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Abstract
We investigate theoretically how the ground state of a qubit–resonator (Q–R) system in the
deep-strong coupling (DSC) regime is affected by the coupling to an environment. We employ as a
variational ansatz for the ground state of the Q–R–environment system a superposition of
coherent states displaced in qubit-state-dependent directions. We show that the reduced density
matrix of the Q–R system strongly depends on how the system is coupled to the environment, i.e.
capacitive or inductive, because of the broken rotational symmetry of the eigenstates of the DSC
system in the resonator phase space. When the resonator couples to the qubit and the environment
in different ways (for instance, one is inductive and the other is capacitive), the system is almost
unaffected by the resonator–waveguide (R–W) coupling. In contrast, when the two couplings are
of the same type (for instance, both are inductive), by increasing the R–W coupling strength, the
average number of virtual photons increases and the quantum superposition realized in the Q–R
entangled ground state is partially degraded. Since the superposition becomes more fragile with
increasing the Q–R coupling, there exists an optimal coupling strength to maximize the
nonclassicality of the Q–R system.

1. Introduction

The interaction between a two-level system (qubit) and a harmonic oscillator (resonator) has been widely
studied, originally as one of the simplest systems to study light–matter interaction [1, 2], and later as a
platform for quantum optics [3–5] and quantum information processing [6–9]. The deep-strong coupling
(DSC) regime of the qubit–resonator (Q–R) interaction, where the coupling strength g is comparable to or
even larger than the transition energies of the qubit (Δ) and the resonator (ωr), has recently been achieved
using artificial atoms in superconducting circuit QED systems [10–13] and THz metamaterials coupled to
the cyclotron resonance of a 2D electron gas [14], as reviewed in references [15, 16].

In the DSC regime, the ground state of the Q–R system is quite different from that for weaker coupling
[17, 18]. First, it is an entangled state between qubit and resonator. Second, such a Schrödinger’s cat-like
state has a nonzero expectation value of the photon number, 〈n〉 = |g/ωr|2. These photons are referred to as
virtual photons, since the system is in the ground state and therefore the photons cannot be spontaneously
emitted. Such nonclassical properties of the ground state are proposed to be useful for quantum metrology
[19] and the preparation of nonclassical states of photons [20–22].

Any quantum system realized in an actual experimental setup, however, is coupled to external degrees of
freedom, intentionally or unintentionally. Particularly, in a superconducting circuit QED system,
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transmission lines are usually attached to the resonators and the qubits for control and measurement. A
standard prescription for treating an open quantum system in the DSC regime is the Lindblad master
equation in the dressed state picture [23], in which the system relaxes to the ground state of the system
Hamiltonian at zero temperature. However, the master equation is based on the Born–Markov
approximation, which assume that the system–environment interaction is sufficiently weak so that the
system and the environment are always in a product state and the state of the environment does not change
during the time evolution. When there is a nonzero interaction between the system and the environment,
however, the total ground state can be entangled [24] and its reduced density matrix for the system is not
necessarily the ground state of the system Hamiltonian. It is not clear to what extent the Born–Markov
approximation is valid, or how robust the ground state properties of the DSC system are. In particular, the
energy gap between the ground state and the first excited state becomes exponentially small as
Δ exp

[
−2g2/ω2

r

]
with increasing g [25]. So the nonclassicality of the ground state is expected to be fragile

against the coupling to an environment in the DSC regime, although the average number of virtual photons
is shown to be only quantitatively affected by losses [26]. By increasing g, there is a competition between
two effects: the increase of virtual photons, which enhances the nonclassicality, and the exponential decrease
of the energy gap (∼Δ exp

[
−2g2/ω2

r

]
), which degrades the nonclassicality due to the increase of fragility,

in any realistic setting. Because of this competition, it is not clear whether just increasing the coupling
strength g is helpful to obtain the maximum nonclassicality in the presence of an environment, even at zero
temperature.

In this paper, we investigate the ground state properties of an open DSC system. For this purpose, we
propose a variational ground state for the enlarged Q–R–environment system, which we call the coherent
variational state (CVS), by extending the qubit-state-dependent coherent state (equation (5)) to the total
system including the environmental degrees of freedom. Based on the analysis with the CVS and the
numerical diagonalization of the truncated total Hamiltonian, we find that the effect of the coupling to the
environment strongly depends on how the system is coupled to the environment, i.e. inductively or
capacitively. This strong dependence results from the fact that the ground state of the Q–R system in the
DSC regime breaks rotational symmetry around the origin in the resonator phase space. When the
resonator couples to the qubit and the environment in the same way (for instance, both inductively), we
find that the average number of virtual photons increases, and that the quantum superposition realized in
the Q–R system is partially degraded. Furthermore, the ground state superposition tends to be more fragile
when the Q–R coupling g is larger, so that the nonclassicality of the resonator state, measured by the
metrological power [27], is maximized at a moderate strength of the Q–R coupling. When the resonator
couples to the qubit inductively and to the environment capacitively, on the other hand, we did not observe
any peak of the metrological power in the parameter region that we investigated, so that enhancement in
metrological power is achievable.

This paper is organized as follows. In section 2, we describe the theoretical model and present examples
of superconducting circuits realizing the Hamiltonian that we analyze. In section 3, we outline the
variational method based on the CVS. In section 4, by using the CVS and the numerical diagonalization, we
numerically evaluate the number of virtual photons, the purity in the Q–R system, and the degree of
nonclassicality measured by the metrological power. In section 5, we discuss how the coupling-type
dependence arises in the DSC system. We conclude the paper in section 6. In appendix A, we describe the
detailed derivation of the Hamiltonian from the circuit model. In appendix B, we discuss the relation to the
spin-boson model. In appendix C, we discuss how the symmetry of the total Hamiltonian restricts the form
of the CVS. In appendix D, we show that the stationary equations for the CVS can be substantially
simplified by introducing a collective variable. In appendix E, we check the validity of the CVS in the
inductive coupling case by comparing the result from the numerical diagonalization and perturbation
theory. In appendix F, we discuss the effect of counter-rotating terms and the rotating-wave approximation
(RWA) in the resonator–waveguide (R–W) coupling.

2. Model

In this section, we describe the model considered in this paper. The relationship among the system, the
environment, and the total system is summarized in figure 1.

