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Estimating the Societal Impact of Water Infrastructure Disruptions: A Novel Model 

Incorporating Individuals’ Activity Choices 

Abstract: The well-being of society can be severely impacted by infrastructure disruptions. 

This study proposes a novel mathematical model to estimate the societal impact of water 

disruption quantitatively from two aspects: the percentage of people who can perform certain 

water-related activities and the percentage of people who are intolerant to disrupted activities. 

The model incorporates the tolerance level (TL) to establish a suffering level function of the 

disrupted activity. Then, from the individual’s perspective, an activity estimation model is 

developed to predict an individual’s choice for activities with limited water due to infrastructure 

disruptions, and this model is mainly driven by prioritizing activities with the maximum 

suffering level. To quantify the societal impact in regions, a Monte Carlo simulation is adopted 

to take samplings for TL of simulated residents following lognormal or Weibull distributions, 

and the activity estimation model is conducted for each simulated resident; consequently, 

societal impacts can be aggregated and derived. Additionally, an illustrative case study of Osaka 

and sensitivity analyses are performed; the results validated the model’s effectiveness and 

applicability. The proposed model provides insightful information to support emergency 

management and can be integrated with resilience models of infrastructure to better build 

human-centric sustainable and resilient cities. 

Keywords: Societal impact, Infrastructure disruption, Water-related activity estimation, 

Suffering level, Disaster, Resilient cities 
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1 Introduction 

Critical infrastructure systems, which provide essential resources and services (e.g., water, 

food, housing, and medical services), are the foundation of modern society and the well-being 

of individuals (McAllister, 2015). These systems can be disrupted by natural and human-made 

hazards, leading to reductions in the supply of essential goods and the disruption of services. In 

such situations, the daily activities of residents and the well-being of society tend to be 

significantly affected. As cities continue to develop, residents are increasingly relying on 

infrastructure, and the societal impact of disruptions become larger. To build resilient cities, 

high attention has recently been paid to evaluating the reliability and resilience of 

interdependent infrastructure systems, while the societal considerations caused by the 

disruptions of these systems have rarely been investigated (Esmalian et al., 2021; Nozhati et al., 

2019). In the face of disasters causing widespread and increasing threats to infrastructure and 

societies, the need for developing human-centric models to estimate the societal impact of 

disruptive events is rapidly growing. A better understanding and quantification of the negative 

societal impact is critical for decision-makers to take the appropriate emergency response and 

recovery measures and plan mitigation strategies, which ultimately contribute to building 

resilient societies. 

The societal impact of hazard events can be multifaceted due to the multidimensionality 

of society. The effects can be quantified in several ways, such as by the number of deaths or 

displaced people (Chang et al., 2009; Priest, 2007; UN-ECLAC & The World Bank, 2003), 

economic losses (Chang, 2016; Liu et al., 2021), negative sentiments (Alexander, 2014; Lu et 
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al., 2015), psychosocial changes (Sutley et al., 2017), political impact (Albrecht, 2017; Xu et 

al., 2016), and well-being impact (Markhvida et al., 2020; Martin et al., 2020). When focusing 

on the societal impact of critical infrastructure disruptions, this can be measured using changes 

in well-being. Paolo Gardoni and Colleen Murphy first applied the capability approach to the 

disaster field and gauged the impact of disasters on well-being by examining changes in 

individuals’ capabilities (Gardoni & Murphy, 2010; Murphy & Gardoni, 2006). They 

emphasized the definition of people’s capabilities, which refers to people’s genuine 

opportunities to achieve valuable functionings (doings and beings) with specific resources 

(Gardoni & Murphy, 2010; Halliday, 1995; Sen, 1990). Subsequently, Tabandeh et al. (2018, 

2019) developed a reliability-based capability approach to assess the societal impact of 

infrastructure disruptions. Deshmukh et al. (2011) proposed a semi-quantitative framework to 

evaluate changes in socio-economic activity due to disrupted infrastructure. Overall, one of the 

important contributions of these studies is the incorporation of essential activities (e.g., drinking, 

eating, or working) and beings (e.g., being mobile, being nourished, being physically safe) into 

evaluations of the societal impact in the aftermath of disruptive events. However, the selected 

indicators in these studies rely heavily on the subjective judgments of experts and may lead to 

estimation bias. 

Consequently, integrating individuals’ activity estimations into well-being impact 

analyses is necessary, and some studies have been conducted to evaluate people’s activities 

during infrastructure disruptions. For instance, Yang et al. (2021) estimated the fulfillment of 

water-related activities and need satisfaction levels using available water quantity in 
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infrastructure disruption scenarios, but their work did not consider an individual’s activity 

choice process when there is limited water. Burton et al. (2018) proposed a utility-based 

household decision model to predict people’s actions when their houses are damaged (e.g., sell, 

reoccupy, abandon, or sell without repairing the house) and capture the social consequences. 

Furthermore, they also established an empirical probabilistic utility-based decision household 

model using survey data to estimate people’s activities regarding damaged houses after 

disasters (Burton et al., 2019). Conversely, Han et al. (2021) proposed an activity-based 

approach to evaluate the impact of a disrupted transportation network due to storm surges on 

residents’ travel activities, including working, shopping, schooling, leisure, and others. An 

activity-based model, driven by utility maximization, can capture travel activity shifts and help 

understand people’s travel decisions in transportation assessments (Castiglione et al., 2014; 

Zhang et al., 2002). In summary, the mechanism of predicting an individual’s choice of 

activities in disruptive scenarios is based on maximizing the utility function of individuals; 

however, establishing a utility function immediately after disruption events is challenging. 

Meanwhile, the connections between unperformed activities and the negative well-being of 

individuals are still not well discussed. 

Hardship experience is proposed as a proxy to evaluate individuals’ well-being changes 

from lifeline service disruptions (Dargin et al., 2020; Dargin & Mostafavi, 2020). Esmalian et 

al., (2019)and Dong et al. (2020) utilized the hardship experience of individuals to measure 

negative well-being and quantified it using the differences between the duration of disrupted 

lifeline services and household tolerance levels (TL). The smaller the difference, the higher the 
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societal impact. If the duration of disruptions exceeds TLs, people will experience a negative 

well-being impact and become intolerant (Esmalian et al., 2021). They introduced the key 

concept of TL, which is defined as the amount of time a household can tolerate infrastructure 

service losses in a disaster, derived from a social investigation (Esmalian et al., 2019). Similarly, 

Petersen et al. (2020) investigated the TL for water disruption at the individual level under 

different influencing factors, such as the quantity of available water, income, and age. Gentaro 

et al. (2015) went further into the analysis of water service disruption and explored the TL for 

water-related activities, such as drinking, cooking, toileting, bathing, and laundry. In addition 

to hardship experience, deprivation cost has also been proposed in the field of post-disaster 

humanitarian logistics to quantify human suffering due to the reduction of essential resources 

or services (Holguín-Veras et al., 2013; Shao et al., 2020). However, their emphasis is on 

optimizing resource allocation to minimize human suffering, and the relationship between 

hardship experience and deprivation cost has not yet been discussed. 

