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Editor’s summary 35 
Currently there is no common structure to how national emissions scenarios are created, 36 
hindering efforts for comparison and analysis at the larger scale. This Perspective presents a 37 
framework to guide individual national scenario creation in a standardized way. 38 
 39 
National-level climate actions will be vital for achieving global temperature goals in the 40 
coming decades. Near-term (2025-2030) plans are laid out in Nationally Determined 41 
Contributions (NDCs); the next step is submission of long-term strategies (LTS) for 2050. 42 
Currently, national scenarios underpinning LTSs are poorly coordinated and incompatible 43 
across countries, preventing assessment of  individual nations’ climate policy. Here we 44 
present a systematic and standardised, yet flexible, scenario framework varying 2050 45 
emissions to build long-term national energy and climate mitigation scenarios. Applying the 46 
framework to six major Asian countries reveals individual challenges in energy system 47 
transformation and investment needs in comparable scenarios. This framework could be a 48 
starting point for comprehensive assessments as input to the global stocktake over the coming 49 
years. 50 
 51 
  52 



Main text  53 
Introduction 54 
The Paris Agreement1 defines a long-term temperature goal for international climate policy: 55 
“holding the increase in the global average temperature to well below 2°C above pre-56 
industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-57 
industrial levels”. While this global goal defines the fundamental direction of international 58 
climate policy, its achievement critically depends on national actions and policy making at 59 
the national level. As part of the agreement, countries are required to submit Nationally 60 
Determined Contributions (NDCs) outlining their greenhouse gas (GHG) emissions reduction 61 
efforts at the national scale. Within the Paris Agreement, there are several mechanisms to 62 
ensure that national actions align with the global goals; first, parties are required to regularly 63 
report on their progress towards implementing their NDCs. These reports form part of the so-64 
called global stocktake, i.e., an assessment of the sum of the national contributions. Second, 65 
countries are also required to submit long-term strategies (LTS) to the UNFCCC (also called 66 
mid-century strategies). Some countries have already submitted them, and others are 67 
preparing to do so (at September 2020). Third, the Paris Agreement contains provisions to 68 
increase efforts over time, through what has been dubbed the “ratchet mechanism”. In 69 
summary, one objective of the agreement is to have national actions aligned with long-term 70 
goals, with routine checks and revisions of short- to medium-term national goals and policies. 71 

Model-based climate and emissions scenarios are pivotal instruments for determining 72 
whether proposed actions are in line with the long-term goals 2, 3. In the fifth assessment 73 
report of the IPCC (AR5), over a thousand scenarios were summarized in the database, 74 
assessed and classified by both assumption and mitigation levels4. The special report on 75 
1.5°C was also accompanied by a large set of global scenarios that depict emissions pathways 76 
through the 21st century5. A large number of global model scenarios have been developed 77 
under specific model inter-comparison projects (MIPs) by sharing scenario implementation 78 
protocols that prescribe the characteristics of the scenarios (e.g. carbon budgets, technological 79 
availability). This allows for a systematic assessment of a set of research questions and to 80 
identify robust insights on climate change mitigation6, 7, 8, 9.  81 

Similarly to the role of global emissions scenarios in international negotiations, national 82 
scenarios have widely contributed to national policy making2. In several countries and 83 
regions, this is done by national modeling teams, but results are largely disseminated in 84 
governmental reports or as internal information, and only occasionally shared in academic 85 
papers10, 11, 12. Taking Japan as an example, a task force was established to determine the 86 
2020 emission target in 2008, and its recommendations were published in a book10 (only 87 
available in Japanese) while for the NDCs submission, there was no official scenario 88 
assessment. MIPs exist not only at the national level (for the US, China, Brazil and Japan13, 14, 89 
15, 16), but also for specific regions such as the EU17, Asia18, Latin America19. There have been 90 
a few attempts to collect national scenarios such as in the CD-LINKS (Linking Climate and 91 
Development Policies – Leveraging International Networks and Knowledge Sharing)20, 21 92 
which also includes indiviual national scenarios22, 23, 24, 25, 26, 27, 28, COMMIT (Climate pOlicy 93 
assessment and Mitigation Modeling to Integrate national and global Transition pathways): 94 
https://themasites.pbl.nl/commit/)29 and DDPP (The Deep Decarbonization Pathways Project) 95 
30, 31 projects. Moreover, there have been various studies assessing national NDC implications 96 
from sectoral perspectives 32, 33, 34, 35 to the broader SDGs context36, 37, 38, 39. It should also be 97 
noted that many countries do not have publicly available national energy or emissions 98 
scenarios. 99 

Some major emitting countries rely on the scientific basis of existing national scenarios 100 
for national climate policymaking36, 40, while many others do not. Furthermore, the emissions 101 
reduction targets of national scenarios are either determined by their own countries’ 102 



interpretation of global goals (e.g. such as taking 2 °C consistent pathways and judging these 103 
by themselves) or are derived from global scenarios such as those based on either cost-104 
optimal scenarios or effort sharing schemes41 (see left in Table 1). While recent efforts made 105 
by national MIPs  (e.g. CD-LINKS) have shared a scenario protocol across countries based 106 
on global IAM results, these allow only an assessment of quite specific conditions (.e.g cost-107 
optimal and global uniform carbon price). Moreover, the modeling capability and the main 108 
strategies of GHG emissions reduction can be diverse across nations. Consequently, the level 109 
of emissions mitigation in national scenarios varies, which implies challenges for comparing 110 
mitigation costs, and the degree of energy system changes across countries and scenarios. 111 
Apart from scenarios, real national emissions targets for both the near-term and long-term 112 
have often changed and will continue to do so in the future as well under various political and 113 
social circumstances. If only scenarios under specific but limited emissions reduction targets 114 
are available, the national scenarios are quickly outdated and become irrelevant (complexity 115 
of national scenarios are discussed more in the section “Complexity in the assessment of 116 
national scenarios”). 117 

