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SUMMARY 

 

In this paper, a series of Biot theory-based analytical solutions are proposed to study the 

dynamic response of a viscoelastic two-phase porous medium subjected to horizontal 

cyclic loading. To investigate the effect of material dynamic properties' depth (or 

confining-pressure) dependency, two types of soil stiffness profiles are adopted, along 

with the constant Lame elastic and loss moduli with depth: the moduli that are linearly 

increasing with depth and the moduli that are nonlinearly increasing with depth. The 

influence of the loading frequency, retardation time (or viscous damping), and a newly 

introduced model parameter that expresses the effect of soil cohesion on the moduli are 

numerically examined. When the retardation time is small and the dynamic response is 

periodic, it is demonstrated that the ground surface displacement versus loading 

frequency is greatly affected by the Lame moduli's depth-dependency; the peak-to-peak 

period becomes shorter and the amplitude decay tends to be minimal, considering the 

depth-dependency, particularly in the linearly increasing condition with depth. In addition, 

the cohesion-related parameter affects not only the periodic displacement amplitude but 

also the phase characteristics. Furthermore, the effect of the Lame moduli's depth-

dependency is investigated on the amplification factor distribution with depth under 

horizontal loading. 

 

Keywords: poro-viscoelasticity, Lame elastic and loss moduli, confining-pressure 

dependency, dynamic amplification, horizontal cyclic loading 
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1. INTRODUCTION 

 

In the engineering design and construction of geotechnical structures, it is essential to 

accurately evaluate soil behavior subjected to various dynamic or cyclic loads (e.g., 

seismic loads, wave loads, and traffic loads1-7). Dynamic behavior differs from static 

behavior under dead loads in that the effects of inertia and viscous terms on the equations 

of motion cannot be ignored; thus, some issues are peculiar to dynamic behavior, such as 

appropriate modeling of viscous effects and the influence of loading frequency. 

Strictly speaking, soils are regarded as a three-phase system consisting of solid particles, 

voids containing pore water, and empty voids filled with air. However, there is little air 

deep in the ground, and thus the soil can be described as a fully saturated two-phase 

porous medium composed of solid skeleton and pore water. In addition, if the influence 

of pore air (or suction) is not significant, even near the ground surface, the assumption of 

a two-phase medium can be applied by considering the void as homogeneous pore fluid 

(or a mixture of water and embedded air). 

The formulation of a two-phase porous medium's dynamic behavior originated in the 

pioneering work of Biot8-11. Based on Biot theory, many researchers12-14 have presented 

analytical solutions to one-dimensional problems of a saturated poroelastic soil column. 

Recently, Chen et al.4, 6 presented a series of analytical solutions for the dynamic response 

of a nearly saturated seabed subjected to vertical seismic loading. However, several 

studies4, 6, 12-16 on Biot theory only considered viscous coupling17 because of the 

interaction between the solid skeleton and pore fluid, assuming that the material behavior 

of the solid skeleton is purely elastic. 

When the cyclic behavior of soils is expected to be within a small strain range, 
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approximately below the level of 10−5, it makes sense to use an elastic model. However, 

when cyclic strain is greater than this level but less than the order of 10−3, a constitutive 

model based on the linear viscoelastic theory should be used to represent the cyclic 

behavior of soils with a reasonable degree of accuracy18; in the model, the stress−strain 

relationship is assumed linear, but a certain energy dissipation (or damping) and hysteretic 

nature can be logically considered. Researchers19-21 applied the linear viscoelastic theory 

to a Biot model to investigate the viscous damping effect. In particular, a recent study by 

Chen et al.22 presented a linear poro-viscoelastic model to analyze the one-dimensional 

dynamic response of a partially saturated soil layer subjected to horizontal and vertical 

harmonic loadings. 

The above previous studies19-22 considered the effects of viscoelastic properties (i.e., 

viscous damping) but did not take into account an essential feature of the soil, confining-

pressure dependency; material dynamic properties were assumed to be constant with 

depth. However, several investigators23-26 have shown that dynamic properties (e.g., shear 

modulus) of both sandy and clayey soils are strongly affected by the confining-pressure, 

even at the same void ratio (or relative density). Although such confining-pressure 

dependency can be numerically considered for seismic or dynamic wave loading, for 

example, by finite element method (FEM)27-29, the influence has not been clarified in the 

form of analytical solutions that can be used to validate the numerical results. 

 This study proposes analytical solutions based on Biot theory8-11 to investigate the 

dynamic response of a viscoelastic two-phase porous medium, of which material dynamic 

properties are depth (or confining-pressure) dependent. To differentiate between the 

condition of the constant Lame elastic and loss moduli with depth22, two types of soil 

stiffness profiles are adopted in this study: the moduli are assumed to increase linearly 
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and nonlinearly with depth. Furthermore, the dynamic response of a viscoelastic soil layer 

subjected to horizontal cyclic loading is numerically discussed in detail, focusing on the 

influence of loading frequency, retardation time (or viscous damping), and a newly 

introduced model parameter that expresses the effect of soil cohesion on the moduli. 

 

2. GOVERNING EQUATIONS 

 

2.1. Equilibrium equations for a two-phase porous medium 

Soil mass is generally referred to as a three-phase system consisting of solid particles, 

voids containing pore water, and empty voids filled with air. However, there is little air 

deep in the ground, and thus the soil can be described as a fully saturated two-phase 

porous medium. In addition, a nearly saturated (e.g., 95%rS  ) subsurface layer can be 

treated as a two-phase medium by regarding the void as homogeneous pore fluid (or a 

mixture of water and embedded air) and assuming that the pore air pressure is equal to 

the pore water pressure. This study employs a fully dynamic form of Biot's equations8-11, 

developed by Zienkiewicz et al.15, to describe the dynamic behavior of a two-phase 

porous medium under horizontal cyclic loading. 

In consideration of the inertia forces associated with solid skeleton and pore fluid, the 

overall equilibrium equation for the porous medium is derived as follows. 

 , ,ij j ij j i i f ip g u w          , (1) 

where ij    is the effective stress tensor, p   is the pore fluid pressure, ig   is the 

gravitational acceleration vector, and ij  is the Kronecker delta. Note that the tension is 

positive for the pore pressure, whereas the compression is positive for the effective stress. 
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The parameter  1 /b sK K    is introduced to account for the compressibility of solid 

particles; since the bulk modulus of solid particles sK  is much larger than that of the 

solid skeleton bK , solid particles are assumed to be incompressible (i.e., 1  ).   is 

the total density of the porous medium given by 

  1 s fn n     , (2) 

where s  and f  are the densities of the solid particle and pore fluid, respectively. 

