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We propose a multimodal neural machine translation (MNMT) method with semantic image regions
called region-attentive multimodal neural machine translation (RA-NMT). Existing studies on MNMT
have mainly focused on employing global visual features or equally sized grid local visual features
extracted by convolutional neural networks (CNNs) to improve translation performance. However, they
neglect the effect of semantic information captured inside the visual features. This study utilizes semantic
image regions extracted by object detection for MNMT and integrates visual and textual features using
two modality-dependent attention mechanisms. The proposed method was implemented and verified
on two neural architectures of neural machine translation (NMT): recurrent neural network (RNN) and
self-attention network (SAN). Experimental results on different language pairs of Multi30k dataset show
that our proposed method improves over baselines and outperforms most of the state-of-the-art MNMT
methods. Further analysis demonstrates that the proposed method can achieve better translation perfor-
mance because of its better visual feature use.
� 2022 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Neural machine translation (NMT) has achieved state-of-the-art
translation performance [43,16,3,45]. The strength of NMT lies in
its ability to learn directly, in an end-to-end fashion, mapping from
the input text to the associated output text. In the context of recur-
rent neural network (RNN), it was proposed to use internal state
(memory) to process variable-length sequences of inputs, that is
much better at capturing long-term dependencies [3]. In the con-
text of self-attention network (SAN), a special attention mecha-
nism was proposed for selecting specific parts of an input
sequence by relating its elements at different positions, dispensing
with recurrence entirely [45].

Multimodal NMT (MNMT) is a novel take on NMT that trans-
lates sentences in the presence of multimodal contents, aiming
to tackle specific situations wherein only the textual contexts, such
as ambiguous words and grammatical gender, are not sufficient for
translation. Hence, many studies [42,21,4] have increasingly been
focusing on incorporating visual input, particularly images, to
improve translation.
The potential for improving translation quality using images
has been pioneered by [22]. Subsequent studies [26,30,12] have
started using a global visual feature extracted from an entire image
to initialize encoder/decoder RNN hidden states to contextualize
language representations. However, the effect of images cannot
be fully exerted, as the visual features of an entire image are com-
plex and non-specific.

To effectively use images, some studies [46,8,13] used spatial
convolutional features extracted through convolutional neural net-
works (CNNs) pre-trained on ImageNet [40]. As these equally sized
grid local visual features do not convey specific semantics, the role
of visual modality only provides dispensable help for translation.

Other studies utilize richer local features for MNMT, such as
DenseCap1 in [18]. However, their efforts have not convincingly
demonstrated that visual features can improve the translation qual-
ity. According to [10], when the textual context is limited, visual fea-
tures can help generate better translations. MNMT disregards visual
features because the quality of the image features or the way in
which they are integrated is not satisfactory. Therefore, the types
of visual features that are suitable and how these features should
be integrated remain open questions.

In this study, as shown in Fig. 1, we attempt to combine object
detection with an additional region-dependent attention mecha-
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Fig. 1. Overview of region-attentive multimodal neural machine translation (RA-
NMT).

2 https://github.com/nyu-dl/dl4mt-tutorial/blob/master/docs/cgru.pdf
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nism for fully exploiting semantic image region features upon NMT
architectures, which is called region-attentive multimodal neural
machine translation (RA-NMT). In RA-NMT, it is possible to focus
on different parts of the source sentence and different object-
level regions of the image at the same time. The main motivation
behind this is that we expect the proposed method to take advan-
tage of useful visual information by attending to specific regions of
the image to assist in translating source words. As suggested in
[20], attending to specific regions of the image is crucial for
improving the translation.

Technically, rather than equally sized grid local visual features,
we present that semantic image region features containing object
attributes and relationships are essential to MNMT. Furthermore,
inspired by previous studies [8,13,37,17] on the investigation of
the attention mechanism for multi-source learning, we introduce
that a region-dependent attention mechanism is a promising way
to make MNMT attend to the salient regions of an image. There-
fore, instead of utilizing regional features to initialize/contextual-
ize language representations [30,31], we propose integrating
semantic image region features into MNMT with two modality-
dependent attention mechanisms, one for text and the other for
the semantic image regions, which is significantly different from
the previous studies.

Although we have implemented and verified the proposed
method on the RNN-based NMT architecture in our previous study
[51], how to implement the proposed method and whether it is
compatible and effective on the SAN-based NMT architecture
remain challenging. In this study, we implemented and verified
the proposed method on not only the RNN-based architecture
but also SAN-based architecture, which are called region-
attentive multimodal RNN (RA-RNN) method and region-
attentive multimodal SAN (RA-SAN) method, respectively.

Additionally, the effect of the number of semantic image
regions on translation performance is explicitly clarified in this
study. We conducted experiments on different numbers of
semantic image regions based on both the RA-RNN and RA-SAN
methods, and a detailed analysis was performed. Furthermore,
we also carried out a pairwise evaluation and qualitative analysis
within/between RNN-based and SAN-based architectures to
demonstrate the translation performance of our proposed
method.