Given this current situation, what if there were a standardized scenario framework which 118 
covers a wide range of emissions targets under the same reduction targets that are shared and 119 
implemented by many countries? For example, suppose that there were publicly available 120 
scenarios to reduce national emissions by 80% or 100% (not cumulative emissions) in 2050 121 
for dozens of countries. What would be the benefits for national policy making of such a 122 
scientific basis standardized scenario framework? There are at least four key benefits. One, it 123 
would reveal the dynamics of each nation’s energy, land-use, and agricultural systems as well 124 
as economic implications if the selected countries were to reduce emissions by similar levels. 125 
For example, a Japanese energy model comparison study was conducted, which found that 126 
even under the 80% reduction target in 2050, Japan would still have relatively high industrial 127 
sector energy demands because of its large dependency on heavy industry and limited 128 
renewable energy sources due to the small area of the country in comparison with the EU and 129 
the United State14. This kind of assessment would become available on a broader scale. Two, 130 
the transparent publication in scientific literature of the scenarios, the simulation models, and 131 
how the scenarios were generated would contribute to ensuring that the scientific basis and 132 
quality of models and scenarios are maintained, to some extent, although it happens more 133 
frequently than before21. This is critical for evidence-informed policymaking. Three, this 134 
might allow a direct comparison of the challenges that countries are facing in achieving 135 
emissions reduction targets, which would be valuable when assessing the forthcoming 136 
national long-term climate targets from the perspective of social transition. Finally, four, this 137 
would allow climate policymakers to compare each country’s emissions targets and assess 138 
whether their own national targets are compatible with other countries’ multiple reduction 139 
targets possibilities or sufficient to reach the global long-term goals. Ultimately, 140 
policymakers may want to update the national targets; these are already supposed to undergo 141 
routine reviews as part of the global stocktake under the Paris Agreement. Although 142 
individual nations would have their own interests and priorities and the standardized simple 143 
scenario may not be completely sufficient to assess the national climate policies, such 144 
scenarios could at least be an entry point to communicate with policymakers in many 145 
countries. From there, each country could build their own specialized and customized 146 
scenarios. We summarized the global and national modeling and scenarios circumstances in 147 
Table 1. 148 

Here, we present the issues with current national scenarios, propose a systematic and 149 
standardized scenario framework, and demonstrate the implementation of such a framework 150 
for a few selected countries. Our proposal can ultimately contribute to the establishment of a 151 
central national scenario datahub for further national scenario assessments, similar to what 152 



has already been done for global scenarios (see Table 1). Next, we discuss the complexity 153 
and expected criteria of national scenarios. 154 

 155 
Table 1 Summary of the characteristics of global and national scenarios 156 

 Global scenarios National scenarios 
Producers Integrated Assessment 

Models 
National energy/Integrated 
Assessment Models 

Main users of the research 
outcomes 

IPCC, UNEP, UNFCCC, 
international and national 
policymakers 

National policymakers, 
private companies, 
stakeholders and IPCC 

Main study target Global climate goals and 
associated implications for 
climate, energy, economy 
and land-use etc. 

Individual national climate 
goals/targets and their 
implications for energy, 
economy, land-use, etc. 

Scenario implementation Individual studies or 
standardized modeling 
protocols implemented by 
multiple models  

Some standardization in 
projects, but mostly 
specific and varied  

Community organization Well established as 
Integrated Assessment 
Modeling Consortium 
(IAMC) 

Partially organized in 
different communities, 
often as part of a modeling 
framework (e.g., The 
Energy Technology 
Systems Analysis Program 
(ETSAP)), but also to an 
extent in IAMC 

  157 
 158 
Complexity in the assessment of national scenarios 159 
  For short- to medium-term perspectives, focusing on the next ten years, national policies 160 
and policy options as well as stakeholder interests are the primary concerns. In contrast, from 161 
a long-term perspective, a simple, comparable and systematic approach has clear benefits, 162 
facilitating a reassessment of the option space. It should be recognized that there are many 163 
determinants that are relevant for the specification of national emissions pathways, such as i) 164 
global climate targets in the context of international commitments; ii) how to select global 165 
pathways in line with global long-term goals (e.g. multi-IAMs uncertainty and physical 166 
climate science uncertainty); iii) selection of effort sharing schemes; iv) economic 167 
development stages in individual countries; v) other societal and development priorities that 168 
may be critical factors to determining the challenges of emissions reductions. The emissions 169 
reduction levels and challenges to achieving them naturally vary across countries and 170 
scenarios, and there is no need to have identical reduction levels across countries. 171 
Additionally, the current NDCs, which are based upon each nation's voluntary actions, are in 172 
many cases ambiguous, leading to significant uncertainty regarding the actual level of 173 
emission reduction targets42. This may be or may not be because nations would prefer to keep 174 
some flexibility in the interpretation of their target statements, resulting in a remarkable 175 
degree of flexibility significant enough to change long-term global implications42. Either way, 176 
this would imply that, in principle, it is inevitable to have some degree of uncertainty in the 177 
actual national targets, and we should eventually develop strategies to cope with such 178 
uncertainties. (See more explanation for each uncertainty in Supplementary Note.) 179 



 180 
Expected criteria for upcoming national scenarios 181 

Given the above-mentioned uncertainties, here we discuss the expected characteristics of 182 
the national scenarios, as listed below:  183 
- Cross-national comparability  184 
- Compatibility and cohesion with global climate goals 185 
- Policy relevance 186 
- Ability to address critical national target uncertainties  187 
- Simple implementation without ambiguities in the interpretation of the modeling protocol 188 

