1 Mist CVD of Vanadium Dioxide Thin Films with Excellent

2 Thermochromic Properties Using a Water-Based Precursor Solution

- 3 Yuya Matamura, Takumi Ikenoue, Masao Miyake* and Tetsuji Hirato
- 4 Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501,
- 5 Japan
- 6 Email: miyake.masao.4e@kyoto-u.ac.jp
- 7

1 Abstract

Mist chemical vapor deposition (mist CVD), which is capable of producing oxide films $\mathbf{2}$ over large areas at a high productivity and low cost, has been proposed as a fabrication 3 4 method for VO₂ thin films for smart windows. However, the thermochromic properties of the VO₂ films previously prepared by mist CVD are not sufficient for application in $\mathbf{5}$ smart windows. In this study, to obtain a high-quality VO₂ film, we investigated the effects 6 of the solvent of the precursor solution on the resulting film in mist CVD. Films consisting 7of a single phase of VO₂ were obtained when a water-based precursor solution was used. 8 9 In contrast, V₂O₃ films are formed when a methanol-based precursor solution is used. The VO₂ film deposited from water solution exhibited high visible transmittance along with a 10 large change in the infrared transmittance with temperature change. The high quality of 11 the VO₂ film indicates that mist CVD is an effective method for the fabrication of VO₂-12based smart windows. 1314Keywords: Vanadium dioxide, Chemical vapor deposition, Smart window, 15

16 Thermochromic window, Mist CVD.

17

1 1. Introduction

 $\mathbf{2}$ Transition-metal oxides exhibit interesting electrical, optical and magnetic 3 properties, which have attracted considerable attention as promising materials for devices 4 used in energy fields, such as solar cell [1–5], batteries [6,7], sensors [8] and smart $\mathbf{5}$ windows [9,10]. One of the most fascinating devices is the smart window that utilizes 6 metal-insulator transition (MIT) of vanadium dioxide (VO₂). MIT of VO₂ occurs at about 7room temperature [11–18]. Both visible and infrared lights are transmitted through VO₂ below the phase transition temperature (T_c) ; however, above T_c , only visible light is 8 9 transmitted [19,20]. Owing to this property of VO₂, the windows coated with VO₂ block 10 infrared light from entering when it is hot outside, while still allowing the transmission 11 of visible light. Infrared radiation, which accounts for approximately 50% of the solar radiation energy, is the heat source that flows in buildings. Therefore, the control of the 12heat intake through VO₂-based smart windows can effectively reduce the amount of 1314energy consumed for air conditioning in a building.

VO₂ thin films can be fabricated by various methods such as the hydrothermal 15method [14,21,22], sol-gel method [23], pulsed laser deposition [24], sputtering [25,26], 1617atomic layer deposition [27] and chemical vapor deposition (CVD) [28,29]. However, physical vapor deposition and conventional CVD require vacuum equipment, resulting in 18 high process costs. Solution processes generally require a long reaction time of more than 1920several hours for the fabrication of a VO_2 thin film, thus resulting in low productivity [14,21,22]. For practical mass production of VO₂-based smart windows for buildings, a 21low-cost and highly productive fabrication process for VO₂ should be developed. 22

As a low-cost and highly productive deposition process, mist CVD, which is also 23referred to as aerosol-assisted CVD, has been proposed in previous studies [30-36]. In 2425mist CVD, a mist of precursor solution atomized by ultrasonic vibrations is supplied to the substrate with a carrier gas, and thermal decomposition of this precursor mist results 2627in a film formation on the substrate. Since no vacuum system is required in this process, highly productive and low-cost films can be produced. However, to date, no VO₂ thin 28films with sufficient performance have been obtained through mist CVD. The visible 2930 transmittance reported for VO₂ films fabricated through mist CVD is generally <40% at a wavelength of 550 nm, and the change in the infrared transmittance at a wavelength of 312500 nm below and above Tc is also as small as <30 percentage point (pp) [37–42]. For 32other oxide films, such as Ga₂O₃ and ZnO, high-quality films comparable to those 33 obtained by vacuum processes are produced through mist CVD [31,36]. Therefore, it is 34expected that high-quality VO2 films can also be obtained through mist CVD by exploring 35

1 the deposition conditions in further detail.