Considering the above challenges, this study focuses on water infrastructure disruptions 

and proposes a novel mathematical model to quantify the societal impact from two dimensions: 

individuals’ choices of water-related activities and negative well-being impact (intolerant state). 

The main contributions of this study are as follows: individuals’ choice of activities and their 

intolerant states due to infrastructure disruptions are aggregated to the societal impact, 

proposing a suffering level function of disrupted activities by combining deprivation cost and 

TL, and establishing a novel activity estimation model mainly driven by maximizing the 

suffering level of optional activities. The remainder of this study is organized as follows. 
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Section 2 illustrates the establishment of the mathematical model to estimate the societal impact. 

Then, an illustrative case study of Osaka city using the proposed model and the corresponding 

results are presented in Section 3. This is followed by the sensitivity analysis of important 

parameters in Section 4, which validates the effectiveness and applicability of the proposed 

model. Finally, Section 5 provides a discussion of the results and the conclusions of the study. 

2 Methodology 

This section illustrates how to establish a mathematical model for estimating the societal 

impact (illustrated in Fig. 1). In general, the societal impact is quantified from two dimensions: 

the percentage of people who can perform certain activities and the percentage of people who 

become intolerant to disrupted activities. As illustrated in Fig. 1, when infrastructure systems 

are damaged and disrupted due to disaster, the supply of essential goods or services is reduced. 

As a result of limited essential resources, not all daily activities of individuals can be performed, 

and the activities that individuals choose to perform and activities that they cannot tolerate 

aggregate the societal impact. Specifically, this study focuses on the impact analysis of water 

shortage due to infrastructure disruptions, and the daily activities related to water service are 

specified as drinking, cooking, toileting, bathing, and laundry. We use the terms activities and 

water-use activities interchangeably to refer to water-related activities throughout this paper. 

From an individual analysis scale, a mathematical model is built to estimate the individual’s 

choice of water-related activities and intolerant states with limited water by introducing the 

concepts of TL and suffering level. To extend individuals’ choice and intolerant states to the 

regional societal impact, this study adopts a Monte Carlo simulation to take samplings of TL 
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for individuals following a specific probabilistic distribution. 

Monte Carlo Simulation
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Fig. 1 Methodological framework for evaluating the societal impact of water disruption 

2.1 The definition and measurement of societal impact 

The societal impact of hazards is defined in terms of the expected changes in the 

capabilities of individuals, and capabilities usually refer to the doings (activities) or beings that 

individuals can achieve given limited resources caused by hazards (Gardoni & Murphy, 2010). 

To assess the societal impact, the changes of individuals’ capabilities should be compared 

against two separate thresholds: acceptable threshold and tolerable threshold (Murphy & 

Gardoni, 2008). If the level of capabilities attainment temporarily falls below the acceptable 

threshold, individuals might still be tolerable, while they would become intolerant if the level 

falls below the tolerability threshold (Tabandeh et al., 2018). Similar to this idea, Esmalian et 

al. (2021) proposed a household gap model that incorporates desired service level and adequate 
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service level to evaluate the societal impact of infrastructure service disruption; the difference 

between these two levels is the TL. If the disrupted service level of infrastructure is less than 

the adequate service level (duration of disrupted service is larger than the TL), a 

household would become intolerant and experience a negative well-being impact; otherwise, a 

household could still tolerate disruptions. Overall, how an individual’s capabilities change 

and whether the changes are intolerable are two key points in evaluating societal impact. 

In this study, the societal impact of water infrastructure disruption is measured from two 

aspects: the percentage of people who can perform certain water-related activities and 

the percentage of people who become intolerant to disrupted activities. The first aspect 

denotes the reduction of individuals’ capabilities, and it provides important insights about the 

fulfillment of residents’ water-related activities in a disruptive event. The smaller the 

percentage of people who can perform activities, the higher the societal impact. The 

second aspect evaluates the unperformed activities with the tolerable threshold and captures 

individuals’ intolerant states; specifically, the individual becomes intolerant if the duration of 

a disrupted activity exceeds the tolerance level (TL). The higher the percentage of 

intolerant people, the higher the societal impact. This facilitates resources or service 

allocation and helps decision-makers capture the negative well-being of residents. 

2.2 An individual activity estimation model 

To calculate the defined societal impact, the fulfillment of individuals’ water-related 

activity should be estimated during a disruptive event. With limited water due to disasters, 

individuals can still obtain water from emergency shelters or retail stores, which is supported 
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by humanitarian logistics and commercial logistics, respectively (Davis, 2014; Yang et al., 

2021). However, the quantity of available water is limited, and residents need to allocate the 

limited water to perform different activities because they cannot consume the same amount of 

water compared to their pre-disaster habits. To estimate an individuals’ achievement of 

activities, this section illustrates the mathematical model that innovatively incorporates the TL 

and suffering level of disrupted activities. The analysis scale of the model is conducted at an 

individual level and indicates that the TL, water-related activities, and choice making are 

designed for individuals instead of households. Household activity choice estimation is more 

complicated and involves more factors, such as interactions, compositions, and the capacity of 

household members, which are not integrated into the proposed model. 

