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A B S T R A C T

Visually grounded paraphrases (VGPs) are different phrasal expressions describing the same visual concept
in an image. Previous studies treat VGP identification as a binary classification task, which ignores various
phenomena behind VGPs (i.e., different linguistic interpretation of the same visual concept) such as linguistic
paraphrases and VGPs from different aspects. In this paper, we propose semantic typology for VGPs, aiming to
elucidate the VGP phenomena and deepen the understanding about how human beings interpret vision with
language. We construct a large VGP dataset that annotates the class to which each VGP pair belongs according
to our typology. In addition, we present a classification model that fuses language and visual features for VGP
classification on our dataset. Experiments indicate that joint language and vision representation learning is
important for VGP classification. We further demonstrate that our VGP typology can boost the performance
of visually grounded textual entailment.
. Introduction

A linguistic paraphrase is a restatement of the meaning of a word,
hrase, or sentence within the context of a specific language (e.g., ‘‘a
ittle girl’’ and ‘‘a small girl’’ in Fig. 1 are paraphrases) (Bhagat and
ovy, 2013). Linguistic paraphrases have been exploited for natural

anguage understanding, and shown to be very effective for various
atural language processing (NLP) tasks, including question answer-
ng (Riezler et al., 2007), summarization (Zhou et al., 2006), ma-
hine translation (Chu and Kurohashi, 2016), text normalization (Ling
t al., 2013), textual entailment recognition (Androutsopoulos and
alakasiotis, 2010), and semantic parsing (Berant and Liang, 2014).

In contrast to linguistic paraphrases, visually grounded paraphrases
VGPs) describe the same visual concept with different phrasal expres-
ions (Chu et al., 2018). For instance, all the phrase pairs in Fig. 1
re VGPs. VGPs can generally include much broader variations of
xpressions compared to linguistic paraphrases by its definition. Given
concrete concept in an image, any expressions that can identify

he same concept can be VGPs, while linguistic paraphrases limit to
xpressions with the same linguistic meaning. Identifying VGPs has
he potential to improve vision and language tasks such as visual

∗ Corresponding author.
E-mail address: chu@i.kyoto-u.ac.jp (C. Chu).

1 A phrase in the paper is limited to a noun phrase (entity) that corresponds to an object in an image, which is the same phrase definition as in the Flickr30k
ntities dataset (Plummer et al., 2015).

2 The dataset is available at: https://github.com/felixgiov/VGP-Typology.

question answering (Wu et al., 2017; Samaran et al., 2021) and image
captioning (Vinyals et al., 2015) in a way similar to that paraphrases
have been applied to natural language processing tasks such as question
answering (Riezler et al., 2007) and machine translation (Chu and
Kurohashi, 2016).

Previous studies formulate VGP identification as a binary classifica-
tion task, which classifies a phrase1 pair into VGPs or non-VGPs (Chu
et al., 2018; Otani et al., 2019, 2020). This formulation, however,
ignores various phenomena behind VGPs due to the neglect of the fact
that we human beings interpret the same visual concept in different
ways. For instance, Fig. 1(b) ‘‘Chevrolet’’ and ‘‘chevy’’ are linguistic
paraphrases; Fig. 1(i) ‘‘competitors’’ and ‘‘a group of bicyclist’’ de-
scribe the same visual concept from different aspects. A VGP pair, by
definition, always refers to something in a given image and thus cor-
responds to a certain concrete concept; however, different expressions
may, e.g., explain some different information or emphasize certain
aspects that the concept has, as we can see in the above examples.
Treating such VGPs equally may spoil semantics enriched by different
expressions.

In this paper, we propose semantic typology of VGPs inspired by
natural language inference (Maccartney, 2009). We define five classes
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Fig. 1. Semantic VGP typology. We categorize VGPs into 5 semantic relations. Equivalence is linguistic paraphrase. In addition, we introduce forward and reverse entailment,
lternation and independence as relations for VGPs, which are not linguistic paraphrases but describing the same visual concepts.
f VGPs: equivalence, forward entailment, reverse entailment, alternation,
nd independence. Detailed analyses on the VGP dataset (Chu et al.,
018) identify that they can well describe the possible relations among
GPs. Based on our typology, we construct a large VGP typology
ataset of 25k VGP pairs via crowdsourcing with careful quality con-
rol.2 In addition, we propose a VGP classification model that uses
oth language and visual features in a fusion network. We compare
arious types of language and visual features including pretrained word
mbeddings, image/region-level visual features and joint language and
isual representations. We also try 4 different fusion methods in our
odel. Our experiments show that the joint learning of language and

isual representations are crucial for VGP classification, which also
chieves the best performance.