The optical properties of VO_2 are strongly affected by its stoichiometry. Contaminating a VO_2 crystal with V^{3+} and V^{5+} deteriorates its visible transmittance and infrared transmittance change [43–45]. Although films composed of a VO_2 single phase were reportedly obtained through mist CVD using an ethanol solution of vanadyl acetylacetonate ($VO(acac)_2$) as the precursor [39], further control of the stoichiometry of the VO_2 film is necessary to enhance its properties.

8 In mist CVD, metal salt and the solvent of the precursor solution are the factors 9 that can significantly affect the crystal phase and physical properties of the resulting film, 10 because the latter can change the oxygen potential of the deposition atmosphere 11 [39,46,47]. A study on the oxidation of V_2O_3 to VO_2 reported that a water vapor atmosphere is suitable for stabilizing vanadium in the tetravalent state [48,49]. Although 12it was reported that mist CVD using a precursor solution composed of vanadium(III) 13acetylacetonate (V(acac)₃) and water resulted in V₂O₃ [39], mist CVD using a 14combination of tetravalent vanadium salt and water has not yet been investigated. 15

In this study, we perform mist CVD of vanadium oxide using a methanol solution and a water solution of VO(acac)₂ to investigate the effect of the solvent on the crystal phase of the resulting film. Furthermore, we demonstrate that VO₂ films with high visible transmittance and a large infrared transmittance change by MIT are obtained through mist CVD using a water-based precursor solution.

21

22 2. Experimental

23 2.1. Materials

The precursor solutions were prepared by dissolving bis(acetylacetonato) vanadium oxide (VO(acac)₂; 98%, STREM) in distilled water or methanol at a concentration of 0.010 mol/L. A quartz plate ($25 \text{ mm} \times 25 \text{ mm}$; thickness = 0.7 mm) was used as the substrate for mist CVD. Before use, the quartz substrate was washed sequentially in acetone, distilled water and isopropanol in an ultrasonic cleaner and dried by blowing air.

30

32 A custom-built hot-wall mist CVD system (Fig. 1) was used for the deposition of 33 the VO_2 films. The apparatus and deposition procedure of mist CVD in this study were

the same as those described in our previous report [40], except for the method of placing 1 $\mathbf{2}$ the substrate. Herein, the substrate was placed on a holder installed at the center of the tube furnace. The precursor mist was supplied to the substrate through N₂ flow for 10 min 3 and 20 min in the cases of using a methanol solution and water solution, respectively, as 4 $\mathbf{5}$ the precursor. The durations for the film growth were determined by considering the 6 difference in the amount of mist generated from two different solvents. The flow rate of the carrier gas and dilution gas was 3.0 L min⁻¹. After the mist supply was turned off, the 7 substrate was cooled to <100 °C in a furnace under N₂ gas flow. 8

9

10 2.3. Characterization of films

X-ray diffraction (XRD) measurements were performed with an X-ray 11 diffractometer (X'pertPRO-MPD, PANalytical) using Cu Ka radiation to identify the 12crystal phases of the obtained films. The incident angle was fixed at $\omega = 1.5^{\circ}$. The 1314morphology of the films was observed through field emission scanning electron microscopy (SEM, JSM-6510LV, JEOL) and atomic force microscopy (AFM, Nano Navi 1516 IIs Nanocute, SII Nano Technology). The cross-section of the film was observed after Au sputtering using a sputter coater (SC-701, SANYUELECTRON). X-ray photoelectron 17spectroscopy (XPS) was performed using a JPS-9030 spectrometer (JEOL) to analyze the 18 chemical states of the elements present in the obtained films. The details of the XPS 1920measurements are described in the Supplementary material. The electrical resistivity was measured by a four-probe method using a source meter (2450 SourceMeter, KEITHLEY) 21while changing the temperature of the films using a hot plate. The temperature of the film 2223was measured using a thermocouple attached to the film. The logarithmic derivatives of 24the temperature dependence of resistivity $(d(\log R)/dT)$ were extracted to evaluate the 25phase transition temperature (T_c) and width of the hysteresis loop (ΔH). Further, T_c and ΔH were defined using the temperature corresponding to the maximum of $d(\log R)/dT$ in 26heating and cooling cycles (defined as T_{heating} and T_{cooling} , respectively) as follows. 27