2.2.1 Incorporating TL into an individual’s activity estimation 

Predicting individuals’ priorities for water-related activities under various contexts and 

periods is challenging; however, what is clear is that disrupted activities with a higher suffering 

level from survival threats are always prioritized. Suffering is a proxy variable to measure an 

individual’s bodily distress to threats (Ennis-McMillan, Michael, 2001). In disaster scenarios, 

the first priority should always be water for survival (drinking and cooking) and personal 

hygiene (toileting, bathing, and laundry) with limited water (Adams, 2021). Having water for 

drinking each day is more important than having water for personal hygiene, but people will 

still want and need to perform hygiene-related activities to prevent hygiene-related diseases 

(Reed & Reed, 2011). Hygiene diseases, such as diarrhea, malaria, and skin (eye) infections, 

can also threaten individuals’ health and make the hygiene activity become priority (European 
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Commission’s Directorate-General for Humanitarian Aid, 2005). For instance, the investigated 

Japanese residents explained that they could only tolerate toileting and washing disruptions for 

a short time but become concerned with bacteria and other hygiene problems if the disruptions 

extend over a longer period (Sudo et al., 2019). Another investigation conducted by the Japan 

LIXIL Housing Research Institute also demonstrated the importance of hygiene activities: 

considering the situation of water disruption, the first three water-related activities that Japanese 

people want to ensure is drinking (82.6%), toileting (67.5%), and cooking (44.7%), followed 

by bathing (33.5%) and laundry (14.0%;(LIXIL Housing Research Institute, 2016). Hence, to 

capture individuals’ water use priorities, estimating the suffering level of disrupted activities in 

disaster scenarios is critical. 

Incorporating TL can help to identify which activity is more suffering from threats, and 

further help to estimate people’s achievement or priority of activities when resources are limited. 

The TL represents the ability of individuals to cope with the threats posed by the disruption of 

activities. As the duration of the unperformed activity approaches the TL, the individual’s 

suffering level from life threats will keep increasing and become intolerable if the disruption 

duration exceeds the TL. Individuals have varying tolerance to different activities. With limited 

water quantity, individuals prioritize activities with higher suffering levels because reducing 

suffering is human nature. For example, if a person has a smaller TL (two days) to cooking 

disruptions than bathing disruptions (four days), cooking will be prioritized when there is 

limited water because the cooking disruption is closer to the TL and has a higher suffering level 

compared to bathing disruption. 
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To estimate the fulfillment of activities at time 𝑡 after a disaster, the duration of activity 

disruption should also be considered. For example, as above, assume a person’s TL for cooking, 

and bathing is two and four days, respectively; if cooking was achieved yesterday and bathing 

has not been achieved for four days, this person would prefer to perform bathing rather than 

cooking because the cooking disruption is still under the TL while bathing disruption has 

reached the TL limit. The proposed model introduces a variable 𝑡𝑖(𝑡) to represent the duration of 

the disrupted activity 𝑖 at time 𝑡. If activity 𝑖 is performed on the previous day (𝑡 − 1), the 

duration of this disrupted activity at t would be 1 (𝑡𝑖(𝑡) = 1); otherwise, the duration of 𝑖 would 

continue to accumulate and increase by one (𝑡𝑖(𝑡) = 𝑡𝑖(𝑡 − 1) + 1). In fact, the gap between the 

tolerable day and duration of the disrupted activity, ∆𝑡𝑖 = 𝑇𝐿𝑖 − 𝑡𝑖(𝑡), dominates the decision-

making process of individuals. When ∆𝑡𝑖 becomes smaller, which means that the duration of 

disrupted activity 𝑖 approaches the maximum tolerable day (or TL), people would have a high 

suffering level and prefer to achieve activity 𝑖 as a priority. If ∆𝑡𝑖 is large, people still have space 

to tolerate activity 𝑖, and they can achieve other more suffering activities. More importantly, if 

∆𝑡𝑖 is smaller than 0 (∆𝑡𝑖 < 0), the disrupted days of activity 𝑖 exceed the TL, which would be 

intolerable for the individual; thus, the TL can also connect the activities and the intolerant state 

of individuals. In general, a smaller time gap ∆𝑡𝑖 corresponds to a higher suffering level, and 

individuals are prone to achieve this activity in priority. A previous empirical analysis also 

shown a significant negative correlation of suffering level and the time gap (Esmalian et al., 

2021). To denote this relationship quantitatively, this study first (Section 2.2.2) defines the 

suffering level function (SLF) for disrupted activity 𝑖, and then (Section 2.2.3) 
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proposes a mathematical model to estimate individuals’ activity choice. 

2.2.2 Suffering level function of disrupted activities 

To quantify the individuals’ suffering level from the survival threats of disrupted activities, 

the following SLF is proposed by integrating the concepts of TL and deprivation cost function 

(DCF), which is proposed by researchers in the field of post-disaster humanitarian logistics, 

as illustrated in Equation 1. 

𝑆𝐿𝐹𝑖(𝑇𝐿𝑖 , 𝑡𝑖(𝑡)) = 𝑒−𝜌∗∆𝑡𝑖 = 𝑒−𝜌∗(𝑇𝐿𝑖−𝑡𝑖(𝑡)) =
𝑒𝜌∗𝑡𝑖(𝑡)

𝑒𝜌∗𝑇𝐿𝑖
(1) 

where 𝑆𝐿𝐹𝑖 is the suffering level of activity 𝑖 and is the exponential function of ∆𝑡𝑖 (Fig. 2 (a)); 

∆𝑡𝑖 is the time gap between the tolerance level (𝑇𝐿𝑖) and duration of disruption of activity 𝑖 at 

time 𝑡 (𝑡𝑖(𝑡)); and the parameter 𝜌 controls the slope of the function and denotes the 

individual’s suffering perception towards disruptions of activities or essential resources. As 

shown in Fig. 2 (a), with a larger 𝜌, individuals experience less suffering before the duration 

𝑡𝑖(𝑡) exceeds 𝑇𝐿𝑖 (∆𝑡𝑖 > 0), while they have a higher suffering level when the duration 𝑡𝑖 (𝑡) 

surpasses 𝑇𝐿𝑖  ( ∆𝑡𝑖 < 0 ). For one individual, 𝑇𝐿𝑖  and 𝜌  are usually determined and specified, 

and illustrative curves of the 𝑆𝐿𝐹𝑖 with respect to the duration of disrupted activity 𝑖 are 

illustrated in Fig. 2 (b). 
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(a)                 (b) 

Fig. 2 (a) Illustrative suffering level functions with regards to ∆𝑡𝑖 for different 𝜌; (b)

Illustrative suffering level functions for activities; 

The functional term of SLF is determined with the DCF. Deprivation cost is the economic 

measurement of people’s suffering caused by basic needs unsatisfaction or a lack of essential 

resources in disasters, such as water, food, personal hygiene, and medical services. This study 

focuses on individuals’ water-related activities, the disruptions of which would lead to 

unsatisfaction of survival needs or hygiene needs and further cause individuals’ suffering. 

Hence, it is reasonable to apply the DCF to measure the suffering level of disrupted activities. 