In contrast to our previous study [51], the main contributions of
this study are fourfold:

� We propose multimodal method that combines object detec-
tion with an additional region-dependent attention mecha-
nism to fully exploit semantic image region features on NMT
architectures, which is called RA-NMT. This proposal is imple-
mented and verified on two types of NMT architectures: RNN
and SAN.
� Extensive experimental results show that our proposed method
improves over baselines on both RNN and SAN architectures. A
further experimental comparison shows that our proposed
method outperforms most existing MNMT methods.
2

� To investigate the effect of the number of semantic image
region features on our proposal, we conducted experiments
on both the RA-RNN and RA-SAN methods and performed a
detailed analysis.
� Further analysis demonstrates that the proposed method can
make better use of visual information by attending to specific
semantic image regions with an additional region-dependent
attention mechanism.

2. Related work

Some MNMT models integrate visual information using a single
global visual feature vector extracted by CNNs. For example, some
models use the global visual feature in the following ways: initial-
izing the encoder/decoder hidden states [22,30,12]; performing
element-wise multiplication with target word embeddings [5];
impacting the text encoder by learning an image representation
jointly [24,29]. In addition, some models use the global visual fea-
ture to interact between the sources through a latent variable [14],
a shared space [52], or a universal representation [50]. Although
they aim to combine text and image sources to generate a good
translation, it is difficult to summarize all the semantic information
of an entire image into a single feature vector.

Other studies represent visual information with a sequence of
equally sized grid local visual feature vectors extracted by CNNs.
These grid features are used to preserve the spatial correspondence
with the input image. For example, a joint representation is gener-
ated by combining visual and textual representations [25], com-
pute a multimodal context vector using a multimodal or filtered
attention mechanism [8,6,7], and focus on textual and visual anno-
tations independently by different strategies on attention mecha-
nisms [11,13,37,17]. Although they aim to use part of the image
related to the text’s semantics, it is difficult to distinguish the
equally sized grid local features in the image.

To overcome the above difficulties, current studies attempt to
represent an image using multiple object-level regional features.
[30], for example, integrated regional features followed by the text
sequence. [44] proposed a transformation to mix global visual fea-
tures and regional features. [27] and [31] generated a single repre-
sentation of regional features to initialize the encoder or target
word embeddings. Furthermore, [47] proposed a multi-head co-
attention upon regional features. [49] used a unified multimodal
graph to capture semantic relationships between words and
objects. So far, how to fully exploit visual information in MNMT
remains an open question.
3. Proposed methods

3.1. RA-RNN: Region-Attentive Multimodal RNN

As shown in Fig. 2, the proposed RA-RNN, based on [13], com-
prises three parts: sentence encoder, image encoder, and decoder.

We integrate the visual features using an additional attention
mechanism. From the source sentence X = (x1; x2; x3; � � � ; xn) to the
target sentence Y = (y1; y2; y3; � � � ; yg), the image attention mecha-
nism focuses on all semantic image region features to calculate
the image context vector zt , whereas the text-attention mechanism
computes the text context vector ct . The decoder is an RNN with
conditional gated recurrent unit (cGRU)2 to generate the current
hidden state st and target word yt on two attention mechanisms.

At time step t, a hidden state proposal ŝt is initially computed in
cGRU, and then the image context vector zt and text context vector
ct are calculated.



Fig. 2. RA-RNN: Region-Attentive Multimodal RNN.
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n̂t ¼ r WnEY yt�1½ � þ Unst�1ð Þ
ĉt ¼ r WcEY yt�1½ � þ Ucst�1

� �
_st ¼ tanh WEY yt�1½ � þ ĉt � Ust�1ð Þð Þ
ŝt ¼ 1� n̂t

� �
� _st þ n̂t � st�1

where Wn;Un;Wc;Uc;W , and U are trainable parameters; EY is the
target word vector.
3.1.1. Sentence encoder
The sentence encoder is a bi-directional RNN with GRU [15].

Given a sentence X = (x1; x2; x3; � � � ; xn), the encoder updates the for-

ward hidden states with annotation vectors ( h1
�!

; h2
�!

; h3
�!

; � � � ; hn
�!

),
and updates the backward with annotation vectors

(h1

 
; h2

 
;h3

 
; � � � ;hn

 
). By concatenating the forward and backward vec-

tors hi = hi
!
;hi

 � �
, each hi encodes the entire sentence while focusing

on the xi word, and all words in a sentence are denoted as C =
(h1; h2; � � � ;hn).
3.1.2. Image encoder
The image encoder is an object-detection-based approach fol-

lowing [1], acting as a feature extractor in the object-level image
region.

As shown in Fig. 2, when given an input image, the image enco-
der first employs an object detection method, which is Faster R-
CNN [39] pre-trained on Visual Genome [36], to propose m
object-level image regions from each image. Then, based on the
detected object-level image regions, a ResNet101 [28] pre-trained
on ImageNet [40] is utilized to extract semantic image region fea-
tures. Finally, each semantic image region feature is represented as
a vector r with dimensions dr, and all of these features in each
image are denoted as R = (r1; r2; r3; � � � ; rm).
3

3.1.3. Decoder
The decoder comprises three parts: the text-attention mecha-

nism, image-attention mechanism, and generation.
Text-attention mechanism. At time step t, the text context vec-

tor ct is generated as follows:

etextt;i ¼ V text� �T
tanh Utextŝt þW texthi

� �
atext
t;i ¼ softmax etextt;i

� �

ct ¼
Xn
i¼1

atext
t;i hi

where V text;Utext, and W text are trainable parameters; etextt;i is the
attention energy; atext

t;i is the attention weight matrix of the source
sentence.