2.1. Qubit and resonator
We consider the quantum Rabi model, which is described by the Hamiltonian

HS = ωra
†a +

Δ

2
σx + gσz(a + a†). (1)

2
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Figure 1. Energy diagrams of the qubit-resonator waveguide (Q–R–W) system. (a) The Q–R system (described by HS) for
g > ωr/2 and the environmental waveguide system (described by HE) are coupled with HSE. (b) We denote the enlarged ground
state of Htot = HS + HE + HSE by |EGS〉 = |ψ〉. Its reduced matrix to the Q–R space is referred to as the zero-temperature state
and is denoted by ρZTS = trE

[
|ψ〉 〈ψ|

]
.

Here, a(a†) is the annihilation (creation) operator of a resonator photon with energy ωr, σj (j = x, y, z) is
the Pauli operator of the qubit with transition energy Δ(>0), and g is the coupling strength between them.
The Planck constant � is set to unity throughout this paper. Here, we assume that XI = a + a† is
proportional to the flux operator, so that the Q–R coupling is inductive. When the coupling is capacitive, XI

is replaced with XC = (a − a†)/i as

H′
S = ωra

†a +
Δ

2
σx − igσz(a − a†), (2)

after choosing an appropriate basis for qubit states. Both HS and H′
S are unitary equivalent through a gauge

transformation a ↔ ia, where the unitary operator is explicitly given by U = exp
[
±iπa†a/4

]
.

We note that there is a subtlety originating from the choice of gauge in the theoretical treatment of the
system [28–31]. Although the microscopic model of the circuit should possess gauge invariance, the
approximation in which only two levels are retained for the qubit part of the circuit often breaks gauge
invariance. Specifically, the truncated Hamiltonian depends on the choice of gauge. We do not discuss this
aspect in detail here. We simply assume that the qubit and resonator are described by the quantum Rabi
model. In other words, our analysis and results apply to physical systems for which the quantum Rabi
Hamiltonian provides a good approximation for the low-energy physics.

When ωr � Δ or g � ωr,Δ, the low-lying eigenstates of the quantum Rabi model are approximately
described by [17, 18]

|φ(±)
n (α)〉 = 1√

2

(
|↑〉 ⊗ D(−α) |n〉 ± |↓〉 ⊗ D(α) |n〉

)
, (3)

which is also denoted as |φ(±)
n 〉. Here, |↑〉 (|↓〉) is the qubit eigenstate corresponding to σz = +1 (−1),

α = g/ωr is the amplitude of displacement in the resonator, and D(α) = eαa†−α∗a is the displacement
operator. These parameter regions are referred to as the adiabatic oscillator limit [17, 32–34] or the
perturbative DSC regime [16, 18], in the sense that the perturbation in terms of Δ is valid. The eigenenergy
is then, up to first order in Δ/ωr, given by

E±
n  nωr −

g2

ωr
± Δ

2
〈n|D(2α)|n〉 = nωr −

g2

ωr
± Δe−2α2

2
Ln(4α2), (4)

where Ln(x) is the Laguerre polynomial of the nth order. We note that the ground state,

|GS〉 = |φ(−)
0 〉 = 1√

2

(
|↑〉 ⊗ | − α〉 − |↓〉 ⊗ |α〉

)
, (5)

is the superposition of two coherent states displaced in opposite directions depending on the qubit state.

2.2. Coupling to the environment
The environment can be modeled by an ensemble of harmonic oscillators [35] as

HE =
∑

k

ωkb†kbk, (6)

3
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Figure 2. Circuit diagrams of a Q–R system coupled to a waveguide. The blue shaded area is an arbitrary circuit representing the
qubit. The R–W coupling is mediated by (a) a capacitance Cc or (b) an inductance Lc.

where bk (b†k) is the annihilation (creation) operator of the kth mode with energy ωk. Each mode of the
environment interacts with a system operator X with strength ξk as

HSE =
∑

k

ξkX(bk + b†k). (7)

The total system is then described by the Hamiltonian Htot = HS + HE + HSE.
As a concrete model of an open DSC system, we investigate a DSC system coupled to a waveguide

through the resonator (figure 2). The blue shaded area can be an arbitrary circuit constituting a qubit, such
as a Cooper pair box or a flux qubit. The waveguide is coupled to the Q–R system through (a) a capacitance
Cc or (b) an inductance Lc. When the interaction is mediated by an inductance (a capacitance), the operator
X through which the system is coupled to the waveguide is the quadrature operator of the resonator, given
as XI = a + a† (XC = (a − a†)/i). We note that in the case of the capacitive coupling, the interaction
Hamiltonian is given by HSE = −

∑
kξk(a − a†)(bk − b†k). This is equivalent to equation (7) under the

unitary transformation bk →−ibk. While the phase of the quadrature operator for bk does not affect the
physical result because of the gauge invariance of HE, the phase of the quadrature operator for a has the
physical influence since it is used to couple the resonator to not only the waveguide but also the qubit. In
the following, we always assume that the Q–R coupling is inductive, and we analyze the cases where the
R–W coupling is inductive or capacitive, except for section 5, where we discuss the relativity of the
coupling.

Assuming a finite length L of the waveguide, the wavenumber k of the waveguide modes is discretized as
k = nπ/L (n ∈ N), and the energy is given by ωk = vk, where v is the speed of microwave fields in the
waveguide. The coupling constant ξk is given by

ξk = ξ0

√
ωk

1 + (ωk/ωcutoff)2
× π

L
(8)

in both the capacitive [36] and inductive coupling case. We do not have to put the cutoff factor by hand,
since it is naturally included in the Hamiltonian derived from the circuit, and the cutoff energy ωcutoff is
determined from the circuit parameters (equations (A.26) and (A.29)). In the small frequency region
(ωk � ωcutoff ), the squared coupling strength |ξk|2 is proportional to ωk, which corresponds to the Ohmic
case in the spin-boson model (see appendix B for details).

The loss rate κ of a bare resonator photon into the waveguide is determined by the Fermi Golden rule as

κ

2π
= ξ2

0

ωr

1 + (ωr/ωcutoff)2
. (9)

3. Coherent variational state

In this section, we introduce the CVS and analyze the ground state of Htot. In analogy to the approximate
ground state of the quantum Rabi model (equation (5)), we define the CVS of the total system as

|ψC(α, {βk})〉 = 1√
2

(|↑〉 ⊗ | − α; {−βk}〉 − |↓〉 ⊗ |α; {βk}〉), (10)

where |α; {βk}〉 is the product of coherent states of the resonator and waveguide modes, satisfying
a|α; {βk}〉 = α|α; {βk}〉 and bk|α; {βk}〉 = βk|α; {βk}〉 for each k. The variational parameters for the CVS

4
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are α and βk’s. We note that a more general form c0 |↑〉 ⊗ |α; {βj}〉+ c1 |↓〉 ⊗ |α′; {β′
j}〉 leads to the same

results as the simpler form in equation (10) due to the parity symmetry of the quantum Rabi Hamiltonian,
as discussed in appendix C. We also note that the renormalization of the qubit energy and the Rabi
oscillation were analyzed using a similar ansatz by performing a polaron transformation [37].