The comparability, which enables exploration of the comparative stringency of 189 
national targets, is particularly beneficial for assessing national scenarios. One possible way 190 
to achieve this is fixed reduction rates across countries (e.g., 80% reduction compared to a 191 
base year). The implications for the energy, land-use, and economic transitions can reveal the 192 
associated challenges. Regarding the cohesion with global emissions pathways, global 193 
emissions scenarios with the climate goal specifications (e.g., 2 and 1.5 °C) in conjunction 194 
with effort sharing assumptions41 can bridge national and global scenarios. There can be a 195 
large variation in national emissions pathways derived from the combination of effort sharing 196 
and global pathways, but we will show how our proposed framework in this paper can be 197 
easily mapped  with global scenarios. For scenarios to be policy relevant, the emission 198 
reduction levels should not be far from the targets laid out in forthcoming national LTSs. 199 
Exploring multiple mitigation levels has the advantage of identifying potential ambiguities in 200 
forthcoming LTSs, as well as enabling sensitivity analyses around the eventual LTSs. For 201 
example, supposing that the LTS for a country does not specify the GHG coverage but 202 
declares a 50% reduction target in 2050, multiple scenarios would be mapped with full Kyoto 203 
gases cases and only CO2 cases. A similar approach can be applied to other ambiguities. 204 
Finally, the simplicity of a modeling protocol that avoids ambiguities in its interpretation and 205 
the ease of implementing scenarios are of key importance to (i) allow such exercises to be 206 
performed in a decentralized manner, and (ii) keep the barrier for joining such an effort as 207 
low as possible. The simplicity would facilitate the updating of these scenario exercises on a 208 
regular basis, which will be discussed in the next section in more detail.  209 

 210 
 211 
Proposal for a systematic national scenario framework 212 
We, thus, propose a systematic and standardized approach for national scenarios that 213 
appropriately cover plausible future ranges of mitigation pathways and enables comparison 214 
across countries. Here we refer to this framework as “National Long-term Pathways” (NLPs), 215 
which comprises a set of national scenarios explained below. The role of NLPs could 216 
resemble Representative Concentration Pathways (RCPs)43 in formulating the ambition and 217 
range of climate targets. As defined by the earlier study, we use the term scenario to describe 218 
a plausible, comprehensive, integrated and consistent description of how the future might 219 
unfold whereas the term pathway is used for a set of scenarios44. This NLPs approach permits 220 
hedging against future national target uncertainties by not specifying a single emission 221 
reduction target, instead, exploring multiple systematic scenarios associated with percentages 222 
of emissions reductions in 2050, the commonly considered target year for LTS, as a default 223 
set.  224 

We classify two kinds of scenarios. One is the so-called baseline, which excludes 225 
climate change mitigation policy but can include currently implemented and planned policies 226 
as implemented in earlier literature2. Other socioeconomic assumptions are up to the 227 
individual modeler’s choice but are encouraged to be without unusual specific assumptions 228 
such as without CCS45 and low energy demand46. Although this modeler’s choice might 229 



sometimes make the assessment and interpretation of the results difficult because 230 
socioeconomic backgrounds can differ among countries, there is an advantage in being able 231 
to skip a process to discuss what socioeconomic assumptions should be used and reach an 232 
agreement. More importantly, globally standardized socioeconomic scenarios such as the 233 
Shared Socioeconomic Pathways (SSPs) 47 would not be best for individual countries and 234 
thus, the selection and assumption of socioeconomic conditions would depend on each 235 
country. If the national modellers cannot access national socioeconomic perspectives, the use 236 
of globally standardized SSPs would be recommended. The second kind are climate scenarios 237 
which target 10 to 100% of emissions reduction in 2050 compared to base year emissions, 238 
with 10%-point increments covering the space between them. This can also be mapped with 239 
intensity targets, such as carbon intensity with GDP assumptions. For 2030, NDC targets can 240 
be adopted but these may have variations associated with conditional/unconditional targets. 241 
Considering the current political situation, in which many countries are announcing carbon 242 
neutrality targets for different years, which are not always 2050, our proposed emissions 243 
pathways can be easily extrapolated linearly beyond 2050 and can be assessed from the 244 
timing of zero emissions and the required transition towards that goal. If a model is unable to 245 
get feasible solutions for specific scenarios because emissions reductions are too strict, this 246 
information would also be reported. Energy-related CO2 emissions are the default emissions 247 
coverage. As we will discuss later, although there can be multiple options in the coverage of 248 
species and sectors (e.g. full GHG, including land sector), we chose specific emissions as 249 
defined above for two main reasons. First, energy-related CO2 emissions are currently the 250 
major source of emissions in most countries. Second, national modeling concerned with 251 
climate change mitigation policy is, in many cases, initiated from energy modeling, and 252 
considering developing countries whose modelling capability is relatively low, limiting the 253 
scope of coverage would be effective for enhancing participation. Incorporation of other CO2 254 
and non-CO2 emissions is not limited because they are critical elements that determine the 255 
total GHG emissions. Additionally, it is important to design a holistic human system from the 256 
energy, land-use, and economic perspectives. The reduction percentages are relative to the 257 
specific base year (e.g., 2010) for which the national emissions inventory is available for 258 
most countries and can thus exclude unnecessary uncertainties in the current NDCs. In this 259 
way, the NLPs proposal meets the criteria stated above, with comparability across countries, 260 
compatibility and cohesion with global climate goals, policy relevance and a relatively simple 261 
implementation protocol, and a strategy to address uncertainties.  262 