Image-attention mechanism. At time step t, the image-attention
mechanism focuses on the m semantic image region features and
computes the image context vector zt .

We initially calculate the attention energy eimg
t;p , which scores the

degree of output matching between the inputs around position p
and the output at position t, as follows:

eimg
t;p ¼ V img

� �T
tanh Uimgŝt þW imgrp

� �

where V img;Uimg, and W img are trainable parameters.

Then, the weight matrix aimg
t;p of each rp is computed as follows:

aimg
t;p ¼ softmax eimg

t;p

� �

At time step t, the image-attention mechanism dynamically
focuses on the m semantic image region feature vectors and com-
putes the image context vector zt , as follows:

zt ¼ bt

Xm
p¼1

aimg
t;p rp
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For zt , at each decoding time step t, a gating scalar bt 2 0;1½ � [46]
was used to adjust the proportion of the image context vector
according to the previous hidden state st�1.

bt ¼ r Wbst�1 þ bb

� �
where Wb and bb are trainable parameters.

Generation. At time step t of the decoder, the new hidden state
st is generated in the cGRU, as follows:

nt ¼ r W text
n ct þW img

n zt þ �Un ŝt
� �

ct ¼ r W text
c ct þW img

c zt þ �Ucŝt
� �

�st ¼ tanh W textct þW imgzt þ ct � Uŝt
� �� �

st ¼ 1� ntð Þ � �st þ nt � ŝt

where W text
n ;W img

n ; �Un;W
text
c ;W img

c ; �Uc;W
text;W img, and U are model

parameters; nt and ct are the output of the update/reset gates; �st
is the proposed updated hidden state.

Finally, the output probability is computed as follows:

softmax Lo tanh Lsst þ Lcct þ Lzzt þ LwEY yt�1½ �ð Þð Þ

where Lo; Ls; Lc; Lz, and Lw are trainable parameters.
3.2. RA-SAN: Region-Attentive Multimodal SAN

As shown in Fig. 3, RA-SAN comprises three parts: encoder,
decoder, and image encoder. We propose RA-SAN based on trans-
former architecture [45]. In the decoder, we implement two
modality-dependent cross-attention mechanisms over the multi-
source (image, text). The image encoder follows the method
described in Section 3.1.2.
Fig. 3. RA-SAN: Region-Atte

4

3.2.1. Encoder
To represent source sentences, an input embedding layer acts as

a lookup table to map each word to a vector representation.
Because the encoder in the transformer has no recurrence like that
in RNN, it is necessary to inject positional information into the
input embeddings, which is done using positional encoding.

The encoder comprises a stack of N identical layers. Each layer
has self-attention and feed-forward sublayers. The self-attention
sub-layer is a multi-head attention mechanism that allows the
model to jointly attend to information from different representa-
tion subspaces. The feed-forward sub-layer is a basic, position-
wise, fully connected feed-forward network, which is applied to
each position separately and identically.

In addition to the two sub-layers described above, the residual
connection [28] and layer normalization [2] are also key compo-
nents of the transformer. There is a residual connection around
every one of the two sublayers and a layer normalization inside
the residual connection in our model. Therefore, the output of each
sublayer is defined as xþ Sublayer LayerNorm xð Þð Þð Þ, where
SublayerðÞ is the function implemented by the sublayer itself. To
encourage these residual connections, all sublayers and embedding
layers produce outputs of dimension dmodel.
3.2.2. Decoder
The decoder comprises a stack of N identical layers. In addition

to the two sub-layers similar to the encoder, the decoder inserts
two cross-attention mechanisms between them. One is text
cross-attention, which performs multi-head attention on encoder
output features. The other is image cross-attention, which per-
forms multi-head attention over semantic image region features.
There is also a residual connection around every sublayer and a
layer normalization inside the residual connection, similar to the
encoder.
ntive Multimodal SAN.



Fig. 5. Left: Text Multi-Head Attention; Right: Image Multi-Head Attention.
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When generating a target word at a time step t, the attention
from one of the sources may be strong or weak from the other,
and thus, summing two cross-attention outputs would help learn
the better translation. Therefore, the summarized output from
two cross-attentions is fed into the feed-forward network sub-
layer, which consists of two linear transformations with a ReLU
activation in between:

FFN xð Þ ¼max 0; xW1 þ b1ð ÞW2 þ b2

While the linear transformations are the same across different
positions, they use different parameters from layer to layer, where
W1;W2; b1, and b2 are trainable parameters. In this equation, the
dimensions of the input and output are dmodel, and the inner
feed-forward neural network layer has dimensions dff . Finally,
the decoder is capped off with a linear layer that acts as a classifier
and a softmax layer to obtain the target word probabilities.