The total energy for the CVS is given by

ECVS = 〈ψC(α, {βk})|Htot|ψC(α, {βk})〉

= ωr|α|2 − g(α+ α∗) +
∑

k

ωk|βk|2

±
∑

k

ξk(α± α∗)(βk ± β∗
k ) − Δ

2
exp

[
−2

(
|α|2 +

∑
k

|βk|2
)]

, (11)

where the plus (minus) sign represents the inductive (capacitive) coupling. The approximate ground state of
the total system is the CVS |ψC(ᾱ, {β̄k})〉, where ᾱ and β̄k’s are the variational parameters that minimize
the total energy ECVS. Although there are a large number of degrees of freedom due to the numerous
waveguide modes, the problem can be simplified into a stationary state problem with only two unknown
parameters, α and S =

∑
k |βk|2, as discussed in appendix D. Here, S is a collective variable for the

waveguide modes, representing the total number of virtual photons in the waveguide modes.
Once ᾱ and S̄ =

∑
k|β̄k|2 are obtained, the reduced density operator for the system,

ρZTS = trE[|ψC(ᾱ, {β̄k})〉〈ψC(ᾱ, {β̄k})|], which we call the zero-temperature state, is completely
characterized by two parameters ᾱ and C = exp

[
−2S̄

]
. It is explicitly expressed as

ρZTS =
1 + C

2
|φ(−)

0 (ᾱ)〉〈φ(−)
0 (ᾱ)|+ 1 − C

2
|φ(+)

0 (ᾱ)〉〈φ(+)
0 (ᾱ)|. (12)

This equation implies that the R–W coupling has two effects. First, the displacement ᾱ is modified from
α = g/ωr, which means that the average number of virtual photons |ᾱ|2 is changed. In fact, as we will see in
section 4, the number of virtual photons increases as the R–W coupling increases. Second, ρZTS includes the
first excited state of HS with a fraction Pe =

1−C
2 . A similar behavior can be found in the case of a single

two-level system coupled to an environment [35].
The quantity C serves as a measure of coherence, which is a real quantity within the range of 0 � C � 1.

If β̄k = 0 and hence C = 1, the system is in a pure state. On the other hand, if C = 0, the quantum
superposition is completely destroyed and the reduced density matrix ρS is maximally mixed. When we
represent ρS in the basis of |↑〉 ⊗ | − ᾱ〉 and |↓〉 ⊗ |ᾱ〉, the quantity C appears in the off-diagonal element:

ρZTS =
1

2

(
1 −C
−C 1

)
. (13)

In this sense, R–W coupling reduces the coherence realized in this basis.
The purity of ρZTS can be calculated as

γ = tr[ρ2
ZTS] =

1 + C2

2
=

1 + e−4S̄

2
, (14)

which means that the purity is a simple function of the total number of virtual photons in the waveguide,
and vice versa. In this way, the analysis based on the CVS clarifies the relation between the decoherence in
the Q–R system and the virtual photons in the waveguide.

As for the validity of the CVS, we note that it gives the exact ground state of the total Hamiltonian if the
qubit energy Δ and the counter-rotating terms ξk(abk + a†b†k) are neglected. In reference [11], it is argued

that the Q–R state |φ(−)
0 〉 gives a rather accurate description of the ground state of the quantum Rabi

Hamiltonian even when the qubit energy Δ is finite. Furthermore, we compare the result of CVS in the
inductive coupling case with that of the numerical diagonalization for a few waveguide mode case in
appendix E, and show that the CVS describes not only the virtual photons but also the nonclassical
properties well in the presence of the R–W coupling. We also compare the results from the CVS and
perturbation theory with an infinite number of waveguide modes, and confirm that they are in good
agreement in appendix E.

4. Numerical calculations

In this section, we numerically investigate the properties of ρZTS based on the CVS. We adopt the bare
resonator photon loss rate κ (equation (9)) as a measure of the R–W coupling strength. The Q–R coupling

5
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Figure 3. The average number of virtual photons in the resonator (a) and the purity (b) plotted against the bare loss rate κ in the
inductive coupling case. The Q–R coupling is g/2π = 3 GHz (dashed line) and 6 GHz (solid line).

is set to g/2π = 3 GHz or 6 GHz, which are achievable in circuit QED systems [12, 13]. The other
parameters are set to ωr/2π = 6 GHz and Δ/2π = 1.2 GHz. See appendix A for the details of parameter
settings. We again note that the Q–R coupling is assumed to be inductive in this section, and we refer to the
coupling between the resonator and the waveguide when we mention the inductive or capacitive coupling.

4.1. Inductive R–W coupling
We first calculate the average number of virtual photons in the resonator, tr[ρZTSa†a] = |ᾱ|2 in the
inductive coupling case. Figure 3(a) shows that, in the inductive coupling case, the number of virtual
photons increase as the R–W coupling κ increases. Indeed, the interaction term

∑
kξk(a + a†)(bk + b†k) acts

as a shifter on the resonator phase space in the real direction. Furthermore, we can show that the energy
gradient ∂E/∂α takes a negative value at α = α̃, where α̃ is the stationary solution in the absence of the
R–W coupling, which implies that the average number of virtual photons always increases by the R–W
coupling, independently of the details of the interaction spectrum ξk. In contrast, in reference [26], where
the matter is modeled by an ensemble of bosons rather than a qubit, the number of virtual photons
decreases by the coupling to the environment. Therefore, whether it increases or decreases depends on the
details of the model, e.g. how the matter part is modeled.

