)µi(x∗), (5.2.13)

σ−2
poe/bcm(x∗) =

p∑

i=1

βi1σ
−2
i (x∗) + (1 −

p∑

i=1

βi2)σ−2
∗∗ , (5.2.14)

where σ2
∗∗ = k(x∗,x∗) + σ2, and where βi2 is the coefficient determined for each

model. The choices of the weight and the values of the coefficient recommended
in the respective papers, as well as constraints, of those aggregation methods are
summarized in Table 5.1.

Two extensions of rBCM, called GRBCM (Liu et al., 2018) and QBCM (He
et al., 2019), are recently proposed. These methods assume existence of an infor-
mative “global expert” Mg # M1, and that every expert can access, in addition
to the sub-dataset assigned to it, the sub-dataset Dg = D1 assigned to the global
expert. Therefore, these methods take account of covariances between the global
expert and other experts, but ignore covariance between non-global experts, and
assume conditional independence Di ⊥ D j | z∗,Dg for i, j = 2, . . . , p and i ! j.
Each expert Mi (i = 2, . . . , p) possesses sub-dataset D+i = Dg ∪ Di and makes
own predictions with mean µ+i(x∗) and variance σ2

+i(x
∗). The global expert also

makes prediction with mean µg(x∗) and variance σ2
g(x∗) by using only the global

sub-datasetDg. The aggregated predictions are given by

p(z∗|x∗,D) =
∏p

i=2 (pi(z∗|x∗,D+i))βi

(p1(z∗|x∗,D1))
∑p

i=2 βi−1
(5.2.15)

68

CHAPTER 5. SCALABLE GPR WITH SKETCHING

with the following mean µgrbcm/qbcm(x∗) and variance σ2
grbcm/qbcm(x∗),

µgrbcm/qbcm(x∗) = σ2
grbcm/qbcm(x∗)

p∑

i=2

βiσ
−2
+i (x∗)µ+i(x∗) +

1 −

p∑

i=2

βi

σ
−2
g (x∗)µg(x∗)

 ,

(5.2.16)

σ−2
grbcm/qbcm(x∗) =

p∑

i=2

βiσ
−2
+i (x∗) +

1 −

p∑

i=2

βi

σ
−2
g (x∗), (5.2.17)

where the experts’ weights {βi}i=2,...,p are chosen in the same manner as rBCM. For
GRBCM, the global sub-dataset Dg is randomly selected from the entire training
samples, and for QBCM,Dg is selected as the sub-dataset with its centroid closest
to the test point.

NPAE: Prediction That Uses Covariance between All Experts

NPAE (Rullière et al., 2018) for GPR is also one of the aggregation meth-
ods but it yields “consistent” prediction by taking account of covariance between
experts, at the cost of computational complexity. The consistency is discussed
in the next subsection. In NPAE, the collection of the local predictions µ∗ =
[µ1(x∗), . . . , µp(x∗)]T ∈ Rp can be regarded as the outputs like z and the pre-
diction is done by GPR with regards to µ∗ by using the covariances of the local
predictions. The aggregated prediction is obtained as follows:

µnpae(x∗) = kT
A∗K

−1
A∗µ∗, (5.2.18)

σ2
npae(x∗) = k(x∗,x∗) − kT

A∗K
−1
A∗kA∗ + σ

2, (5.2.19)

where kA∗ = Cov[µ∗, z∗] ∈ Rp and KA∗ = Cov[µ∗,µ∗] ∈ Rp×p. This formula-
tion means that NPAE uses the covariance between all experts, that is, uses richer
information than those aggregation methods described in Sect. 5.2.2.

Note that the original NPAE is restricted to test-point-wise processing and re-
quires p × p matrix inversion K−1

A∗ for each test point, so that its computational
complexity is higher than other aggregation methods. Rullière et al. (2018) have
also proposed additional complexity reduction of NPAE by considering hierarchi-
cal organization of the experts, in which case the subsequent prediction becomes
different from (5.2.18) and (5.2.19).

Consistency

Consistency is one of the important properties for the aggregation methods,
which means that the aggregated prediction converges to the value of the true un-
derlying function when the number N of training points approaches infinity. It

69

CHAPTER 5. SCALABLE GPR WITH SKETCHING

should be noted that the definition of consistency in this thesis is such that an ag-
gregation method for a finite number of test points is said to be consistent if the
aggregated predictions provided by the method converges to the values of the true
underlying function at those test points in probability, as N → ∞. In particular, the
definition is different from, and much weaker than, the consistency in functional
spaces (van der Vaart and van Zanten, 2011): Consistency of a method in the above
definition does not necessarily imply that the posterior on the functional space pro-
vided by the method converges to the Dirac measure at the true underlying function
in the limit N → ∞.

NPAE in Sect. 5.2.2 is proven to be consistent in the noiseless case (σ2 = 0)
(Bachoc et al., 2017) and the noisy case (σ2 ! 0) (Bachoc et al., 2021). For the
latter case, NPAE is consistent when the placement of all input points is not too
irregular on Q or when the training data is divided by typical clustering algorithms,
e.g., k-means. Consistency including noisy observations is also discussed in Liu
et al. (2018), where they have concluded that GRBCM is consistent as long as
the input points in the global sub-dataset are randomly selected on Q. Bachoc
et al. (2017, 2021) have also proven that, under some assumptions on the kernel2,
there are cases where consistency of PoE, gPoE, BCM, and rBCM does not hold
depending on the distribution of the input points.

5.3 GPR with Sketching
5.3.1 Understanding of Aggregation Method as Sketching

In this subsection, we represent the predictions by NPAE (5.2.18), (5.2.19) in
an alternative formulation, with the aim of extending it to a generalized method.
As mentioned in Sect. 5.2.1, the high computational complexity of full GPR arises
primarily from the necessity of inverting the Gram matrix (K(X ,X) + σ2I) with
size equal to the number N of training samples. Consequently, all the existing
approximation schemes include some ideas of reducing the size of the matrix to be
inverted, and accordingly, when evaluating the conditional mean in these schemes
one projects z to a low-dimensional subspace determined by the matrix of reduced
size. In this thesis, rather than considering a reduced-size matrix to be inverted, we
focus on the latter projection procedure. More specifically, we consider a linear
sketch u = Az ∈ RNu of z, where Nu is the dimension of the linear sketch u, and
where A ∈ RNu×N is a sketching matrix, and study the problem of estimating the
function values at test points not on the basis of z but on the basis of its sketch
u. As detailed in the following, this approach has advantages in that it provides

2Many stationary kernels including the Matérn kernel satisfy the assumption, but the SE kernel
does not.

70

CHAPTER 5. SCALABLE GPR WITH SKETCHING

a novel interpretation of NPAE as well as its extensions, and that it allows us to
provide a full characterization of the optimal sketching matrix.

In what follows we assume, without loss of generality, that the rows of the
sketching matrix A are linearly independent, as adding linearly dependent rows
does not add any useful information of z to its linear sketch u. The joint probability
of {u, z∗} is

[
u
z∗

]
= N

[
0
0

]
,

A

(
K(X ,X) + σ2I

)
AT AK(X ,X∗)

K(X∗,X)AT K(X∗,X∗) + σ2I

 . (5.3.1)

The conditional distribution of z∗ given u is calculated as

z∗|u ∼ N
(
µA(X∗),ΣA(X∗)

)
, (5.3.2)

where

µA(X∗) =K(X∗,X)AT
(
A(K(X ,X) + σ2I)AT

)−1
u, (5.3.3)

ΣA(X∗) =K(X∗,X∗) + σ2I

−K(X∗,X)AT
(
A(K(X ,X) + σ2I)AT

)−1
AK(X ,X∗). (5.3.4)

The matrix to be inverted in the above formulae is of size Nu×Nu, implying that the
time complexity can be significantly reduced by taking Nu 7 N. It should be noted
that this reduction is different from that of sparse GP methods and that in Calan-
driello et al. (2019), where the matrix to be inverted is K(X ,Xu)K(Xu,Xu)−1K(Xu,X)
(Xu ∈ RNu×D is the set of inducing points) with size N × N and the reduction is
granted via Woodbury matrix identity.

For sketching matrix A with a general structure, the following proposition
holds.

Proposition 1. Assume row independence of the sketching matrix A. The con-
ditional distribution of z∗ given the linear sketch u = Az depends on A only
through its kernel kerA.

Proof: Under the row independence, the size of the sketching matrix A is Nu×N
with Nu = N − dim kerA. For two matrices A,B ∈ RNu×N , kerA = kerB holds
if and only if A and B are row equivalent, that is, there exists an invertible matrix
T ∈ RNu×Nu satisfying B = TA. The conditional distribution of z∗ given a linear
sketch u′ = Bz with B = TA is the same as that given the linear sketch u = Az,
as can be confirmed by the fact that replacing A with B = TA in (5.3.3) and
(5.3.4) with z fixed keeps µA(X∗) and ΣA(X∗) invariant. !

One expects that the conditional mean with sketching given in (5.3.3) would
give a good approximation of the conditional mean in the full GPR. Goodness of

71

CHAPTER 5. SCALABLE GPR WITH SKETCHING

this approximation may be measured via the mean squared error E = E[‖µA(X∗)−
µfull(X∗)‖2) between the conditional means with and without sketching. It is eval-
uated as

E = Tr
[
K(X∗,X)(K(X ,X) + σ2I)−1K(X ,X∗)

]

− Tr
[
K(X∗,X)AT

(
A(K(X ,X) + σ2I)AT

)−1
AK(X ,X∗)

]
. (5.3.5)

The next proposition provides a full characterization of the optimal sketching ma-
trix in the sense of minimizing E.