The average pore fluid relative displacement w   in Equation (1) is given by 

 w n w u  , where n  is the soil porosity, and w  and u  are the displacements of 

the pore fluid and solid skeleton, respectively. 

 The flow in the porous medium is assumed to be governed by Darcy's law. The 

equilibrium equation for the fluid phase can be described as follows. 

 ,
f

i f i f i i ip g u w bw
n


       , (3) 

where b  is the parameter to account for the viscous resisting force due to the relative 

movement of the fluid phase to the solid phase, given by 

 f

f f

g
b

k k


  , (4) 

where    is the fluid viscosity (= 10-3 kg/m/s = 1 cP for water) and fk   denotes the 

permeability in the unit square meter. /f g   should be multiplied to convert the unit 

of the permeability into m/s that is used in soil mechanics. 

 In the following subsections, a stress–strain relationship is derived for each type (i.e., 

Types A, B, and C) illustrated in Fig. 1. Then, by substituting the relationship into the 

equilibrium equations (i.e., Equations (1) and (3)), governing equations are derived to 
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obtain the dynamic response solutions for a poro-viscoelastic soil column under 

horizontal cyclic loading considering confining-stress dependency. 

 

2.2. Type A: depth-independent material dynamic properties 

 Viscoelasticity is the property of materials: these are viscous and elastic characteristics 

of materials when undergoing deformation. While elastic materials are strained when 

stretched and immediately return to their original state once the stress is removed, viscous 

materials resist shear flow and strain linearly with time when stress is applied. 

Viscoelastic behavior can be expressed in a more specific and practical way by 

introducing spring–dashpot models. In this type of model, spring and dashpot represent 

the elastic and damping characteristics, respectively, and they are connected in parallel or 

series. It is worth noting that the dashpot can express only the energy loss characteristics 

due to the viscosity. 

In this study, the energy loss will be assumed to be frequency-dependent (or viscous 

type) damping18; the deformation of a body depends on frequency under cyclic loading. 

The (generalized) Kelvin–Voigt model has been most widely used to express these 

characteristics of linear viscoelastic materials30, 31; a dashpot is connected in parallel with 

a spring to represent the damping characteristics, as illustrated in Fig. 2. The stress–strain 

relationship in the Kelvin–Voigt model can be expressed as follows: 

 2 2 ij
ij ij ij ijt t

     
     

 
, (5) 

where   , , / 2ij i j j iu u    is the strain tensor, and  ii   is the volumetric strain of 

a solid skeleton. The Lame elastic modulus (or a spring constant),    and   , is a 

parameter indicative of elastic or instantaneous response, whereas the loss modulus (or a 
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dashpot constant),    and   , represents the energy dissipating characteristics of a 

viscoelastic body. 

 In the case of frequency-dependent (or viscous type) damping, these constants can be 

related to each other as18 

   
 
 
  , (6) 

where   is called the retardation time in seconds, which denotes the resistance of the 

viscosity to the elastic deformation of a body. The response becomes perfectly elastic as 

the retardation time approaches zero. As a way of expressing the damping characteristics, 

the energy loss W  (or the hysteresis loop area) per cycle is used in a normalized way 

with respect to the maximum stored energy (or the strain energy stored in a perfectly 

elastic body) W . This is because the energy loss itself is a function of strain amplitude 

and does not properly express the intrinsic property. The normalized quantity /W W  

is related to the loss coefficient   and the damping ratio D , which are frequently used 

in soil dynamics to indicate damping characteristics18, as follows. 

 1
2

2

W
D

W

  
 


    , (7) 

where   is the angular frequency. The frequency-dependent damping in Equation (7) 

is caused by the use of the viscous dashpot, which correlates the stress with the time rate 

of strain. Note that some laboratory experiments and field investigations have suggested 

a frequency-independent (or non-viscous) damping under seismic loading18; in this case, 

it may be difficult to apply the viscous type formulations specified in Equations (5) 

through (7) directly. However, this paper sheds light on introducing the confining-

pressure dependency of material dynamic properties into the viscous type Kelvin–Voigt 
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model, leaving the non-viscous type Kelvin–Voigt model for future work. 

 Following Chen et al.22, the constitutive equation for the compressible pore fluid is 

formulated by 

    , , ,i i i i i ip M w u M w       , (8) 

where ,i iw   denotes the volumetric strain of pore fluid. The parameter M   is 

introduced to account for the compressibility of solid particles and pore fluid and can be 

expressed as follows. 

 
2

,    1 1s s
d s

d b f

K K
M K K n

K K K

  
          

, (9) 

where sK  , bK  , and fK   are the bulk modulus of solid particles, solid skeleton, and 

pore fluid, respectively. When the degree of saturation is sufficiently high (e.g., 

95%rS   ), the bulk modulus of homogeneous pore fluid (or a mixture of water and 

embedded air) can be given as32, 33 

 
11 r r

f w a

S S

K K K


  , (10) 

where wK  and aK  are the bulk modulus of water and air, respectively. It is noted that 

partially saturated soils containing a discontinuous gas phase in the form of bubbles 

embedded in a liquid phase34 are considered here. 

As described in the following section, the parameters   and M  in Equation (8) do 

not affect the governing equations for horizontal loading (e.g., Equations (21) and (22)) 

but do affect the governing equations for vertical loading as studied by Chen et al.22, in 

which the Lame elastic moduli were assumed to be constant (i.e., depth-independent). 

This paper focuses only on the horizontal vibration response of soils with depth-
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dependent elastic moduli, but the depth-dependency effect on the vertical vibration should 

be studied in the future. 

 By substituting the constitutive equations (5) and (8) into the overall equilibrium 

equation (1) in the absence of body forces, the overall governing equation for the poro-

viscoelastic medium, of which material dynamic properties are confining-stress 

independent, can be derived as follows22. 

    2
, , , , ,i jj j ji i jj j ji j ji i f iu M u u u Mw u w                       , (11) 

where the Lame elastic and loss moduli are assumed to be depth-independent. In addition, 

substituting Equation (8) into the equilibrium equation (3) for the fluid phase derives 

the governing equation for the fluid phase given by22 

 , ,
f

j ji j ji f i i iMu Mw u w bw
n


      . (12) 

These equations are the governing equations to be solved in a coupled manner considering 

the appropriate boundary conditions when porous medium's material dynamic properties 

are confining-stress independent (see Fig. 1(a)). 

 

2.3. Type B: material dynamic properties linearly dependent on depth 

 When the Lame elastic moduli in Equation (5) are linearly dependent on depth (or 

confining-stress), as shown in Fig. 1(b), they can be given as a function of depth z  as 

expressed below. 