3.2.3. Double cross-attentions
As illustrated on the left of Figs. 4 and 5, conventional cross-

attention in the transformer acts as a query mapping of key-
value sets to an output, which is multi-head attention that per-
forms the attention function on the encoder output features using
H heads in parallel. Each scaled dot-product attention process is
called one head. Each head produces an output vector that is con-
catenated into a single vector before passing through the final lin-
ear layer.

The input involves queries and keys of dimension dk and values
of dimension dv. Each query is multiplied with all keys by dot pro-

duct multiplication and scaled by
ffiffiffiffiffi
dk

p
; then, there is an src_-

padding on padding source text input into the maximum length.
Finally, the softmax function is applied to obtain the weights of
the values. The final output of the scaled dot-product attention is
computed as the weighted sum of the values. The weight assigned
to each value is calculated using the compatibility function of the
query with the corresponding key.

The cross-attention is simultaneously calculated on a set of
queries, keys, and values and packed together into a matrix
Q ;Kt;Vt . The output matrix is computed as follows:

Attention Q ;Kt;Vtð Þ ¼ softmax QKT
tffiffiffiffi
dk
p


 �
Vt

MultiHead Q ;Kt;Vtð Þ ¼ Concat head1
t ; . . . ;head

H
t

� �
WO
Vr

MatMul

Vt

MatMul

Kt Q

MatMul

Scale

src_padding

softmax

Q Kr

MatMul

Scale

softmax

Fig. 4. Left: Text Scaled Dot-Product Attention; Right: Image Scaled Dot-Product
Attention.
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where headi2 1;H½ �
t ¼ Attention QWQ

i ;KtW
K
i ;VtW

V
i

� �
.

The projections are parameter matrices:

WQ
i 2 Rdmodel�dk

WK
i 2 Rdmodel�dk

WV
i 2 Rdmodel�dv

WO 2 RHdv�dmodel

In the proposed RA-SAN, we use the conventional cross-
attention in the transformer as the text cross-attention mecha-
nism. We implemented an additional image cross-attention mech-
anism, which is multi-head attention, that performs the attention
function on m semantic image region features using H heads in
parallel.

The image cross-attention mechanism is illustrated on the right
side of Figs. 4 and 5. Unlike text-scaled dot-product attention, the
image-scaled dot-product attention has no source input padding
because the number of semantic image regions is fixed. The image
cross-attention mechanism is defined as:

Attention Q ;Kr;Vrð Þ ¼ softmax QKT
rffiffiffiffi
dk
p


 �
Vr

MultiHead Q ;Kr;Vrð Þ ¼ Concat head1
r ; . . . ;head

H
r

� �
Wo

where headi2 1;H½ �
r ¼ Attention QWq

i ;KrW
k
i ;VrW

v
i

� �
.

The projections are parameter matrices:

Wq
i 2 Rdmodel�dk

Wk
i 2 Rdmodel�dk

Wv
i 2 Rdmodel�dv

Wo 2 RHdv�dmodel
4. Experiments

4.1. Dataset

We experimented on English!German (En!De) and English-
!French (En!Fr) tasks of the Multi30k dataset [23]. The dataset
contained 29 k training images and 1,014 validation images. For
testing, we used the 2016 test set, which included 1,000 images.
Each image was paired with its English descriptions as well as
human translations of German and French. We used Moses [35]
toolkit3 to normalize and tokenize all sentences. Then, we converted
the space-separated tokens into sub-word units using the byte pair
encoding (BPE) model [41].4 With 10k merge operations, the result-
3 https://github.com/moses-smt/mosesdecoder.
4 https://github.com/rsennrich/subword-nmt.

https://github.com/moses-smt/mosesdecoder
https://github.com/rsennrich/subword-nmt
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ing vocabulary sizes of each language pair were 5,202!7,065 tokens
for En!De and 5,833!6,575 tokens for En!Fr. The number of
tokens in the sentence was limited to a maximum of 100. We trained
models to translate from English to German/French and report the
evaluation of cased, tokenized sentences with punctuation.

4.2. Evaluation metrics

We evaluated the quality of translation according to the token-
level BLEU [38] and METEOR [19] metrics.

We trained all models three times and calculated the BLEU and
METEOR scores. Finally, we reported the average over three runs.
Moreover, we reported the statistical significance of BLEU using
bootstrap resampling [34] over a merger of three test translation
results. We defined the statistical significance test threshold as
0.05, and reported only when the p-value was less than the
threshold.

4.3. Baselines

4.3.1. RNN-based baselines
RNN. We trained a text-only RNN model using the OpenNMT

[33] toolkit5 as a baseline. The RNN was trained on En!De and
En!Fr, wherein only the textual part of Multi30k was used. This
architecture comprises a 2-layer bidirectional GRU encoder and a
2-layer cGRU decoder with an attention mechanism.

Grid-attentive multimodal RNN (GA-RNN). We trained a GA-
RNN [13] model6 as another baseline, which was extended from
OpenNMT. This architecture comprises a 2-layer bidirectional GRU
encoder and a 2-layer cGRU decoder with two attention mecha-
nisms. We trained this model with 7� 7 equally sized gird local
visual features from each image extracted by a ResNet101 pre-
trained on ImageNet. Each grid-based local visual feature was repre-
sented as a 2,048-dimension vector.