The creation of the semantic VGP typology will not only elucidate
he phenomena behind VGPs and deepen the understanding about how
uman beings interpret vision with language, but also open up novel
ays of utilizing VGPs for various vision and language tasks, which

equire semantic understanding. For instance, it can significantly boost
he performance of textual entailment via visual grounding (Vu et al.,
018b) which is a fundamental but very challenging natural language
nderstanding problem, enhanced by the classification of semantic
elations between the VGPs in the premise and hypothesis sentences.
xperiments conducted on the visually grounded textual entailment
VGTE) dataset V-SNLI (Vu et al., 2018b) verify the effectiveness our
GP typology for this task.. Understanding the semantic relation via
isual grounding is also crucial towards machine reading (Ding et al.,
016), which is the main challenge in the Todai robot project.3 There-
ore, we believe that this work will significantly deepen and promote
he research in both vision and language understanding.

3 https://21robot.org/index-e.html.
2

2. Related work

2.1. Linguistic paraphrase typology

For linguistic paraphrase typology, Bhagat and Hovy (2013) defined
25 classes of paraphrases based on the kinds of lexical changes within
a paraphrase pair. Vila et al. (2014) proposed a hierarchical typology
based on lexical, morphological, syntactic, and discourse changes in
paraphrases. Vila et al. (2015) annotated a paraphrase typology corpus
according to their typology (Vila et al., 2014) on the Microsoft para-
phrase corpus (MSPR) (Dolan et al., 2004). Benikova and Zesch (2017)
classified paraphrases into word-level, phrase-level, and sentence-level,
and analyzed their compositionality. Kovatchev et al. (2018) further
annotated non-paraphrases and negations on the MSPR. For corpus-
generated paraphrases, Pavlick et al. (2015) automatically added se-
mantic entailment relations to the paraphrase database (PPDB) (Gan-
itkevitch et al., 2013). Our typology is for VGPs (Chu et al., 2018),
which has not been considered in these studies. We adapt the semantic
relations as the classes of our typology, which also differs from most
linguistic paraphrase typology.

2.2. Visual semantic relations

Visual semantic relations focus on understanding the relationship
between two objects, or all the objects represented as a scene graph
of an image (Liu et al., 2019). The relationships can be classified
into complete similarity, type similarity, hypernym, hyponym, parallel,
and unknown (Hong et al., 2015), which are similar to our typology.
However, we target on the typology of VGPs describing the same object,
which is conceptually different from visual semantic relations.

2.3. Visual grounding

Visual grounding, which aims to find a specific region in an image
given a query regarding to an entity, is a fundamental task for enhanc-
ing the performance of various joint vision and language tasks (Plum-
mer et al., 2015). Because of the importance of visual grounding, many

https://21robot.org/index-e.html
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research efforts have been dedicated to improve its accuracy (Plummer
et al., 2015; Wang et al., 2016b; Fukui et al., 2016; Rohrbach et al.,
2016; Wang et al., 2016a; Yeh et al., 2017; Plummer et al., 2017; Chen
et al., 2017; Yang et al., 2020b,a; Yu et al., 2018; Dong et al., 2021).
VGPs are different expressions of queries that can be grounded to the
same entity in an image. We study the semantic typology of VGPs in
this paper.

2.4. Visual captioning

Visual captioning aims for interpreting vision with language. Visual
captioning has been studied for both images (Hossain et al., 2019)
and videos (Aafaq et al., 2020). Image captioning works on either
generating a caption for a single image or dense captions for all objects
in a single image (Hossain et al., 2019). Video captioning works on
either generating a caption for a single video or dense captions for
all events in a single video (Aafaq et al., 2020). Both previous image
and video captioning work has focused on generating more accurate,
diverse, and discriminative captions. However, none previous visual
captioning work has studied VGPs and the phenomena behind VGPs.

3. The semantic VGP typology

In natural language inference, seven basic semantic relations be-
tween two phrases X and Y have been defined, i.e., equivalence, forward
entailment, reverse entailment, negation, alternation, cover, and indepen-
dence (Maccartney, 2009). Detailed analyses on the VGP dataset (Chu
et al., 2018) identify the five semantic relations of equivalence, forward
and reverse entailment, alternation, and independence that can well de-
scribe the possible relations among VGPs. The negation (that describes
two opposite concepts) and cover (that covers all concepts in the world
by given two phrases) relations are excluded from our VGP typology
definition: this is because they are almost equivalent to alternation
and independence, respectively. The only difference is that, with the
former two relationships, concepts described by X or Y should cover
all concepts in the world, which does not apply to the later two
relations. Because we focus on VGPs that describe the same concrete
visual concept, whether X and Y cover all the concepts in the world is
not relevant. Note that forward and reverse entailment, alternation, and
independence are not semantic relations for linguistic paraphrases, but
on the other hand, we observe many VGPs belong to those relations.
This is because VGPs are phrases describing the same visual concepts,
but they are not necessarily linguistic paraphrases.