    0 0
ref ref

0 ref 0 ref

,    
z z z z

z z
z z z z

    
 

 
, (13) 

where ref  and ref  correspond to the Lame elastic moduli at depth refz , and 0z  is a 

model parameter that provides for non-zero modulus at the ground surface. Although the 
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depth dependency is generally nonlinear regardless of soil type35, 36, as described in the 

next subsection, Type B is also considered in this study for the following reasons: (1) 

Formulation is easier than for Type C. (2) Some literature reports depth dependency that 

is close to linear, although limited in number35. It is noted that the loss moduli   and 

  also take the same functional form as Equation (13) because of Equation (6). Here, 

let us consider a different way of expressing the depth-dependency in Equation (13) 

using the effective confining pressure m  . Using the internal friction angle f   and 

cohesion c  of soil, Equation (13) can be rewritten as 

        
f m f m

ref ref
f m f mref ref

cot cot
,    

cot cot

c c
z z

c c

      
   

    
 

    
, (14) 

where  m ref
    denotes the effective confining pressure at depth refz  . Comparison of 

Equation (14) with Equation (13) indicates that the parameter 0z  mainly represents the 

effect of soil cohesion and can be given by 

 f
0

0

cot3

1 2

c
z

K








, (15) 

where    is the effective unit volume weight of soil, and 0K  is the static earth pressure 

coefficient. It is noted that since the change in 0K  is not significant in the level ground, 

the parameter 0z   can be estimated once the strength constants (i.e., f   and c  ) are 

obtained in addition to   ; alternatively, it can be determined based on the shear wave 

velocity ( sV   ) at the ground surface using the second equation in Equation (13). 

 Then, to simplify the governing equation formulation, variable z  in Equation (13) is 

transformed into a new variable z  as follows. 

 0 ref 0 ref,    z z z z z z     . (16) 
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Accordingly, by substituting Equations (5) and (8) into Equation (1) with the use of 

Equations (13) and (16), the overall governing equation for the poro-viscoelastic 

medium of which the Lame elastic and loss moduli are linearly dependent on depth can 

be derived, instead of Equation (11). 

 

   

   

2
, , , , ,

, ,, ,
ref , ref , , ref , ref , ,

ref ref ref ref

i jj j ji i jj j ji j ji

j ji i
j j i j j i j j i j j i

i f i

u M u u u Mw

z zz z
u u u u u u

z z z z

u w

       

     

 

        

     

 

 

  
  

   


. (17) 

Note that the governing equation for the fluid phase is the same as Equation (12), but the 

partial derivation in the vertical direction shall be performed on variable z  in Equation 

(16). When a porous medium's material dynamic properties are linearly dependent on 

depth (see Fig. 1(b)), Equations (17) and (12) are the governing equations that will be 

solved in a coupled manner. 

 

2.4. Type C: material dynamic properties nonlinearly dependent on depth 

When the Lame elastic moduli in Equation (5) are nonlinearly dependent on depth (or 

confining-stress), as shown in Fig. 1(c), they can be given as a function of depth z , as 

expressed below. 

    0 0
ref ref

0 ref 0 ref

,    
G Gm m

z z z z
z z

z z z z
   

    
        

, (18) 

where ref   and ref   denote the Lame elastic moduli at depth refz  , and 0z   and 

 1.0Gm    are model parameters. Gm   has been reported to be about 0.50 for many 

laboratory tested soils, particularly clean sands and pure clays; however, a wide variety 

of literature suggests that Gm   may take values between 0.35 and 0.9035. It is also 
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suggested that Gm  could be greater than 1.0 depending on the soil type and age36. When 

the depth distribution of   or sV  is available, the model parameters in Equation (18) 

can be easily estimated37. It is noted that the loss moduli   and   also take the same 

functional form as Equation (18) because of Equation (6). By considering Equation (15), 

the above equations can be rewritten as 

        
f m f m

ref ref
f m f mref ref

cot cot
,    

cot cot

G Gm m

c c
z z

c c

      
   

       
              

. (19) 

As mentioned in the previous subsection, the parameter 0z   in Equation (18) can 

represent mainly the influence of soil cohesion, and be estimated based on the strength 

constants (i.e., f  and c ) or sV  at the ground surface. 

By substituting Equations (5) and (8) into Equation (1) with the use of Equations (18) 

and (16), the overall governing equation for the poro-viscoelastic medium of which the 

Lame elastic and loss moduli are nonlinearly dependent on depth can be derived as 

follows. 

 

   

 

 

2
, , , , ,

1 1

ref , ref , ,
ref ref ref ref

1 1

ref , ref , ,
ref ref ref ref

G G

G G

i jj j ji i jj j ji j ji

m m

G G
j j i j j i

m m

G G
j j i j j i

u M u u u Mw

m mz z
u u u

z z z z

m mz z
u u u

z z z z

u

       

 

   



 

 

        

   
     

   

   
     

   


 

 
   

   
   

i f iw 

. (20) 

Note that the governing equation for the fluid phase is the same as Equation (12), but the 

partial derivation in the vertical direction shall be performed on variable z  in Equation 

(16). When a porous medium's material dynamic properties are nonlinearly dependent on 

depth (see Fig. 1(c)), Equations (20) and (12) are the governing equations that should 
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be solved in a coupled manner. 

 

3. ANALYTICAL SOLUTIONS UNDER HORIZONTAL VIBRATION 

 

Fig. 3 explains the geometry and boundary conditions of the physical model subjected 

to horizontal loading. The ground surface (z = 0) is assumed to be a free drainage 

boundary, whereas the bottom of the soil column (z = L) is assumed to be impermeable. 

In the case of horizontal cyclic stress loading that is acting on the ground surface (e.g., 

cyclic traffic loading), as shown in Fig. 3(a), the horizontal displacement response at the 

ground surface shall be calculated under a fixed bottom condition. When the bottom is 

subjected to horizontal cyclic displacement loading (e.g., seismic loading), as shown in 

Fig. 3(b), the ground surface cyclic response will be calculated under a stress-free surface 

boundary condition. 

 

3.1. Type A: depth-independent material dynamic properties 

 When the material dynamic properties of the soil column are depth-independent, the 

governing equations (11) and (12) can be reduced by ignoring the horizontal partial 

derivative as follows22. 