Next, we calculate the purity γ of ρZTS. Figure 3(b) shows that, in the inductive coupling case, the purity
decreases as the loss rate κ increases. By comparing the results for g/2π = 3 and 6 GHz, we see that the
purity also decreases as the Q–R coupling g increases. In other words, in the DSC regime, the quantum
coherence of the ground state becomes fragile when the Q–R interaction g is extremely large. It implies that,
even though the exact ground state of the quantum Rabi model becomes increasingly useful with increasing
g, for instance, for quantum metrological tasks [19], the maximum performance is achieved at a moderate
strength of the interaction g when the coupling to the environment is taken into account. Indeed, the
nonclassicality, measured by the metrological power [27], has the maximum at a certain value of g, as we
discuss below.

Let us evaluate the ‘quantumness’ of the ground state of the system. There are many ways of defining
and quantifying the quantumness [27, 38–41]. Here, we project the state onto the eigenstates of some qubit
operator, and calculate the quantumness from the reduced density matrix of the resonator, by exploiting the
resource theory of the nonclassicality in continuous variable systems. One of the measures of the
nonclassicality is the metrological power [27], which quantifies the maximum achievable quantum
enhancement in displacement metrology based on the quantum Fisher information [42, 43]. For a
resonator state with the spectral decomposition ρR =

∑
iλi |i〉 〈i|, the elements of quantum Fisher

information matrix for quadrature operators are defined as

Fkl = 2
∑

i,j

(λi − λj)2

λi + λj
〈i|R(k)|j〉〈j|R(l)|i〉, (k, l = 1, 2), (15)

where R(1) = (a + a†)/
√

2 and R(2) = (a − a†)/
√

2i are the quadrature operators. Then the metrological
power of the resonator state ρR is given by

M(ρR) = max

{
λmax(F) − 1

2
, 0

}
, (16)

where λmax(F) is the maximum eigenvalue of the quantum Fisher information matrix.

6
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Figure 4. The Wigner functions of the post-measurement state ρσx=+1 in the inductive coupling case for g/2π = 6 GHz.
(a) κ/2π = 1 MHz. The state possesses sufficient coherence (C = 0.88) for the Wigner function to take a negative value around
the origin in phase space. (b) κ/2π = 40 MHz. The state is almost decohered (|C| < 10−4), and the Wigner function is that of
the mixture of two coherent states.

We consider a projective measurement of a qubit operator

σθ,φ = σx sin θ cos φ+ σy sin θ sin φ+ σz cos θ. (17)

The measurement outcome σθ,φ = ±1 is obtained with probability

Prob[σθ,φ = ±1] = tr
[

Pσθ,φ=±1ρZTS

]
, (18)

and the post-measurement state for the resonator is

ρσθ,φ=±1 ∝ trqubit

[
Pσθ,φ=±1ρZTS

]
, (19)

where Pσθ,φ=±1 is the projection operator corresponding to the eigenvalue σθ,φ = ±1. Physically, the
post-measurement resonator state is a partially decohered cat state possessing interference fringes around
the origin in the phase space representation. These fringes become clearer as α and |C| increase, which
enables us to measure the displacement more precisely than coherent states (figure 4). We can define the
average metrological power as

Mav(ρZTS,σθ,φ) =
∑

a=±1

Prob[σθ,φ = a]M(ρσθ,φ=a). (20)

Finally we define the metrological power of the Q–R system state by optimizing the measurement axis of
the qubit as

M(ρZTS) = max
θ,φ

Mav(ρZTS,σθ,φ). (21)

In figure 5, the metrological power of ρZTS (equation (21)) is plotted against (a) the loss rate κ and (b)
the Q–R coupling g. In our setting, the average metrological power is found to be maximized at
θ = φ = π/2, corresponding to the measurement of σy. Figure 5(a) shows that for each value of g, the
metrological power rapidly decreases to zero when κ becomes larger than a certain value. This critical value
of κ becomes small as the Q–R coupling g increases. Figure 5(b) shows that the average metrological power
has a maximum at some finite value of g. This maximum is achieved when the loss rate κ is comparable to
the energy gap Δe−2g2/ω2

r , or gopt ∼ ωr

√
log(Δ/κ)/2, so that the optimal coupling strength gopt increases

only logarithmically by decreasing κ and increasing Δ. In practice, the loss rate κ cannot be too small
because the measurement and control need time duration T ∼ 1/κ, during which decoherence occurs.
Therefore, this result implies that it is important to design a circuit to have a proper strength of the Q–R
coupling g and the loss rate κ to obtain an optimal metrological advantage.

4.2. Capacitive R–W coupling
The capacitive coupling affects the system much less than the inductive coupling does, as we see below.
Indeed, in the capacitive coupling case, the CVS cannot capture the effect of R–W coupling, since it gives
the exactly same result as the noninteracting case regardless of the coupling strength, as proved in
appendix D. Therefore, we compare the result from the CVS and the numerical diagonalization in the
capacitive coupling case, and the CVS in the inductive coupling case. To perform the numerical calculation,
the total Hamiltonian is truncated as follows. We take up to 14 photons and 3 photons into account for the
resonator mode and each waveguide mode, respectively. As the waveguide modes, we consider four modes
with energies ωk/2π = 5, 10, 15, 20 GHz. Although this truncation is not sufficient to quantitatively discuss

7
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Figure 5. Metrological power M (equation (21)) plotted against (a) the loss rate κ and (b) the Q–R coupling g in the inductive
coupling case. (a) The Q–R coupling is g/2π = 3 GHz (dashed line) and 6 GHz (solid line). (b) The bare loss rate is κ/2π = 0
(black solid line), 2 MHz (black dashed line), 10 MHz (green dashed line), and 50 MHz (blue dashed line).

Figure 6. The average number of virtual photons in the resonator (a) and the purity (b) plotted against the bare loss rate κ,
calculated from the numerical diagonalization (black) and the CVS (blue) in the capacitive coupling case, and from the CVS in
the inductive coupling case (red). The Q–R coupling is g/2π = 3 GHz (dashed line) and 6 GHz (solid line). The results of the
numerical diagonalization for the inductive coupling case are omitted here, and are shown in appendix E.

Figure 7. Metrological power M (equation (21)) plotted against (a) the bare loss rate κ and (b) the Q–R coupling g calculated
from the numerical diagonalization (black) and the CVS (blue) in the capacitive coupling case, and from the CVS in the
inductive coupling case (red). (a) The Q–R coupling is g/2π = 3 GHz (dashed line) and 6 GHz (solid line). (b) The loss rate is
κ/2π = 1000 MHz.

the effect of the coupling to the environment, the results below clearly show the qualitative difference
between the inductive coupling and the capacitive coupling.