Fig. 1 shows some examples of our semantic VGP typology. Fig. 1(a)
and (b) are equivalence, which also are linguistic paraphrases; Fig. 1(c)
and (d) are forward entailment VGPs where the first phrase contains

ore fine object attribute description of the same concept compared to
he second phrase. Fig. 1(e) and (f) are reverse entailment VGPs where
he first phrase contains more general object attribute description of
he same concept compared to the second phrase. Fig. 1(g) and (h) use
lternate phrases to describe the same visual concept, which may come
rom the difference in human recognition. The phrases in Fig. 1(i) and
j) are linguistically independent but become VGPs upon grounding. We
elieve that alternation and independence are new semantic phenomena
pecific to VGPs that cannot be explained only with language, and
isual context is required to understand the relations between the
hrases. Next, we detail the definition of the five VGP classes.

.1. Alternation

The alternation class applies when phrase X and phrase Y are mutu-
lly exclusive: the same visual concept cannot have X and Y being true
t the same time. For example, some VGPs in alternation may describe
he same visual concept with gender difference (e.g., a man/a woman)
r age-related difference (e.g., baby/child).
3

Table 1
Pair of stems used for detecting alternation
VGPs.
Stem 1 Stem 2

Man/men Boy
Baby Toddler
Woman/women Girl
Child Toddler/baby

3.2. Forward and reverse entailment

The entailment relationship is categorized into forward entailment
and reverse entailment. Forward entailment relationship is present when
phrase X is a subtype of phrase Y (e.g., a rock climb wall/a rock).
Reverse entailment is to be given when Y is a subtype of X (e.g., a stuffed
animal/her teddy bear). We treat them as different classes to store the
entailment direction.

3.3. Equivalence

The equivalence relationship is present when phrases X and Y en-
tail each other in both directions. In particular, they are linguistic
paraphrases, such as different expressions with the same meaning or
abbreviation of the other phrase (e.g., Chevrolet/chevy).

3.4. Independence

In the independence relationship, phrase X and phrase Y describe
different attributes of the same visual concept that are true at the same
time (e.g., competitors/a group of bicyclist).

4. Dataset construction

In this section, we describe the original VGP dataset, how we
produce the VGP typology dataset and ensure its quality. We also
present statistics of the VGP typology dataset.

4.1. The VGP dataset

The Flickr30k dataset (Young et al., 2014) is one of standard bench-
mark datasets for image captioning. In a further step, Plummer et al.
(2015) developed the Flickr30k Entities dataset, augmenting the origi-
nal captions by annotating entities (noun phrases) with corresponding
image regions. Chu et al. (2018) used the Flickr30k Entities dataset for
the VGP identification task, which treated entities describing the same
image region as VGPs. We used the Flickr30k Entities dataset as the
starting point for constructing our VGP typology dataset as well.

We follow the steps indicated in Chu et al. (2018) and reproduce
the VGP dataset they used in their study with 2.3 M, 80k, and 81k of
phrase pairs for training, validation, and testing, respectively. As the
main goal of this study is to categorize relations between VGPs into five
classes described in Section 3, we extract only phrase pairs labeled as
VGPs. At this point, we obtained 257k, 8.8k and 8.6k VGPs for training,
validation, and testing, respectively.

4.2. Annotating VGP relations

We annotate the relations between VGP in a two stage process:
(1) a first rule-based annotation for the simplest examples, (2) a more
detailed human annotation for the more difficult examples.
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Table 2
Number of VGPs for each step of the dataset
construction.
Split Rule Human

Train 1,714 11,662
Val + test 227 11,568

Rule-based annotation. In the first stage, we visually inspect the data
and we found that due to the limited vocabulary in the Flickr30K
Entity dataset, some alternation examples were relatively easy to detect
(e.g., age-related differences like girl/woman). We manually define
rule-based cases for the those examples and filter phrase pairs according
to them, reducing the costs of the manual annotation in the next stage.
Table 1 shows the pair of stems used for the rule-based annotation.
They are mostly based on the age difference aspect explained and
intended to get a small, easy-to-detect alternation cases. With this
automatic labeling, we annotate 1714, 110, and 117 pair of phrases as
alternation in the training, validation and test splits, respectively.