4.3.2. SAN-based baselines
SAN. We trained a text-only SAN model using the transformer’s

settings in the OpenNMT toolkit as a baseline. The SAN was also
trained on only the textual part of Multi30k on En!De and En!Fr
tasks.

Grid-attentive multimodal SAN (GA-SAN). We trained a GA-SAN
model based on the GA-RNNmodel by modifying the transformer’s
settings in the OpenNMT toolkit as another baseline. An image
cross-attention mechanism was implemented on the grid-based
local visual features in the transformer’s settings. This architecture
was also trained with 7� 7 gird-based local visual features from
each image extracted by a ResNet101 pre-trained on ImageNet,
and each feature was represented as a 2,048-dimension vector.

4.4. Setup

We implemented our proposed RA-RNN and RA-SAN based on
GA-RNN and GA-SAN baselines, respectively, by modifying the
image attention mechanism to focus on m semantic image region
feature vectors generated from the image encoder. For the image
encoder in both the RA-RNN and RA-SAN methods, the number
of semantic image region features was set to m ¼ 100 and the
dimension of regional feature vectors was set to dr ¼ 2;048.

4.4.1. Settings of RNN-based architectures
We set the hidden state dimension of the bi-directional GRU

encoder and cGRU decoder to 500, source word embedding dimen-
5 https://github.com/OpenNMT/OpenNMT-py.
6 https://github.com/iacercalixto/MultimodalNMT.
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sion to 500, sentence-minibatches to 40, beam size to 5, text drop-
out to 0.3, and image region dropout to 0.5. We trained the model
using stochastic gradient descent with ADAM [32] and a learning
rate of 0.002 for 25 epochs. Finally, after both the validation per-
plexity and accuracy converged, the model with the highest BLEU
score of the validation set was selected to evaluate the test set.

4.4.2. Settings of SAN-based architectures
We set N ¼ 6 layers for the encoder and decoder. The number of

dimensions of all the input and output layers was set to
dmodel ¼ 512. The inner feed-forward neural network layer was
set to dff ¼ 2;048. The heads of all the multi-head modules were
set to H ¼ 8 in both the encoder and decoder layers. We applied
linear projection on visual features to reduce the dimensions from
2,048 to 512 to have the same size as word embeddings. We
applied a dropout of 0.3 on linear projection. During training, the
sentence-minibatches were set to 40, the value of label smoothing
was set to 0.1, and the attention dropout and residual dropout
were 0.3. An Adam optimizer was used to tune the model param-
eters. The learning rate was set to two with a warm-up step of
8,000. We trained the model up to 100 epochs, and the model with
the highest BLEU score of the validation set was selected to evalu-
ate the test set.

4.5. Results

Table 1 presents the experimental results of RNN-based archi-
tectures, showing that the proposed RA-RNN achieves better per-
formance than both the text-only RNN baseline and the GA-RNN
baseline in all translation tasks. In particular, the results of the
RA-RNN are significantly better than those of the text-only RNN
baseline with a p-value of < 0.05 on both language pairs. This illus-
trates that integrating semantic image region visual features is
capable of promoting translation performance, and our proposed
method can make better use of visual information.

Table 2 presents the experimental results of the SAN-based
architectures, showing that the proposed RA-SAN outperforms
the baselines on both the En!De and En!Fr tasks. It is worth not-
ing that our RA-SAN results are significantly better than not only
the text-only SAN baseline but also the GA-SAN baseline with a
p-value of < 0.05 on both tasks. This demonstrates that the pro-
posed method is universal, which can result in consistent improve-
ments in performance on different NMT architectures. Thus, we
confirm the effectiveness and generality of the proposed method.

4.6. Comparison with existing methods

To further verify the merit of the proposed method, we also
implemented the proposed method on the state-of-the-art text-
only NMT baseline mentioned in [14] and the state-of-the-art
transformer baseline mentioned in [49], respectively. Furthermore,
we compared the experimental results of our proposed method
with the following state-of-the-art MNMT methods:

Parallel RCNNs [30]: The encoder of RNN is composed of multi-
ple encoding threads. In each thread, a regional visual feature is
followed by a text sequence.

NMTSRC+IMG [13]: Integrates two separate attention mechanisms
over the source words and conventional grid local visual features
in a cGRU decoder.

IMGD [12]: Integrates global visual features as additional data to
initialize the decoder hidden state.

Imagination [24]: Jointly learns a translation model and visually
grounded representations.

{Soft, Stochastic} Attention + Grounded Image (GI) [17]: Employs
two kinds of attention mechanisms, which are superimposed by

https://github.com/OpenNMT/OpenNMT-py
https://github.com/iacercalixto/MultimodalNMT


Table 1
The experimental results of RNN-based architectures. The best performance is
highlighted in bold. y indicates that the result is significantly better than the text-only
RNN baseline at a p-value of < 0.05.

Methods En!De En!Fr

BLEU METEOR BLEU METEOR

RNN 34.8 53.4 56.5 71.9

GA-RNN 36.5 54.8 57.8 72.8

RA-RNN 36.9y 55.5 58.1y 73.2
v.s. RNN (" 2.1) (" 2.1) (" 1.6) (" 1.3)

v.s. GA-RNN (" 0.4) (" 0.7) (" 0.3) (" 0.4)

Table 2
The experimental results of SAN-based architectures. The best performance is
highlighted in bold. y and z indicate that the result is significantly better than the
text-only SAN and GA-SAN baselines at p-value < 0.05, respectively.