In figure 6, the average number of virtual photons (a) and the purity (b) are plotted against the loss rate
κ. In the capacitive coupling case, the average number of virtual photons is much less sensitive to the R–W
coupling compared to the inductive coupling case. This fact can be qualitatively understood as follows. The
coupling operator XC = (a − a†)/i acts as a shifter of the displacement α in the imaginary direction.

8
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Figure 8. The fraction of the excited states of the isolated system (equation (1)) (|φ(+)
0 〉 (solid line), |φ(−)

1 〉 (dashed line) and
|φ(+)

1 〉 (dotted line)) contained in ρZTS, calculated from the numerical diagonalization, plotted against the loss rate κ. The R–W
coupling is (a) capacitive or (b) inductive.

However, since α = g/ωr is real without the environment, the amplitude |α|2 is much less sensitive to the
imaginary shift than the real shift. We also see that in figure 6(b), the purity is less affected by the capacitive
coupling to the waveguide compared to the inductive coupling case. We will discuss the origin of this
stability against the capacitive coupling to the waveguide in section 5.

In figure 7, the average metrological power is plotted against (a) the bare loss rate κ and (b) the Q–R
coupling g. Since the effect of the W–R coupling is much underevaluated due to the truncation and the
small number of environmental modes, we choose a rather huge value of κ/2π = 1000 MHz, which is
formally obtained from equation (9). We see that in the capacitive coupling case, the metrological power
calculated from the CVS and the numerical diagonalization agrees very well, and also that the
nonclassicality is hardly affected by the capacitive coupling to the waveguide, compared to the inductive
coupling case.

5. Stability in the R–W capacitive coupling case

In this section, we discuss the origin of the stability of the ground state when the R–W coupling is
capacitive. To obtain some physical insight, let us first consider the case where a bare resonator is coupled to
a waveguide. The fraction of the first excited state |1〉 contained in the total ground state is proportional to
|〈1|X|0〉|2 at the lowest order, where X is a quadrature operator. This transition amplitude is completely
insensitive to the type of coupling, i.e. inductive XI = a + a† or capacitive XC = (a − a†)/i, as

|〈1|XI|0〉|2 = |〈1|XC|0〉|2 = 1. (22)

This is due to the fact that the resonator Hamiltonian H = ωra†a, and the energy eigenstates |n〉 are
invariant under the rotation around the origin in the phase space, represented by the unitary
transformation U = exp

(
iθa†a

)
. On the other hand, since the eigenstates of a DSC system are not invariant

under this rotation, the transition amplitude strongly depends on the type of coupling as

|〈φ(+)
0 (α)|XI|φ(−)

0 (α)〉|2 = 4|Re[α]|2 = 4

(
g

ωr

)2

, (23)

|〈φ(+)
0 (α)|XC|φ(−)

0 (α)〉|2 = 4|Im[α]|2 = 0. (24)

Therefore, when the Q–R coupling is mediated by the inductance, i.e. α is real, the system is stable against
capacitive coupling to the waveguide. A similar argument is applied in references [44, 45] to protect a qubit
from noise based on the fact that the transition amplitude depends on the qubit operator (σx,σy,σz) and
can be exponentially small in g. In contrast, in our case, the transition amplitude is exactly zero when the
R–W coupling is capacitive.

To see this coupling-type-dependence more directly, we perform a numerical diagonalization of the
truncated total Hamiltonian of the Q–R–W system. The truncation is the same as in the previous section.
Figure 8 shows the fraction of the excited states of the quantum Rabi model contained in the ground state
of Htot. In the inductive coupling case, the most dominant excitation is the first excited state |φ(+)

0 〉. On the
other hand, the fraction of |φ(+)

0 〉 is not dominant in the capacitive coupling case, as is expected from
equation (24). Instead, the most dominant excited state is |φ(−)

1 〉, which is the only excited state with a
nonzero transition amplitude as |〈φ(−)

1 (α)|XC|φ(−)
0 (α)〉|2 = 1.

9
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Table 1. The transition amplitude between the ground state and the first excited state for several system
Hamiltonians and different types of the R–W coupling. Pairs of columns connected by arrows are unitary
equivalent.

The reason why the system is not changed in the capacitive coupling case in the CVS analysis in
section 4 is that the CVS considers only the two lowest eigenstates |φ(−)

0 〉 and |φ(+)
0 〉. From the analysis

performed in section 4, we cannot determine whether the metrological power monotonically increases as a
function of g or peaks at a certain value of g in the capacitive coupling case. However, the peak, if it exists, is
expected to occur at a much larger value of g than in the inductive coupling case, so that a higher
metrological power is achievable in the capacitive coupling case.

We need to be careful to conclude from our results that the capacitive R–W coupling is superior to the
inductive coupling, since there is a tradeoff between the gate speed and the relaxation time [46]. In the
capacitive coupling case, this tradeoff relation indicates that the long relaxation time implies a slow control
between the ground state and the first excited state.

Finally, we stress that only the relative phase between the resonator quadrature operators coupled to the
qubit and the waveguide is relevant to this stability. When the Q–R coupling is assumed to be capacitive,
the system is sensitive to the capacitive R–W coupling and insensitive to the inductive R–W coupling. These
results are summarized in table 1.

6. Conclusion

In this paper, by analyzing the ground state of a Q–R–W system, we have investigated the effect of an
environment on the ground state of the quantum Rabi model in the DSC regime. We have introduced the
qubit-state-dependent CVS (equation (10)). This variational ansatz is easy to analyze and is consistent with
the results from numerical diagonalization and perturbation theory. We have shown that the
zero-temperature state ρZTS strongly depends on the type of the R–W coupling because of the broken
rotational symmetry in the eigenstates of the DSC system.

When the resonator couples to the qubit and the waveguide in the same way (for instance, both are
inductive), the number of virtual photons increases due to the R–W coupling, which might be
advantageous to detect virtual photons experimentally [47, 48]. We have also shown that, even at zero
temperature, the Q–R system is in a mixed state and contains the excited states of the quantum Rabi
Hamiltonian, which implies the fragility of the quantum superposition realized in the ground state. As a
result, the nonclassicality of the resonator system, measured by the metrological power, is maximized at a
certain coupling strength g, when the environment is taken into account. We note that the analysis based on
the multi-polaron expansion [49] suggests that the CVS underestimate the coherence in the system. To
obtain a more accurate result in the inductive coupling case, we may modify the CVS to include more than
one polaron.