Proposition 2. For a given dimension Nu of the linear sketching u = Az ∈ RNu

of z, the optimal sketching matrix A ∈ RNu×N in the sense of minimizing the mean
squared error E is such that the Nu row vectors of A span the subspace spanned
by the eigenvectors of (K(X ,X) + σ2I)−1K(X ,X∗)K(X∗,X) corresponding
to its Nu largest eigenvalues.

Proof: Since the first term on the right-hand side of (5.3.5) is independent of
A, the optimum sketching matrix A minimizing the mean squared error E is the
matrix that maximizes

J(A) =
1
2

Tr
[
K(X∗,X)AT

(
A(K(X ,X) + σ2I)AT

)−1
AK(X ,X∗)

]
.

The matrix C = K(X ,X) + σ2I is symmetric and positive definite, so that it is
diagonalized by an orthogonal matrix V as C = V TΛV , where Λ is a diagonal
matrix with the diagonal elements consisting of the eigenvalues of C. Letting
C1/2 = V TΛ1/2V and A′ = TAC1/2, where T is an invertible matrix cor-
responding to the Gram-Schmidt orthogonalization applied to the row vectors of
AC1/2 such that A′(A′)T = I holds, one has

ACAT = AV TΛV AT = AC1/2
(
AC1/2

)T
= T −1A′(A′)TT −T = T −1T −T.

The cost function J(A) can then be written as

J(A) =
1
2

Tr
[
K(X∗,X)C−1/2(A′)TA′C−1/2K(X ,X∗)

]

=
1
2

Tr
[
A′C−1/2K(X ,X∗)K(X∗,X)C−1/2(A′)T

]
.

Therefore, the optimal sketching matrix is such that the Nu row vectors of A′ =
TAC1/2 span the subspace spanned by the eigenvectors of C−1/2K(X ,X∗)K(X∗,X)C−1/2

corresponding to its Nu largest eigenvalues. This coincides with the statement of
the proposition. !

72

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Let λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of (K(X ,X)+σ2I)−1K(X ,X∗)K(X∗,X).
Then, the mean squared error with the optimal sketching matrix is given by

E =
N∑

i=Nu+1

λi.

Since rankK(X ,X∗) = rankK(X∗,X) ≤ min{N,NT }, one has λi = 0 for i >
min{N,NT }. Therefore, in order to make the mean squared error E smaller, it would
make no sense to take Nu > NT if there is no restriction in the choice of the sketch-
ing matrix A, because Nu > NT allows us to make E = 0 with the optimal choice
of A.

The approach of optimizing the sketching matrix with a general structure, how-
ever, would require inversion of K(X ,X) + σ2I and/or solving a (generalized)
eigenvalue problem with a large full-rank matrix, so that its computational com-
plexity should be high.

We next consider block-structured sketching, in which one assumes A to have
the following block structure:

A =

A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · Ap

,

where Ai ∈ Rn(i)
u ×n(i) with

∑p
i=1 n(i)

u = Nu and
∑p

i=1 n(i) = N. This block-structured
sketching allows us to perform a certain fraction of the calculations in a distributed
manner, with p computing agents (i.e., experts). The prediction in (5.3.2) exactly
coincides with that of NPAE when n(i)

u = 1 and Ai is chosen as

Ai =K∗i
(
Kii + σ

2I
)−1
, (5.3.6)

for all experts. In this case, AK(X ,X∗) and A
(
K(X ,X) + σ2I

)
AT in (5.3.1)

are replaced as kA∗ and KA∗, respectively. Thanks to this formulation, we can
regard the choice of Ai in NPAE as a dimensionality reduction from the size n(i) of
the sub-datasetDi to n(i)

u = 1.

5.3.2 Proposed Algorithm: NAE-IP

Derivation

The choice of the matrix Ai in (5.3.3) and (5.3.4) is not limited to that of
NPAE (5.3.6). Furthermore, Ai does not even have to be dependent on X∗. We
then propose a novel aggregation method on the basis of (5.3.2) and name it Nested

73

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Aggregation of Experts using Inducing Points (NAE-IP), which is not limited to be
“pointwise,” that is, it allows simultaneous prediction on multiple test points. In
the proposed method, we select the following choice for Ai:

Ai =Kηii
(
Kii + σ

2I
)−1
, (5.3.7)

where Kηii = K(X̄i,Xi) ∈ Rn(i)
u ×n(i) and Kiηi = KT

ηii for a collection X̄i ∈ Rn(i)
u ×D

of n(i)
u inducing points. It should be noticed that (5.3.7) is the same as (5.3.6) except

that the test points X∗ in the latter is replaced by the collection X̄i of inducing
points. In other words, we consider the projection from the size n(i) of the sub-
datasetDi to the number n(i)

u of inducing points.
We show the prediction scheme using (5.3.7) in a way that follows NPAE.

Assume that each expertMi has a set of inducing points X̄i in addition to its own
sub-dataset Di. There is no constraint on the choice of the inducing points but
their total number Nu is assumed to be less than N for achieving dimensionality
reduction. First, each expert defines an estimator µ̄i on the basis of its observation
zi as

µ̄i =Kηii
(
Kii + σ

2I
)−1

zi = Aizi ∈ Rn(i)
u , i = 1, . . . , p. (5.3.8)

Second, the estimators are concatenated to form a random vector µ̄ = [µ̄T
1 , . . . , µ̄

T
p]T ∈

RNu . The covariances involving µ̄ and z∗ are calculated as

k̄A = Cov[µ̄, z∗] =

A1K1∗
...

ApKp∗

∈ RNu×NT , (5.3.9)

K̄A = Cov[µ̄, µ̄] =
[[
K̄A

]
[i][j]

]

i, j=1,...,p
∈ RNu×Nu ,

[
K̄A

]
[i][j]
=

Kηii

(
Kii + σ2I

)−1
Kiηi if i = j,

AiKi jAT
j if i ! j.

(5.3.10)

Finally, the predictive mean µ̄A and covariance Σ̄A of NAE-IP are derived as

µ̄A(X∗) = k̄T
AK̄

−1
A µ̄, (5.3.11)

Σ̄A(X∗) =K(X∗,X∗) − k̄T
AK̄

−1
A k̄A + σ

2I . (5.3.12)

These formulae correspond to µA(X∗) and ΣA(X∗) in (5.3.2), respectively, when
the choice of (5.3.7) for Ai is employed.

The following proposition holds and is used for proving the consistency of
NAE-IP discussed later.

74

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Proposition 3. µ̄A(X∗) in (5.3.11) is the best linear unbiased estimator of f ∗ on
the basis of µ̄, where the coefficient matrix φ = [φT

1 . . .φ
T
p]T of µ̄A(X∗) = φTµ̄ =

∑p
i=1φ

T
i µ̄i is given by K̄−1

A k̄A. The mean squared error v(X∗) = E
[
‖f ∗ − µ̄A(X∗)‖2

]

of the estimator µ̄A(X∗) of f ∗ is given by Tr
[
K(X∗,X∗) − k̄T

AK̄
−1
A k̄A

]
.

Proof: Using (5.3.11) and (5.3.12), the mean squared error of an estimator φTµ̄

of f ∗, with µ̄ defined above, is written as

E
[
‖f ∗ − φTµ̄‖2

]
= Tr

[
K(X∗,X∗) − 2φTk̄A + φ

TK̄Aφ
]
.

The value of φ̂ minimizing it is found by differentiation: −2k̄T
A + 2φ̂TK̄A = O,

which leads to φ̂ = K̄−1
A k̄A and µ̄A(X∗) = φ̂Tµ̄. Then, v(X∗) = Tr

[
K(X∗,X∗) − 2φ̂Tk̄A + φ̂TK̄Aφ̂

]

and the statement follows. !
One may perform prediction on the NT test points in a pointwise manner, re-

peating predition on a single point NT times, or all at once, predicting for the NT

test points simultaneously. In view of the computational complexity to be dis-
cussed later, we consider a more general framework in which the NT test points are
partitioned into S subsets X∗1 , . . . ,X

∗
S with

⋃S
s=1 X

∗
s =X∗ and Xs ∩Xs′ = ∅ for

s ! s′, and the prediction is performed on each of these subsets separately. Assume
now that the prediction is to be made on the target subset X∗s of n(s)

t test points.
Then, there are 5 possible options of inducing points X̄i for expert i in NAE-IP:

1. X̄i =X∗s : Use the test points themselves as the inducing points. In this case
n(i)

u = n(s)
t . [Blockwise Test points (BT)]

2. X̄i = {x ∈ X∗e |X∗e ⊂ X∗,X∗e ! X∗s }: Use a part of test points, X∗e , which
is not equal to the target subset X∗s . We can set n(i)

u arbitrarily while satis-
fying n(i)

u < NT . [Blockwise Test points and Other Test points (BT+OT),
Arbitrary Test points (AT)]

3. X̄i = {x ∈ (Xo ∪ X∗s) | Xo ∩ X∗ = ∅,Xo ! ∅}: Use both the target
subset of test points, X∗s , and non-test points. We can set n(i)

u arbitrarily
while satisfying n(i)

u > n(s)
t . [Blockwise Test points and Non-Test points

(BT+NT)]

4. X̄i = {x ∈ Xo | Xo ∩X∗ = ∅,Xo ! ∅}: Use only non-test points as the
inducing points. We can set n(i)

u arbitrarily. [Non-Test points (NT)]

5. X̄i = {x ∈ (Xo ∪X∗e) |Xo ∩X∗ = ∅,X∗e ⊂ X∗,X∗e ! X∗s ,Xo ! ∅}: Use
both a part of test points, X∗e , which is not equal to the target subset X∗s , and
non-test points. We can set n(i)

u arbitrarily.