Human annotation. In the second stage, we use Amazon Mechanical
Turk (AMT)4 to annotate part of the data that has not been annotated as
alternation in the first stage. After removing duplicate pairs of phrases,
we ask workers to annotate about 11k samples in the test and validation
sets as well as 11k samples in the training set. During the annotation
process, we show workers the VGP pair, the image5 and original
aptions which the phrases belong to.6 This visual and sentence context

helped workers to answer faster and achieve more accurate results.
Each HIT (Human Intelligence Task, the basic work unit on AMT) has
fifty pairs of phrases, and each phrase pair is annotated by 5 different
workers. We use weighted voting based on quality control questions to
determine the final label among the labels by the 5 workers, which is
explained in detail in the next section. Table 2 represents the different
stages of the dataset construction.

4.3. Quality control

To ensure workers carefully read the questions, we used a dummy
question. The dummy question specifies a relation label, e.g., by dis-
laying ‘‘choose Alternation’’. If a worker fails to select the required
elation label, we consider the worker is a bot or answers randomly,
hus immediately reject the HITs by the worker.

We employ weighted voting by five workers to determine the final
nswer. Each answer by a worker is weighted with a reliability score.
he reliability score is the correct answer ratio of reliability check
uestions. For reliability check questions, we use easy examples, which
hould be correctly answered. To select these easy examples, we collect
GPs for which four or more workers out of five select the same
elation label. We insert five reliability check questions at random
ositions in a HIT. Therefore, the reliability score is 0.8 if the worker
ubmits 4 correct answers for the reliability check questions. We reject
ITs by a worker whose reliability score is lower than 0.4. After the
nnotation, we review 100 random phrase pairs in order to evaluate the
uality of annotation. We verify a 96% accuracy score compared to the
round-truth. Fig. 2 shows some mislabeled examples from the 100 VGP
andom samples. We can see that these examples are really tricky to
e annotated. We also calculated the inter-annotator agreement based
n Fleiss’ kappa (Fleiss et al., 1971), and got a moderate agreement of
.5308.

4 https://www.mturk.com/.
5 Workers do not have access to the entity bounding box, but we believe

hat for humans it is easy to ground the phrase pair in an image.
6 The AMT interface is shown in Section 9.
4

Fig. 2. Mislabeled examples from AMT workers (Anno is short for annotation).

Table 3
Overview of our VGP typology dataset.

Train Val Test All

# image 9,736 964 964 11,664
# phrase pair 13,376 5,734 6,061 25,171
# unique phrase 14,431 3,991 3,968 18,946
# vocabulary 5,294 2,189 2,170 6,217
Max. phrase len. 11 8 7 11
Avg. phrase len. 2.1 2 1.9 2

4.4. Dataset overview

Table 3 shows the overview of our VGP typology dataset. Our
dataset has 25k phrase pairs with 18k unique phrases. Most phrases
consist of few words and the average phrase length is 2.

We also present the distribution of the VGP classes for the training,
alidation, and testing splits in Fig. 3. We can see that in the training
plit, only a small number (4.8%) of VGPs belong to the paraphrase
elationship; a large part of them (43.3%) belong to the entailment
elationships; the others belong to the alternation (23.9%) and indepen-
ence relationship (28.0%). This can somehow indicate the percentage
f ways in how human beings interpret the same vision concept with
ifferent language expressions. The testing and validation splits have
imilar distributions of VGP classes. However, different from the other
plits, alternation VGPs have a significantly higher presence in the
raining split. The reason for this is that as described in Section 4.2, only
subset of 11k training data of Flickr30k Entities dataset are manually

annotated, while 1714 VGP alternation pairs are annotated by rules on
the entire training data. Therefore, the proportion of alternation is larger
n the training split.

. VGP classification model

Our model considers both language and visual components to iden-
ify the classes of VGPs. We introduce a fusion network to fuse both
omponent in different ways. Fig. 4 shows the overview of our model.
he model takes an image/region and a phrase pair describing the
ame visual concept in the image as input. The phrases are encoded
nto phrase embeddings. For the visual component, we extract visual
eatures from the image or corresponding image region. We explore
ariations of language and visual feature extraction methods. The
usion network fuses both modalities for VGP classification. The fused
eature is fed to an multiple layer perceptron (MLP) network which
redicts the probability of each class.