28
$$T_{\rm c} = \frac{T_{\rm heating} + T_{\rm cooling}}{2} \dots (1)$$

29

$$\Delta H = T_{\text{heating}} - T_{\text{cooling}} \dots (2)$$

For an obtained VO_2 films, the temperature dependence of the resistivity was also measured by the van der Pauw method with a Hall effect measurement system (ResiTest8300, Toyo Technica) to validate the accuracy of the measurement. The difference in the values of log (R) obtained by the two methods at the same temperature was typically less than 0.2. The transmittance spectra of the films were measured using a 1 UV-Vis-NIR spectrophotometer (SolidSpec-3700DUV, Shimadzu) at room temperature 2 (~26 °C) and 100 °C using a heating stage (Mettler FP82 hotstage). The measurement 3 error of the transmittance, which was mainly caused by baseline variation, was less than 4 a few percent. The visible transmittance ($T_{lum}(\theta)$, 390–760 nm) and solar spectrum 5 transmittance ($T_{sol}(\theta)$, 280–2500 nm) at a measurement temperature of θ were calculated 6 using the following equations:

8
$$T_{\text{lum}}(\theta) = \frac{\int \varphi_{\text{lum}}(\lambda) T(\lambda, \theta) d\lambda}{\int \varphi_{\text{lum}}(\lambda) d\lambda} \dots (3)$$

9
$$T_{\rm sol}(\theta) = \frac{\int \varphi_{\rm sol}(\lambda) T(\lambda, \theta) d\lambda}{\int \varphi_{\rm sol}(\lambda) d\lambda} \dots (4)$$

10

11 where $T(\lambda, \theta)$ is transmittance at wavelength λ and measurement temperature θ , 12 $\varphi_{\text{lum}}(\lambda)$ is the standard luminous efficiency function for the photopic vision of human 13 eyes, $\varphi_{\text{sol}}(\lambda)$ is the solar irradiance spectrum for an air mass of 1.5 (corresponding to 14 the sun standing 37° above the horizon). T_{lum} and ΔT_{sol} values of the obtained films were 15 calculated using the following equations:

16
$$T_{\text{lum}} = \frac{T_{\text{lum}(26\,^{\circ}\text{C})} + T_{\text{lum}(100\,^{\circ}\text{C})}}{2} \dots (5)$$

17
$$\Delta T_{\rm sol} = T_{\rm sol\,(26\,^{\circ}C)} - T_{\rm sol\,(100\,^{\circ}C)} \dots (6)$$

- 18
- 19

20 3. Results and discussion

3.1. Appearance and phase of the films

Mist CVD was performed using a methanol or water solution of VO(acac)₂ to 22examine the effect of the solvent of the precursor solution on the resulting film. Fig. 2a 23and 2b show the appearance of the films deposited at 400-750 °C from methanol and 24water solutions, respectively. The colors of the samples show that the films were formed 2526from methanol and water solutions at temperatures above 450 and 400 °C, respectively. The films deposited from methanol solution were gray or black, while the films deposited 27from water solution were brown, which is the color of monoclinic VO₂ reported in the 28literature [51,52]. 29