On the other hand, when the resonator couples to the qubit and the waveguide in different ways (for
instance, one is inductive and the other is capacitive), the system is almost unaffected, so that a higher
metrological power than the same coupling case is achievable in the presence of environment. It is worth
considering a better variational ansatz that can quantitatively describe the ground state in such case.

Our results offer guiding principles to obtain a better metrological advantage when we
design superconducting circuit QED systems. Since it is necessary to perform projective measurements on
the qubit to exploit this metrological advantage, our results also demonstrate the advantages of achieving
dynamically controllable coupling between qubit and resonator.
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Appendix A. Derivation of the Hamiltonian of the circuit coupled to two waveguides

In this section, we derive the Hamiltonians of the circuits in figures 2(a) and (b). For that purpose, we
consider a Q–R circuit coupled to two waveguides, one inductively and one capacitively, as shown in
figure A1. The circuits in figures 2(a) and (b) can be obtained by taking the limits Lc →∞ and Cc → 0,
respectively. We note that a similar circuit is discussed in reference [50].

We assign a flux variable to each vertex. Here, variables ψ, φ, Φj and Ψj represent degrees of freedom of
the qubit, the resonator, the waveguide coupled inductively (left), and the waveguide coupled capacitively
(right), respectively. The shaded area in figure A1 can be an arbitrary circuit constituting a qubit, such as a
Cooper pair box or a flux qubit. We do not specify the details of the qubit circuit, but assume that it
involves only ψ and ψ̇. Then the total Lagrangian is given by

L(ψ,φ,Φj,Ψj, ψ̇, φ̇, Φ̇j, Ψ̇j)

= LM(ψ, ψ̇) − (φ− ψ)2

2LR
+

CRφ̇
2

2

− (φ− Φ0)2

2Lc
+

∞∑
j=0

(
CTΔxΦ̇2

j

2
− (Φj+1 − Φj)2

2LTΔx

)

+
Cc

2
(φ̇− Ψ̇0)2 +

∞∑
j=0

(
CTΔxΨ̇2

j

2
− (Ψj+1 −Ψj)2

2LTΔx

)
. (A.1)

Canonical conjugate variables are defined as

q =
∂L
∂φ̇

= CRφ̇+ Cc(φ̇− Ψ̇0), (A.2)

q̄ =
∂L
∂ψ̇

=
∂LM

∂ψ̇
, (A.3)

Qj =
∂L
∂Φ̇j

= CTΔxΦ̇j (j ≥ 0), (A.4)

Q̄0 =
∂L
∂Ψ̇0

= Cc(Ψ̇0 − φ̇), (A.5)

Q̄j =
∂L
∂Ψ̇j

= CTΔxΨ̇j (j � 1). (A.6)

By performing the Legendre transformation, we obtain the Hamiltonian of the total circuit as

H =

(
q̄ψ̇ − LM − φψ

LR
+

ψ2

2LR

)
+

(
q2

2CR
+

φ2

2L’
R

)

+

⎡
⎣ Φ2

0

2LC
+

∞∑
j=0

(
Q2

j

2CTΔx
+

(Φj+1 − Φj)2

2LTΔx

)⎤⎦

+

⎡
⎣ Q̄2

0

2C’
c

+

∞∑
j=0

(
Q̄2

j

2CTΔx
+

(Ψj+1 −Ψj)2

2LTΔx

)⎤⎦− φΦ0

Lc
+

qQ̄0

CR
, (A.7)
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Figure A1. Circuit diagram of the Q–R system coupled to two waveguides, one inductively (left) and one capacitively (right).

where L′
R = LcLR

Lc+LR
and C′

c =
CcCR

Cc+CR
. The first line represents the Hamiltonian for the qubit, the resonator,

and the interaction between them. The second (third) line represents the Hamiltonian for the waveguide
inductively (capacitively) coupled to the resonator. The final line represents the interaction between the
resonator and the waveguide modes. We note that the qubit variables {ψ, q̄} do not appear except for the
first term line. To diagonalize the waveguide modes, let us consider the equations of motion for the
waveguide variables:

Q̇j =
Φj+1 +Φj−1 − 2Φj

LTΔx
(j � 1), (A.8)

Φ̇j =
Qj

CTΔx
(j � 1), (A.9)

Q̇0 = −Φ0

Lc
− Φ0 − Φ1

LTΔx
, (A.10)

Φ̇0 =
Q0

CTΔx
, (A.11)

˙̄Qj =
Ψj+1 +Ψj−1 − 2Ψj

LTΔx
(j � 1), (A.12)

Ψ̇j =
Q̄j

CTΔx
(j � 1), (A.13)

˙̄Q0 = −Ψ0 −Ψ1

LTΔx
, (A.14)

Ψ̇0 =
Q̄0

C′
c

. (A.15)

From these equations, by taking the continuous limit, Δx → 0, Φj → Φ(x) = Φ(jΔx), and
Ψj →Ψ(x) = Ψ(jΔx), we obtain the wave equations for x > 0 as

Φ̈(x) =
1

CTLT

∂2Φ(x)

∂x2
, (A.16)

Ψ̈(x) =
1

CTLT

∂2Φ(x)

∂x2
, (A.17)

with boundary conditions

0 = −Φ(+0)

Lc
+

1

LT

∂Φ(x)

∂x

∣∣∣∣
x=+0

, (A.18)

Ψ̈(+0) =
1

C′
cLT

∂Ψ(x)

∂x

∣∣∣∣
x=+0

. (A.19)

Let us consider the inductively-coupled waveguide modes. The eigenfunction with frequency ω is given
by

fω(x) =

√
2

L

cos
(
ω
v x
)
+ ζI(ω) sin

(
ω
v x
)√

1 + ζI(ω)2
, (A.20)
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where L is the length of the waveguide, v = 1/
√

LTCT is the speed of microwaves in the waveguide, and
ζ(ω) = LTv/LCω is a dimensionless quantity defining the phase of the eigenfunction. Then the positive
frequency part of the flux variable Φ(x) is quantized as

Φ(x)+ =
∑

k

√
�ZTv

2ωk
fωk

(x)bk, (A.21)

where ZT =
√

LT/CT is the characteristic impedance, bk is the annihilation operator of the eigenmode
fωk

(x), and ωk = πkv/L. Therefore, the flux variables Φ0 and φ are expressed in terms of the creation and
annihilation operators as