75

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Option 1 is an extension of the original NPAE (Rullière et al., 2018) to multiple
dimensions. As option 2, we can consider two natural choices, one that completely
includes test points themselves (BT+OT) and another that partially or never in-
cludes them (AT). BT+OT and BT+NT use higher-dimensional sketching at each
expert by incorporating auxiliary points as its inducing points. Extension of sketch-
ing dimensions employed in these options is expected to improve prediction ac-
curacy, at the expense of increased computational complexity. The idea of BT,
BT+OT, and BT+NT are known as transduction (Quiñonero-Candela and Ras-
mussen, 2005) that uses the test points of interest for prediction. The transduction
could be beneficial because the test points should have some information about the
corresponding outputs. A drawback with these options is that the covariance matrix
K̄A depends on all or some test points in the target subset X∗s , so that one has to
construct it, as well as to perform matrix inversion, for every target subset. On the
other hand, AT and NT require the construction of K̄A only once for all the target
subsets of test points, as long as the inducing points are fixed. It brings about a sig-
nificant reduction of the complexity. Option 5 might not yield a better prediction
than BT+OT or BT+NT. Therefore we focus on BT, BT+OT, AT, BT+NT, and NT
in the rest of this chapter and expect an improvement of the predictive performance
by using the extended dimensions n(i)

u ≥ n(s)
t .

Summary of Proposed Algorithm

In this subsection, we summarize the procedure of the proposed NAE-IP. Def-
initions of symbols used for NAE-IP are summarized in Table 5.2. We write the
covariance matrix as Kθ(·, ·) in order to make explicit its dependence on the hy-
perparameters θ of the covariance function. The whole training dataset is divided
into p subsets by using some clustering algorithms or at random. Each sub-dataset
(Xi, zi) is assigned to an expert. To learn hyperparameters, we adopt the factorized
training process (Deisenroth and Ng, 2015). We first specify an option from BT,
BT+OT, BT+NT, AT, or NT and construct inducing points {X̄i}pi=1 by Algorithm 9.
We then perform NAE-IP as shown in Algorithm 10.

Consistency of NAE-IP

We study consistency of NAE-IP in the noisy case by extending the proof of
consistency of NPAE in Bachoc et al. (2021). The following assumption is neces-
sary only for NAE-IP.

Assumption 4. For a test point x∗ ∈ Q, estimation of f (x∗) is done by including
the test point x∗ as an inducing point of all experts.

For N ∈ N, let pN be the number of experts, which may depend on N, and let

76

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Table 5.2: Definitions.

k(x,x′) Covariance function (e.g., SE function (Eq. (5.2.2)) or
Matérn-(ν + 1/2) function (Eq. (5.2.3))

θ Set of hyperparameters included in covariance function
σ2 Noise variance

Θ = {θ,σ2} Set of hyperparameters

Kθ(Xi,X j)
Covariance matrix whose (m, l)th element is
k(([Xi]m)T, ([X j]l)T) with hyperparameters θ

{Xi, zi} Sub-dataset of ith expert
X̄i Inducing points of ith expert
n(i)

u Number of inducing points of ith expert
p Number of experts
X∗ Test data points
X∗s sth subset of test data points
n(s)

t Number of test data points in sth subset
S Number of subsets of test data points

X1, . . . ,XpN be the sub-datasets, where Xi (i = 1, . . . , pN), being a subset of X ,
is the sub-dataset assigned to expert i. We also require the following assumption
on the sub-datasets.

Assumption 5. There exists a sequence { jN(x∗)}N∈N of indices jN(x∗) ∈ {1, . . . , pN}
depending on a given test point x∗ such that, for any ρ > 0, the number of the input
points in X jN (x∗) lying within the ρ-ball Bρ(x∗) = {x ∈ Q : ‖x −x∗‖ < ρ} centered
at x∗ goes to infinity as N → ∞.

Under these assumptions, Proposition 4 below establishes consistency of NAE-
IP at a fixed test point x∗ ∈ Q.

Proposition 4. Let Q be a compact nonempty subset of RD. Let f be a Gaus-
sian process on Q with mean zero and continuous covariance function k. Let
{xNn}1≤n≤N,N∈N be a triangular array of input points, all of which lie in Q. For N ∈
N, let X = [xN1, . . . ,xNN]T, and let µ̄1, . . . , µ̄pN be the collection of pN experts’
estimates defined in (5.3.8) on the basis of respective sub-datasets (X1, z1), . . . , (XpN , zpN).
Assume that each row of X is a row of at least one Xi. For a test point x∗ ∈ Q,
assume further that X1, . . . ,XpN satisfy Assumption 5. For such a test point x∗,
under Assumption 4 we have

lim
N→∞

E
[(

f (x∗) − µ̄A(x∗)
)2
]
= 0. (5.3.13)

where µ̄A(x∗) is as in (5.3.11).

77

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Algorithm 9 Construction of inducing points

1: Input: Option (BT, BT+OT, BT+NT, AT, or NT), X∗, X∗s , n(s)
t , p, n(i)

u (≥
n(s)

t , i = 1, . . . , p)
2: Output: {X̄i}pi=1
3: switch (Option)
4: case BT:
5: X̄i =X∗s (i = 1, . . . , p)
6: n(i)

u = n(s)
t (i = 1, . . . , p)

7: break
8: case BT+OT:
9: Choose n(i)

u − n(s)
t test points X∗e where X∗e ⊂X∗,X∗e ∩X∗s = ∅ (i =

1, . . . , p)
10: X̄i = (X∗e ∪X∗s) (i = 1, . . . , p)
11: break
12: case BT+NT:
13: Choose n(i)

u − n(s)
t non-test points Xo where Xo ∩ X∗ = ∅ (i =

1, . . . , p)
14: X̄i = (Xo ∪X∗s) (i = 1, . . . , p)
15: break
16: case AT:
17: Choose n(i)

u test points X∗e where X∗e ⊂X∗,X∗e !X∗s (i = 1, . . . , p)
18: X̄i =X∗e (i = 1, . . . , p)
19: break
20: case NT:
21: Choose n(i)

u non-test points Xo where Xo ∩X∗ = ∅ (i = 1, . . . , p)
22: X̄i =Xo (i = 1, . . . , p)
23: break
24: end switch

Proof: By Assumption 4, expert jN(x∗) has the test point x∗ as its inducing point,
that is, x∗ is a component of X̄ jN (x∗). Let a j(x∗) be the index of the test point x∗ in
X̄ jN (x∗). With these notations, since µ̄A(x∗) is a linear combination of the elements
of µ̄ with minimal square prediction errors from Proposition 3, its square prediction
error is not larger than that of any single element of µ̄. We hence have

E
[(

f (x∗) − µ̄A(x∗)
)2
]
≤ E

[(
f (x∗) − [µ̄ jN (x∗)(x∗)]a j(x∗)

)2
]

(5.3.14)

From Assumption 5, for any fixed ρ > 0, the number ι of input points lying within
Bρ(x∗) goes to infinity as N → ∞. Let x j(1)

N (x∗), . . . ,x j(ι)N (x∗) and z j(1)
N (x∗), . . . , z j(ι)N (x∗)

be such input points and the corresponding observations, respectively. Since [µ̄ jN (x∗)(x∗)]a j(x∗) =

K∗ jN (x∗)
(
K jN (x∗) jN (x∗) + σ2I

)−1
z jN (x∗) is also a linear combination of the ele-

78

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Algorithm 10 NAE-IP

1: Input: Option, X∗, p, S , n(s)
t (s = 1, . . . , S), {Xi, zi}, n(i)

u (≥ maxs n(s)
t) (i =

1, . . . , p)
2: Output: µ̄A(X∗), Σ̄A(X∗)
3: Obtain hyperparameters Θ via factorized training process
4: Θ = {θ,σ2} = arg maxθ̃,σ̃2

{
−∑p

i=1

(
zT

i (Kθ̃(Xi,Xi)

5: +σ̃2I)−1zi + log det
[
Kθ̃(Xi,Xi) + σ̃2I

])}

6: Partition test points X∗ into S subsets X∗s , where the number of points is
n(s)

t (s = 1, . . . , S)
7: Construct inducing points by Algorithm 1
8: for each partition X∗s do
9: for each expert i = 1, . . . , p do

10: Ai =Kθ(X̄i,Xi)
(
Kθ(Xi,Xi) + σ2I

)−1

11: µ̄i = Aizi
12: end for
13: µ̄ = [µ̄T

1 , . . . , µ̄
T
p]T

14: k̄A = [Kθ(X∗s ,X1)AT
1 , . . . ,Kθ(X∗s ,Xp)AT

p]T

15:
[
K̄A

]
[i][j]
=

Kθ(X̄i,Xi)

(
Kθ(Xi,Xi) + σ2I

)−1
Kθ(Xi, X̄i) if i = j

AiKθ(Xi,X j)AT
j if i ! j

(i, j =

1, . . . , p)
16: µ̄A(X∗s) = k̄T

AK̄
−1
A µ̄

17: Σ̄A(X∗s) =Kθ(X∗,X∗) − k̄T
AK̄

−1
A k̄A + σ2I

18: end for

ments of z jN (x∗) with minimal square prediction errors, we have, similarly as above,

E
[(

f (x∗) − [µ̄ jN (x∗)(x∗)]a j(x∗)
)2

]
≤ E

 f (x∗) − 1

ι

ι∑

a=1

z j(a)
N (x∗)

2 . (5.3.15)

From the independence of the noise process and Cauchy-Schwarz inequality, the
right-hand side can further be bounded as

E

 f (x∗) − 1

ι

ι∑

a=1

z j(a)
N (x∗)

2 = E

 f (x∗) − 1

ι

ι∑

a=1

(
f
(
x j(a)

N (x∗)

)
+ ε j(a)

N (x∗)

)
2

= E

1
ι

ι∑

a=1

(
f (x∗) − f

(
x j(a)

N (x∗)

))
2 + E

1
ι

ι∑

a=1

ε j(a)
N (x∗)

2

≤
(

max
a=1,...,ι

E
[(

f (x∗) − f
(
x j(a)

N (x∗)

))2
])
+
σ2

ι
(5.3.16)

The second term on the rightmost side of (5.3.16) converges to zero as ι → ∞
because σ2 is finite. From the continuity of k as in Bachoc et al. (2021, Appendix

79

CHAPTER 5. SCALABLE GPR WITH SKETCHING

E), one has

lim sup
N→∞

E

 f (x∗) − 1

ι

ι∑

a=1

z j(a)
N (x∗)

2 ≤ sup
ξ∈Bρ(x∗)

E
[(

f (x∗) − f (ξ)
)2
]

= sup
ξ∈Bρ(x∗)

[
k(x∗,x∗) + k(ξ, ξ) − 2k(x∗, ξ)

]

ρ→0→ 0. (5.3.17)

The fact that the limit supremum of a nonnegative sequence converges to 0 implies
that the limit also converges. We therefore obtain the statement of the proposition.