Fig. 2c shows the XRD patterns of the samples before and after the deposition using methanol solution. After the deposition at 400 °C, the sample showed only a halo from

the quartz substrate, confirming the absence of film formation at 400 °C. In addition to 1 the halo from the substrate, the films deposited from methanol solution at 450-650 °C $\mathbf{2}$ showed XRD patterns corresponding to that of V₂O₃ (JCPDS 074-2037). The XRD 3 pattern of the film deposited at 750 °C did not match any reference pattern, which 4 $\mathbf{5}$ indicates that an unidentified crystalline phase was formed at this temperature. Fig. 2d 6 shows the XRD patterns of the films deposited from water solution. The sample after the deposition at 400 °C showed no diffraction peaks from the film (Fig. 2d), although the 7 8 formation of the film was visually confirmed (Fig. 2b), thereby suggesting that the film was amorphous. The film deposited at 450 °C exhibited only a small peak at $2\theta = 11^\circ$; 9 10 thus, the phase of the film could not be identified. The films deposited at 550 and 650 °C 11 exhibited the XRD patterns of VO₂ (JCPDS 072-0514), in addition to a halo from the substrates. Further, the films showed no additional peaks, thereby indicating that the films 12were composed of a single phase of VO₂. The film deposited at 750 °C showed no XRD 13peaks. However, the extension of the deposition time from 20 to 60 min resulted in the 14formation of a film with the XRD patterns of VO₂ (Fig. S1). This indicates that the 15deposition time of 20 min was significantly short to form a VO₂ film that is sufficiently 16 thick for producing a detectable XRD pattern. In general, when mist CVD is performed 1718 at low temperatures, amorphous or unintended phases are formed because the decomposition of the precursor and the crystallization of the deposited material do not 19 20proceed sufficiently. At excessively high temperatures, the deposition rate tends to 21decrease owing to the increase in the re-evaporation rate of the adsorbed precursor atoms on the substrates [53–56]. The aforementioned results are consistent with these general 22trends and indicate that the optimal temperature for the formation of VO₂ film through 2324mist CVD using a water solution was 550–650 °C. The reproducibility of the formation of single-phase VO₂ films was confirmed by performing the deposition under the same 2526growth conditions several times. While VO₂ was obtained from water solution, V₂O₃ was obtained from methanol solution at 550-650 °C. The vanadium precursor employed for 27the film deposition was VO(acac)₂, which consists of V^{4+} . The XRD results indicated that 28the vanadium precursor was reduced to V^{3+} by methanol during the deposition process, 29whereas the oxidation state of the precursor was unchanged during the deposition process 30 31using water solution.

32

33 3.2. Composition and chemical states of films

34

XPS measurements were performed on the V_2O_3 and VO_2 films deposited at 650 °C

from methanol and water solutions, respectively, to analyze the chemical states of the 1 elements in the films. The survey spectra (Fig. S2a) indicate the presence of V, O and $\mathbf{2}$ contaminated C in both the films. Fig. 3a and 3c show the XPS spectra of the O1s and 3 V2p regions. The spectra were deconvoluted into several peaks assuming the presence of 4 $\mathbf{5}$ oxygen with two different chemical states and vanadium with valence states ranging from 6 +3 to +5. As shown in Table S1, the peak positions for each chemical state resulting from the deconvolution are in agreement with the reported peak positions [57-60]. The 7 deconvolution of the V2p peaks indicates the presence of V^{3+} , V^{4+} and V^{5+} in the V₂O₃ 8 film and V^{4+} and V^{5+} in the VO₂ film. The presence of vanadium atoms with higher 9 oxidation numbers (V^{4+} and V^{5+} in V_2O_3 , and V^{5+} in VO_2) can be attributed to the surface 10 oxidation of the films exposed to ambient air [57,61]. No V^{3+} signal was observed in the 11 VO₂ film, which indicates that the precursor was not reduced during the deposition 12process using water solution. This is consistent with the XRD pattern of the film (Fig. 2d). 13It should be noted that Ar⁺ etching, a well-known technique for removing the surface 1415oxidation layer, is not applicable for identifying the valence state of vanadium oxides because it results in the reduction of vanadium [62]. 16