 
2 3 2 2

2 2 2 2
0x x x x

f

u u u w

z z t t t
         

    
, (21) 

 
2 2

2 2
0fx x x

f

u w w
b

t n t t


   

  
  

. (22) 

By substituting Equation (21) and its time derivative into the time derivative of Equation 

(22), the governing equation for the soil skeleton displacement can be derived as 
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3 2 4 3 2

1 2 3 43 2 2 2 2 2
0x x x x xu u u u u

a a a a
t t z t z t z

    
    

      
, (23) 

with 

 
     1 2 3 4,    ,    ,    f

ff f f f f f

nbnb nb
a a a a

nn n n

   
         

 
    

  
. (24) 

Assuming the following form for the horizontal displacement response under cyclic 

loading, 

    , expx x su z t u i t zk    , (25) 

where xu   is the displacement amplitude,    is the angular frequency, and sk   is a 

complex number for shear wave, Equation (23) can be further reduced to 

  2 2 2 3
2 3 4 1 0sa a i a k a i        . (26) 

Solving the above equation with respect to sk , the displacement of the solid skeleton can 

be finally given by 

        1 2, exp exp expx s su z t c ik z c ik z i t     . (27) 

The coefficients  1,2ic i   can be determined by considering the boundary conditions 

for the stress loading at the ground surface (Fig. 3(a)), 

  0 exp    at   0i t z    , (28) 

 0   at   xu z L  , (29) 

where 0   denotes the shear stress amplitude, or the boundary conditions for the 

displacement loading at the bottom (Fig. 3(b)), 

 0   at   0z   , (30) 

  0 exp    at   xu u i t z L  , (31) 
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where 0u  is the bottom displacement amplitude. 

 By solving Equations (21) and (22) for the average relative fluid displacement xw  

demonstrates that it takes a similar form as the soil skeleton displacement xu   (see 

Equation (27)), as expressed below. 

        1 1 2 2, exp exp expx s sw z t c ik z c ik z i t       , (32) 

with 

 
 2 2

1 2 2
s

f

k i  
 

 
 

  . (33) 

The horizontal displacement xw  does not contribute to the pore fluid pressure given by 

Equation (8) since the displacement direction is orthogonal to variable z  (i.e., depth). 

However, the explicit theoretical form can be used to validate numerical simulations of a 

two-phase porous medium. 

 

3.2. Type B: material dynamic properties linearly dependent on depth 

When the material dynamic properties of the soil column are linearly dependent on depth, 

the governing equation (17) can be reduced to 

 

2 3 2

ref ref ref ref2 2
ref ref ref ref

2 2

2 2

1 1

0

x x x x

x x
f

u u u uz z

z z z z t z z z z t

u w

t t

   

 

      
     

 
  

 

 
       

, (34) 

under horizontal loading conditions. It is noted that the governing equation for the fluid 

phase is the same as Equation (22), regardless of the confining-stress dependency. 

By substituting Equation (34) and its time derivative into the time derivative of Equation 

(22), the governing equation for soil skeleton displacement can be derived as follows. 
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3 2 22

1 2 3 43 2 2 2
ref

2

2 3 42
ref

1
0

x x x x
x

x x
x

u u u uz
a a a a u

t t z z t t

u u
a a a u

z z t t

    
         

  
       

   
 

  
 

, (35) 

with 

 
   

ref refref ref
2 3 4,    ,    f

f f f f f

nb nb
a a a

n n n

   
       

 
  

  
   . (36) 

Assuming the following form for the horizontal displacement response under cyclic 

loading, 

      , expx xu z t u i t F z  , (37) 

where F   is an unknown function of z   that is to be solved, Equation (35) can be 

rewritten as 

    
2

2
0

d F dF d dF
z A F z A F

dz dz dz dz
       

 
 
   

, (38) 

with 

  
2 3

1
ref2

2 3 4

a i
A z

a a i a

 
 




 


  
. (39) 

 According to Courant and Hilbert38, Equation (38) is classified as a Sturm-Liouville 

type differential equation and its solution can be given by 

      3 0 4 02 2F z c J Az c Y Az    , (40) 

where  3,4ic i   are coefficients to be determined depending on boundary conditions, 

and  nJ    and  nY    are the Bessel functions of the first and second kinds, 

respectively. 
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    
 

2

0

1

! 1 2

m m n

n
m

x
J x

m m n





        
 , (41) 

        
 

cos

sin
n n

n

n J x J x
Y x

n





 . (42) 

Substituting Equation (40) into Equation (37) produces the displacement solution of 

the solid skeleton under horizontal cyclic loading as 

        3 0 4 0, 2 2 expxu z t c J Az c Y Az i t      . (43) 

Then, the shear strain can be calculated by partial differentiation of Equation (43) with 

z  as follows. 

 
       3 1 4 1

,
2 2 expxu z t A

c J Az c Y Az i t
z z


     


 

 
. (44) 

The coefficients  3,4ic i    in Equations (43) and (44) can be obtained under 

appropriate boundary conditions: Equations (28) and (29) for the ground surface stress 

loading (Fig. 3(a)); Equations (30) and (31) for the bottom displacement loading (Fig. 

3(b)). 

By solving Equations (34) and (22) for the average relative fluid displacement, xw  is 

found to take a similar form as the soil skeleton displacement xu  (see Equation (43)), 

as expressed below. 

        3 3 0 4 4 0, 2 2 expxw z t c J Az c Y Az i t        . (45) 

The coefficients  3, 4i i    can be derived by substituting Equations (43) and (45) 

into Equation (34) as 



19 

 
   

 
 
 

1 2ref ref
1 2

ref 0 0

2 2
1

2 2 2f f

J Az J AzA i

z AzJ Az J Az

  
  

      
 
 

 

   
. (46) 

 
   

 
 
 

1 2ref ref
2 2

ref 0 0

2 2
1

2 2 2f f

Y Az Y AzA i

z AzY Az Y Az

  
  

      
 
 

 

   
. (47) 

 

3.3. Type C: material dynamic properties nonlinearly dependent on depth 

When the material dynamic properties of the soil column are nonlinearly dependent on 

depth, the governing equation (20) can be reduced to 

 

12 3

ref ref ref2 2
ref ref ref ref

1 2 2 2

ref 2 2
ref ref

0

G G G

G

m m m

x x G x

m

G x x x
f

u u m uz z z

z z z z t z z z

m u u wz

z z z t t t

  

  





                     

             

  
      


  

, (48) 

under horizontal loading conditions. It is worth noting that the governing equation for the 

fluid phase is the same as Equation (22), regardless of the confining-stress dependency. 

By substituting Equation (48) and its time derivative into the time derivative of Equation 

(22), the governing equation for the soil skeleton displacement can be derived as follows. 