!
Note that Proposition 4 proves convergence of µ̄A(x∗) to f (x∗) in the mean

square sense, which in turn implies convergence in probability, hence establishing
the desired consistency.

Options BT, BT+OT, and BT+NT satisfy Assumption 4 from their definitions.
Options AT and NT can also include the test point as an inducing point of all
experts under the additional assumptions.

Corollary 3. Under the conditions of Proposition 4, NAE-IP-BT, BT+OT, and
BT+NT have consistency.

Corollary 4. Under the conditions of Proposition 4 and the assumption that n(i)
u →

NT (i = 1, . . . , pN) as N → ∞, NAE-IP-AT has consistency.

Corollary 5. Under the conditions of Proposition 4 and the assumption that n(i)
u →

∞ (i = 1, . . . , pN) as N → ∞, NAE-IP-NT has consistency.

Proof: In NAE-IP-NT, let {xηiu(i)}1≤u(i)≤n(i)
u ,1≤i≤p be an array of inducing points.

For each x∗ ∈ Q and for i = 1, . . . , p, there exists at least one inducing point such
that limn(i)

u →∞minu(i) ‖xηiu(i) − x∗‖ = 0 and then the estimation of f (x∗) satisfies
Assumption 4. !

Assumption 5 holds in typical division of the training data into sub-datasets
(Bachoc et al., 2021). When we adopt clustering algorithms such as k-means for
the division, the condition holds under the assumption mini=1,...,pN n(i) → ∞ as
N → ∞. In the case where the input points are distributed with strictly positive
density on Q, it also holds under the assumption that the number pN of experts is
o(N) as N → ∞.

Time Complexity

The complexity in time is one of the main interests of approximated Gaussian
process regression. We show the complexity of the conventional aggregation meth-
ods and our methods proposed in this chapter in Table 5.3 under a sufficiently large

80

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Table 5.3: Time complexity of aggregation methods under sufficiently large N,
where α, β, and γ are constants larger than 1.

Method Time complexity
(g)PoE/(r)BCM O

(
N3

p2

)
+ O

(
NT N2

p

)

GRBCM O
(
αN3

p2

)
+ O

(
βNT N2

p

)

QBCM O
(
γαN3

p2

)
+ O

(
βNT N2

p

)

(original) NPAE O
(

N3

p2

)
+ O

(
NT N2

)

NAE-IP-BT O
(

N3

p2

)
+ O

(
NT N2

)

NAE-IP-BT+OT/BT+NT O
(

N3

p2

)
+ O

(
NT nuN2

nt

)

NAE-IP-AT/NT O
(

N3

p2

)
+ O

(
nuN2

)

N, where, for simplicity, we consider the case of equal dimensions n(i)
u = nu and

equally divided sub-datasets n(i) = N/p among the experts, and of equally divided
partitions n(s)

t = NT/S = nt. GRBCM and QBCM require slightly higher com-
plexity than PoE, gPoE, BCM, and rBCM because each expert uses the modified
sub-dataset D+i. As mentioned in Sect. 5.2.2, the complexity of NPAE is higher
than these methods but keeps lower than that of full GPR when NT < N. Rullière
et al. (2018) reported the complexity as O

(
N3

p2

)
+ O

(
NT N2

)
which is the same as

NAE-IP-BT, but the frequency of memory access can be reduced by a factor of
nt in the proposed methods. NAE-IP-BT+OT and NAE-IP-BT+NT require higher
complexity than the original NPAE by considering nu dimensions. On the other
hand, the complexity of NAE-IP-AT and NAE-IP-NT can be lower than that of not
only the original NPAE but also the other methods, depending on the choice of nu.

In the following, we briefly describe a proof sketch of the complexity of NAE-
IP. The main factors that affect the complexity are calculation of the inverse

(
Kii + σ2I

)−1

in (5.3.8), which is to be performed by every expert, and the construction of K̄A
in (5.3.10). The former takes O((n(i))3) at p experts, thus resulting in O(p(n(i))3) =
O(N3/p2). Next, each block of K̄A includes the product of nu×n(i) matrix and n(i)×
n(i) matrix, and there are p2 blocks in K̄A, so that these amount to O(p2nu(n(i))2) =
O(nuN2) computation. The construction of K̄A is repeated S = NT/nt times for
BT, BT+OT, and BT+NT, resulting in O(NT N2) for BT and O(NT nuN2/nt) for the
others, whereas it is performed only once for AT and NT, resulting in O(nuN2).

81

CHAPTER 5. SCALABLE GPR WITH SKETCHING

5.4 Simulation Results
5.4.1 Datasets and settings

We evaluated the predictive performance and the computing time of NAE-IP
in comparison with conventional methods. All the results were obtained by us-
ing GPML MATLAB Code3 (Rasmussen and Williams, 2006). We measured total
CPU time on a linux computer with two CPUs (Intel Xeon Gold 5222, 4 cores,
3.8 GHz base clock) and 768 GB RAM. The datasets used in the numerical exper-
iments are summarized below.

• 1-D Synthetic data: Synthetic data generated by zn = sinc(xn) + εn, n =
1, . . . ,N, where the training points lie in the interval [−4, 4] uniformly, where
NT test points are uniformly chosen in [−5, 5], and where [ε1, . . . , εN]T ∼
N(0, 0.04I).

• 8-D KIN8NM dataset4 (Vanschoren et al., 2013): The data related to the
forward dynamics of an 8-link robot arm. There are 8,192 samples in total.
We randomly split them into 7,373 samples for training and 819 samples for
testing.

• 21-D SARCOS dataset5 (Rasmussen and Williams, 2006): The data related
to the inverse dynamics problem of robot arms. There are 44,484 training
samples and 4,449 test samples.

• 26-D POL dataset6: Pole telecom dataset. There are 10,000 training samples
and 5,000 test samples.

For each experimental condition, we performed 10 trials or more, each con-
sisting of training and prediction procedures. We have used two performance mea-
sures, mean squared error (MSE):

MSE =
1

NT

NT∑

i=1

(µ̂(xt,i) − z(xt,i))2, (5.4.1)

and mean standardized log loss (MSLL):

MSLL =
1

NT

NT∑

i=1

(
1
2

log (2πσ̂2(xt,i)) +
(µ̂(xt,i) − z(xt,i))2

2σ̂2(xt,i)

)
, (5.4.2)

3http://www.gaussianprocess.org/gpml/code/matlab/doc/
4https://www.openml.org/d/189
5http://www.gaussianprocess.org/gpml/data/
6https://cims.nyu.edu/∼andrewgw/pattern/

82

CHAPTER 5. SCALABLE GPR WITH SKETCHING

(a) NAE-IP-BT (b) NAE-IP-BT+OT (c) NAE-IP-BT+NT

(d) NAE-IP-AT (e) NAE-IP-NT

Figure 5.1: MSE versus the number nt of test points.

where µ̂(xt,i), σ̂2(xt,i), z(xt,i) are the predictive mean, variance, and true value at
the test point xt,i, respectively. MSLL is the mean of pointwise negative log losses
of the Gaussian models with mean µ̂(xt,i) and variance σ̂2(xt,i) given data {z(xt,i)},
and takes into account uncertainty of the predictions via the posterior variances.
The lower MSE and MSLL imply the better prediction.

For the proposed methods, we have assumed equal dimensions n(i)
u = nu among

all experts and almost equally divided partitions n(s)
t = nt of the test points. Other

test points for NAE-IP-OT and arbitrary test points for NAE-IP-AT have been cho-
sen randomly from the remaining test points and from the entire test points, respec-
tively.

5.4.2 Synthetic data

For the synthetic data, the training data were divided into sub-datasets by k-
means. The SE function (5.2.2) was employed as the covariance function of GP.
The non-test points of each expert in NAE-IP-BT+NT and NAE-IP-NT were gen-
erated from the multivariate Gaussian distribution with the same mean and covari-
ance as those of the sub-dataset assigned to that expert.