In the O1s region (Fig. 3a and 3c), two peaks corresponding to O in the V–O bond 17and O in the C–O, C=O and –OH bonds (denoted as O–C,H) were observed in both the 18 V₂O₃ and VO₂ films. In the C1s region (Fig. 3b and 3d), two peaks corresponding to C in 19 the C-C and C-O bonds were observed. The O-C, H, C-C and C-O peaks were not 20observed after Ar⁺ ion etching (Fig. S2b and S2c); thus, they were assigned to surface 21contamination. However, another peak emerged at a binding energy slightly lower than 22that of the C–C bond in the C1s region for the V₂O₃ film after etching (Fig. 3b). The 23intensity of this peak remained almost unchanged even after increasing the etching time. 24The peak position (283.6 eV) was close to that of C1s in V–C [63], and thus the detection 2526of this peak presumably indicates the presence of carbon atoms in the V₂O₃ crystal. In contrast, the VO₂ film exhibited no peaks in the C1s region after Ar^+ ion etching. This 27indicates that the VO₂ crystal deposited from water solution was not contaminated with 28carbon, except for the surface contamination layer. 29

30

31 3.3 Morphology of films

Fig. 4 shows the morphology of the VO₂ films deposited at 550 and 650 °C from water solution. The surface SEM images (Fig. 4a, 4b, 4e and 4f) revealed that both the films were composed of densely deposited crystal grains with a diameter of several tens of nanometers. The thicknesses of the films deposited at 550 and 650 °C were 56 and 49 1 nm, respectively (Fig. 4c and 4g). These are within the thickness range of 40–80 nm,

2 where VO₂ films show a balanced combination of high visible transmittance and infrared

- 3 switching efficiency [64]. The root-mean-square (RMS) roughness values of the surface
- 4 of the films were determined to be 19 and 12 nm, respectively, through AFM (Fig. 4d and
- 5 4h). The film deposited at 650 $^\circ$ C was slightly smoother than that deposited at 550 $^\circ$ C.
- 6

7 3.4. Metal–insulator transition behavior

8 The temperature-dependent resistivities of the obtained films were measured to 9 evaluate their phase transition behaviors. The resistivity of the VO₂ films deposited from water solution at 550 and 650 °C drastically decreased when heated above a certain 10 temperature, and returned to its original value when cooled, thereby showing the typical 11 MIT behavior (Fig. 5). In contrast, the films showing no XRD peaks of VO₂ (for instance, 12the film deposited at 450 °C) exhibited no MIT behavior. The resistivity of the V2O3 films 13deposited from methanol solution was nearly constant, independent of temperature, 14thereby confirming that no MIT occurred within the measured temperature range (Fig. 15S3). 16

The MIT characteristics of the VO₂ films, such as the magnitudes of resistivity 17change, phase transition temperature (T_c) and width of hysteresis loop (ΔH) determined 18 19from the resistivity-temperature curves are summarized in Table 1. T_c and ΔH values of the films were calculated from the $d(\log R)/d\theta$ curve (Fig. S4) using Equations (1) and (2), 20respectively. The obtained VO₂ films exhibited a resistivity change of more than two 21orders of magnitude. T_c and ΔH of the films were approximately 70 and 10 °C, 22respectively. These values are similar to those obtained by vacuum and solution processes 2324[65,66], thus demonstrating that mist CVD is capable of producing VO₂ films with excellent phase transition properties. 25

26

Table 1 Resistivity change, transition temperature (T_c) and width of the hysteresis loop (ΔH) of the VO₂ film deposited at 550 and 650 °C using water solution.

temperature (°C)	$Log(R_{30 \circ C}/R_{100 \circ C})$	$T_{\rm c}$ (°C)	ΔH (°C)	
550	2.1	63	11	
650	2.4	73	13	

1 3.5. Optical properties

Fig. 6 shows the transmittance spectra measured at 26 and 100 °C for the VO₂ film deposited at 650 °C from water solution. The near-infrared (NIR) transmittance of the VO₂ film decreased with an increase in temperature from 26 to 100 °C. The transmittance change was as large as 50 pp at a wavelength of 2500 nm. On the other hand, the visible transmittance was nearly constant or increased with the increasing temperature. The temperature-dependent salient change in the NIR transmittance is the typical MIT behavior of VO₂.

From the transmittance spectra, T_{lum} and ΔT_{sol} of the film were determined to be 48.1% and 5.2 pp, respectively. Gao et al. [13] reported that T_{lum} and ΔT_{sol} of VO₂ films are in the range of 10%–50% and 1–10 pp, respectively. The VO₂ film obtained in this study showed a high T_{lum} of 48.1% and a moderate ΔT_{sol} of 5.2 pp, as compared to the reported values.