 

3 2 22

1 8 9 103 2 2 2
ref

1 2

8 9 102
ref ref

0

G

G

m

x x x x
x

m

G x x
x

u u u uz
a a a a u

t t z z t t

m u uz
a a a u

z z z t t



      
            

    
          


 


  

. (49) 

Substituting Equation (37) into Equation (49) results in 

    
2

1
2

0G G Gm m m
G

d F dF d dF
z m z A F z A F

dz dz dz dz
        

 
  

   
. (50) 

According to Courant and Hilbert38, Equation (50) is classified as a Sturm-Liouville-type 
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differential equation (or Emden-Fowler-type equation), and its solution can be given by 

      5 1 6 2F z c F z c F z     (51) 

with 

 

       

 

1
11 12

2 22 2 1/ 1
1

1 1

2

1

2

2
1

21

2 2

G
GG

G
GG G G

G G

G

G

m
mm

m
mm m m

G
G

m m

m
G Gm

F z m A z
m

A z
J

m m





 






 
  
 

 
   

        
 

 


 (52) 

 

       

 

1
11 12

2 22 2 1/ 1
2

1 1

2

1

2

2
1

22 3

2 2

G
GG

G
GG G G

G G

G

G

m
mm

m
mm m m

G
G

m m
G

m
G Gm

F z m A z
m

A zm
J

m m





 






 
  
 

 
   

        
 

 


 (53) 

where  5,6ic i   are coefficients to be determined depending on boundary conditions, 

and      is the Gamma function. When Gm   is set to 0.5 for sandy materials18, 

Equations (52) and (53) can be reduced to 

   3/46 43
1 1

3

2 2 4

3 3 3
F z A z J Az



       
   

    (54) 

   3/46 43
2 1

3

2 4 4

3 3 3
F z A z J Az

       
   

    (55) 

Substituting Equation (51) into Equation (37) produces the displacement solution of 

the solid skeleton under horizontal cyclic loading as 

        5 1 6 2, expxu z t c F z c F z i t       (56) 

Then, the shear strain can be calculated by the partial differentiation of Equation (56) 

with z , as expressed below. 
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       1 2

5 6

,
expxu z t dF z dF z

c c i t
z dz dz


  

    

  
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 (57) 

with 
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 (58) 
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 

 
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 
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 
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 

 
 

 
 

    

   
  

        
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 

 
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 
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 

 (59) 
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 (60) 
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 
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 

 (61) 

When Gm  is set to 0.5, Equations (58) and (60) can be reduced to 



22 

 

 
2/3 3/4 3/4

4 2

3 31

2/3 3

3/46
1

3
5/3 3/43

2 4 4
3 3 3

2 3

2 4

3 3

2 3

A J Az J Az
dF z

dz

A J Az

z





             
      

      
   

 







 (62) 

 

 
2/3 3/4 3/4

2 4

3 32

2/3 3

3/46
1

3
5/3 3/43

4 4 4
3 3 3

2 3

4 4
3 3

2 3

A J Az J Az
dF z

dz

A J Az

z



             
      

      
   

 







 (63) 

The coefficients  5,6ic i    in Equations (56) and (57) can be obtained under 

appropriate boundary conditions: Equations (28) and (29) for the ground surface stress 

loading (Fig. 3(a)); Equations (30) and (31) for the bottom displacement loading (Fig. 

3(b)). 

By solving Equations (48) and (22) for the average relative fluid displacement, xw  is 

found to take a similar form as the soil skeleton displacement xu  (see Equation (56)), 

as expressed below. 

        5 5 1 6 6 2, expxw z t c F z c F z i t        . (64) 

The coefficients  5,6i i    can be derived by substituting Equations (56) and (64) 

into Equation (48) as 

  
   2

1 1ref ref
5 2 2

1 ref

Gm

G

f f

d F z dF zi mz

F z z dz z dz

  
  

  
     

   

 
    

. (65) 

  
   2

2 2ref ref
6 2 2

2 ref

Gm

G

f f

d F z dF zi mz

F z z dz z dz

  
  

  
     

   

 
    

. (66) 
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4. NUMERICAL CALCULATION UNDER HORIZONTAL STRESS LOADING 

AT THE GROUND SURFACE 

 

 This section numerically investigates the dynamic response of a viscoelastic soil column 

subjected to horizontal stress loading at the ground surface (Fig. 3(a)). The soil parameters 

used in the numerical calculation are listed in Table 1. The bulk moduli  , , ,iK i b s w a  

and the degree of saturation rS   were not specified because they do not affect the 

horizontal vibration response (e.g., Equations (21) and (22)). The Lame elastic modulus 

ref  at depth refz  for Types B and C ( 0.5Gm  ) was set to the same value as the depth-

independent constant modulus for Type A. Based on the reference modulus ref  and the 

model parameter 0z , the shear wave velocity profiles (solid lines) shown in Fig. 4 were 

calculated from sV     using the distribution of  z   (dotted lines) given by 

Equations (13) and (18) for Types B and C, respectively; the depth profiles for 

10
0 10  mz    and 2

0 10  mz    are almost overlapping. The retardation time    was 

assumed to be 0.00 (i.e., poroelastic), 0.01, 0.05, and 0.10 s to investigate the viscous 

damping effect on the response; according to Equation (7), the values cover the damping 

ratio range under a machine foundation vibration and seismic loading39-41. The 

permeability coefficient was set as constant (10-3 m/s) in this study because varying the 

coefficient between 10-2 m/s and 10-9 m/s has minimal effect on the horizontal vibration 

compared to a change in the retardation time, as shown by Chen et al.22 for Type A. When 

the Lame elastic modulus   depends on depth (for Types B and C), the reference depth 
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refz  in Equations (13) and (18) was set to achieve the same first resonance frequency 

as Type A under the condition of the model parameters ref  and 0z  listed in Table 1. 

For example, by substituting 0 0.5K   and f 37.7    into Equation (15), 0
0 10  mz   

and 1
0 10  mz   correspond to 5 kPa and 50 kPa of soil cohesion, respectively. 

 

4.1. Dynamic response at the ground surface 

Fig. 5 shows the displacement amplitude at the ground surface, which is subjected to 

horizontal (or shear) stress (Fig. 3(a)), versus loading frequency when the Lame elastic 

and loss moduli,   and  , are assumed to be depth-independent (i.e., Type A). The 

horizontal displacement is normalized with 0 /su L  , which denotes the maximum 

shear displacement at the ground surface that is subjected to static loading, to express the 

amplification factor on the graph's vertical axis. As examined by Chen et al.22, the 

retardation time   (or viscous damping) of soil is found to have a significant attenuation 

effect on the dynamic response except in a region where the frequency is close to 0 Hz. 