First, we investigate the influence on NAE-IP’s performance of the dimension
nu and the number of test points nt processed at once. Figures 5.1–5.3 show the
performance measures and computing time versus nt when N = 104,NT = 100,
and p = 20. We set the dimension nu to be 1.2 × nt, 1.5 × nt, 2 × nt, and 4 × nt.
When nt ≤ 20, the larger nt and nu showed the better predictive performance, and

83

CHAPTER 5. SCALABLE GPR WITH SKETCHING

(a) NAE-IP-BT (b) NAE-IP-BT+OT (c) NAE-IP-BT+NT

(d) NAE-IP-AT (e) NAE-IP-NT

Figure 5.2: MSLL versus the number nt of test points.

the performance became stable in most cases. The higher dimensions required
the more computing time, and the computing time of BT, BT+OT, and BT+NT
decreased as nt increased. On the other hand, the computing time of AT and NT
was kept small regardless of nt. Note that, depending on the value of p or NT , the
larger nt (≤ nu in this chapter) does not always yield the shorter computing time
because the complexity required for evaluating the inversion K−1

A∗ is O(n3
u p3) and

it could be higher than that of other factors.
Second, we compare the predictive performance and computing time of NAE-

IP with those of conventional aggregation methods, PoE, GPoE, BCM, RBCM,
GRBCM, QBCM, and the original NPAE in 30 trials. We evaluated the cases
N = 104, 5 × 104, and 105 with NT = N × 10−2 and p = N/500, and chose
(nt, nu) = (50, 75) for NAE-IP except for NAE-IP-BT. Fig. 5.4 shows the perfor-
mance measures versus N. Table 5.4 summarizes the results of statistical signifi-
cance testing for a difference between the best-performing method and each of the
other 11 methods. We first checked the normality of data via the one-sample two-
sided Kolmogorov-Smirnov test (P < 0.05), and then employed paired t-test with
Bonferroni multiple testing correction (P < 0.05/11) for the statistical significance
testing. The results for the cases of N = 5× 104 and 105 reveal that the MSE of the
proposed NAE-IP was equal to or better than the other methods and the MSLL was
the lowest among the methods. This indicates that NAE-IP can obtain not only bet-
ter predictive means but also smaller predictive variances. Moreover, NAE-IP took
less time than the original NPAE. This might be ascribed to difference in mem-

84

CHAPTER 5. SCALABLE GPR WITH SKETCHING

(a) NAE-IP-BT (b) NAE-IP-BT+OT (c) NAE-IP-BT+NT

(d) NAE-IP-AT (e) NAE-IP-NT

Figure 5.3: Computing time versus the number nt of test points.

ory access patterns. Especially for NAE-IP-BT, NAE-IP-AT, and NAE-IP-NT, the
computing time was shorter than QBCM. Note that we omitted the results of PoE,
gPoE, BCM, and rBCM from Figs. 5.4 because the difference between those and
the other methods was significant and those showed the comparable computing
time with GRBCM. Figures 5.5 and 5.6 show examples with the predictive means
and 95% confidence intervals in the case of N = 104, nt = 20, and nu = 30 except
for NAE-IP-BT.

5.4.3 Real data

For SARCOS and POL datasets, the training data were divided respectively
by constrained k-means (Bradley et al., 2000), which can avoid generating weak
sub-models by setting the minimum size of clusters. We have set the minimum
size to 300 for SARCOS dataset and 200 for POL dataset. For KIN8NM dataset,
the training data were divided by k-means. The Matérn-5/2 function (5.2.3) was
employed as the covariance function of GP. For NAE-IP-BT+NT and NAE-IP-
NT, we employed the optimization of each expert’s non-test points by Hensman
et al. (2013) under fully independent training conditional assumption (Snelson and
Ghahramani, 2005; Quiñonero-Candela and Rasmussen, 2005). We used the as-
sumption only in the optimization of inducing points, and not in the predictions.
The mini-batch size and the number of epochs were set to 100 and 10, respec-
tively. It should be noted that the computational complexity of the optimization is
O((n(i)

u)3), so that we can ignore the complexity as long as we set n(i)
u to be smaller

85

CHAPTER 5. SCALABLE GPR WITH SKETCHING

(a) MSE (b) MSLL

(c) Computing time

Figure 5.4: Performance measures versus the number N of training data.

than n(i).
We compare the predictive performance of NAE-IP with that of the conven-

tional methods in 10 trials by using the real datasets. We set (p, nt) = (8, 20) for
KIN8NM dataset, (72, 20) for SARCOS dataset, and (25, 50) for POL dataset. The
dimension nu for NAE-IP except for NAE-IP-BT was set to nu = 1.5×nt. Table 5.5
summarizes the performance measures of the aggregation methods and the re-
sults of statistical significance testing for a difference between the best-performing
method and each of the other 11 methods (Wilcoxon signed rank test with Bonfer-
roni multiple testing correction, P < 0.05). For KIN8NM and POL, the extension
of sketching dimensions in NAE-IP-BT+NT or NAE-IP-BT+OT improved the per-
formance compared with that of NAE-IP-BT, and those methods achieved better
performance than the other methods. On the other hand, for SARCOS, the perfor-
mance of the conventional methods was the best. The fact that the performance
of NAE-IP-AT and NAE-IP-NT was worse might reflect the lack of consistency of
these methods under the setting of the dimension nu.

86

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Table 5.4: Significance of differences in performance. The methods with % mean
that performance of the methods is the best. The results with † mean that differ-
ences between each of those and the method with % are statistically significant
(paired t-test with Bonferroni multiple testing correction, P < 0.05/11). The re-
sults with ◦ mean that the null hypothesis is not rejected.

N = 104 N = 5 × 104 N = 105

Method MSE MSLL MSE MSLL MSE MSLL
PoE † † † † † †
gPoE † † † † † †
BCM † † † † † †
rBCM † † † † † †

GRBCM ◦ † † † ◦ †
QBCM ◦ ◦ ◦ † % †
NPAE ◦ ◦ ◦ † ◦ †

NAE-IP-BT % % ◦ ◦ ◦ ◦
NAE-IP-BT+OT ◦ ◦ ◦ ◦ ◦ ◦
NAE-IP-BT+NT ◦ ◦ ◦ ◦ ◦ %

NAE-IP-AT ◦ ◦ ◦ ◦ ◦ ◦
NAE-IP-NT ◦ ◦ % % ◦ ◦

5.5 Conclusion
In this part, we have introduced the idea of linear sketching into approximate

Gaussian process regression and have proposed NAE-IP with 5 options for induc-
ing points. The options NAE-IP-BT, NAE-IP-BR+OT, and NAE-IP-BT+NT in-
clude test points as inducing points and inherit consistency at the cost of higher
computational complexity. On the other hand, NAE-IP-AT and NAE-IP-NT do not
have consistency but yield a significant reduction of the computational complex-
ity. Numerical experiments using synthetic and real datasets were conducted. The
experimental results show that the proposed method achieved not only the lowest
predictive error but also less computing time than the conventional NPAE. Future
work includes optimization of a block-structured sketching matrix A.

87

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Table 5.5: Results of the aggregation methods on KIN8NM, SARCOS, and POL
datasets. The methods with % mean that performance of the methods is the best.
The unmarked results mean that differences between each of those and the method
with % are statistically significant (Wilcoxon signed rank test with Bonferroni mul-
tiple testing correction, P < 0.05/11). The results with ◦ mean that the null hy-
pothesis is not rejected.

KIN8NM SARCOS POL
Method MSE MSLL MSE MSLL MSE MSLL

PoE 0.00799 −0.0635 27.1 10.4 116. 11.2
gPoE 0.00799 −0.933 27.1 3.18 116. 3.64
BCM 0.00731 −0.393 3.82 2.73 52.5 3.55
rBCM 0.00625 −0.301 2.24 2.86 22.1 3.19

GRBCM 0.00595 −1.15 1.51 1.62% 19.5 2.67
QBCM 0.00574 −1.16 1.73 1.73 15.2 2.58
NPAE 0.00540 −1.19 1.42% 1.68 13.0 2.57

NAE-IP-BT 0.00532◦ −1.20◦ 1.44 1.68 12.3 2.56
NAE-IP-BT+OT 0.00530% −1.20% 1.44 1.68 12.2◦ 2.55◦
NAE-IP-BT+NT 0.00531◦ −1.20 1.44 1.68 12.1% 2.55%

NAE-IP-AT 0.0178 −0.650 34.4 2.90 54.0 3.27
NAE-IP-NT 0.0141 −0.756 30.2 2.71 26.7 2.85

88

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Figure 5.5: Examples: Predictive distribution of NAE-IP with the means and 95%
confidence intervals in case of N = 104, nt = 20. The dimension of NAE-IP
except for NAE-IP-BT is nu = 1.5 × nt = 30. The outside of vertical lines shows
extrapolation.

89

CHAPTER 5. SCALABLE GPR WITH SKETCHING

Figure 5.6: Examples: Predictive distribution of conventional aggregation methods
with the means and 95% confidence intervals in case of N = 104. The outside of
vertical lines shows extrapolation.

90

Part III

Conclusion and Future Directions

91

6: Conclusion
6.1 Summary

In this thesis, we have studied how to enhance performance of decentralized
algorithms derived by approximate divisions of corresponding centralized process-
ing. Specifically, we have coped with two scalable estimation problems via de-
centralized processing, whose subjects have been introduced in Chapter 1, namely,
in-network adaptive least-mean-square (LMS) filter and Gaussian process regres-
sion (GPR). The former’s target is tracking an unknown deterministic vector by us-
ing the measurements at nodes in the network obtained from the linear regression
model. Diffusion LMS (D-LMS) is the fully distributed LMS algorithm in such
networks that enhances scalability with respect to network size. The latter adopts a
nonlinear regression model, so that it achieves more flexible estimation. However,
it requires high computational complexity, and therefore aggregation methods have
been proposed as approximation methods of GPR on the basis of partial decentral-
ization.