There should be flexibility in this proposal regarding at least the following two points. 263 
First, there are several options for emissions gas coverage. Full Kyoto GHG would yield the 264 
best coverage, but sectoral and gas coverages can vary. For the gas coverage, this could 265 
include only CO2 or three major GHGs (CO2, N2O and CH4). The sectoral coverage would be 266 
either full-sector or energy related emissions only. This coverage should be considered 267 
depending on the availability of the information, composition of gases (e.g. Brazil could have 268 
a large portion of emissions from land-use sector) and model capability for each country. For 269 
non-CO2 emissions, the Global Warming Potential (GWP) should be standardized and a 270 
GWP100 metric should be used, as applied by UNFCCC and IPCC as the default choice in 271 
their reporting. Second, the reduction levels can be changed depending on country. For 272 
example, baseline emissions would not be increased for developed countries, while most 273 
developing countries can have much higher emissions in the future than now and starting the 274 
reduction percentage from 0% could still be deemed ambitious. For developed countries, 275 
more granularity might be needed for the range of deep reductions, and thus 5%-point 276 
increments between 70-100% could be also attractive. The base year can also be flexible if 277 
needed (see further flexibility options in Supplementary Table 1).  278 



We also propose to routinely and periodically run this systematic scenario framework. In 279 
the global IAM community, there are series of almost routine-basis MIPs (e.g. Energy 280 
Modeling Forum (EMF)), which now have a large influence on global climate policies. In 281 
contrast, national scenarios are not yet so well-established and can derive much more benefit 282 
from a scenario generation routine. There are multiple options for the routine intervals, such 283 
as every five years, every IPCC assessment cycle, or international political milestones (e.g., 284 
every global stocktake). The pros and cons of these choices can be considered later, but here 285 
we emphasize the advantages of having a regular scenario exercise under a similar protocol. 286 
First, the research community would be able to routinely provide policy-relevant information, 287 
tracing the model development history and tracking how the scenarios have changed over the 288 
period. Second, these regular exercises would allow individual countries’ researchers to 289 
anticipate the forthcoming exercises and prepare a plan for model development as well as 290 
take advantage of funding opportunities. In particular, this would be useful for developing 291 
countries where the energy models/IAMs are not yet fully developed. Note that it might be 292 
challenging to have completely harmonized protocols over time as political circumstances 293 
change (e.g., NDC and its updates). The need for the routine exercise can also be extended to 294 
the global integrated assessment modeling community; the climate modeling community has 295 
such an experimental design, namely the Diagnostic, Evaluation and Characterization of 296 
Klima (DECK), under the umbrella of so-called Coupled Model Intercomparison Project 297 
(CMIP)48.   298 

Keeping the scenario protocol simple is important, which would enable modelers to 299 
implement the scenarios in regular intervals. In the meantime, in theory, tens of scenario 300 
variations depending on socioeconomic, technological availability/cost, and policy 301 
assumptions could be developed. For example, SSPs in the global modeling community 302 
allows us to explore the variation of future socioeconomic assumptions47. Concerning 303 
variations in technological availability and cost, there are well-known examples in the global 304 
study carried out under EMF27 and AMPERE (Assessment of Climate Change Mitigation 305 
Pathways and Evaluation of the Robustness of Mitigation Cost Estimates) projects45, 49 (e.g. 306 
none carbon capture and storage (CCS) scenario). Furthermore we can see similar national or 307 
regional implementations50, 51, 52. These scenario variations can be added to the standard set as 308 
supplementary (extended) scenarios which are similar as proposed in the SSPs53. 309 

Regarding the relationships with policymakers, there are at least three main roles. First, 310 
for those countries that have not yet developed national scenarios, obviously, NLPs can 311 
provide opportunities to generate national scenarios, which would create dialogue between 312 
modellers and policymakers. Second, regardless of the existence of the national scenarios, 313 
comparable multi-national scenarios can provide meaningful insights for each national 314 
policymaker because national climate policy cannot be independent of the international 315 
context. These two benefits are valid for both short-term and long-term. Third, while it would 316 
be valuable to continue routine-based standardized scenario making, more customization of 317 
the scenarios for each country might be needed in terms of socioeconomic assumptions and 318 
some specific national interests in the long-term (e.g. no more nuclear power in Japan). The 319 
role of NLPs would then become an entry point for shifting from the standardized and 320 
systematic approach to creating such individual and unique national scenarios. Eventually, 321 
NLPs would be a platform to maintain the national scenario modeling community which can 322 
enhance a dialogue among modelers and policymakers similar to CMIP as mentioned earlier. 323 
 324 
Demonstration of the proposal scenario design 325 
   To explore how this newly proposed scenario set can be used, we have implemented the 326 
proposed framework in selected Asian countries which have a large diversity in economic 327 
development stages, economy size and energy consumption patterns: China, India, Japan, 328 



Korea, Thailand, and Vietnam. Each country individually runs national models, which means 329 
that countries do not change international market conditions. For scenario quantifications, we 330 
used AIM (Asia-Pacific Integrated Model) which has been extensively applied in global and 331 
national climate change mitigation studies (see Methods).  332 
   We first focus on an assessment of a single country, in this case, Japan (Fig. 1). The 333 
emissions in the baseline scenario (BaU) are almost unchanged throughout the period, 334 
whereas climate mitigation scenarios, named CM30, CM40 to CM100, meet the NDC 335 
emission reduction target of 26% in 2030 and hit incremental 10% reductions levels as 336 
prescribed in the protocol in 2050 (Fig. 1a). Then, we compare projected emissions in 2050 337 
with the global emissions pathways in conjunction with effort sharing schemes (Fig. 1bcd) 338 
(see Methods). Since we consider the multi-scenario uncertainties of global IAMs emissions 339 
pathways for 1.5°C and 2°C climate stabilization, at the national level there is a large range 340 
of emissions levels associated with various effort-sharing schemes (Fig. 1d). Here we also 341 
illustrate emissions target space with the long-term national goal for 2050, which in case of 342 
Japan is an 80% reduction, but there is a range because the reference year and the GHG 343 
coverage is unspecified.  344 