Before examining the dynamic response of a viscoelastic soil column for Types B and 

C, we may have to verify that the derivation of the analytical solutions is correct because 

it is not easy to trace the derivation process due to the existence of Bessel and Gamma 

functions. Here, cross-validation will be performed by comparing the analytical solutions 

and corresponding numerical simulation results, although it is standard practice to use an 

analytical solution as a correct one to validate numerical simulation. The present results 

of the amplification factor at the soil surface for Types B and C ( 0.5Gm   ) with 

0
0 10  mz    are shown by solid lines in Fig. 6, compared with the simulation results 
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(circle plots) using a finite element computer program named "FLIP ROSE"42-44. Note 

that the program is capable of considering the governing equations and constitutive 

models described in Section 2. In the simulation, the depth-dependent Lame elastic 

modulus in Fig. 4 was set for a soil column model consisting of 60 elements to calculate 

the steady-state response under harmonic loading with different frequencies at the ground 

surface. The agreement between both results demonstrates the validity of the analytical 

solutions as well as that of the numerical simulation. 

When the Lame elastic and loss moduli are linearly dependent on depth (i.e., Type B), 

the variation of the amplification factor versus frequency is illustrated in Fig. 7. It is worth 

noting that ref  is used, instead of  , for calculating the maximum shear displacement 

 0 ref/su L  . As an overall trend, comparing the same 0z  conditions demonstrates 

that the dynamic response changes from periodic (or oscillatory) to aperiodic (or over-

damped) as the retardation time   increases, which is similar to Type A. Next, let us 

consider the effect of 0z , which corresponds to soil cohesion. When   is large and the 

dynamic response is aperiodic (see Fig. 7(c)(d)), the increase in 0z   has a different 

influence on the amplification factor depending on the loading frequency; the 

amplification factor becomes slightly larger for the normalized frequency 1/f f  below 

1.2, whereas it becomes smaller for 1/f f  above 1.2. When the dynamic response is 

periodic, as shown in Fig. 7(a), it can be demonstrated that the value of 0z  affects not 

only the displacement amplitude at each peak (or valley) but also the phase characteristic; 

as 0z  (or soil cohesion) increases, the amplitude decay tends to be suppressed and the 

peak-to-peak period to be elongated. When 0z  is approximately zero, it seems to repeat 
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small oscillations around the amplification factor of 1.0 even in a high-frequency region. 

Note that if 0z  is set to zero, the calculation cannot be performed for the surface stress 

loading because the Lame moduli at the ground surface become zero (see Equation (13)). 

Fig. 8 depicts the variation of the amplification factor for Type C ( 0.5Gm  ), in which 

the Lame moduli are nonlinearly dependent on depth. Similar to Type B, the horizontal 

displacement is normalized with 0 ref/su L   . As the retardation time    increases, 

the transition from a periodic to an aperiodic response is observed, which is similar to 

Types A and B. When the dynamic response is aperiodic with   greater than 0.05 (see 

Fig. 8(c)(d)), the effect of 0z  on the amplification factor is found to be not as large as 

that of Type B shown in Fig. 7(c)(d). Meanwhile, it can be seen that the dynamic periodic 

response of poroelastic media (i.e., 0   ) in Fig. 8(a) is greatly affected by the 

parameter 0z ; the peak-to-peak period is elongated as 0z  increases. It is worth noting 

that the difference between the amplification factors with 10
0 10  mz   and 2

0 10  mz   

is hardly observed in Fig. 8(a), compared to Type B in Fig. 7(a), because the shear moduli 

near the ground surface for Type C is greater than that for Type B, as shown in Fig. 1. 

 

4.2. Effect of the depth dependency of material dynamic properties 

Fig. 9 compares the effect of the Lame moduli's depth-dependency on the dynamic 

response at the ground surface subjected to horizontal stress loading; four cases are 

presented in the figure, depending on the combination of  0.00, 0.01 s    and 

 2 1
0 10 ,10  mz    listed in Table 1. While the elastic aperiodic responses in Fig. 9(b) 

make a difference among the three types, particularly after the first resonance frequency, 
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the viscoelastic ones in Fig. 9(d) are almost unaffected by the depth-dependency. When 

the dynamic response is periodic, as shown in Fig. 9(a)(c), it can be seen that the peak-

to-peak period is shorter for Type C than for Type A and for Type B than for Type C, even 

though the depth-dependency effect is slightly smaller in poro-viscoelastic media. 

The amplification factor distributions with depth under the ground surface horizontal 

stress loading are illustrated in Fig. 10 (for 2
0 10  mz  ) and Fig. 11 (for 1

0 10  mz  ); in 

these figures, the effect of the Lame moduli's depth-dependency is compared, along with 

the retardation time effect. Fig. 10(a) and Fig. 11(a) indicate that the poroelastic soil 

column shows a large amplification toward the ground surface, compared to the poro-

viscoelastic soil column, at the first resonance frequency. In addition, it is found that the 

depth profile shape (or the slope in the depth direction) is greatly affected by the Lame 

moduli's depth dependency, along with the retardation time. In particular, for poroelastic 

media, the depth distribution becomes more complex as the loading frequency increases. 

 

5. NUMERICAL CALCULATION UNDER HORIZONTAL DISPLACEMENT 

LOADING AT THE GROUND BOTTOM 

 

 In this section, the dynamic response of a viscoelastic soil column that is subjected to 

horizontal displacement loading at the ground bottom is numerically studied. Except for 

the boundary conditions shown in Fig. 3(b), the model parameters used in the calculation 

are the same as in the previous section (see Table 1). 

 

5.1. Dynamic response at the ground surface 

Fig. 12 shows the displacement amplitude at the ground surface versus loading 
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frequency when a soil column with depth-independent material properties (i.e., Type A) 

is subjected to horizontal cyclic displacement loading at the bottom. The horizontal 

displacement is normalized with 0su u  , which denotes the bottom displacement 

amplitude. The figure demonstrates that the dynamic response changes from periodic to 

aperiodic as    increases; for poroelastic media, the amplification factor is always 

greater than 1.0, regardless of frequency, whereas for poro-viscoelastic media, the 

amplitude attenuates significantly in a large frequency range. 

When the Lame moduli are linearly dependent on depth (i.e., Type B), the variation of 

the amplification factor versus frequency is depicted in Fig. 13. As an overall trend, 

comparing the same 0z  condition demonstrates that the dynamic response changes from 

periodic to aperiodic as the retardation time   increases, which is similar to Type A. 

When   is large and the dynamic response is aperiodic (see Fig. 13(c)(d)), the influence 

of the cohesion-related parameter 0z  is trivial and no significant difference is found in 

the amplification factor. However, when the material is poroelastic and the dynamic 

response is periodic, Fig. 13(a) shows that the value of 0z   affects not only the 

displacement amplitude but also the phase characteristic; as 0z  increases, the amplitudes 

at the corresponding peaks (or valleys) tend to be smaller and the peak-to-peak period to 

be elongated. 