Methods En!De En!Fr

BLEU METEOR BLEU METEOR

SAN 35.4 52.8 57.4 72.2

GA-SAN 37.5 55.6 59.5 74.4

RA-SAN 38.0y� 56.0 60.1y� 74.8
v.s. SAN (" 2.6) (" 3.2) (" 2.7) (" 2.6)

v.s. GA-SAN (" 0.5) (" 0.4) (" 0.6) (" 0.4)
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an additional grounding attention method, for considering visual
annotations of image feature maps to generate context vectors.

VMMTF [14]: An MNMT model that incorporates image context
through a latent variable model.

Del+Obj [31]: A transformer-based deliberation model enriched
with object-level features.

MTF [48]: A transformer-based NMT model with multimodal
self-attention to integrate text and image features.

GMFE-NMT [49]: A transformer-based NMT model integrated
with a multimodal graph neural network (GNN) encoder on the
grounding-based correspondences between phrase-level words
and regions.

As shown in Table 3, all the existing methods are divided into
two groups: RNN-based methods and SAN-based methods. Then,
we display the experimental results of the proposed method and
the state-of-the-art methods’ results for the respective group. Note
that previous methods mainly report the results on the En!De
language pair of the Multi30k 2016 test set, and hence, the existing
results on the En!Fr task are fewer than those of the En!De task.

By comparing the performance of the proposed method with
the state-of-the-art methods, we draw two conclusions as follows:

First, the proposed method outperforms the state-of-the-art
text-only baselines on different basic neural architectures. For
instance, the proposed method in the respective group outper-
forms the text-only NMT baseline and the transformer baseline
by 1.6 and 0.6 BLEU scores, respectively, on the En!Fr task. There-
fore, we can confirm the effectiveness and generality of the pro-
posed method.

Second, the evaluation results of the proposed method outper-
form most of the existing MNMT methods. Among the SAN-based
methods, our proposed method achieves the best performance
evaluated by the METEOR score on both language pairs; further-
more, the results of the proposed method surpass all the METEOR
scores in the RNN-based methods on different language pairs as
well. This demonstrates that our proposed method is competitive
among all the state-of-the-art MNMT methods.
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On the other hand, we notice that our method underperforms
[17,49]. We conjecture that the reason for this is inseparable from
the superimposed use of the grounding methods in [17,49]. In con-
trast, our method does not take advantage of additional methods to
eliminate interference information on the image side but still
achieves effective visual information usage. Although our results
do not outperform theirs, our method is simpler and less computa-
tionally expensive than theirs.
5. Analyses

5.1. Effect of the number of semantic image region features m

In order to analyze the influence of the number of semantic
image region features on our proposed method, we show the
experimental results on different numbers of semantic image
region features in Fig. 6 and report the computational cost in
Table 4.

Specifically, for the setup of the image encoder in the proposed
method mentioned in Section 4.4, instead of setting m ¼ 100, the
number of semantic image region features was set to
m ¼ 10;20;40;60;80;100;120;140;160;180;200½ �, respectively.
All the variants are attempted in both the RA-RNN and RA-SAN
methods on the En!De translation task. In Fig. 6, all the experi-
mental results evaluated by BLEU and METEOR are the average
score over three runs.

Holistically, either on RA-RNN or on RA-SAN, there is no big gap
in the performance of the proposed method on different numbers
of semantic image region features. As m increases, the BLEU/
METEOR scores fluctuate up and down within a limited range. This
proves the stability of our proposed method and indicates that the
performance of the proposed method is not sensitive to the num-
ber of semantic image region features, which further illustrates
that it is the effective use of semantic image region features rather
than their numbers that determine the translation performance.

Additionally, we also show the computational cost of different
variants in Table 4, which includes training speed, decoding speed,
and elapsed time per training epoch. All the variants with different
m in the RA-RNN and RA-SAN methods have experimented on the
En!De translation task. In order to make a clear illustration, we
report the computational cost of the variants, including the maxi-
mum value of m ¼ 200, the minimum value of m ¼ 10, and
m ¼ 100.

In general, with the increase of m, there is a drop of the training
and decoding speed simultaneously, and the elapsed time per
training epoch has become longer correspondingly. Overall train-
ing and decoding speed are reasonable. In more detail, in the case
of the same m, the training and decoding speed of the RA-SAN are
slower than the RA-RNN. We conjecture that as the calculation of
the image-attention in the RA-RNN is additive, but the calculation
of the image cross-attention in the RA-SAN is scaled dot-product,
the computational cost of the RA-SAN is slightly larger than that
of the RA-RNN.
5.2. Pairwise evaluation

To further analyze the translation performance of our proposed
method, we performed a pairwise evaluation and statistical analy-
sis. The results of the pairwise evaluation of the En!Fr language
pair are summarized in Table 5.