Then, the energy system and economic implications for each emission reduction level 345 
are presented which depend on the emissions reduction target levels (Fig. 1efg). For example, 346 
the total energy supply is almost constant under a 30-60% reduction, while the scenario with 347 
a 100% reduction in emissions implies a drop in supply by around half of the baseline. In 348 
other words, beyond 60-70% of emission reductions a significant contribution of demand-349 
side measures, including both energy efficiency improvements and behavioral change, are 350 
needed. Regarding the composition of energy sources, the contribution from low carbon 351 
energy technologies sources such as CCS and renewable energy sources gradually increase as 352 
reduction levels rise. Macro-economic costs of mitigation increase remarkably with more 353 
ambitious targets (Fig. 1f) and could rise to 3%, 4%, and 4.5% of GDP losses with emission 354 
reduction targets of 80, 90, and 100% in 2050, respectively. Carbon prices are much more 355 
sensitive to reduction levels, increasing sharply to over 5,000$/tCO2 in a 100% reduction 356 
scenario, and to around 2,000 and 1,000$/tCO2 in 90 and 80% reduction scenarios, 357 
respectively. The carbon price would become extremely high under stringent reduction 358 
targets, but this is due to the availability of negative emissions in Japan where only a small 359 
area is left for energy crops and BECCS. Below target reductions of 60%, prices are lower 360 
than 200$/tCO2 over the period. More indicators are presented in Supplementary Figure 1 for 361 
Japan and Supplementary Figures 2 to 6 for other countries, and several basic trends in many 362 
variables can be observed. There are gradual changes, with carbon price reductions in most 363 
cases, but it should be noted that there are some variables and countries where convergences 364 
are apparent. For example, carbon prices and GDP losses in India and Vietnam display a 365 
trend that is due to the availability of CCS, including BECCS. Once CCS becomes widely 366 
available, the carbon price is reduced. Final energy consumption in China, India and Vietnam 367 
therefore decreases along with the increasing rates of carbon price reduction in the 2020s and 368 
2030s, but then converges in the 2040s. These results are due to the enhancement of 369 
electrification under mitigation54, which offsets the energy efficiency improvements. 370 

 Applying the framework to a country that submitted a LTS, the scenario outcomes 371 
could provide policymakers and analysts with an independent sensitivity around the LTS 372 
which allows judgement on whether the targets are plausible or feasible from the energy and 373 
economic perspectives. In addition, putting the LTS into the context of  different equity 374 
principles sheds some light on the fairness of the target. However, policymakers need to 375 
interpret the results of model estimates carefully because they include uncertainties. The 376 
socioeconomic conditions were prescribed as SSP2 in this case, but the implications would 377 
change substantially if other conditions were assumed. Population and GDP are such key 378 



socioeconomic drivers, but technological availability and national energy policies are also 379 
sources of uncertainty. For example, unavailability of CCS pushes the policy cost much 380 
higher than usual 45, whereas low energy demand substantially mitigates the cost 46. Finally, 381 
periodic reviews and assessments of the LTS, and the forthcoming 2035 or 2040 emissions 382 
reduction targets will provide opportunities to revise and update the goals.  383 

 384 
 385 

 386 
Fig. 1 Illustrative example of the interpretation of the national scale long-term scenarios 387 
(NLPs) using Japan as a case study. Panel a shows national emissions pathways, b shows 388 
emissions global pathways, and c is a list of effort sharing schemes. d shows emissions in 389 
2050 considering global pathways (all available scenarios are considered), effort sharing 390 



schemes and the long-term national goal of an 80% reduction, with an uncertainty range (red 391 
shaded area) associated with an unspecified reference year and gas coverages. The dashed 392 
red lines are emissions in 2010, and black dashed lines correspond to incremental 10% 393 
reduction levels from base year emissions. e shows the energy system implications 394 
represented by primary energy supply in 2050, while f,g indicate policy cost implications 395 
represented by GDP loss rates and carbon prices. 396 

 397 
  Regarding comparative assessments of multiple countries, in Fig. 2 we show selected 398 
indicators, namely mean annual rate of energy intensity change (Fig. 2a) and carbon intensity 399 
change (Fig. 2b), share of low carbon energy sources (Fig. 2c), electrification rates which is 400 
electricity final energy consumption divided by total final energy consumption (Fig. 2d), 401 
carbon price (Fig. 2e) and GDP loss rates (Fig. 2f). These indicators were chosen because 402 
they are fundamentally critical variables for assessing climate change mitigation, and since 403 
the scale of economy, energy consumption, and emissions of the countries assessed in this 404 
demonstration vary substantially, indicators that take percentages or relative rather than 405 
absolute values are more suitable for this analysis. We also carried out a regression analysis 406 
to clarify the common characteristics and the extent to which the reduction target rates in 407 
2050 would change each indicator with country dummy parameters, as shown in the 408 
Methods section, and results are summarized in Supplementary Table 2 and Fig. 2. 409 