.1. Language features

.1.1. Word embedding average
We first preprocess input phrases by lower-casing and stop-word

emoval. Each word in the phrases is encoded into continuous vec-
or representations by a word embedding model. In our experiment,
e explore several word embedding models to exploit knowledge
n language, which will be explained in Section 6.2. We obtain a

https://www.mturk.com/
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data for this class.
Fig. 4. Illustration of our VGP classification model. Our model fuses language and visual features and classifies the input VGP pair into VGP classes.
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hrase embedding by average-pooling the word embeddings. The pre-
ious work (Chu et al., 2018) suggested other embedding methods for
hrases, but we found that the average pooling performed better than
he other methods for our task, such as Fisher vectors. Let 𝐱1p and 𝐱2p

in R300 be phrase embeddings for each phrase in the input phrase pair.
These phrase embeddings are transformed using an MLP, 𝛹 , with two
fully-connected layers. Both of these fully-connected layers are followed
by batch normalization and ReLU activation. We compute language
features 𝐡1l ∈ R1,000 and 𝐡2l ∈ R1,000 by:

𝐡1l = ReLU(𝛹 (𝐱1p)), 𝐡2l = ReLU(𝛹 (𝐱2p)). (1)

5.1.2. ViLBERT
ViLBERT (Lu et al., 2019) is a vision and language model pretrained

on the large-scale Conceptual Captions image caption dataset (Sharma
et al., 2018), which has achieved state-of-the-art performance on vision
and language tasks of visual question answering, visual commonsense
reasoning, referring expressions, and caption-based image retrieval.
Therefore, we use the pretrained language model of ViLBERT7 to
represent each input phrase. Note that similar to BERT (Devlin et al.,
2019), the ViLBERT language model is sentence-level and thus we treat
each input phrase as a sentence and do not remove stop-word from the
phrase. Both phrases are represented as R1,024 phrase embeddings by
ViLBERT, and they are further computed with Eq. (1).

5.2. Visual features

We compare two image-level and one region-level visual features as
follows:

7 https://github.com/facebookresearch/vilbert-multi-task.
5

5.2.1. Image-level
VGG: We extract the fc7 feature vector from the input image using

he VGG16 model (Simonyan and Zisserman, 2014). Our VGG16 model
s initialized with parameters trained on the ImageNet (Deng et al.,
009) provided by chainercv.8 The visual feature 𝐱v ∈ R4,096 is fed to
n MLP, 𝛷, again with two fully-connected layers followed by batch
ormalization and ReLU activation. Our VGG visual feature 𝐡v ∈ R1,000

s given by:

v = ReLU(𝛷(𝐱v)). (2)

ViLBERT: We use the pretrained visual model of ViLBERT to rep-
esent each image. Each image is represented as 𝐱v ∈ R2,048 and then
omputed with Eq. (2).

.2.2. Region-level
We first use the Faster R-CNN (Ren et al., 2015) in conjunction with

he ResNet-101 CNN (He et al., 2016) pretrained on Visual Genome (Kr-
shna et al., 2017) to extract 100 image region features from an image.
or these 100 image regions, we calculate the Intersection over Union
IoU) scores against the input image region and select the one that
btains the highest IoU score as the input image region feature. The
mage region feature 𝐱v ∈ R2,048 is again fed to an MLP 𝛷 with
wo fully-connected layers followed by batch normalization and ReLU
ctivation to obtain our region visual feature 𝐡v ∈ R1,000 as in Eq. (2).

.3. Fusion network

We propose a fusion network to fuse the language and visual
eatures. Our fused features 𝐡1 ∈ R1,000 and 𝐡2 ∈ R1,000 that fuses two
hrase embeddings and a visual features are given by:
1 = fuse(𝐡1l ,𝐡v),𝐡

2 = fuse(𝐡2l ,𝐡v)

here fuse is a fusion function and we compare 4 different ways for it:

8 https://github.com/chainer/chainercv.

https://github.com/facebookresearch/vilbert-multi-task
https://github.com/chainer/chainercv
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Table 4
Accuracy for VGP classification using image-level visual features (VGG for word embedding average based
settings, and ViLBERT visual features for the ViLBERT setting). w/sub, w/add, w/mul, and w/con denote
fusion with subtraction, addition, element-wise multiplication, and concatenation, respectively. Scores are
the average of 10 runs, numbers in parentheses are the standard deviation of 10 runs.
Model Phrase-only Visual-only Phrase+visual

w/sub w/add w/mul w/con

Word2vec 0.40 (0.01)

0.27 (0.01)