Moreover, the SLF in this study adopts the exponential function for the following two reasons. 

First, the exponential function includes the important properties of individuals’ suffering 

(deprivation cost); for instance, with a longer duration of disrupted activities ( 𝑡𝑖(𝑡) ) or 

deprivation time, the suffering level increases monotonically and has an acceleratingly 

increasing trend (non-linear and convex). These properties of suffering level reflect the natural 

consequence of how human beings deal with shortages of life-supporting resources: at first, 

most healthy individuals can deal with short-term disruptions; as they use up their body reserves, 

their suffering level increases quickly until it reaches the maximum (Holguín-Veras et al., 2013). 

Second, some researchers have already developed DCF for various essential goods using 

empirical data, where the exponential function is one of the most popular forms, and 

exponential function is also suitable for depicting individuals’ suffering from water and hygiene 

shortages in disaster scenarios (Holguín-Veras et al., 2016; Shao et al., 2020). 
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The proposed SLF is actually a transformed DCF, and its functional form is similar to the 

DCF proposed by Moreno et al. (2018). The main difference between the SLF and the DCF is 

the introduction of the TL as the scale 
1

𝑒𝜌∗𝑇𝐿𝑖
 in Eq. (1). The aims of making these modifications 

are as follows: 1) standardize the suffering level into non-monetary value to make the suffering 

of different activities comparable; and 2) take the intolerable activity equally for individuals, 

which means that if the duration of disruptions equals the limit of the tolerable day (𝑡𝑖(𝑡) = 

𝑇𝐿𝑖), the corresponding suffering level would be 1 regardless of the type of activity. In fact, the 

TL represents the tolerable limit of deprivation time, which is usually derived from social 

investigations of individuals’ tolerable days for disruptions. At this point, different disrupted 

activities have the same level of suffering, which is intolerable for individuals, and the TL is 

smaller than the terminal deprivation time in DCF at which an individual dies at the maximum 

cost (value of life). 

2.2.3 Mathematical modeling of activity estimation 

Based on the above, this study proposes a multi-objective binary linear optimization 

model to estimate individuals’ fulfillment of activities with limited water quantity. The model 

assumes 1) that people will prioritize activities that are associated with a higher suffering level 

to reduce the total experienced suffering; and 2) that people will choose activities on a daily 

basis, which means that they will consume all the available water on each day without 

remaining. The mathematical formulation of the activity estimation model is as follows. 

max 𝑓1 = ∑  𝐴𝐶𝐻𝑖(𝑡) ∗ 𝑆𝐿𝐹𝑖(𝑇𝐿𝑖 , 𝑡𝑖(𝑡))𝑛
𝑖=1 = ∑ 𝐴𝐶𝐻𝑖(𝑡) ∗ 𝑒−𝜌∗∆𝑡𝑖𝑛

𝑖=1 (2) 

max 𝑓2 = ∑
𝑊𝑄𝑖(𝑡)

𝑁𝑜𝑟𝑊𝑄𝑖

𝑛
𝑖=1 (3)
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Subject to 

𝐴𝐶𝐻𝑖(𝑡) ∈ {0,1} (4) 

∆𝑡𝑖 = 𝑇𝐿𝑖 − 𝑡𝑖(𝑡) (5) 

𝑡𝑖(𝑡) = {
𝑡𝑖(𝑡 − 1) + 1   𝑖𝑓 𝐴𝐶𝐻𝑖(𝑡 − 1) = 0 

1  𝑖𝑓  𝐴𝐶𝐻𝑖(𝑡 − 1) ≠ 0
(6) 

𝑊𝑄𝑖(𝑡) ≥ 𝑀𝑖𝑛𝑊𝑄𝑖 ∗ 𝐴𝐶𝐻𝑖(𝑡) (7) 

𝑊𝑄𝑖(𝑡) ≤ 𝑁𝑜𝑟𝑊𝑄𝑖 ∗ 𝐴𝐶𝐻𝑖(𝑡) (8) 

∑ 𝑊𝑄𝑖(𝑡) ≤ AW(𝑡)𝑛
𝑖=1 (9) 

The activity estimation model includes two objective functions, which are presented in Eq. 

(2) and Eq. (3). Objective (1) (Eq. (2)) is the main problem, which estimates the achievement

of activity 𝑖 (𝐴𝐶𝐻𝑖(𝑡)) by maximizing the total suffering level of optional activities at day 𝑡;

this objective function ensures that an individual would perform a set of activities with the 

highest suffering levels, and indicates that an individual actually experiences a minimum total 

suffering level of unperformed (disrupted) activities; 𝐴𝐶𝐻𝑖(𝑡) is the binary decision variable

(Eq.(4)), and it equals to 1 if the individual has performed activity 𝑖, and otherwise equals to 0; 

𝑒−𝜌∗∆𝑡𝑖 is the SLF of activity 𝑖, which quantitatively depicts the level of suffering with respect

to the time gap ∆𝑡𝑖 . As previously mentioned, the time gap, ∆𝑡𝑖 , is the gap between the

tolerable day (𝑇𝐿𝑖 ) and the duration of disruption at time 𝑡  (𝑡𝑖(𝑡) ), and the calculation is

illustrated in Eq. (5)–Eq. (6).  

Objective (2) (Eq. (3)) is the sub-problem, which estimates the quantity of water allocated 

to the achieved activity 𝑖 (𝑊𝑄𝑖(𝑡)) by maximizing the sum of the ratios of 𝑊𝑄𝑖(𝑡) to the

normal water quantity (𝑁𝑜𝑟𝑊𝑄𝑖  ). Objective (2) ensures that the activity with low normal
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consumption (e.g., drinking or cooking) will be prioritized, especially for the occasion that 

objective (1) has multiple optimal solutions. The decision variable in objective (2) is 𝑊𝑄𝑖(𝑡),

which represents the water quantity allocated to activity 𝑖. 𝑊𝑄𝑖(𝑡) takes values of either 0

(activity is not achieved) or the value between the minimum (𝑀𝑖𝑛𝑊𝑄𝑖  ) and normal water

quantity (𝑁𝑜𝑟𝑊𝑄𝑖), interpreted as the constraints in Eq. (7) –Eq. (8). The total water quantity

consumed for the achieved activities has a restriction on the water resources individuals can 

obtain (Eq. (9)), which is denoted as available water in a disaster scenario (AW(𝑡)), including 

inventory water in the household, emergency water in the shelter, bottled water in commercial 

facilities, or untreated water in wells. 