Based on two kinds of NMT architectures, we conducted three
groups of comparisons. Specifically, we compared the proposed
RA-RNN/RA-SAN translations with their corresponding baselines’
translations to identify improvement or deterioration of transla-
tion performance, and we compared the translations of RA-RNN



Table 3
Comparison with existing methods. Among all the results, we highlight the best performance in bold. All the experimental results of our proposal are the average scores over three
runs.

Methods En!De En!Fr

BLEU METEOR BLEU METEOR

RNN-Based Methods
Text-only NMT [33,14] 35.0 54.9 56.5 71.9

Parallel RCNNs [30] 36.5 54.1 N/A N/A
NMTSRC+IMG [13] 36.5 55.0 57.8 72.8

IMGD [12] 37.3 55.1 N/A N/A
Imagination [24] 36.8 55.8 N/A N/A

Soft Attention + GI [17] 37.6 55.3 N/A N/A
Stochastic Attention + GI [17] 38.2 55.4 N/A N/A

VMMTF [14] 37.7 56.0 N/A N/A

Our Proposal(OpenNMT)
11 36.9 55.5 58.1 73.2

SAN-Based Methods
Text-only transformer [45,49] 38.4 56.5 59.5 73.7

Del+Obj [31] 38.0 55.6 59.8 74.4
MTF [48] 38.7 55.7 N/A N/A

GMFE-NMT [49] 39.8 57.6 60.9 74.9

Our proposal(Nmtpytorch)
12 38.6 57.7 60.1 75.0

11 The results of our proposal reported here are implemented on the state-of-the-art text-only NMT baseline mentioned in [14] using the OpenNMT toolkit. The
experimental settings are consistent with the setup described in Section 4.4.1.
12 The results of our proposal reported here are implemented on the state-of-the-art transformer baseline mentioned in [49] using the Nmtpytorch toolkit [9]. The
experimental settings are consistent with the setup in Section 4.4.2, except that the learning rate was tuned to 0.03 and the model was trained up to 300 epochs.

Fig. 6. Investigation of the effect of the number of semantic image region features m on our proposed method. The BLEU and METEOR results in the RA-RNN and RA-SAN
methods are the average score over three runs on the En!De task..

Table 4
Computational cost: training speed (source tokens per second), decoding speed
(target tokens per second), and elapsed time in seconds (s) per epoch. All the variants
on both the RA-RNN and RA-SAN methods are attempted with m ¼ 10;100;200½ � on
the En!De task, respectively.

Variants Training Decoding Time (s)

RA-RNN m ¼ 10 9,140 7,973 52
m ¼ 100 5,486 5,296 78
m ¼ 200 3,847 3,767 110

RA-SAN m ¼ 10 5,575 5,788 72
m ¼ 100 4,267 4,549 91
m ¼ 200 2,868 3,073 135
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and RA-SAN to identify which architecture can achieve better
translation performance. For each group, we randomly selected
50 examples for evaluation and categorized 50 investigated exam-
ples into various categories by counting the number and
proportion.

After statistical analysis, we find that almost half of the investi-
gated examples show that our RA-RNN performs better than at
least one baseline model. Similarly, half of the investigated exam-
ples show that our RA-SAN outperforms at least one baseline
model. It is further verified the effectiveness and generality of
our proposed method. Moreover, the number of examples in which
our RA-SAN is better than both baselines is slightly improved
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compared with a similar case of the RA-RNN. By comparing the
translation performance of our RA-SAN and RA-RNN, we find that
the number of examples where RA-SAN is better than RA-RNN is
four times larger than the opposite cases. This illustrates that our
RA-SAN can achieve a better translation performance compared
with RA-RNN.
5.3. Qualitative analysis

For qualitative analysis, we analyze translation performance by
comparing the translation results of the proposed method and its
baselines, along with visualizing the semantic image regions that
are attended by the image-attention mechanism at every time
step.

According to the attention weight assigned to each region, the
semantic image regions are shown with deep or shallow trans-
parency in the image at every time step. As the weight increases,
the image region becomes more transparent. Considering the num-
ber of 100 bounding boxes in one image and the overlapping areas,
we visualized the top five weighted semantic image regions. In the
image, a blue bounding box indicates the most weighted image
region, and the red text along with the bounding box shows the
target word generated at that time step. Then, we analyze whether
the semantic image regions have a positive or negative effect at the
time step when a target word is generated.



Table 5
Pairwise evaluation. We counted the number and proportion of various categories
among 50 random examples.

RA-RNN v.s. RNN-based baselines

Better than both baselines 8 (16%)
Better than GA-RNN baseline 6 (12%)
Better than RNN baseline 10 (20%)
No change 24 (48%)
Deteriorated 2 (4%)

RA-SAN v.s. SAN-based baselines
Better than both baselines 10 (20%)
Better than GA-SAN baseline 4 (8%)
Better than SAN baseline 11 (22%)
No change 24 (48%)
Deteriorated 1 (2%)

RA-SAN v.s. RA-RNN
RA-SAN is better than RA-RNN 8 (16%)
RA-RNN is better than RA-SAN 2 (4%)
No change 40 (80%)
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To distinguish the translation quality, we highlight the better
translation with blue and worse translation with red.
5.3.1. Analysis within RNN-based models
In Fig. 7, we present two examples to analyze the effect of

semantic image regions on translation quality within RNN-based
models. The first is an example of a positive effect, whereas the
second is the opposite.