0.43 (0.01) 0.42 (0.03) 0.43 (0.01) 0.40 (0.06)
Retro_WordNet 0.33 (0.04) 0.21 (0.04) 0.20 (0.04) 0.16 (0.02) 0.28 (0.04)
Retro_FrameNet 0.30 (0.04) 0.21 (0.03) 0.22 (0.04) 0.17 (0.03) 0.22 (0.04)
Retro_PPDB 0.37 (0.01) 0.42 (0.02) 0.45 (0.01) 0.41 (0.03) 0.41 (0.03)

ViLBERT 0.45 (0.00) 0.47 (0.01) 0.48 (0.01) 0.47 (0.01) 0.46 (0.02) 0.48 (0.01)
Table 5
Accuracy for VGP classification using region-level visual features. w/sub, w/add, w/mul, and w/con denote
fusion with subtraction, addition, element-wise multiplication, and concatenation, respectively. Scores are
the average of 10 runs, numbers in parentheses are the standard deviation of 10 runs.
Model Phrase-only Visual-only Phrase+visual

w/sub w/add w/mul w/con

Word2vec 0.40 (0.01)

0.28 (0.01)

0.42 (0.03) 0.43 (0.01) 0.42 (0.01) 0.42 (0.03)
Retro_WordNet 0.33 (0.04) 0.23 (0.04) 0.22 (0.03) 0.22 (0.02) 0.23 (0.02)
Retro_FrameNet 0.30 (0.04) 0.21 (0.02) 0.24 (0.02) 0.21 (0.02) 0.22 (0.04)
Retro_PPDB 0.37 (0.01) 0.44 (0.02) 0.43 (0.01) 0.42 (0.02) 0.42 (0.02)
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• Subtraction

fuse(𝐡l,𝐡v) = ReLU(𝛩(𝐡l − 𝐡v)),

• Addition

fuse(𝐡l,𝐡v) = ReLU(𝛩(𝐡l + 𝐡v)),

• Element-wise multiplication

fuse(𝐡l,𝐡v) = ReLU(𝛩(𝐡l ⊙ 𝐡v)),

• Concatenation

fuse(𝐡l,𝐡v) = ReLU(𝛩([𝐡l,𝐡v])),

where 𝛩 is another MLP with two fully-connected layers followed by
batch normalization.9

The two fused features are further merged as

𝐲 = tanh(𝑊 1𝐡1 + 𝐛1) + tanh(𝑊 2𝐡2 + 𝐛2),

where 𝐲 ∈ R300. The last part of our model is an MLP with two layers.
The output of the first layer in R300, and the second layer outputs five
values corresponding to the VGP classes. The probability of the VGP
classes are obtained by applying the softmax function to the second
layer’s output, and we choose the one with the highest probability as
the predicted class. We use the cross-entropy loss to train our model.

6. Experimental settings for VGP classification

6.1. Training

For training, we used Adam (Kingma and Ba, 2014) as the optimizer.
The mini-batch size was set to 100. The learning rate was initially set
to 0.01 and at each epoch was multiplied by a factor of 0.1. Training
was terminated after 6 epochs, where we observed the loss converged
on the validation set.

9 A fusion model based on co-attention between the tokens and regions used
n Transformer-based vision-and-language pre-training such as Li et al. (2020)
ight be effective as well, but we leave it as future work.
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6.2. Word embeddings

We compared different types of word embeddings to produce the
word embedding average language features for our model.

• Word2vec: we used the word2vec embeddings trained on the
Google News corpus10 (Mikolov et al., 2013).

• Retrofitting: as our typology is based on semantics, we want
the word embeddings capture semantic information. To this end,
we used the retrofitting method proposed by Faruqui et al.
(2015). This method minimizes an objective function so that the
retrofitted word embedding will be close to both the original
embedding and its neighbors’ embedding in semantic lexicon.
Following Faruqui et al. (2015), we used the following three
semantic lexicons for retrofitting.

– Retro_WordNet: word2vec embeddings retrofitted on the
WordNet (Miller, 1995), which is a structured semantic
lexical database of English containing synonym, hyponym
and hypernym information between word pairs.

– Retro_FrameNet: word2vec embeddings retrofitted on the
FrameNet (Baker et al., 1998), which is a large semantic
lexical database of English, constructed based on semantic
frames.

– Retro_PPDB: word2vec embeddings retrofitted on the PPDB
(Ganitkevitch et al., 2013), which is a large paraphrase
database of English, created from parallel corpora through
bilingual pivoting (Callison-Burch et al., 2006).

.3. Input modalities

We also conducted experiments to show the effect of the different
nput modalities by comparing the following three settings:

• Phrase-only: this model only takes the language components
of the VGPs into account and predicts their class based on the
language features. The language features are then fed to the
classifier previously described in Section 5.3, which is composed
of two layers, with the last layer having five units to generate the
prediction based on a softmax function.