Overall, Eq. (2)–Eq. (9) constitute the activity estimation model for individuals 

considering the suffering of disrupted activities. It is worth noting that a hierarchical approach 

was adopted to derive the optimal solution. Specifically, objective (1) is optimized in priority 

in the model to estimate a set of performed activities with maximum suffering level, and then 

objective (2) will be optimized without degrading the values of objective (1). The optimal 

solution would be a set of the achieved activities with the highest suffering level under limited 

water quantity. Additionally, the fulfillment of activities on each day can be estimated by 

considering the previously performed (chosen) activities and the restoration of the water service. 

Moreover, individuals who become intolerant to the disrupted activity (∆𝑡𝑖 < 0) can also be

identified. The GUROBI solver in Python is utilized to yield an optimal solution of this model 

(OPTIMIZATION, 2014). 
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2.3 Monte Carlo simulation: Aggregated individual activity choices for societal impact 

In this model, the TL for activities is critical for estimating an individual’s fulfillment of 

activities, and the TL value is influenced by many factors, such as demographic factors, 

property factors, risk perception, previous experience, resources, and sensitivity (Coleman et 

al., 2020). Different individuals have varying TLs; however, in statistics, we can find some 

patterns of individuals’ TL to disruptions, which follow a specific probability distribution, such 

as lognormal, Weibull, and log-logistic distributions (Esmalian, Dong, & Mostafavi, 2021; 

Gentaro et al., 2015). This can be viewed as an important feature of residents in a survey region 

and provides opportunities to adopt the Monte Carlo simulation method to capture the TL 

variations among a population. The Monte Carlo simulation method is defined as a method for 

obtaining estimates of the solution of mathematical problems by means of random numbers 

(Matsuoka, 2013). Some researchers have already applied the Monte Carlo method to generate 

population attributes (population synthetic) and then conducted microsimulations (Farooq et al., 

2013; Han et al., 2021). The idea of this study is similar to their work, which generates the TL 

of each activity for a simulated population using random sampling according to the probability 

distribution of TL, and then conducts an activity estimation model for each simulated individual. 

Integrated with the Monte Carlo simulation, the detailed procedure of the methodology is 

illustrated in Fig. 1. For each individual, the 𝑇𝐿𝑖 of each activity 𝑖 can be derived from the

random sampling based on the probability distribution of the 𝑇𝐿𝑖. The larger the simulated

population, the more similar the sampled TL distribution to the actual probability distribution 

would be, and as such, the sampled results can represent the feature (TL) of the whole 
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population. Then, the sampled 𝑇𝐿𝑖  for each activity can be imported into the activity 

estimation model, and the achievement of activities at each time for this individual can be 

predicted. If we take samples of 𝑇𝐿𝑖 for N people in the region, the achievement of activities 

for these individuals and the number of intolerant people can be estimated in a disaster scenario, 

and this is the quantitative societal impact defined in this study. Additionally, if we take another 

N samplings, the TL of each activity for simulated individuals and the estimated societal impact 

will change correspondingly. Thus, to reduce the uncertainty of TL random sampling, we 

conduct this process M times and take the mean value as the final estimated societal impact. 

3 Illustrative case study 

In this section, the proposed model is applied to a specific city to analyze the societal 

impact of water-related infrastructure disruptions under disaster scenarios. Considering the 

consistency of data sources, the city of Osaka, Japan, was selected as the case study. 

3.1 Data descriptions 

3.1.1 Water consumptions of activities in Osaka 

Osaka is one of the most populous cities in Japan, with a total estimated population of 2.69 

million, and the average water consumption of Osaka residents is approximately 260 L/d per 

person. Specifically, the daily average normal consumption of water (𝑁𝑜𝑟𝑊𝑄𝑖  ) for Osaka

residents’ activities are shown in Table 1, sourced from the Osaka Municipal Waterworks 

Bureau (OMWB). The required minimum water quantity of activity 𝑖 (𝑀𝑖𝑛𝑊𝑄𝑖) was obtained

and refined from various literature or reports (Gleick, 1996; Howard et al., 2003).  
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Table 1 Essential parameters in the model 

Normal WQ 

(units: L/day) 

Minimum WQ 

(units: L/day) 

Distribution type 

of TL 

𝛼𝑖 𝛽𝑖

Drinking 3 2 NA NA NA 

Cooking 41 2 Lognormal -0.416 1.65 

Toileting 52 3 Lognormal -0.994 1.7 

Bathing 96 5 Weibull 0.93 4.02 

Laundry 47 4 Weibull 0.8 3.11 

3.1.2 Disruptive scenarios 

The disruptive scenarios in this study are adopted from Yang’s previous published work, 

which include disruptions or damages of water supply systems, electricity systems, 

transportation systems, emergency services, and commercial facilities in Osaka (Yang et al., 

2021). Under these disruptions, the available water quantity that Osaka residents can obtain is 

calculated considering the availability of tap water (TW), emergency water (EW), and bottled 

water (BW), and the results are illustrated in Fig. 3 (Yang et al., 2021). Approximately 414,000 

residents (15.4% population) cannot access TW under these disruptive scenarios, but they can 

still obtain EW from emergency shelters and BW from commercial stores (5 L/d [EW], 8 L/d 

[EW+BW]). With available water of 5 L/d and 8 L/d, the societal impact that incorporates 

peoples’ choices can be estimated using the proposed model (illustrated in Section 4.3). To 

validate the proposed model, available water of 10 L/d (AW(𝑡) = 10 𝐿/𝑑) is first applied in 

this section, and AW(𝑡) is keep constant in the post-disaster period (simulation time: T = 30 
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days) to explore the societal impact pattern. 

Fig. 3 Spatial distribution of available water quantity in Osaka (Yang et al., 2021). 

3.1.3 TL sampling for Osaka residents 

As mentioned in the methodology, individuals’ TL for different activities follows a certain 

probability distribution, reflecting the important property of residents in a certain region. This 

study adopts Gentaro’s results, which estimates the probability distribution of TL for water-

related activities using empirical data from a social investigation in Osaka (Gentaro et al., 2015). 

In the investigation, Osaka residents who had experienced a water suspension were asked how 

many days they could tolerate the survival threats from disrupted activities. Additionally, 

Akaike’s information criterion (AIC) was utilized to identify the best fit model, and the results 
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demonstrated that the TL for cooking and toileting among Osaka residents corresponded to 

the lognormal distribution (Eq. (10)), while bathing and laundry followed a Weibull 

distribution (Eq. (11)). The estimated parameters of these distribution models for each activity 

are listed in Table 1. 