Φ0 =
∑

k

�ZTv

ωkL

bk + b†k√
1 + ζ(ωk)2

→
∫ ∞

0
dω

√
�ZT

πω

b(ω) + b(ω)†√
1 + ζ(ω)2

, (A.22)

φ =

√
�ZR

2
(a + a†), (A.23)

where the limit L →∞ is taken in the second line. Here, a(a†) is the annihilation (creation) operator of
microwave photons in the resonator. The characteristic impedance for the resonator ZR is defined as
ZR =

√
L′

R/CR. By substituting equations (A.22) and (A.23) to the inductive coupling term −φΦ0/Lc, we
obtain

− φΦ0

Lc
= −

∫ ∞

0
dω ξI

0

√
ω

1 + (ω/ωI
cutoff)

2
(a + a†)(b(ω) + b(ω)†), (A.24)

where

ξI
0 = �

√
1

2π
· ZR

ZT
, (A.25)

ωI
cutoff =

ZT

Lc
. (A.26)

In a similar manner, we obtain the capacitive coupling term as

qQ̄0

CR
=

∫ ∞

0
dω ξC

0

√
ω

1 + (ω/ωC
cutoff)

2
(a − a†)(d(ω) − d(ω)†), (A.27)

where

ξC
0 = �

√
1

2π
· ZTC′2

c

ZRC2
R

, (A.28)

ωC
cutoff =

1

ZTC′
c

, (A.29)

and d(ω) is the annihilation operator of the capacitively-coupled waveguide mode with frequency ω.
We note that the interaction spectrums ξI

k and ξC
k satisfy the inequality

∑
k

ξX
k

2

ωk
<

ωr

4
(X = I, C), (A.30)

which ensures that there is no bosonic mode with negative energy. In this sense, the circuit used in our
analysis shows no superradiance-like instability.

In the numerical calculation, the parameters are set to be ωr/2π = 6 GHz, Δ/2π = 1.2 GHz,
ZW = 50 Ω, and ZR = 30 Ω. In figure A2, the values of κ and ωcutoff are plotted as a function of the
coupling inductance or capacitance in each case. Since the left waveguide is directly connected to the Q–R
system through the coupling inductance Lc, κI takes a large value unless Lc is sufficiently large, and is a
decreasing function of Lc. This property is special to the circuit in figure A1, and different from the circuits
realized in references [12, 13], where the waveguide is coupled to the resonator through mutual inductance.

Appendix B. Relation to the spin-boson model

In this section, we show that the Hamiltonian describing the circuit in figure 2(b) can be effectively mapped
to the spin-boson model [35]. We note that the mapping can be exactly performed if we first diagonalize the
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Figure A2. Values of κ (solid line) and ωcutoff (dashed line) plotted against (a) the coupling inductance (Lc) and (b) the coupling
capacitance (Cc).

bosonic (R–W) part and consider it as the environment [37, 51]. The difficulty of this approach seems that
it is difficult to obtain the information on the reduced density matrix of the Q–R system. Instead, we chose
a different approach where we first (approximately) diagonalize the Q–R system and then consider the
interaction with the waveguide, by which we can easily discuss the state of the Q–R system.

The total Hamiltonian is given by
Htot = HS + HE + HSE, (B.1)

where

HS = ωra
†a +

Δ

2
σx + gσz(a + a†), (B.2)

HSE =
∑

k

ξk(a + a†)(bk + b†k), (B.3)

HE =
∑

k

ωkb†kbk. (B.4)

To map the total Hamiltonian to the spin-boson model, we project the state space of the Q–R system onto
the space spanned by the two low-lying energy states, {|φ(−)

0 (α)〉, |φ(+)
0 (α)〉}. Let σ̄j (j = x, y, z) be the Pauli

matrix in the basis of {|↑〉 | − α〉, |↓〉 |α〉}. Then the truncated Hamiltonian becomes the spin-boson model,

Δe−2α2

2
σ̄x +

∑
k

ξkσ̄z(bk + b†k) +
∑

k

ωkb†kbk. (B.5)

Here, the ‘localized state’ corresponds to |↑〉 | − α〉 and |↓〉 |α〉.
The spectral function of this truncated Hamiltonian can be calculate as

J(ω) =
π

2

∑
k

32 Re[α]2ξ2
kδ(ω − ωk)

= 16π Re[α]2ξ2
0ω

1

1 + (ω/ωcutoff)2
, (B.6)

which corresponds to the Ohmic case.

Appendix C. Symmetry of the total Hamiltonian and the CVS

The total Hamiltonian is invariant under a parity transformation a ↔ −a, bk ↔ −bk, and |↑〉 ↔ |↓〉. The
ground state is expected to have the same symmetry, so that

c0 |↑〉 ⊗ |α; {βj}〉+ c1 |↓〉 ⊗ |α′; {β′
j}〉

= eiθ(c0 |↓〉 ⊗ | − α; {−βj}〉+ c1 |↑〉 ⊗ | − α′; {−β′
j}〉). (C.1)

Then we have

α = −α′, (C.2)
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βj = −β′
j , (C.3)

c0 = eiθc1, (C.4)

c1 = eiθc0. (C.5)

From the last two equations, we have eiθ = ±1 and |c0| = |c1| = 1/
√

2 from the normalization condition.
The choice of sign only affects the qubit energy term Δσx, and eiθ = −1 is chosen so that the qubit energy
term reduces the total energy.

Appendix D. Stationary state equations for CVS

In this section, we derive the stationary state equations that the variational parameters of CVS should satisfy
to minimize the total energy. The total energy of the CVS is

ECVS = 〈ψC(α, {βk})|Htot|ψC(α, {βk})〉

= ωr|α|2 − g(α+ α∗) +
∑

k

ωk|βk|2

±
∑

k

ξk(α± α∗)(βk ± β∗
k ) − Δ

2
exp

[
−2

(
|α|2 +

∑
k

|βk|2
)]

, (D.1)

depending on whether the R–W coupling is inductive or capacitive. The variational parameters minimizing
the total energy should satisfy ∂ECVS/∂α

∗ = 0 and ∂ECVS/∂β
∗
k = 0, ∀k, which read

ωrα+Δα exp

[
−2

(
|α|2 +

∑
k

|βk|2
)]

− g +
∑

k

ξk(βk ± β∗
k ) = 0, (D.2)

ωkβk +Δβk exp

[
−2

(
|α|2 +

∑
k

|βk|2
)]

+ ξk(α± α∗) = 0, ∀k. (D.3)