In Part I, we have aimed to improve convergence performance of the fully dis-
tributed D-LMS and its sparsity-aware extension, sparse diffusion LMS (SD-LMS),
by focusing on ways of cooperation among nodes that compensate for the perfor-
mance deterioration caused by approximate divisions of the centralized problems.
The cooperation method in both D-LMS and SD-LMS can be regarded as an ex-
ample of average consensus protocol but the protocol is known to require a lot of
iterations, especially in large networks. We have thus employed another method for
the cooperation based on message propagation, i.e., consensus propagation (CP),
which can be categorized into two schemes, exact CP and loopy CP. We have pro-
posed a novel fully distributed LMS, CP-LMS, by applying exact CP, although the
algorithm requires extraction of tree structure of the original network to achieve
fast convergence. We have also proposed Loopy CP-LMS (LCP-LMS) by apply-
ing loopy CP to D-LMS, which can eliminate the extraction of tree structure but
the required number of iteration for convergence has not been known. The special
case where the iteration of loopy CP is limited to one has improved interpretability
of the proposed algorithm and enabled optimization of constants involved in loopy
CP. The resulting algorithm has become novel combination weights of D-LMS
named (static) CP rule. We have optimized the constants in terms of the steady-
state network mean-squared-error (MSD) and derived an adaptive implementation
named adaptive CP rule. We have also applied the special case to SD-LMS and

92

CHAPTER 6. CONCLUSION

derived two kinds of adaptive combination weights under some assumptions. One
is the adaptive CP rule that is the same as for D-LMS and another is adaptive CP
with Optimization (CPO) rule. The theoretical performance has been analyzed via
the framework for D-LMS and SD-LMS. Efficiency of the proposed methods has
been shown via computer simulations.

In Part II, we have aimed to improve performance of the aggregation meth-
ods where covariance information of data is lost by the decentralization. Among
the aggregation methods proposed so far, we have focused on one of them, nested
pointwise aggregation of experts (NPAE), that uses the richest covariance infor-
mation among them and generalized the prediction process via sketching. The
proposed generalization has yielded a more flexible approximation of GPR than
NPAE, which has been named nested aggregation of experts using inducing points
(NAE-IP). The proposed NAE-IP can control the computational complexity and
the performance of the algorithm by choices of the inducing points. Simulation
results on synthetic and real data have shown that NAE-IP can achieve lower com-
plexity than the original NPAE and better predictive error than the conventional
methods.

This thesis is no more than having coped with the two specific problems for
in-network processing and for general data processing. However, results in the the-
sis have shown that the improvements focusing on factors that affect performance
degradation caused by decentralization enhance performance with a little increase
or even decrease in complexity. As for other decentralization problems, the im-
provements are expected to be realized while maintaining scalability by properly
identifying the parts that can affect the performance degradation and reconsidering
the parts in a different context.

6.2 Future Directions
The decentralized processing that the thesis have focused on is expected to

further improve the performance and to extend the range of applicable applications.
This section points out the future directions, thus concluding the thesis.

Reconsideration of cost function in D-LMS

In Part I, we have derived proposed algorithms by applying CP to the combina-
tion step of D-LMS. This was motivated by the fact that the combination step has a
tight relation to average consensus. One can also reconsider minimizing estimation
error with a constraint for consensus among nodes. If one chose Gaussian belief
propagation as a distributed solution of the problem, one may derive another dis-
tributed algorithm for the same problem settings as D-LMS. Note that it requires

93

CHAPTER 6. CONCLUSION

taking time-dependent potentials into accounts. Moreover, it may be possible to
obtain interpretation of the constants βk involved in the proposed methods in rela-
tion to weights for controlling balance between the error and the constraint.

Analysis of convergence time using non-backtracking operator

For the proposed method in Part I, we have optimized parameters in the fully
distributed LMS by minimizing cost function in terms of steady-state error. On
the other hand, in order to explicitly accelerate the convergence, another approach
is conceivable that minimizes the convergence time of the algorithm. The con-
vergence time for algorithms on the basis of average consensus protocol has been
analyzed by using spectra of adjacency matrices but the analysis for CP has not had
much progress. As discussed at the end of Sect. 2.2.3, we expect that algorithms on
the basis of CP can be represented by the non-backtracking operator (Coja-Oghlan
et al., 2009; Decelle et al., 2011; Krzakala et al., 2013) and that the spectrum of
the operator (Bordenave et al., 2015) may enable the analysis of the convergence
time. It should be a next challenge to solve an optimization problem in terms of
the convergence time represented by using the spectrum of the non-backtracking
operator.

Acceleration of iterative decentralized algorithms by deep unfolding

For iterative algorithms such as the centralized LMS filter, the required number
of iterations for the convergence is also affected by some parameters such as step-
size, the control of which largely affects the performance of the algorithms. Espe-
cially for the decentralized cases such as D-LMS, the available information is less
than that for the centralized cases and the required number of iterations is generally
large, so that the acceleration is an important matter. The control of the parameters
of the iterative algorithms has been achieved by the aid of deep learning, which
is known as deep unfolding (Gregor and LeCun, 2010; Balatsoukas-Stimming and
Studer, 2019). Its application to decentralized algorithms also gathers attention re-
cently (Kishida et al., 2020). Future directions include the extension of the deep
unfolding approach to decentralized adaptive filters or online learning, where the
parameters are needed to be learned in a decentralized manner as well.

Supervised optimization of sketching matrix

In Part II, we have introduced approximation methods for full GPR. Most of the
aggregation methods divide covariance information K(X ,X) on the basis of the
training data X and many of sparse GP methods lower the dimension of K(X ,X)
on the basis of inducing points. These can be interpreted as unsupervised learning

94

CHAPTER 6. CONCLUSION

that does not take the information of test data X∗ into consideration. However,
Proposition 2 has shown that optimal sketching matrix depends not only on the
covariance K(X ,X) of the training data but also on the covariance K(X ,X∗)
related to the test data. This suggests that both training and test data should be
incorporated into the design of approximation methods. Therefore, it seems bene-
ficial to utilize the test data in optimization of a block-structured sketching matrix.

Fully distributed online GPR

Fully distributed GPR is also in demand from not only computational complex-
ity but also application point of view, for example, in environmental monitoring by
multiple unmanned aerial vehicles (Gu and Hu, 2012; Choi et al., 2014; Tiwari
et al., 2018). The temporal variation of the phenomena should be also taken into
account (Garg et al., 2012). In addition, the algorithm that can track the phenomena
is desirable, namely, online GPR (Nguyen-Tuong et al., 2008; Hoang et al., 2019).
The theoretical property must be discussed as well as to manage both scalability
and predictive performance.

95

Bibliography
Ashton SRF, Sollich P (2012) Learning curves for multi-task Gaussian process

regression. In: Advances in Neural Information Processing Systems, pp 1393–
1428

Bachoc F, Durrande N, Rullière D, Chevalier C (2017) Some properties of nested
Kriging predictors. arXiv preprint arxiv:1707.05708

Bachoc F, Durrande N, Rullière D, Chevalier C (2021) Properties and comparison
of some Kriging sub-model aggregation. arXiv preprint arxiv:1707.05708v2

Balatsoukas-Stimming A, Studer C (2019) Deep unfolding for communications
systems: A survey and some new directions. In: 2019 IEEE International
Workshop on Signal Processing Systems (SiPS), pp 266–271, DOI 10.1109/
SiPS47522.2019.9020494

Bauer M, van der Wilk M, Rasmussen CE (2016) Understanding probabilistic
sparse gaussian process approximations. In: Advances in Neural Information
Processing Systems, pp 1533–1541

Bi S, Zhang R, Ding Z, Cui S (2015) Wireless communications in the era of big
data. IEEE Communications Magazine 53(10):190–199, DOI 10.1109/MCOM.
2015.7295483

Blondel VD, Hendrickx JM, Olshevsky A, Tsitsiklis JN (2005) Convergence in
multiagent coordination, consensus, and flocking. In: Proceedings of the 44th
IEEE Conference on Decision and Control, Seville, Spain, pp 2996–3000, DOI
10.1109/CDC.2005.1582620

Bordenave C, Lelarge M, Massoulié L (2015) Non-backtracking spectrum of ran-
dom graphs: Community detection and non-regular ramanujan graphs. In: 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, pp 1347–
1357, DOI 10.1109/FOCS.2015.86

Bradley PS, Bennett KP, Demiriz A (2000) Constrained k-means clustering. Tech.
rep., MSR-TR-2000-65, Microsoft Research, Redmond, WA

Bui M, Butelle F, Lavault C (2004) A distributed algorithm for constructing a min-
imum diameter spanning tree. Journal of Parallel and Distributed Computing
64(5):571–577, DOI 10.1016/j.jpdc.2004.03.009

96

BIBLIOGRAPHY

Bui TD, Turner RE (2014) Tree-structured Gaussian process approximations. In:
Advances in Neural Information Processing Systems, pp 2213–2221

Calandriello D, Carratino L, Lazaric A, Valko M, Rosasco L (2019) Gaussian pro-
cess optimization with adaptive sketching: Scalable and no regret. In: Beygelz-
imer A, Hsu D (eds) Proceedings of the Thirty-Second Conference on Learning
Theory, PMLR, Proceedings of Machine Learning Research, vol 99, pp 533–557

Candes EJ, Wakin MB, Boyd SP (2008) Enhancing sparsity by reweighted &1 min-
imization. Journal of Fourier Analysis and Applications 14(5):877–905, DOI
10.1007/s00041-008-9045-x

Cao Y, Fleet DJ (2014) Generalized product of experts for automatic and principled
fusion of Gaussian process predictions. arXiv preprint arxiv:1410.7827