𝐹𝑖(𝑡) = ∫
1

√2𝜋𝛽𝑖𝑥
exp (−

(𝑙𝑛𝑡−𝛼𝑖)2

2𝛽𝑖
2 )

𝑡

0
 (10) 

where 𝛼𝑖 denotes the mean, 𝛽𝑖 represents the standard deviation, and 𝑡 is the disruption

duration for activity 𝑖. 

𝐹𝑖(𝑡) = 1 − exp (−(
𝑡

𝛽𝑖
)𝛼𝑖) (11) 

where 𝛼 is the shape parameter, 𝛽 is the scale parameter of the Weibull distribution, and 𝑡 is 

the disruption duration for activity 𝑖. 

Based on these probabilistic distributions, we can take samples of the TL for the simulated 

population, and the illustrative TL sampling results for each activity from the Monte Carlo 

simulation are shown in Table 2. Noting that this case study assumes the TL for drinking to be 

1 day because drinking is a basic survival need. The number of residents that can access 10 L/d 

water is scaled down to a population of 1000 simulated individuals (N = 1000) to improve the 

efficiency of the calculation. Also, the number of the simulated population (N = 1000) is large 

enough to represent the whole because there are relatively small differences between the 

cumulative distribution functions (CDF) of each activity’s TL from Gentaro’s work (the 

curves in Fig. 4) and the sampling results of TL (discrete points in Fig. 4). To reduce the 

uncertainty of TL sampling, we perform the proposed model 100 times (M=100) and then 

calculate the mean value as the final societal impact. 
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Table 2 Illustrative sampling set of tolerance level (TL) for each activity (unit: days) 

𝑇𝐿1 𝑇𝐿2 𝑇𝐿3 𝑇𝐿4 𝑇𝐿5

Sampling 1 1 1 1 1 10 

Sampling 2 1 2 1 2 1 

Sampling 3 1 4 1 7 2 

Sampling 4 1 1 1 1 7 

Sampling 5 1 3 2 8 5 

… 1 3 1 4 3 

Sampling N 1 1 1 4 5 

Fig. 4 Monte Carlo sampling validation with the probability distribution 
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Another critical parameter 𝜌  in SLF is assigned as 2.8128, which corresponds to the 

parameter in DCF of water (Holguín-Veras et al., 2013). Based on the above parameter settings 

(including the simulated population of 1000, sampled TL for each individual, available water 

of 10 L/d, simulation time of 30 days, 𝑁𝑜𝑟𝑊𝑄𝑖 , 𝑀𝑖𝑛𝑊𝑄𝑖 , 𝜌=2.8128, and performed 100

times), the simulated individuals’ activity choice on each day can be estimated and aggregated 

to the regional scale societal impact of water infrastructure disruption. 

3.2 Results of the estimated societal impact 

3.2.1 The achievement of activities 

As illustrated in Fig. 5 (a), over time, people’s choices for each activity fluctuate at a 

certain percentage. Almost all individuals can ensure drinking (over 95%) every day with 

limited available water (10L/d). Approximately 70%, 60%, 35%, and 35% of people consume 

water for cooking, toileting, bathing, and laundry, respectively. Additionally, the percentage of 

people achieving bathing has the largest variation during these 30 days, and it has an inverse 

trend with other activities. When the percentage of people choosing bathing reaches the peak, 

the number of people choosing other activities decreases abruptly, indicating the substitution 

effect among the activities. The substitution effect between bathing and other activities is most 

apparent in this situation. 

This study further investigates the frequency pattern for the fulfillment of different 

activities. As illustrated in Fig. 5 (b), the x-axis is the frequency of each activity, representing 

how often each activity is achieved, and the y-axis demonstrates the percentage of people in a 
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different frequency. This study takes the lower bound value of the activity frequency; for 

example, if the frequency is in the range of 1 and 1.99, this study will take the lower bound 1. 

The results illustrate that most people can achieve drinking and cooking once a day; in particular, 

100% of people consume water for drinking once a day. The frequency of toilet use is mainly 

distributed once a day or once for two days. As for bathing and laundry, their distributions are 

very similar, and about 30% of people are inclined to realize them every two days. Furthermore, 

people may achieve an activity at other frequencies, such as once in three days, four days, five 

days, six days, seven days, ten days, 15 days, and 29 days, among which taking a bath or laundry 

is dominant compared to other activities. 

(a) (b) 

Fig. 5 (a) The percentage of people achieving different activities; and (b) the percentage of 

people with a different frequency of achieving each activity. 

3.2.2 Percentage of people getting intolerant 

The proposed model is also capable of predicting people who cannot tolerate disrupted 

activities. As mentioned earlier, for one individual, if there is any activity that becomes 
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intolerable, this individual will not tolerate the disruption. In the illustrative case, the percentage 

of intolerant people (PIP) on each day is presented as the PIP curve in Fig. 6, which 

demonstrates a growing trend during the first four days, and then fluctuates at approximately 

55%, with a maximum of 66% and a minimum of 46%. This result indicates that the societal 

impact has an increasing trend in the first several days, after which the societal impact tends to 

be stable. Furthermore, the proportion of people with an intolerable activity has a similar trend. 

Intolerable toileting and bathing account for a large proportion, and intolerable drinking has the 

lowest proportion. The percentage of people dissatisfied with bathing also had the largest 

variation (Fig. 6), from 10% to 47%. 

To validate the results, this study defines the concept of an accumulative percentage of 

intolerant people (APIP), which refers to the cumulative number of people who have already 

experienced intolerable activity. As shown in Fig. 6, when the available water is 10 L/d, the 

APIP exhibits an increasing trend, then stabilizes at approximately 85% during these 30 days. 

This tendency is similar to the results of Petersen’s work (denoted as the validation point in Fig. 

6), which conducted a social investigation to ask people how many days they can manage with 

10 L of water per day (Petersen et al., 2020). The main distinction between the PIP and APIP is 

that the former refers to intolerant people due to unachieved activities on the day, while the 

latter considers the intolerant people before that day and denotes the accumulation. Thus, the 

social investigation results in Petersen’s work correspond to the simulated results of the APIP, 

and their consistency validates our proposed model to some extent. 
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Fig. 6 Estimated intolerant people and activities under 10 L/d available water 

3.3 The uncertainty of TL to the estimated societal impact 

As previously mentioned, the proposed model was performed 100 times for 1000 

simulated individuals, and the mean value was taken as the output of the societal impact. To 

examine the variance of the societal impact caused by the TL sampling, the maximum and 

minimum of the simulated results in these 100 simulation times are also analyzed and 

illustrated in Fig. 7. 