From equation (D.3), βk can be expressed in terms of α and the collective variable S =
∑

kβ
∗
kβk as follows:

βk = − ξk(α± α∗)

ωk +Δe−2(α∗α+S)
. (D.4)

In the inductive coupling case, we have

βk = − 2ξkRe[α]

ωk +Δe−2(α∗α+S)
, (D.5)

which is real. Substituting equation (D.5) into equation (D.2) and the definition of S, we obtain

ωrα+Δαe−2(α∗α+S) − g − 4 Re[α]f1(Δe−2(α∗α+S)) = 0, (D.6)

4 Re[α]2f2(Δe−2(α∗α+S)) = S, (D.7)

where we have defined

f1(x) =
∑

k

ξ2
k

x + ωk
, (D.8)

f2(x) =
∑

k

ξ2
k

(x + ωk)2
. (D.9)

From equation (D.6), we see that α is also real. Although there are originally an infinitely large number of
parameters {βk}, we obtain a set of closed equations for α and S, and once we obtain the stationary
solution for ᾱ and S̄, βk can be obtained from equation (D.5). In the continuous limit of L →∞, f1(x) and
f2(x) can be explicitly calculated as follows:

f1(x) → ξ2
0ω

2
cutoff

x2 + ω2
cutoff

(
−x log

ωcutoff

x
+

πωcutoff

2

)
, (D.10)

f2(x) → ξ2
0ω

2
cutoff

(
− 1

x2 + ω2
cutoff

+
x2 − ω2

cutoff

(x2 + ω2
cutoff)

2
log

x

ωcutoff
+

πωcutoffx

(x2 + ω2
cutoff)

2

)
. (D.11)
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Figure E1. The average number of virtual photons in the resonator (a), the purity (b), and the average metrological power,
plotted against the bare loss rate κ. (d) The average metrological power plotted against the Q–R coupling strength g. All the
quantities are calculated from the CVS (black solid line) and the numerical diagonalization (red dashed line). The loss rate is set
to κ/2π = 1000 MHz, and the Q–R coupling is set to g/2π = 6 GHz.

In the capacitive coupling case, we have

βk = − 2iξk Im[α]

ωk +Δe−2(α∗α+S)
, (D.12)

which is purely imaginary. Substituting equation (D.5) into equation (D.2), we obtain

ωrα+Δαe−2(α∗α+S) − g + i
∑

k

4 Im[α]f1(Δe−2(α∗α+S)) = 0. (D.13)

Subtracting equation (D.13) from its complex conjugate, we obtain

(ωk +Δe−2(α∗α+S))(α− α∗) = 0, (D.14)

so that α is real. Since Im[α] = 0, we have βk = 0 from equation (D.12) and hence S = 0, and finally we
obtain a closed equation for α as

(ωr +Δe−2α2
)α = g. (D.15)

Equation (D.15) is the same as the stationary state equation for the closed quantum Rabi model, i.e. ξk = 0.
This result means that the CVS does not provide a good approximation for the Q–R–W ground state in this
case.

Appendix E. Validity of CVS in inductive coupling

In this appendix, we confirm the validity of the CVS in the inductive coupling case. First, we compare the
result from the CVS and the numerical diagonalization for a few waveguide mode case. We see that in
figures E1(a) and (b), the number of virtual photons and the purity calculated from the CVS and the
numerical diagonalization agree quantitatively. We also see that from figures E1(c) and (d), the nonclassical
property of the system, measured by the metrological power can also be described by the CVS.

Next, we compare the result from the CVS and perturbation theory. At the leading order in ξk, ρZTS is
given by

ρZTS = (1 − 4α2f2(Δe−2α2
) − f2(2α2Δe−2α2

+ ωr))|ψ(−)
0 (α)〉〈ψ(−)

0 (α)|

+ 4α2f2(Δe−2α2
)|ψ(+)

0 (α)〉〈ψ(+)
0 (α)|+ f2(2α2Δe−2α2

+ ωr)|ψ(−)
1 (α)〉〈ψ(−)

1 (α)|+ o(ξ2
k ), (E.1)
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Figure E2. The impurity (=1 − γ) plotted against the bare loss rate κ, calculated from the CVS (black) and perturbation theory
(blue). The Q–R coupling is set to g/2π = 3 GHz (dashed line) and 6 GHz (solid line). All the quantities are calculated from the
CVS (black solid line) and the numerical diagonalization (red dashed line).

Figure F1. Increase of virtual photons from the noninteracting (ξk = 0) case, plotted against the bare loss rate κ. The black (red)
line shows the result from the numerical diagonalization with (without) the RWA in the R–W coupling. The Q–R coupling is set
to g/2π = 6 GHz.

where α = g/ωr. Figure E2 shows that the impurity (1 − γ) calculated from the CVS and perturbation
theory have the same scaling to κ and are in good agreement. The small deviation is attributed to the fact
that the qubit energy Δ is finite, and equation (3) is no longer exact. Note that equation (3) remains a good
approximation for the eigenstates of the quantum Rabi model when ωr � Δ or g � ωr,Δ.

Appendix F. Effect of counter-rotating terms in R–W coupling

In this section, we discuss the effect of counter-rotating terms and the RWA in the R–W coupling. In
quantum mechanical analysis, the co-rotating and counter-rotating terms describe transitions to virtual
intermediate states. If the virtual state is far off resonance, its effect is suppressed. Since the counter-rotating
terms typically involve the virtual states far off resonant, they give smaller contributions than the
co-rotating terms, which justify the RWA.

In contrast, since the CVS is a semiclassical approach, where the annihilation operators a and bk are
replaced with the c-numbers, α and βk, respectively, there is no similar distinction between the co-rotating
and counter-rotating terms. Indeed, in the inductive coupling case, noting that α and βk are real quantities,
the co-rotating terms (ab†k + a†bk) and the counter-rotating terms (abk + a†b†k) give the same contribution
to the CVS energy functional in equation (11). Then, performing the RWA is equivalent to changing the
coupling constant ξk → ξk/2 in the CVS analysis. Therefore, the number of virtual photons increases even if
we perform the RWA. Furthermore, the increase in virtual photons with RWA is ∼4 times smaller than
without RWA, since the increase of virtual photons is O(ξ2

k ) at the lowest-order perturbation. This simple
analysis based on the CVS is in good agreement with the result from the numerical diagonalization as
shown in figure F1, which justifies the symmetric treatment of the co-rotating terms and the
counter-rotating terms in the DSC regime.
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