Fig. 14 illustrates the variation of the amplification factor for Type C ( 0.5Gm  ), in 

which the Lame moduli are nonlinearly dependent on depth. Similar to Type B, the 

dynamic aperiodic response in Fig. 14(c)(d) is almost unaffected by the cohesion-related 

parameter 0z  . Meanwhile, the dynamic periodic response of poroelastic media is 

influenced by 0z ; the amplitudes at corresponding peaks (or valleys) slightly decrease 
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and the peak-to-peak period becomes longer as 0z  increases. 

 

5.2. Effect of the depth-dependency of material dynamic properties 

Fig. 15 compares the effect of the Lame moduli's depth-dependency on the ground 

surface dynamic response of poroelastic and poro-viscoelastic soil columns subjected to 

the bottom displacement loading; four cases are presented in the figure, depending on the 

combination of  0.00, 0.01 s    and  2 1
0 10 ,10  mz    listed in Table 1. Compared 

to the difference among the elastic aperiodic responses for Types A, B, and C (see Fig. 

15(b)), the depth-dependency effect is found to be minimal on the viscoelastic aperiodic 

response as shown in Fig. 15(d). When the dynamic response is periodic, the peak-to-

peak period becomes shorter in the order of Types B, C, and A, to varying degrees 

between Fig. 15(a) and Fig. 15(d); in addition, the amplitudes at the corresponding peaks 

(or valleys) are largest for Type B and smallest for Type A. 

The amplification factor distributions with depth under the ground bottom horizontal 

displacement loading are illustrated in Fig. 16 (for 2
0 10  mz   ) and Fig. 17 (for 

1
0 10  mz   ); in these figures, the effect of the Lame moduli's depth dependency is 

compared, along with the retardation time effect. Compared to the poro-viscoelastic soil 

column, the poroelastic soil column produces large amplification toward the ground 

surface at the first resonance frequency, as shown in Fig. 16(a) and Fig. 17(b). It is also 

demonstrated that the depth profile shape (or the slope in the depth direction) is greatly 

affected by the Lame moduli's depth-dependency, along with the retardation time. 

Particularly for poroelastic media, the depth distribution becomes more complex as the 

loading frequency increases, rather than the horizontal stress loading at the ground surface 
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(e.g., compare Fig. 16(d) with Fig. 11(d)). 

 

6. CONCLUSIONS 

 

In this paper, a series of analytical solutions were proposed on the dynamic response of 

a viscoelastic two-phase porous medium that is subjected to horizontal cyclic loading. To 

investigate the effect of the confining-pressure dependency of material dynamic 

properties (i.e., the Lame elastic and loss moduli), two types of soil profiles were adopted 

in addition to the constant stiffness with depth (Type A): stiffness linearly increasing with 

depth (Type B) and stiffness nonlinearly increasing with depth (Type C). The influences 

of loading frequency, retardation time (or viscous damping), and the newly introduced 

model parameter corresponding to soil cohesion (only for Types B and C) were 

numerically examined. 

When a soil layer was subjected to the horizontal stress loading at the ground surface or 

to the horizontal displacement loading at the bottom, regardless of the soil profile type, a 

common trend was observed that the dynamic displacement amplitude at the ground 

surface versus loading frequency changed from periodic (or oscillatory) to aperiodic (or 

over-damped) as the retardation time increased. When the dynamic response was periodic, 

the peak-to-peak period became shorter and the amplitude at the corresponding peaks (or 

valleys) became larger in the order of Types B, C, and A. It was also demonstrated that 

the amplification factor distribution with depth is greatly affected by the Lame moduli's 

depth-dependency. However, the depth-dependency effect was found to be small on the 

viscoelastic aperiodic response. 

The influence of cohesion-related parameter was small on the amplification factor when 
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the response was aperiodic, particularly for Type C. However, when the response is 

periodic, the parameter value was found to affect not only the displacement amplitude but 

also the phase characteristic; as the cohesion increased, the amplitudes at the 

corresponding peaks (or valleys) tended to be smaller and the peak-to-peak period to be 

elongated. 
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Figure Legends 
Fig. 1 Plots of the Lame elastic modulus versus depth: (a) constant stiffness with depth 

(Type A); (b) stiffness linearly increasing with depth (Type B); (c) stiffness 
nonlinearly increasing with depth (Type C) 

Fig. 2 Generalized Kelvin–Voigt model 
Fig. 3 Geometry and boundary conditions of a soil column that is subjected to 

horizontal loading: (a) stress loading at the ground surface, (b) displacement 
loading at the bottom 

Fig. 4 Depth profile of the Lame elastic modulus  and shear wave velocity: (a) Type B, 
(b) Type C (mG = 0.5) 

Fig. 5 Effect of retardation time on the dynamic response at the ground surface under 
the horizontal stress loading at the ground surface for Type A 

Fig. 6 Comparison of the amplification factor at the ground surface between the present 
study and FEM simulation: (a) Type B with z0 = 100 m, (b) Type C with z0 = 100 m 

Fig. 7 Effect of the parameter z0 on the dynamic response at the ground surface under 
the horizontal stress loading at the ground surface for Type B with a different 
retardation time: (a) τ = 0.00 (poroelastic), (b) τ = 0.01, (c) τ = 0.05, (d) τ = 0.10 

Fig. 8 Effect of the parameter z0 on the dynamic response at the ground surface under 
the horizontal stress loading at the ground surface for Type C (mG = 0.5) with a 
different retardation time: (a) τ = 0.00 (poroelastic), (b) τ = 0.01, (c) τ = 0.05, (d) τ 
= 0.10 

Fig. 9 Effect of the Lame moduli’s depth dependency on the dynamic response at the 
ground surface under the horizontal stress loading at the ground surface: (a) τ = 
0.00 (poroelastic) with z0 = 10−2 m, (b) τ = 0.01 with z0 = 10−2 m, (c) τ = 0.00 
(poroelastic) with z0 = 101 m, (d) τ = 0.01 with z0 = 101 m 

Fig. 10 Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal stress loading at the ground 
surface (z0 = 10−2 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 
2.0, (d) f/f1 = 2.5, where f1 is the first resonance frequency 

Fig. 11 Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal stress loading at the ground 
surface (z0 = 101 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 
2.0, (d) f/f1 = 2.5, where f1 is the first resonance frequency 

Fig. 12 Effect of retardation time on the dynamic response at the ground surface under 
the horizontal bottom displacement loading for Type A 

Fig. 13 Effect of the parameter z0 on the dynamic response at the ground surface under 
the horizontal bottom displacement loading for Type B with a different retardation 
time: (a) τ = 0.00 (poroelastic), (b) τ = 0.01, (c) τ = 0.05, (d) τ = 0.10 

Fig. 14 Effect of the parameter z0 on the dynamic response at the ground surface under 
the horizontal bottom displacement loading for Type C with a different retardation 
time: (a) τ = 0.00 (poroelastic), (b) τ = 0.01, (c) τ = 0.05, (d) τ = 0.10 

Fig. 15 Effect of the Lame moduli’s depth dependency on the dynamic response at the 
ground surface under the horizontal bottom displacement loading: (a) τ = 0.00 
(poroelastic) with z0 = 10−2 m, (b) τ = 0.01 with z0 = 10−2 m, (c) τ = 0.00 
(poroelastic) with z0 = 101 m, (d) τ = 0.01 with z0 = 101 m 

Fig. 16 Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal bottom displacement loading 
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(z0 = 10−2 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 2.0, (d) 
f/f1 = 2.5, where f1 is the first resonance frequency 

Fig. 17 Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal bottom displacement loading 
(z0 = 101 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 2.0, (d) 
f/f1 = 2.5, where f1 is the first resonance frequency 
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Table 1. Soil properties used in the computation. 
 