We see a strong correlation with emissions reduction rates in most indicators except for 410 
the mean annual rate of energy intensity change. The mean annual rate of carbon intensity 411 
change indicates 0.025% improvements per incremental 1% of emissions reduction. In 412 
contrast, the response of mean annual rate of energy intensity change to reduction levels 413 
varies across countries, and the regressed slope is statistically insignificant. Japan’s behavior, 414 
in which energy intensity rises when increasing mitigation ambitions, is normal whereas 415 
some other countries like India, China, and Vietnam appear to respond inversely. This is due 416 
to the requirement for negative emissions associated with bioenergy combined with CCS 417 
(BECCS). This result would imply that improvements in carbon intensity are a common and 418 
effective strategy to reduce CO2 emissions, while energy efficiency improvements do not 419 
always yield the expected reduction in emissions. The share of low carbon energy sources 420 
also shows a clear correlation with emissions reduction levels and a 0.56% increase is 421 
expected per 1% of incremental emissions reduction. Electrification is a well-known and 422 
critical strategy for decarbonizing the energy system, and 0.36% is the regressed slope for 423 
change in electrification rates. Note that in Korea and Vietnam (see Supplementary Figure 4 424 
and 6), the time series of electrification crosses over in 2030s. In the near-term, with modest 425 
emissions constraints, the electricity generation cost increases, which lowers electricity 426 
consumption while gas consumption increases. In the long term, under tighter emissions 427 
constraints, electrification needs to be enhanced. Carbon prices vary substantially by country, 428 
while the slope of regression is statistically significant at 12.50$/tCO2. Finally, the GDP loss 429 
rates would increase by 0.055% per 1% of additional emissions reductions. GDP loss rates 430 
also show variations across countries; Vietnam shows relatively high GDP loss rates, over 431 
10%, while Japan presents small values, less than 5% even in a 100% emissions reduction 432 
scenario. This variation comes from socioeconomic conditions such as the share of energy 433 
and food expenditures which is largely influenced by abatement of non-CO2 emissions from 434 
agricultural sector and carbon tax imposition on them (if these are large, the relative influence 435 
on industrial structures and household consumption patterns would be large) and GDP per 436 
capita (if low, the carbon price intervention effects would be large) as well as assumptions on 437 
the availability of technology. It could be argued that this regression analysis would be 438 
affected by extreme country data. To test this, we conducted a sensitivity analysis to 439 



determine the robustness by withdrawing one country from the regression and then iterating 440 
the results for all countries. The results indicated that the carbon price and some other 441 
indicators were affected by the Japanese data (see Supplementary figure 7). 442 

Note that this study uses single model results. The use of multiple models, including 443 
multiple types of models (e.g. top-down and bottom-up, or CGE and energy system models) 444 
could lead to different results55, which would enrich the implications of the study by 445 
introducing diversity in future prospects, and in particular, might not indicate the clear 446 
relationships shown here. 447 
 448 
  449 

 450 
Fig. 2 Cross-national comparison of national long-term scenarios (NLPs). Six scenario 451 
indicators for 2050 are plotted against reduction targets. Panels a, b, c, d, e, and f represent 452 
mean annual rate of energy intensity change (%), mean annual rate of carbon intensity 453 
change (%), share of low carbon energy sources in primary energy supply (%), 454 
electrification rates in final energy consumption (%), carbon prices ($/tCO2) and GDP loss 455 
rates (%). The solid lines indicate regression results using the derived slope and intercept + 456 
mean of dummy country results shown in Supplementary Table 2.  457 

 458 
Caveats to the proposal and discussion 459 

We recognize that there are potential limitations to our proposal. First, policy relevance 460 
is the primary concern for this approach. This scenario set with its incremental 10% reduction 461 
levels might not exactly match the forthcoming LTS. As discussed, even if one of the 462 
scenario values of reduction rates hits a target, there will still be uncertainty in the inventory 463 
of the base year and coverage of GHGs. Second, there need to be several model runs (around 464 
10 or more). However, in contrast to existing large scale global models, national models tend 465 
to have relatively small computational loads, which could allow them to run relatively a large 466 
number of scenarios. In this sense, it is crucial to keep the simplicity of the scenario 467 
requirements as the simple scenario protocol allows researchers to systematically deal with 468 
scenarios running in the programing codes. To manage these issues, we view this proposal as 469 
a default core standard set, to which supplementary scenarios can be added, such as using 470 



varying technological availability taking into account individual countries’ circumstances45. 471 
Moreover, NDCs can be updated and ambitious LTSs may motivate countries to achieve 472 
more reductions in the near-term, which would pose the question of whether more variations 473 
should be added in near-term reduction targets. Although such scenarios are excluded from 474 
this study, the updated NDC scenario could also be another set of supplementary scenarios. It 475 
would be worth noting that such additional scenarios would have different roles from the 476 
above-proposed scenario set, and requires additional work to check and maintain the quality 477 
of results. Third, the protocol ignores possible interactions with the rest of the world. 478 
Increasing ambitions in one country might go in hand with actions in other countries. This 479 
could lead to impacts across countries. For example, fossil fuel prices could be low if many 480 
major countries decarbonized their economies. International price scenarios derived from 481 
global IAMs could be used as boundary conditions for national models, and in such a case, 482 
global models should also provide multi-level mitigation scenarios which could be prescribed 483 
by carbon budgets5. Still, the most direct impacts of more ambitious targets are nearly always 484 
felt simply within each country – and thus should serve as a caveat in the light of proposed 485 
simplification. Future study will be needed to investigate cross-border impacts. Fourth, the 486 
proposed scenarios always come with the risk of being outdated at some point, which can be 487 
critical in some cases. For example, long-term strategies were supposed to be submitted by 488 
the year 2020, and our proposal may not be able to keep up with them. Another possibility is 489 
that some extreme economic, social and political events may completely change the relevant 490 
energy-economic system. The the disaster at the Fukushima nuclear power plant was one 491 
such turning point, and the COVID-19 pandemic has the potential to be another one. A 492 
financial crisis, in general, could also result in structural change, which may imply that 493 
additional scenarios may be needed to take these extreme (or simply outlier) events into 494 
account. However, this depends on individual events and national circumstances. It may not 495 
be able to generalize and will probably need to generate specific scenarios to address such 496 
events. 497 