10 https://github.com/mmihaltz/word2vec-GoogleNews-vectors.

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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• Visual-only: this model only takes the visual components of the
VGPs into account and predicts their class based on the visual
features. The visual features are used in the same way as the
phrase-only model.

• Phrase+visual: this is the model that we presented in Section 5.
We fuse word embedding average language features to either
image-level VGG features or region-level features. The fusion of
ViLBERT language and vision features is also tested.

. Results & discussion for VGP classification

Due to the randomness of the initial parameters, we report the
verage accuracy of 10 runs together with their standard deviation. Ta-

bles 4 and 5 show the accuracy of VGP classification using image-level
and region-level visual features, respectively. We show the phrase-
only accuracy using word embedding average in both tables for easy
comparison among different input modalities.

For phrase-only models, we can see that word2vec works better
than retrofitting. The reason for this is that although the retrofitting
is helpful to improve the accuracy of the entailment and equivalence
classes by making the embeddings closer to the semantic lexicons, they
perform negatively for the alternation and independence classes due
to the fact that they do not exist in the semantic lexicons. ViLBERT
works significantly better than other phrase-only models, indicating the
importance of vision and language joint representation for our VGP
classification task.

The accuracy of visual-only models are worse than phrase-only
models but significantly better than random (i.e., 0.2), indicating the
importance of visual features for our task. The image-level VGG visual-
only model performs slightly worse than the region-level visual-only
model. We think the reason for this is that because VGPs are describing
a particular image region making region-level features more helpful.
The visual features obtained from ViLBERT show a significantly high
accuracy compared to VGG and region-level features, indicating the
importance of jointly learning language and vision representation for
our task again.

For phrase+visual models, we can see that fusing word embedding
average language features of Word2Vec or Retro_PPDB with either
image-level or region-level visual features with all the four fusion
methods improves the accuracy, which indicates the effectiveness of
language and visual feature fusion for our task. Fusing Retro_WordNet
or Retro_FrameNet with visual features are not helpful, and we think
this is again due to the absence of alternation and independence classes
in these semantic lexicons. For ViLBERT, phrase+visual performs sim-
ilarly compared to using a single modality. This is because either
ViLBERT phrase-only or visual-only features have already capture both
vision and language representations by pretraining, and thus further
fusing them does not help more. Regarding the 4 different fusion
methods, we did not observe significant difference among them for
the best performed models, i.e., phrase+visual models of ViLBERT and
Retro_PPDB in both Tables 4 and 5. Subtraction shows slightly better
performance in these two models. We think the reason for this might
be that the difference between the language and visual features of a
VGP pair can be an important clue to classify the relation of this VGP
pair.

We further show the class-level performance in Table 6 for the best
performed model (i.e., ViLBERT Phrase+visual w/sub in Table 4). We
can see that the performance for equivalence is significantly worse than
the other classes. This is due to the small number of training data for
the equivalence class as shown in Fig. 3. Alternation and independence
also show lower performance compared to entailment, we think the
reason is that these two classes are new semantic phenomena which
requires more sophisticated representation learning to address. Fig. 5
further shows the confusion matrix for the best performed model.
For equivalence, we can see that many equivalence VGPs have been
incorrectly classified into independence. For alternation, we can see
7

Fig. 5. Confusion matrix for the best model (i.e., ViLBERT Phrase+visual w/sub in
Table 4).

Fig. 6. VGP classification examples for the ViLBERT phrase-only, visual-only and
phrase-visual w/sub models. ‘‘Gold’’, ‘‘Phr’’, ‘‘Vis’’, and ‘‘V+P’’ denote for ‘‘ground-
truth’’, ‘‘phrase-only’’, ‘‘visual-only’’, and ‘‘phrase+visual’’, respectively. Blue labels are
for ground truth and correct prediction, while red labels are for incorrect prediction.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 6
Detailed results per class for the best model (i.e., ViLBERT Phrase+visual
w/sub in Table 4). The support column represents the absolute quantity
of data points for each class in the test split.
VGP class Precision Recall F1 Support

Alternation 0.21 0.15 0.17 793
Forward entailment 0.63 0.64 0.64 1,539
Reverse entailment 0.61 0.61 0.61 1,512
Equivalence 0.00 0.00 0.00 405
Independence 0.38 0.51 0.43 1,812

that they have been incorrectly classified into mainly entailment and
independence. Also many independence VGPs have been incorrectly
classified into mainly entailment.