Although T_{lum} and ΔT_{sol} are often used as performance indicators for smart windows, 1415not all studies on VO_2 films have reported these values. In particular, the values for VO_2 films grown by mist CVD in previous studies are unavailable in most cases. Therefore, 16instead of T_{lum} and ΔT_{sol} , the transmittance at a wavelength of 550 nm ($T_{550 \text{ nm}}$) and the 17transmittance change at a wavelength of 2500 nm between the low and high temperatures 18 $(\Delta T_{2500 \text{ nm}})$ [67–70] were used to compare the performance of the VO₂ films obtained in 1920this study with those prepared through other processes. High $T_{550 \text{ nm}}$ and $\Delta T_{2500 \text{ nm}}$ are desirable for smart windows, as the former can save lighting, while the latter can 2122effectively control heat flow [16].

- Fig. 7 shows the values of $T_{550 \text{ nm}}$ and $\Delta T_{2500 \text{ nm}}$ for the non-doped VO₂ single-layer films prepared through various processes. $T_{550 \text{ nm}}$ and $\Delta T_{2500 \text{ nm}}$ of the VO₂ film obtained in this study were 47.8% and 57.6 pp, respectively. Compared to the values for previously reported mist-CVD-grown VO₂ films, $T_{550 \text{ nm}}$ of the film obtained in this study was nearly the highest and its $\Delta T_{2500 \text{ nm}}$ was significantly higher.
- Some VO₂ films prepared by other processes have higher values of either $T_{550 \text{ nm}}$ or 28 $\Delta T_{2500 \text{ nm}}$ than the VO₂ film obtained in this study; however, we did not find any studies 2930 reporting higher values of both the parameters. As many studies have pointed out, $T_{550 \text{ nm}}$ and $\Delta T_{2500 \text{ nm}}$ show a trade-off relationship [13], assuming the same quality of VO₂. For 31example, depending on the thickness of VO₂, one of these values will increase at the 32expense of the other. Therefore, among the reported VO₂ films, those with the data points 33 $(T_{550 \text{ nm}}, \Delta T_{2500 \text{ nm}})$ located within the zone connecting the highest $\Delta T_{2500 \text{ nm}}$ and $T_{550 \text{ nm}}$ 3435(the blue region) in Fig. 7 can be considered to be of similar high quality. The VO₂ film

obtained in this study was located within this zone, thereby exhibiting excellent smart
window properties comparable to those of high-quality VO₂ films fabricated by other
methods.

The enhancement in the quality of the mist-CVD-grown VO₂ films can be 4 $\mathbf{5}$ attributed to the use of water as the solvent of the precursor solution; previous films were 6 formed from ethanol-based precursor solutions. According to previous studies, water vapor atmosphere is suitable for stabilizing vanadium in the tetravalent state [48,49]. It is 7 known that the performance of smart windows decreases when V^{3+} and V^{5+} contaminate 8 VO_2 [43–45]. The excellent thermochromic properties of the VO_2 film obtained in this 9 study can be attributed to the suppression of V^{3+} and V^{5+} contamination during the 10 deposition by the water solution used in the mist CVD process. Note that, although V⁵⁺ 11 was detected in the VO₂ film by XPS (Fig. 3a and 3c), it does not indicate the presence 12of V^{5+} in the bulk of the film because XPS only detects the surface elements. 13 14

15

16 4. Conclusion

High-quality VO₂ films were fabricated through a mist CVD method, which can deposit 17films at low cost and with high productivity. VO2 and V2O3 films were obtained using 18 19 water-based and methanol-based precursor solutions, respectively. The obtained VO2 film showed a high visible transmittance and a large infrared transmittance change compared 20to those of previously reported mist-CVD-grown VO₂ films. These values are similar to 21those of high-quality VO₂ deposited by solution and vacuum processes, demonstrating 2223that mist CVD is a promising method for the fabrication of VO₂-based smart windows. However, the VO₂ deposition temperature of 550–650 °C is significantly high for coating 24on inexpensive soda-lime glass, which is commonly used for windows. In future work, 25the deposition temperature of VO_2 is expected to be lower in mist CVD. 26