The results reveal two interesting patterns. First, the difference in simulated societal 

impacts is within a relatively small range (smaller than 10%), which means that the uncertainty 

of the model caused by 𝑇𝐿𝑖  sampling is limited. Second, the trends of the maximum and 

minimum results are almost consistent, indicating that the choice pattern of different activities 

is stable under the benchmark setting of parameters despite different sampling of 𝑇𝐿𝑖. Overall,
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these results prove the effectiveness of integrating Monte Carlo sampling of the TL with the 

activity estimation model. 

Fig. 7 Variations of societal impact with different TL samplings 

3.4 Incorporating with post-disaster infrastructure recovery 

Critical infrastructure systems will be restored through the emergency response of 

governments or other organizations after disaster events, and the available water that 

individuals can access could increase correspondingly with time. The major concern for the 

government is grasping the societal impact changes with recovery. This section sets up several 

recovery scenarios to illustrate the capability of the proposed model to calculate the dynamic 

societal impacts. Considering the resource limitations from disasters, a practical emergency 

response strategy adopted by OMWB is providing 3 L/d of water during the first three days of 

the disaster and then providing 20 L/d. The recovery scenario of available water (AW(𝑡)) is 
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represented as {3, 3, 3, 20, 20, 20, 20…}, and the corresponding societal evaluation results are 

illustrated in Fig. 8 (a). Additionally, the water quantity that people can obtain could be larger, 

considering the resilience of the water supply infrastructure. Therefore, three other post-disaster 

recovery scenarios are simulated as well: {3, 5, 8, 20, 20, 20, 20…}, {5, 5, 8, 20, 20, 20, 20…}, 

{5, 8, 8, 20, 20, 20, 20…}, and their results are shown in Fig. 8 (b), Fig. 8 (c), Fig. 8 (d), 

respectively. 

(a) (b) 

(c) (d) 

Fig. 8 Intolerant people under different AW recovery scenarios 

As illustrated in Fig. 8, APIP grows in the first three days and then tends to stabilize at a 

certain value for all scenarios. The percentages of stable intolerant people were 99.69%, 98.90%, 

94.10%, and 89.20% from Fig. 8 (a) to Fig. 8 (d), respectively. The stability is because the 
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available water is 20 L/d after three days, and people can achieve all activities using this 

minimum amount of water. Additionally, under different recovery scenarios, the PIP changes 

differently with time. As for the PIP on each day, if they have no increment of AW for the next 

day, the number of intolerant people will rise; otherwise, the PIP becomes smaller than the 

previous day. After three days, the PIP remained constant at 0. The peak of PIP was 99.69% on 

day 3, 96.00% on day 1, 90.7% on day 2, and 78.90% on day 3 for recovery scenarios (a), (b), 

(c), and (d), respectively.  

4 Sensitivity analysis  

This section analyses the effects of the external parameters in the proposed model on the 

societal impact. The parameter 𝜌  in SLF and available water quantity AW(𝑡)  are mainly 

examined, considering their vital role in the model. The activity estimation model is driven by 

minimizing the suffering of people’s disrupted activities, and the accuracy of the SLF, which is 

mainly controlled by 𝑇𝐿𝑖 and 𝜌, will have a significant impact on the solution of the model. 

The uncertainty of 𝑇𝐿𝑖 has been examined in Section 3.3, whereas the parameter 𝜌, which is 

determined based on the literature, has not been explored. Hence, the parameter 𝜌 has been 

selected for the sensitivity analysis in this section. Additionally, the available water volume is 

investigated not only because its value will influence the solution of the activity estimation 

model but also because it works as a bridge to connect the infrastructure disruption and societal 

impact. In detail, the available water in a disaster scenario is determined by the condition of 

interdependent infrastructure systems (Yang et al., 2021), and various water quantities lead to 

different societal impacts; thus, the available quantity of water for individuals is investigated. 
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4.1 Effects of parameter 𝝆 on societal impact 

Based on the benchmark scenario with 𝜌 equal to 2.8128 in Section 3, we changed the 

value of 𝜌  continuously to investigate its impact on the simulated results. Parameter 𝜌 

reflects the individuals’ perception of suffering towards disrupted activity. It is challenging to 

determine the exact value of 𝜌 for activities; thus, to reduce the effects of this parameter on 

prioritizing activities, this study takes the equal value of 𝜌 for each water-related activity of 

simulated individuals and then conducts a sensitivity analysis of this parameter. The estimated 

results are illustrated in Fig. 9. 

Along with the change in the parameter 𝜌, the simulated results vary within a certain range, 

as illustrated in the shaded area in Fig. 9. Note that the value of 𝜌 should not be too large (less 

than 3) because the precision of the GUROBI solver is limited to 10E-05. The percentage 

variations for achieving water-related activities have smaller ranges under the available water 

of 10 L/d, especially for laundry. Similarly, the curves of APIP and PIP exhibit small variations 

with different values of 𝜌. This pattern indicates a strong application of the proposed model. 

Although the parameter 𝜌 is uncertain, we can still estimate the range of societal impacts under 

disaster scenarios, which could provide important insights for decision-makers. 
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Fig. 9 Variations of societal impacts with different 𝜌 

4.2 Effects of available water on societal impact 

For the sensitivity analysis of available water quantity, the benchmark is also the 

illustrative case (in Section 3), and this section assigned different amounts of water for the 

activity estimation model (5 L/d, 8 L/d, 10 L/d, 12 L/d, and 14 L/d) to check its effect on the 

societal impact. The results are illustrated in Fig. 10, and the societal impact is presented in Fig. 

9 for AW(𝑡) = 10 𝐿/𝑑. It is worth noting that the intolerant people are equal to 0 when the 

available water quantity is larger than 16 L/d because all activities can be achieved using 

𝑀𝑖𝑛𝑊𝑄𝑖  for each activity and there would be no intolerant people due to disrupted activities.