For the first example, it illustrates that the semantic image
regions of the proposed method can play a positive role in provid-
ing object attributes.

In detail, by comparing the translation result of our RA-RNN and
its baselines, we find that the RA-RNN translates ‘‘striped beach
chairs” better, which is a phrase made up of an adjective and a
noun. From the visualization of the most weighted semantic image
region, we can identify the semantic of ‘‘chairs” and ‘‘striped,”
respectively.
Fig. 7. Examples for recurrent neural network (RNN), grid-attentive multimodal RNN
indicate incorrect and correct, respectively.
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For the second example, it presents that attending to the seman-
tic image regions that are not related to the text’s semantics is not
helpful for translation performance.

As shown in the example, ‘‘air” is correctly translated by base-
lines. However, the RA-RNN translates ‘‘in the air” into ‘‘du vol
(of the flight).” We observe that the transparent semantic image
regions with the top five weights in the image are scattered and
unconnected. We can not understand any semantic information
in the visualized image regions. We speculate that the word ‘‘air”
is challenging to interpret depending on visual features. Further-
more, the proposed method translates it into ‘‘vol (flight),” which
is close to another meaning of the polysemous ‘‘air,” not com-
pletely different from the original meaning.

5.3.2. Analysis within SAN-based models
In Fig. 8, we present two examples to analyze the effect of

semantic image regions on translation quality within SAN-based
models. The first is an example of a positive effect, whereas the
second is the opposite.

For the first example, it shows that the semantic image regions of
the proposed method can play a positive role in providing verb
attributes.

In this example, compared with baselines’ translations, the RA-
SAN translates ‘‘operating” better, which is a verb. By visualizing
the most weighted semantic image region, we can identify the
semantic of ‘‘operate.”.

For the second example, we find that the semantic image regions
of the proposed method have no effect on distinguishing
synonyms.

As illustrated in the example, ‘‘wearing” is correctly translated
by baselines. However, the RA-RNN translates the verb into ‘‘in,”
which is a preposition. Although we can identify the semantic of
‘‘wearing” from the most weighted semantic image region, it can
also be understood as ‘‘in.”.

5.3.3. Analysis between RA-RNN and RA-SAN
In Fig. 9, we present two examples to analyze the effect of

semantic image regions on translation quality between RA-RNN
(GA-RNN), and region-attentive multimodal RNN (RA-RNN). Red and blue words



Fig. 8. Examples for self-attention network (SAN), grid-attentive multimodal SAN (GA-SAN), and region-attentive multimodal SAN (RA-SAN). Red and blue words indicate
incorrect and correct, respectively.

Fig. 9. Examples for region-attentive multimodal RNN (RA-RNN) and region-attentive multimodal SAN (RA-SAN). Red and blue words indicate incorrect and correct,
respectively.
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and RA-SAN architectures. The first is an example of the case where
RA-SAN is better than RA-RNN, whereas the second is the opposite
case.

For the first example, it reflects that the performance of the
image attention mechanism is also crucial to the translation qual-
ity of the proposed method. In another word, the semantic image
region features and the effectiveness of the image attention mech-
anism are indispensable.

As shown in this example, the RA-SAN translates ‘‘equipment”
better than RA-RNN. From the top five weighted semantic image
regions, we can identify the semantic of ‘‘equipment,” either in
RA-RNN or RA-SAN. However, as the most weighted semantic
image region by the image attention mechanism in RA-RNN does
not provide any relevant semantic information to the text’s seman-
tics, it eventually leads to worse translation.

For the second example, it demonstrates that the improvement in
translation performance benefits from attending to the specific
semantic image region features.

As shown in this example, the RA-RNN translates ‘‘yard work”
better than RA-SAN. We find that the RA-RNN focuses on a potted
plant in a small garden from the most weighted semantic image
region, however, the RA-SAN focuses on a boy’s work activities.
Moreover, we observe that the top five weighted semantic image
regions on which the two architectures focus are quite different.
The RA-RNN mainly focuses on the garden, whereas the RA-SAN
focuses on the action.
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6. Conclusion

This study proposed a multimodal NMT method, namely, RA-
NMT, with semantic image regions. The proposed method was
implemented on two types of NMT architectures. Experimental
results showed that the proposed method achieved a significant
improvement above its baselines on either of the two neural
architectures. Furthermore, the proposed method implemented
on the state-of-the-art NMT baselines can not only achieve better
performance than the baselines but can also outperform most of
the existing MNMT methods, which verifies its effectiveness and
competitiveness. In addition, we investigated the effect of the
number of semantic image region features and proved that the
performance of the proposed method is not sensitive to the num-
ber of semantic image region features, which reflects the stability
of the proposed method. Further analysis demonstrated that the
proposed method effectively improves translation performance,
and the improvement benefits from attending to specific
semantic image region features, leading to better use of visual
information.

In the future, we plan to use much finer visual information, such
as instance semantic segmentation, to improve the quality of visual
features. In addition, as the English entity and image region align-
ment have been manually annotated to the Multi30k dataset, we
plan to use it as supervision to improve the performance of the
attention mechanism.
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