Cattivelli FS, Sayed AH (2010) Diffusion LMS strategies for distributed estima-
tion. IEEE Transactions on Signal Processing 58(3):1035–1048, DOI 10.1109/
TSP.2009.2033729

Cattivelli FS, Sayed AH (2011) Analysis of spatial and incremental LMS pro-
cessing for distributed estimation. IEEE Transactions on Signal Processing
59(4):1465–1480, DOI 10.1109/TSP.2010.2100386

Cattivelli FS, Lopes CG, Sayed AH (2008) Diffusion recursive least-squares for
distributed estimation over adaptive networks. IEEE Transactions on Signal Pro-
cessing 56(5):1865–1877, DOI 10.1109/TSP.2007.913164

Chalupka K, Williams CK, Murray I (2013) A framework for evaluating approxi-
mation methods for Gaussian process regression. Journal of Machine Learning
Research 14:330–350

Choi S, Jadaliha M, Choi J, Oh S (2014) Distributed Gaussian Process Regression
Under Localization Uncertainty. Journal of Dynamic Systems, Measurement,
and Control 137(3), DOI 10.1115/1.4028148, 031007

Coja-Oghlan A, Mossel E, Vilenchik D (2009) A spectral approach to analysing
belief propagation for 3-colouring. Combinatorics, Probability and Computing
18(6):881–912, DOI 10.1017/S096354830900981X

Cressie NAC (1993) Statistics for Spatial Data, Revised Edition. Wiley, New York,
NY, DOI 10.1002/9781119115151

Dean J, Ghemawat S (2004) Mapreduce: Simplified data processing on large
clusters. In: Proceedings of the 6th Conference on Symposium on Operating

97

BIBLIOGRAPHY

Systems Design & Implementation - Volume 6, USENIX Association, USA,
OSDI’04, pp 137–149

Decelle A, Krzakala F, Moore C, Zdeborová L (2011) Inference and phase transi-
tions in the detection of modules in sparse networks. Phys Rev Lett 107:065701,
DOI 10.1103/PhysRevLett.107.065701

Deisenroth MP, Ng JW (2015) Distributed Gaussian processes. In: Proceedings of
the 32th International Conference on Machine Learning, PMLR, pp 1481–1490

Deisenroth MP, Fox D, Rasmussen CE (2015) Gaussian processes for data-efficient
learning in robotics and control. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 37(2):408–423, DOI 10.1109/TPAMI.2013.218

Dimakis AD, Sarwate AD, Wainwright MJ (2008) Geographic gossip: Effi-
cient averaging for sensor networks. IEEE Transactions on Signal Processing
56(3):1205–1216, DOI 10.1109/TSP.2007.908946

Donoho D (2006) Compressed sensing. IEEE Transactions on Information Theory
52(4):1289–1306, DOI 10.1109/TIT.2006.871582

Duarte M, Sarvotham S, Baron D, Wakin M, Baraniuk R (2005) Distributed
compressed sensing of jointly sparse signals. In: Conference Record of the
Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005.,
pp 1537–1541, DOI 10.1109/ACSSC.2005.1600024

Farhang-Boroujeny B (2013) Adaptive Filters: Theory and Applications, 2nd ed.
John Wiley & Sons, New York, NY

Furrer R, Genton MG, Nychka D (2006) Covariance tapering for interpolation
of large spatial datasets. Journal of Computational and Graphical Statistics
15(3):502–523, DOI 10.1198/106186006X132178

Garg S, Singh A, Ramos F (2012) Learning non-stationary space-time models for
environmental monitoring. In: Twenty-Sixth AAAI Conference on Artificial In-
telligence

Gneiting T (2002) Compactly supported correlation functions. Journal of Multi-
variate Analysis 83(2):493–508, DOI 10.1006/jmva.2001.2056

Gregor K, LeCun Y (2010) Learning fast approximations of sparse coding. In:
Proceedings of the 27th International Conference on International Conference
on Machine Learning, pp 399–406

98

BIBLIOGRAPHY

Gu D, Hu H (2012) Spatial Gaussian process regression with mobile sen-
sor networks. IEEE Transactions on Neural Networks and Learning Systems
23(8):1279–1290, DOI 10.1109/TNNLS.2012.2200694

Gupta A, Jha RK (2015) A survey of 5G network: Architecture and emerging
technologies. IEEE Access 3:1206–1232, DOI 10.1109/ACCESS.2015.2461602

Hara S, Yomo H, Popovski P, Hayashi K (2006) New paradigms in wireless
communication systems. Wireless Personal Communications 37(3–4):233–241,
DOI 10.1007/s11277-006-9036-7

Harrane IEK, Flamary R, Richard C (2019) On reducing the communication cost
of the diffusion LMS algorithm. IEEE Trans Signal Inf Process Over Netw
5(1):100–112, DOI 10.1109/TSIPN.2018.2863218

Hayakawa R, Nakai A, Hayashi K (2018) Distributed approximate message pass-
ing with summation propagation. In: 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp 4104–4108, DOI
10.1109/ICASSP.2018.8462333

He J, Qi J, Ramamohanarao K (2019) Query-aware Bayesian committee machine
for scalable Gaussian process regression. In: Proceedings of the 2019 SIAM
International Conference on Data Mining, pp 208–216

Hensman J, Fusi N, Lawrence ND (2013) Gaussian processes for big data. In:
Proceedings of the 29th Conference on Uncertainly in Artificial Intelligence, pp
282–290

Herzen J, Westphal C, Thiran P (2011) Scalable routing easy as PIE: A practical
isometric embedding protocol. In: 2011 19th IEEE International Conference on
Network Protocols, pp 49–58, DOI 10.1109/ICNP.2011.6089081

Hinton GE (2002) Training products of experts by minimizing con-
trastive divergence. Neural Computation 14(8):1771–1800, DOI
10.1162/089976602760128018

Hoang TN, Hoang QM, Low KH, How J (2019) Collective online learning of gaus-
sian processes in massive multi-agent systems. Proceedings of the AAAI Con-
ference on Artificial Intelligence 33(01):7850–7857, DOI 10.1609/aaai.v33i01.
33017850

Hu W, Zhan F (2016) Sparse diffusion apa for distributed estimation. In: 2016
IEEE 13th International Conference on Signal Processing (ICSP), pp 253–256,
DOI 10.1109/ICSP.2016.7877835

99

BIBLIOGRAPHY

Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analyt-
ics. Journal of Parallel and Distributed Computing 74(7):2561–2573, DOI
10.1016/j.jpdc.2014.01.003, special Issue on Perspectives on Parallel and Dis-
tributed Processing

Keerthi SS, Chu W (2005) A matching pursuit approach to sparse Gaussian pro-
cess regression. In: Proceedings of the 18th International Conference on Neural
Information Processing Systems, MIT Press, Cambridge, MA, USA, NIPS’05,
pp 643–650

Kishida M, Ogura M, Yoshida Y, Wadayama T (2020) Deep learning-based aver-
age consensus. IEEE Access 8:142404–142412, DOI 10.1109/ACCESS.2020.
3014148

Konečnỳ J, McMahan HB, Ramage D, Richtárik P (2016) Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:161002527

Kong JT, Lee JW, Kim SE, Song WJ (2017) Diffusion LMS algorithms with multi
combination for distributed estimation: Formulation and performance analysis.
Digital Signal Processing 71:117–130, DOI 10.1016/j.dsp.2017.09.004

Krzakala F, Moore C, Mossel E, Neeman J, Sly A, Zdeborová L, Zhang P (2013)
Spectral redemption in clustering sparse networks. Proceedings of the National
Academy of Sciences 110(52):20935–20940, DOI 10.1073/pnas.1312486110

Lawrence N (2005) Probabilistic non-linear principal component analysis with
Gaussian process latent variable models. Journal of Machine Learning Research
6:1783–1816

Lawrence N, Seeger M, Herbrich R (2003) Fast sparse gaussian process methods:
The informative vector machine. In: Proceedings of the 16th Annual Conference
on Neural Information Processing Systems, pp 609–616

Li H, Ota K, Dong M (2018) Learning iot in edge: Deep learning for the internet of
things with edge computing. IEEE Network 32(1):96–101, DOI 10.1109/MNET.
2018.1700202

Liberty E (2013) Simple and deterministic matrix sketching. In: Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp 581–588

Liu H, Cai J, Wang Y, Ong YS (2018) Generalized robust Bayesian committee
machine for large-scale Gaussian process regression. In: Proceedings of the 35th
International Conference on Machine Learning, PMLR, pp 3131–3140

100

BIBLIOGRAPHY

Liu H, Ong YS, Shen X, Cai J (2020a) When Gaussian process meets big data: A
review of scalable GPs. IEEE Transactions on Neural Networks and Learning
Systems 31(11):4405–4423, DOI 10.1109/TNNLS.2019.2957109

Liu Y, Bi S, Shi Z, Hanzo L (2020b) When machine learning meets big data:
A wireless communication perspective. IEEE Vehicular Technology Magazine
15(1):63–72, DOI 10.1109/MVT.2019.2953857

Lopes CG, Sayed AH (2007) Incremental adaptive strategies over distributed
networks. IEEE Transactions on Signal Processing 55(8):4064–4077, DOI
10.1109/TSP.2007.896034

Lopes CG, Sayed AH (2008) Diffusion least-mean-squares over adaptive networks:
Formulation and performance analysis. IEEE Transactions on Signal Processing
56(7):3122–3136, DOI 10.1109/TSP.2008.917383

Lorenzo P, Sayed AH (2013) Sparse distributed learning based on diffusion
adaptation. IEEE Transactions on Signal Processing 61(6):1419–1433, DOI
10.1109/TSP.2012.2232663

Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein J (2010)
Graphlab: A new framework for parallel machine learning. In: Proceed-
ings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence
(UAI2010), pp 340–349

Mandic DP, Kanna S, Constantinides AG (2015) On the intrinsic relationship be-
tween the least mean square and Kalman filters [lecture notes]. IEEE Signal
Processing Magazine 32(6):117–122, DOI 10.1109/MSP.2015.2461733

Melkumyan A, Ramos F (2009) A sparse covariance function for exact gaussian
process inference in large datasets. In: Proceedings of the 21st International
Jont Conference on Artifical Intelligence, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, IJCAI’09, pp 1936–1942

Moallemi CC, Roy BV (2006) Consensus propagation. IEEE Transactions on In-
formation Theory 52(11):4753–4766, DOI 10.1109/TIT.2006.883539

Nakai A, Hayashi K (2017) Diffusion LMS using consensus propagation. In: 2017
Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), pp 943–948, DOI 10.1109/APSIPA.2017.8282158

Nakai A, Hayashi K (2018) An adaptive combination rule for diffusion lms based
on consensus propagation. In: 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp 3839–3843, DOI 10.1109/
ICASSP.2018.8462277

101

BIBLIOGRAPHY

Nakai-Kasai A, Hayashi K (2019) Diffusion LMS based on message passing algo-
rithm. IEEE Access 7:47022–47033, DOI 10.1109/ACCESS.2019.2909775

Nakai-Kasai A, Hayashi K (2020) Optimal combination weight for sparse diffu-
sion least-mean-square based on consensus propagation. In: 2020 Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), IEEE, pp 228–235

Nakai-Kasai A, Hayashi K (2021) An acceleration method of sparse diffusion LMS
based on message propagation. IEICE Transactions on Communications E104-
B(2):141–148, DOI 10.1587/transcom.2020EBT0001

Nakai-Kasai A, Tanaka T (2021) Nested aggregation of experts using inducing
points for approximated Gaussian process regression. Machine Learning (ac-
cepted for publication)

Nassif R, Richard C, Ferrari A, Sayed AH (2017) Diffusion LMS for multitask
problems with local linear equality constraints. IEEE Transactions on Signal
Processing 65(19):4979–4993, DOI 10.1109/TSP.2017.2721930

Nguyen-Tuong D, Peters J, Seeger M (2008) Local gaussian process regression
for real time online model learning and control. In: Proceedings of the 21st
International Conference on Neural Information Processing Systems, pp 1193–
1200

Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in net-
worked multi-agent systems. Proceedings of the IEEE 95(1):215–233, DOI
10.1109/JPROC.2006.887293

Pearl J (1988) Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann
Publishers Inc.

Quiñonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approx-
imate Gaussian process regression. Journal of Machine Learning Research
6:1939–1959

Rasmussen CE, Williams CKI (2006) Gaussian Process for Machine Learning. The
MIT Press, Cambridge, MA

Rullière D, Durrande N, Bachoc F, Chevalier C (2018) Nested Kriging predic-
tions for datasets with a large number of observations. Statistics and Computing
28(4):849–867, DOI 10.1007/s11222-017-9766-2

102

BIBLIOGRAPHY

Savazzi S, Nicoli M, Rampa V (2020) Federated learning with cooperating devices:
A consensus approach for massive iot networks. IEEE Internet of Things Journal
7(5):4641–4654, DOI 10.1109/JIOT.2020.2964162

Sayed AH (2011) Adaptive filters. John Wiley & Sons

Sayed AH (2014) Chapter 9 - diffusion adaptation over networks*the work was
supported in part by nsf grants eecs-060126, eecs-0725441, ccf-0942936, and
ccf-1011918*. In: Zoubir AM, Viberg M, Chellappa R, Theodoridis S (eds)
Academic Press Library in Signal Processing: Volume 3, Academic Press
Library in Signal Processing, vol 3, Elsevier, pp 323–453, DOI 10.1016/
B978-0-12-411597-2.00009-6

Sayed AH, Lopes CG (2007) Adaptive processing over distributed networks. IE-
ICE TRANSACTIONS on Fundamentals of Electronics, Communications and
Computer Sciences E90-A(8):1504–1510, DOI 10.1093/ietfec/e90-a.8.1504

Sayed AH, Tu S, Chen J, Zhao X, Tpwfic ZJ (2013) Diffusion strategies for adapta-
tion and learning over networks. IEEE Signal Processing Magazine 30(3):155–
171, DOI 10.1109/MSP.2012.2231991

Scherber DS, Papadopoulos HC (2004) Locally constructed algorithms for dis-
tributed computations in ad-hoc networks. In: Proceedings of the 3rd Interna-
tional Symposium on Information Processing in Sensor Networks, Association
for Computing Machinery, New York, NY, USA, IPSN ’04, pp 11–19, DOI
10.1145/984622.984625

Schizas ID, Mateos G, Giannakis GB (2009) Distributed LMS for consensus-
based in-network adaptive processing. IEEE Transactions on Signal Processing
57(6):2365–2382, DOI 10.1109/TSP.2009.2016226

Shalev-Shwartz S (2012) Online learning and online convex optimization. Founda-
tions and Trends in Machine Learning 4(2):107–194, DOI 10.1561/2200000018

Snelson E, Ghahramani Z (2005) Sparse Gaussian processes using pseudo-inputs.
In: Advances in Neural Information Processing Systems, pp 1257–1264

Stein ML (2012) Interpolation of Spatial Data: Some Theory for Kriging. Springer
Science & Business Media, New York, NY, DOI 10.1007/978-1-4612-1494-6

Takahashi N, Yamada I, Sayed AH (2010) Diffusion least-mean squares with adap-
tive combiners: Formulation and performance analysis. IEEE Transactions on
Signal Processing 58(9):4795–4810, DOI 10.1109/TSP.2010.2051429

103

BIBLIOGRAPHY

Tavassolipour M, Motahari SA, Shalmani MTM (2020) Learning of Gaussian
processes in distributed and communication limited systems. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 42(8):1928–1941, DOI
10.1109/TPAMI.2019.2906207

Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological) 58(1):267–288, DOI
10.1111/j.2517-6161.1996.tb02080.x

Tiwari K, Jeong S, Chong NY (2018) Point-wise fusion of distributed gaus-
sian process experts (fudge) using a fully decentralized robot team operat-
ing in communication-devoid environment. IEEE Transactions on Robotics
34(3):820–828, DOI 10.1109/TRO.2018.2794535

Tresp V (2000) A Bayesian committee machine. Neural Computation
12(11):2719–2741, DOI 10.1162/089976600300014908

Tu SY, Sayed AH (2011) Optimal combination rules for adaptation and learning
over networks. In: 2011 4th IEEE International Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, Puerto
Rico, pp 317–320, DOI 10.1109/CAMSAP.2011.6136014

van der Vaart A, van Zanten H (2011) Information rates of nonparametric Gaussian
process methods. Journal of Machine Learning Research 12:2095–2119

Vanschoren J, van Rijn JN, Bischl B, Torgo L (2013) Openml: Networked sci-
ence in machine learning. SIGKDD Explorations 15(2):49–60, DOI 10.1145/
2641190.2641198

Wang S, Dekorsy A (2019) Distributed consensus-based extended Kalman filter-
ing: A Bayesian perspective. In: 2019 27th European Signal Processing Confer-
ence (EUSIPCO), pp 1–5, DOI 10.23919/EUSIPCO.2019.8902553

Wee WM, Yamada I (2013) A proximal splitting approach to regularized dis-
tributed adaptive estimation in diffusion networks. In: 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp 5420–5424, DOI
10.1109/ICASSP.2013.6638699

Wendland H (2004) Scattered data approximation, vol 17. Cambridge university
press

Wilson A, Nickisch H (2015) Kernel interpolation for scalable structured Gaussian
processes (KISS-GP). In: Proceedings of the 32nd International Conference on
Machine Learning, PMLR, pp 1775–1784

104

BIBLIOGRAPHY

Woodruff DP (2014) Sketching as a tool for numerical linear algebra. Foun-
dations and Trends in Theoretical Computer Science 10(1–2):1–157, DOI
10.1561/0400000060

Wu Z (1995) Compactly supported positive definite radial functions. Advances in
Computational Mathematics 4(1):283–292, DOI 10.1007/BF03177517

Xiao L, Boyd S (2004) Fast linear iterations for distributed averaging. Systems &
Control Letters 53(1):65–78, DOI 10.1016/j.sysconle.2004.02.022

Yuan C, Neubauer C (2009) Variational mixture of gaussian process experts. In:
Advances in Neural Information Processing Systems, pp 1897–1904

Zhang MM, Williamson SA (2019) Embarrassingly parallel inference for gaussian
processes. Journal of Machine Learning Research 20:1–26

Zhang Z, Xiao Y, Ma Z, Xiao M, Ding Z, Lei X, Karagiannidis GK, Fan P (2019)
6g wireless networks: Vision, requirements, architecture, and key technologies.
IEEE Vehicular Technology Magazine 14(3):28–41, DOI 10.1109/MVT.2019.
2921208

Zhao X, Sayed AH (2012) Performance limits for distributed estimation over LMS
adaptive networks. IEEE Transactions on Signal Processing 60(10):5107–5124,
DOI 10.1109/TSP.2012.2204985

Zhao X, Tu SY, Sayed AH (2012) Diffusion adaptation over networks under imper-
fect information exchange and non-stationary data. IEEE Transactions on Signal
Processing 60(7):3460–3475, DOI 10.1109/TSP.2012.2192928

105

	空白ページ