27

28 Acknowledgements

29 The authors would like to thank Mr. R. Kumazawa of the Toray Research Center for the

- 30 UV-VIS-NIR measurements. This work was partly supported by KAKENHI (Grant No.
- 31 18K18943).
- 32

1 References

2	[1]	K. Valadi, S. Gharibi, R. Taheri-Ledari, S. Akin, A. Maleki, A.E. Shalan, Metal
3		oxide electron transport materials for perovskite solar cells: a review, Environ.
4		Chem. Lett. 19 (2021) 2185–2207. https://doi.org/10.1007/s10311-020-01171-x.
5	[2]	D. Pugliese, A. Lamberti, F. Bella, A. Sacco, S. Bianco, E. Tresso, TiO ₂
6		nanotubes as flexible photoanode for back-illuminated dye-sensitized solar cells
7		with hemi-squaraine organic dye and iodine-free transparent electrolyte, Org.
8		Electron. 15 (2014) 3715–3722. https://doi.org/10.1016/j.orgel.2014.10.018.
9	[3]	Z. Yao, W. Duan, P. Steuter, J. Hüpkes, A. Lambertz, K. Bittkau, M. Pomaska,
10		D. Qiu, K. Qiu, Z. Wu, H. Shen, U. Rau, K. Ding, Influence of Oxygen on
11		Sputtered Titanium-Doped Indium Oxide Thin Films and Their Application in
12		Silicon Heterojunction Solar Cells, Sol. RRL. 5 (2021) 2000501.
13		https://doi.org/10.1002/solr.202000501.
14	[4]	T. Sugiura, S. Matsumoto, N. Nakano, Numerical analysis of tunnel oxide
15		passivated contact solar cell performances for dielectric thin film materials and
16		bulk properties, Sol. Energy. 214 (2021) 205-213.
17		https://doi.org/10.1016/j.solener.2020.11.032.
18	[5]	L. Fagiolari, M. Bonomo, A. Cognetti, G. Meligrana, C. Gerbaldi, C. Barolo, F.
19		Bella, Photoanodes for Aqueous Solar Cells: Exploring Additives and
20		Formulations Starting from a Commercial TiO ₂ Paste, ChemSusChem. 13 (2020)
21		6562-6573. https://doi.org/10.1002/cssc.202001898.
22	[6]	Y. Chen, X. Chen, Y. Zhang, A Comprehensive Review on Metal-Oxide
23		Nanocomposites for High-Performance Lithium-Ion Battery Anodes, Energy &
24		Fuels. 35 (2021) 6420-6442. https://doi.org/10.1021/acs.energyfuels.1c00315.
25	[7]	A. Massaro, A.B. Muñoz-García, P. Maddalena, F. Bella, G. Meligrana, C.
26		Gerbaldi, M. Pavone, First-principles study of Na insertion at TiO2 anatase
27		surfaces: New hints for Na-ion battery design, Nanoscale Adv. 2 (2020) 2745-
28		2751. https://doi.org/10.1039/d0na00230e.
29	[8]	B. Miccoli, V. Cauda, A. Bonanno, A. Sanginario, K. Bejtka, F. Bella, M.
30		Fontana, D. Demarchi, One-Dimensional ZnO/Gold Junction for Simultaneous
31		and Versatile Multisensing Measurements, Sci. Rep. 6 (2016) 1-10.
32		https://doi.org/10.1038/srep29763.
33	[9]	X. Cao, T. Chang, Z. Shao, F. Xu, H. Luo, P. Jin, Challenges and Opportunities
34		toward Real Application of VO2-Based Smart Glazing, Matter. 2 (2020) 862-
35		881. https://doi.org/10.1016/j.matt.2020.02.009.