In general, with a certain amount of water, the societal impact demonstrates an increasing 

trend during the first several days after the disaster, then tends to be stable around a certain 

value. For the stabilized value of the societal impact, the lower the available water quantity, the 

higher the PIP and APIP, which means that the societal impact will be larger when the available 

water quantity is smaller. Another interesting finding is that the uncertainty of the societal 

impact (the variation range) is relatively small with different 𝜌 values, except for the case of 

the PIP with available water of 8 L/d. For 8 L/d water, the reachable combinations of activities 
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are as follows: {{ D+C+T}, {D+C+L}, {T+B}, {D+B}, {C+B}, {T+L}}. If the value of 𝜌 is 

very small (e.g., 0.01), the accelerating rate of the SLF will be become small with respect to a 

longer disruption duration time (t), which will result in the activity sets of D+C+T and D+C+L 

dominating individuals’ choices (the SLF of three activities is larger than that of two). As such, 

bathing activities will not be achieved even though bathing becomes intolerable with time. 

These are the reasons for the high uncertainty of PIP with different 𝜌 values when the available 

water for individuals is 8 L/d. 

Fig. 10 Variations of PIP and APIP with different quantities of available water 

5 Discussion and conclusion 

Critical infrastructure is vulnerable to disasters, and its disruption will directly reduce 

water supply, leading to the interruption of individuals’ daily activities and negative well-being. 

In a disaster scenario, governments are concerned about the societal impact caused by resource 

reductions and attempt to recover people’s well-being as soon as possible. However, it is 

challenging to estimate the societal impacts quantitatively in the field of disaster management 

and risk reduction. To fill this gap, this study proposes a mathematical model to predict the 

impact of limited available water on people’s fulfillment of certain activities and their intolerant 
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states. The proposed model mainly consists of an activity estimation model and Monte Carlo 

simulation. The individual’s activity estimation model is driven by prioritizing the activities 

with higher suffering levels, which are quantitatively measured by the proposed SLF combing 

the TL and DCF of each activity. Monte Carlo sampling is utilized to derive the TL of each 

activity for simulated individuals following a certain probabilistic distribution. Combining 

these two parts, the percentage of people who can perform certain water-related activities and 

who become intolerant under limited water resources can be estimated, which are the 

quantitative societal impact described in this study. 

The illustrative case study demonstrated the application of the proposed model to estimate 

the societal impact of disasters, providing reference information for decision-makers. The 

results indicate that the proposed model can dynamically estimate the achievement of activities 

and intolerant people each day. In general, people tend to show specific activity choice patterns 

with limited water, and drinking, cooking, and toileting ranking in the top three prioritized 

activities with 10 L/d available water. The number of intolerant people increases quickly in the 

first four days after a disaster and then fluctuates around a certain percentage, where intolerable 

toileting and bathing disruption account for the main percentage. Besides, to some extent, the 

model has been validated by comparing the predicted APIP from our model with the results of 

social investigations from previous work (Petersen et al., 2020). 

Uncertainty and sensitivity analyses were conducted separately to explore the effects of 

the TL sampling, parameter 𝜌, and AW on the estimated results of the proposed model. The 

activity estimation model is mainly driven by the suffering level of each activity; hence, the 
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uncertainty of TL and 𝜌 significantly influences the estimated results. Through the uncertainty 

analysis of TL and sensitivity analysis of 𝜌, an important finding is that the uncertainty of the 

estimated results can be controlled within a relatively small range. This finding indicates the 

applicability of the proposed model, although the exact values of these two parameters cannot 

be determined ( Fig. 7 and Fig. 9). For the sensitivity analysis for AW, the trends of societal 

impact (APIP and PIP) under different AW are similar, and the societal impact is larger with a 

smaller water quantity on the same day. Additionally, the uncertainty induced by 𝜌 is relatively 

small under different AW, except for the PIP under 8 L/d. Thus, when applying the proposed 

model to societal impact evaluations, we still need to test different values of 𝜌 to include the 

uncertainty of the estimation. 

Overall, the estimated societal impact in our model could provide supporting insights for 

government decision-makers in emergency management. The model’s outputs can be used to 

distinguish which activity is more intolerable and estimate when intolerant people grow to the 

peak under infrastructure disruption scenarios (or given limited available water). This 

information can also direct emergency responses to effectively allocate water to mitigate 

suffering level of residents and thus minimize the negative societal impact. For water restoration 

policies, the results highlight that increasing the supply of EW and BW once the coping capacity 

gets recovered would help to reduce the negative societal impact. Besides for water supply, 

some substitution resources for supporting more intolerable activities, such as toilet bags, wet 

tissues, temporary toilet facilities, bathing facilities, laundry facilities, and others, could be 

allocated to individuals in priority before intolerant people increase to the peak value. 
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The proposed model can also be implemented with physical infrastructure models to 

holistically evaluate infrastructure resilience by considering the societal impact and thus, 

contributes to the development of human-centered resilient cities. In details, the extent of water 

service disruptions and available water quantity under different disaster scenarios can be 

estimated using the advanced resilience model of infrastructure systems. These results can then 

be added to our proposed model to capture the societal impact regarding individuals’ choices 

for water-related activities in cities. Accordingly, to minimize the negative societal impact of 

disruptions, governments or decision-makers can design and optimize service restoration orders 

and resource allocation in infrastructure models. As such, a social and engineering integrated 

resilience evaluation model can be built for better disaster risk management. It is worth noting 

that the parameters in our proposed model are designed for Osaka; particularly, the TL variable, 

which is derived from a social survey in Osaka, reflects the property or water use habits of 

Osaka residents. To apply this model in other cities or regions, the TL for water-related activities 

and other parameters in the proposed model should be investigated in local communities. 

Future work could extend the proposed model from the following four aspects. The first is 

incorporating social vulnerability into the model, and one possible method is to establish the 

relationship between available water quantity and social vulnerability. Vulnerable people have 

less access to essential resources (e.g., older adults, people with disabilities, and those who are 

economically disadvantaged), which leads to a higher negative societal impact. Second, other 

residents’ behaviors in a disaster scenario (e.g., household interactions, preserved water, and 

supporting each other) could also be included in this model to better estimate people’s 
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achievement of activities. Third, smaller spatial scale data can be imported to the proposed 

model, such as the local communities’ TL, water consumptions habits, and available water 

quantity under disruptive scenarios, to estimate the spatial and temporal distribution of the 

societal impact in a city. Fourth, to estimate the societal impact of infrastructure disruptions 

more effectively, this methodology should be extended to analyze other daily activities, such as 

activities supported by electricity, transportation, and communication systems. 
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