Parameter Notation Value 
Thickness of soil column L  30 m 
Density of solid particle s  2,650 kg/m3 

Density of water f  1,000 kg/m3 

Porosity n  0.4 

Permeability fk  10−3 m/s 

Bulk modulus of the solid skeleton bK  Not used 

Bulk modulus of solid particle sK  Not used 

Bulk modulus of water wK  Not used 

Bulk modulus of air aK  Not used 

Degree of saturation rS  Not used 
Retardation time   0.00, 0.01, 0.05, 0.10 s 
Lame elastic modulus (for Type A)   79.6 MPa 
Lame elastic modulus at depth refz  

(for Types B and C) 
ref  79.6 MPa 

Reference depth (for Types B and C) refz  Set to have the same first 
resonance frequency as Type A 

Model parameter corresponding to soil 
cohesion (for Types B and C) 0z  10−10, 10−2, 100, 101 m 
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(a)                    (b)                     (c) 
Figure 1. Plots of the Lame elastic modulus versus depth: (a) constant stiffness with 
depth (Type A); (b) stiffness linearly increasing with depth (Type B); (c) stiffness 
nonlinearly increasing with depth (Type C) 
 

 
Figure 2. Generalized Kelvin–Voigt model 
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(a)                                 (b) 
Figure 3. Geometry and boundary conditions of a soil column that is subjected to 
horizontal loading: (a) stress loading at the ground surface, (b) displacement loading at 
the bottom 
 

  
(a)                                  (b) 
Figure 4. Depth profile of the Lame elastic modulus  and shear wave velocity: (a) Type 
B, (b) Type C (mG = 0.5) 
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Figure 5. Effect of retardation time on the dynamic response at the ground surface under 
the horizontal stress loading at the ground surface for Type A 
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(a) 
 

 
(b) 
Figure 6. Comparison of the amplification factor at the ground surface between the 
present study and FEM simulation: (a) Type B with z0 = 100 m, (b) Type C with z0 = 100 
m 
 



5 

 
(a) 
 

 
(b) 
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(c) 
 

 
(d) 
Figure 7. Effect of the parameter z0 on the dynamic response at the ground surface under 
the horizontal stress loading at the ground surface for Type B with a different 
retardation time: (a) τ = 0.00 s (poroelastic), (b) τ = 0.01 s, (c) τ = 0.05 s, (d) τ = 0.10 s 
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(a) 
 

 
(b) 
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(c) 
 

 
(d) 
Figure 8. Effect of the parameter z0 on the dynamic response at the ground surface under 
the horizontal stress loading at the ground surface for Type C (mG = 0.5) with a different 
retardation time: (a) τ = 0.00 s (poroelastic), (b) τ = 0.01 s, (c) τ = 0.05 s, (d) τ = 0.10 s 
 



9 

 
(a) 
 

 
(b) 
 



10 

 
(c) 
 

 
(d) 
Figure 9. Effect of the Lame moduli’s depth dependency on the dynamic response at the 
ground surface under the horizontal stress loading at the ground surface: (a) τ = 0.00 s 
(poroelastic) with z0 = 10−2 m, (b) τ = 0.01 s with z0 = 10−2 m, (c) τ = 0.00 s (poroelastic) 
with z0 = 101 m, (d) τ = 0.01 s with z0 = 101 m 
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(a)                                  (b) 
 

  
(c)                                  (d) 
Figure 10. Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal stress loading at the ground surface 
(z0 = 10−2 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 2.0, (d) f/f1 = 
2.5, where f1 is the first resonance frequency 
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(a)                                  (b) 
 

  
(c)                                  (d) 
Figure 11. Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal stress loading at the ground surface 
(z0 = 101 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 2.0, (d) f/f1 = 
2.5, where f1 is the first resonance frequency 
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Figure 12. Effect of retardation time on the dynamic response at the ground surface 
under the horizontal bottom displacement loading for Type A 
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(a) 
 

 
(b) 
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(c) 
 

 
(d) 
Figure 13. Effect of the parameter z0 on the dynamic response at the ground surface 
under the horizontal bottom displacement loading for Type B with a different 
retardation time: (a) τ = 0.00 s (poroelastic), (b) τ = 0.01 s, (c) τ = 0.05 s, (d) τ = 0.10 s 
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(a) 
 

 
(b) 
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(c) 
 

 
(d) 
Figure 14. Effect of the parameter z0 on the dynamic response at the ground surface 
under the horizontal bottom displacement loading for Type C with a different 
retardation time: (a) τ = 0.00 s (poroelastic), (b) τ = 0.01 s, (c) τ = 0.05 s, (d) τ = 0.10 s 
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(a) 
 

 
(b) 
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(c) 
 

 
(d) 
Figure 15. Effect of the Lame moduli’s depth dependency on the dynamic response at 
the ground surface under the horizontal bottom displacement loading: (a) τ = 0.00 s 
(poroelastic) with z0 = 10−2 m, (b) τ = 0.01 s with z0 = 10−2 m, (c) τ = 0.00 s (poroelastic) 
with z0 = 101 m, (d) τ = 0.01 s with z0 = 101 m 
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(a)                                  (b) 
 

  
(c)                                  (d) 
Figure 16. Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal bottom displacement loading (z0 = 
10−2 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 2.0, (d) f/f1 = 2.5, 
where f1 is the first resonance frequency 
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(a)                                (b) 

 

  
(c)                                (d) 

Figure 17. Effect of the Lame moduli’s depth dependency and retardation time on the 
dynamic response depth profile under the horizontal bottom displacement loading (z0 = 
101 m) at a different frequency: (a) f/f1 = 1.0, (b) f/f1 = 1.5, (c) f/f1 = 2.0, (d) f/f1 = 2.5, 
where f1 is the first resonance frequency 
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