Finally, the current proposal can be a first step to have systematic national scenarios, 498 
much as global scenarios are currently stored and utilized effectively. Meanwhile, even if the 499 
scenarios are developed by many countries, building up a valuable database, there would be 500 
still the need for better communication with policymakers. This is obvious from global IAM 501 
exercises. Even though there have been efforts to create transparent models56 and 502 
socioeconomic assumptions behind scenarios57, as well as making code open-source58, 59 503 
consistent with the recent demand for transparency, there is still an increasing demand to 504 
explain scenarios to decision makers. Furthermore, the misinterpretation of current scenarios 505 
is an ongoing problem, for example, in the lack of climate change impacts60. Therefore, just 506 
developing national scenarios is not sufficient, and better translation and communication of 507 
the scenarios to the policymakers is still needed.  508 
 509 
Community and capacity development 510 

  The development of national scenarios fundamentally needs the involvement of 511 
researchers from each country. Many countries, including developing countries, have national 512 
models, but there are also many countries still missing national energy or integrated 513 
assessment models. Even if national models exist, a certain portion of models need to  514 
improve their systematic model output reporting, model validation (including diagnostics and 515 
documentation), and will require significant work to reach state-of-the-art modeling 516 
representation. In many cases, global integrated assessment modeling activities and 517 
experiences accumulated in the Integrated Assessment Modeling Consortium (IAMC)61 518 
community should greatly help national modeling capacity development56, 59, 62, 63, 64, 65.  519 
Note that global models are themselves not always the best; some national models have much 520 



more granularity in the representation of geographical and temporal resolutions, taking 521 
advantage of relatively smaller model coverage55, 66. IAMC members have been actively 522 
involved in capacity development (e.g., for Asian67 and Latin American15 capacity building 523 
activities, National Institute for Environmental Studies Japan (NIES) and Pacific Northwest 524 
National Laboratory USA (PNNL) have taken part in some exercises) and the IAMC itself 525 
sometimes coordinating them so far. However, this proposed standardized scenario exercise 526 
can be a more meaningful and practical catalyst for enhancing capacity building activities 527 
within the climate mitigation modeling community.  528 
 529 
 530 
Conclusions 531 
In this Perspective, we propose a new systematic and standardized scenario framework for 532 
long-term national scenarios and discuss its rationale, the advantages, and possible 533 
disadvantages. We believe that this proposal is valid and useful for policymaking and 534 
building a research community. National climate change mitigation modelling and scenario 535 
implementations might inherently have had relatively little motivation for building up a 536 
research community and conducting cross-national comparisons in the past. However, the 537 
political and societal conditions have changed over the last decade, and we believe that 538 
national countermeasures are now a necessity for combatting climate change. The climate 539 
policy circumstances and the need for national modeling and scenarios are expected to 540 
continue for at least the next couple of decades until emissions drop to sufficiently low levels. 541 
This research community should, therefore, devote much more attention and resources to 542 
national scenarios that guide or enhance the actual societal transformative movement. We 543 
envisage that the proposed framework could be a great milestone for national climate policy 544 
research and many countries and models would engage with it. Thus, we call for community-545 
level activities that will let a wide range of researchers involved in national climate policy 546 
assessment consider dedicating efforts to these important new activities. 547 
 548 
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Methods 719 
Overview 720 
  We carried out scenario analysis for selected Asian countries, namely China, India, 721 
Indonesia, Japan, Korea, Thailand, and Vietnam. As stated in the main text, we implemented 722 
8 scenarios for each country. They all have different reduction rates relative to the base year 723 
of 2010, and, furthermore, Vietnam and Thailand indicated conditional and unconditional 724 
target statements in their NDCs. We thus additionally simulated variations for these 725 
conditional statements. In scenario implementations, we considered currently planned 726 
national policies as much as possible. We used AIM/Hub (formerly AIM/CGE) for the 727 
proposed scenario design implementation and as the core tool of this study. It is a computable 728 
general equilibrium model and has been intensively applied to assessments of Asian national 729 
climate policies in past years 68, 69, 70, 71, 72. In the scenario implementations, we used three 730 
major GHG gases (CO2, CH4 and N2O) for emission coverage, considering that the countries 731 
have relatively large emissions of non-CO2 gases. The reductions start from 30% in all 732 
countries because we took into account that Japan’s baseline emissions have been quite stable 733 
over time and thus it may not be meaningful to see the lower reduction levels such as 10%. 734 
Finally, a regression analysis has been conducted on the scenario results. Note that the 735 
scenarios in this study excluded climate change impacts, because global emissions scenarios 736 
are needed for each national emission scenario to determine such impacts, which is an 737 
important factor for national policymakers to consider60, 73, 74, 75. 738 
 739 
Simulation model and data 740 
  AIM/Hub is a one-year-step recursive-type dynamic general equilibrium model covering all 741 
regions of the world. The AIM/Hub model includes 42 industrial classifications. For 742 
assessing bioenergy and land use competition, agricultural sectors are disaggregated76. The 743 
details of the model structure and mathematical formulae have been described previously77, 78. 744 
Version 2.2 of the AIM/Hub model was used, and the main revisions from the previous 745 
version are described below. 746 