In addition, we investigated the results of the ViLBERT phrase-only,
visual-only and phrase-visual w/sub models. We found that fusing lan-
guage and visual features helps the improvement of the independence
class most, and it also improves the classification of the entailment
classes. Examples (1), (2) and (3) in Fig. 6 are improved examples of
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Fig. 7. A screenshot of our AMT user interface.
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ndependence. In example (1), visual-only fails to predict the correct
lass but phrase-only predicts correctly, and fusing them makes it
orrect. In both example (2) and (3), the phrase-only model fails to
redict them as independence and the visual-only model successfully
redicts the correct class; fusing them together remains the correct
rediction. Example (4) in Fig. 6 shows an improved example of the
orward entailment class by fusion compared to phrase-only, where
he visual-only model helps in fusion as it correctly predicts the class.
xample (5) and (6) show two examples of side effects by fusion, where
he vision-only model predicts the correct class, but fusion leads to the
rong prediction due to the bad effect of the phrase-only model.
 c
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8. Experiments on downstream tasks

We investigated the effect of our VGP typology on a downstream
task, the VGTE task using the V-SNLI dataset (Vu et al., 2018a). Given
a sample consisting of an image and a pair of sentences (a premise 𝑃
and a hypothesis 𝐻) related to the image, the task is to classify the pair
nto 3 types of relations: 𝑃 entails 𝐻 , 𝑃 contradicts 𝐻 , or 𝑃 is unrelated
o 𝐻 . The V-SNLI dataset consists of 545,620, 9842, and 9824 samples
or training, validation, and testing, respectively. Because both the V-
NLI and our VGP typology datasets are originally from the Flickr30k
ataset, we can find the overlap between these datasets by selecting the
-SNLI sentence pairs that contain our VGP typology pairs. The overlap
ontains 9995, 180, and 188 samples in the training, validation, and
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Table 7
Accuracy for the VGTE task.

Original Overlap

Baseline 0.42 (0.01) 0.47 (0.01)
Joint 0.43 (0.00) 0.48 (0.00)

testing splits, respectively. To directly investigate the effectiveness of
our VGP typology for the VGTE task, we only used the overlapped 9995
samples for training. We evaluated the performance in two settings:

• Original: Using the original V-SNLI validation and testing sets
(9842 and 9824 samples, respectively).

• Overlap: Using the overlapped validation and testing sets (180 and
188 samples, respectively).

For the VGTE task, we compared two models:

• Baseline: We used the same model as our VGP classification model
described in Section 5, but changed the output classes to 3 instead
of 5 as in our VGP classification task.

• Joint: We used the same model as our VGP classification model
described in Section 5, but both VGTE and VGP classification were
jointly trained with a loss Ljoint :

Ljoint = 𝜆Lvgte + (1 − 𝜆)Lvgp,

where Lvgte is the VGTE loss, Lvgp is the VGP classification loss,
and 𝜆 is a hyperparameter.

or both the Baseline and Joint models, we used the ViLBERT
hrase+visual w/sub setting, because it achieved the best performance
n the VGP classification task. We also used the same training settings
escribed in Section 6.1. For the Joint model, we tuned 𝜆 from 0.9 to
.5 with an interval of 0.1.

Same as VGP classification, we report the average accuracy of 10
uns together with their standard deviation for the VGTE task. Table 7
hows the results. We can see that Joint outperforms Baseline in both
he Original and Overlap settings, indicating the effectiveness of our
GP typology for the VGTE task. However, the improvement is not big.
e suspect the reason for this can be two fold: we simply re-use the
GP classification model for the experiments and a more sophisticated
odel might be necessary; as shown in Section 7, VGP classification

tself is a difficult task, which limits the performance improvement in
he VGTE task.

. Conclusion

In this paper, we presented the semantic typology for VGPs to eluci-
ate the VGP phenomena, caused by different linguistic interpretation
f the same visual concept by human beings. We constructed a large
GP typology dataset via crowdsourcing and proposed a multimodal
odel for VGP classification. Experiments indicated that language and

ision representation joint modeling is important for VGP classification.
n the future, we plan to improve the language and visual representa-
ions by fine-tuning them on our task to further improve the accuracy.
ne limitation of the current typology is that it focuses more on the

inguistic perspective of VGPs. Alternate typology might be created by
ocusing more on the visual perspective, which is our another future
ork. We hope that this pioneering work can promote the further

esearch on the understanding and applications of VGPs.

upplementary material

Fig. 7 shows a screenshot of our AMT user interface for annotating

he VGP typology dataset.
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