Production sectors are assumed to maximise profits using multi-nested constant 747 
elasticity substitution (CES) functions and input prices. For energy transformation sectors, to 748 
handle energy conversion efficiency appropriately in these sectors, input energy and value 749 
added are fixed coefficients of the output. Power generation values from several energy 750 
sources are combined with a logit function 79. This functional form was used to ensure energy 751 
balance, as it was not guaranteed by the CES function. Electricity and bioenergy are produced 752 
by multiple sectors (e.g. coal-fired, nuclear and solar, agricultural residue, energy crops and 753 
sugarcane), which are aggregated by the logit function so that energy production by 754 
individual sectors is balanced to match total generation. Household expenditures on each 755 
commodity are described with a linear expenditure system (LES) function. The parameters 756 
adopted in the LES function are recursively updated in accordance with income elasticity 757 
assumptions. The savings ratio is endogenously determined to balance savings and 758 
investment, and capital formation for each good is assigned a fixed coefficient as an 759 
exogenous assumption. The Armington assumption is used for trade (using CES and the 760 
constant elasticity of transformation function), and the current account is assumed to be 761 
balanced.  762 

In addition to energy-related CO2, CO2 from other sources, CH4, N2O, and fluorinated 763 
gases (F-gases) are treated as GHGs in the model. Energy-related emissions are associated 764 
with fossil fuel combustion. Non-energy-related CO2 emissions consist of changes in land-765 
use and industrial processes. Emissions from changes in land-use are derived from the change 766 
in forest area relative to the previous year multiplied by the carbon stock density, which is 767 
differentiated into AEZs (Agro-Ecological Zones). Non-energy-related emissions other than 768 



those associated with changes in land-use are assumed to be proportional to the level of each 769 
activity (e.g. based on output). CH4 emissions arise from a range of sources, mainly rice 770 
production, livestock, fossil fuel mining, and waste management. N2O is emitted as a result of 771 
fertiliser application and livestock manure management, as well as by the chemical industry. 772 
F-gases are emitted mainly from refrigerants used in air conditioners and industrial cooling 773 
devices. Air pollutant gases (black carbon, CO, NH3, non-methane volatile organic 774 
compounds, NOx, organic carbon, and SO2) are also associated with fuel combustion and 775 
activity levels. Emission factors change over time with the implementation of air pollutant 776 
removal technologies and other regulations80.  777 

The implementation of mitigation actions in the model is represented by constraints on 778 
CO2 emissions. The carbon price is imposed on CO2 as well as other GHG types, such as CH4 779 
and N2O, arising from every sector. The carbon price increases the price of fossil fuel-based 780 
goods when emissions are constrained and promotes energy savings and substitution away 781 
from fossil fuels to sources and transport methods with lower GHG emissions. The carbon 782 
tax also functions as an incentive to reduce non-energy-related emissions. Gases other than 783 
CO2 are weighted based on their global warming potential and summed as total GHG 784 
emissions. Further parameter settings and changes under the future scenarios are documented 785 
in Fujimori et al. (2017)81. 786 

The main revisions from version 2.0, which was used in SSP quantification72, to version 787 
2.2 are described in Fujimori et al. (2020)82 and the most relevant one for this study is the 788 
reflection of historical energy data (2005 to 2015). This methodology is the same as model 789 
integration with an energy system model where we exogenously provide the final energy, 790 
transport energy share and power energy technological share, while the corresponding 791 
parameters in the production function and household consumption are endogenized. 792 
Consequently, the autonomous energy efficiency in energy consumption and logit share 793 
parameters used to determine the share of power generation by different technologies were 794 
calibrated during that period and then used for the future scenarios (for more methodological 795 
details, see Fujimori et al.55). We used the IEA Energy Balances as the historical energy 796 
information83.  797 
 798 
National policies 799 
We adopted current national policies that can be considered relevant for the scenarios as 800 
much as possible. The NDCs are all taken into account as emissions constraints for the year 801 
2030. For all countries, population and GDP projections are based on the national perspective 802 
until either 2030 or 2035. Rates of SSP2 annual change are extrapolated afterward. There are 803 
some vital energy and climate mitigation-related policies at national levels which are 804 
reflected as either model constraints or as reference information to serve as a check that the 805 
scenarios are not far from the corresponding national perspectives. For example, in China, the 806 
next five-year plan, to be implemented in 2021, is scheduled to be published in late 2020 to 807 
early 2021 and thus we decided not to use the latest available five-year plan but have 808 
incorporated the best available current energy information. Another example is Thailand, 809 
where the power development plan has been established by the Ministry of Environment84, 85, 810 
86 as is being used for model constraints. The full list of national policy information 811 
considered in this study is shown in Supplementary Table 3. 812 
 813 
Effort sharing 814 
To map the national scenarios with global goals, we used multiple effort sharing schemes 815 
shown by van den Berg et al.41. For the global scenarios, we adopted the latest global 816 
scenarios from the IPCC Special Report on 1.5 °C database87 by taking minimum, median, 817 
and maximum ranges of IAMs pathways categorized as 1.5°C or 1.5°C-consistent and 2°C or 818 



2°C-consistent for 1.5 and 2 °C goals, respectively, regardless of the scale of global mean 819 
temperature overshoot.  820 
 821 
Regression analysis of the scenario indicators 822 
A regression analysis was carried out for the cross-country comparative assessment. The aim 823 
of this regression is to derive the general relationships which can be observed in multiple 824 
countries between each indicator and reduction levels. The equation applied is shown below.  825 ௥ܻ,௦ = ܽܺ௥,௦ + ܾ௥ + ܿ +  		ࢿ
Where: 826 
Yr,s is an individual six indicators (annual mean rate of energy intensity change, annual rate of 827 
mean carbon intensity change, share of low carbon energy sources, electrification rate, carbon 828 
price and GDP loss rates) in country r and scenario s, Xr,s is the emissions reduction 829 
percentage relative to those of 2010. a, br and c represent estimated parameters and they are 830 
the slope of the reduction levels, dummy countries, and intercept respectively. ࢿ is an error 831 
term. 832 
 833 
All figures in this paper is generated by the code at a Github repository88. 834 
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