1	[10]	A. Mehmood, X. Long, A.A. Haidry, X. Zhang, Trends in sputter deposited
2		tungsten oxide structures for electrochromic applications: A review, Ceram. Int.
3		46 (2020) 23295–23313. https://doi.org/10.1016/j.ceramint.2020.06.035.
4	[11]	S.M. Babulanam, T.S. Eriksson, G.A. Niklasson, C.G. Granqvist,
5		Thermochromic VO ₂ films for energy-efficient windows, Sol. Energy Mater. 16
6		(1987) 347-363. https://doi.org/10.1016/0165-1633(87)90029-3.
7	[12]	G.V. Jorgenson, J.C. Lee, Doped vanadium oxide for optical switching films,
8		Sol. Energy Mater. 14 (1986) 205-214. https://doi.org/10.1016/0165-
9		1633(86)90047-X.
10	[13]	Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, C. Cao,
11		Nanoceramic VO ₂ thermochromic smart glass: A review on progress in solution
12		processing, Nano Energy. 1 (2012) 221–246.
13		https://doi.org/10.1016/j.nanoen.2011.12.002.
14	[14]	M. Li, S. Magdassi, Y. Gao, Y. Long, Hydrothermal Synthesis of VO ₂
15		Polymorphs: Advantages, Challenges and Prospects for the Application of
16		Energy Efficient Smart Windows, Small. 13 (2017) 1701147.
17		https://doi.org/10.1002/smll.201701147.
18	[15]	Y.S. Chen, H.C. Ho, Y.C. Lai, T. Nagao, C.H. Hsueh, Thermochromic vanadium
19		dioxide film on textured silica substrate for smart window with enhanced visible
20		transmittance and tunable infrared radiation, Infrared Phys. Technol. 102 (2019)
21		103019. https://doi.org/10.1016/j.infrared.2019.103019.
22	[16]	Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao,
23		Y. Long, Thermochromic VO ₂ for Energy-Efficient Smart Windows, Joule. 2
24		(2018) 1707–1746. https://doi.org/10.1016/j.joule.2018.06.018.
25	[17]	S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, A. Yu, Recent progress in VO ₂
26		smart coatings: Strategies to improve the thermochromic properties, Prog. Mater.
27		Sci. 81 (2016) 1-54. https://doi.org/10.1016/j.pmatsci.2016.03.001.
28	[18]	F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel
29		temperature, Phys. Rev. Lett. 3 (1959) 34-36.
30		https://doi.org/10.1103/PhysRevLett.3.34.
31	[19]	F. Béteille, J. Livage, Optical Switching in VO ₂ Thin Films, J. Sol-Gel Sci.
32		Technol. 13 (1998) 915–921. https://doi.org/10.1023/A:1008679408509.
33	[20]	A.S. Barker, H.W. Verleur, H.J. Guggenheim, Infrared optical properties of
34		vanadium dioxide above and below the transition temperature, Phys. Rev. Lett.
35		17 (1966) 1286–1289. https://doi.org/10.1103/PhysRevLett.17.1286.
36	[21]	Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, H. Luo, Fine crystalline VO ₂

1		nanoparticles: synthesis, abnormal phase transition temperatures and excellent
2		optical properties of a derived VO2 nanocomposite foil, J. Mater. Chem. A. 2
3		(2014) 2718. https://doi.org/10.1039/c3ta14612j.
4	[22]	S.R. Popuri, M. Miclau, A. Artemenko, C. Labrugere, A. Villesuzanne, M.
5		Pollet, Rapid Hydrothermal Synthesis of VO ₂ (B) and Its Conversion to
6		Thermochromic VO ₂ (M1), Inorg. Chem. 52 (2013) 4780–4785.
7		https://doi.org/10.1021/ic301201k.
8	[23]	BG. Chae, HT. Kim, SJ. Yun, BJ. Kim, YW. Lee, DH. Youn, KY.
9		Kang, Highly Oriented VO ₂ Thin Films Prepared by Sol-Gel Deposition,
10		Electrochem. Solid-State Lett. 9 (2006) C12. https://doi.org/10.1149/1.2135430.
11	[24]	L. Mathevula, B.D. Ngom, L. Kotsedi, P. Sechogela, T.B. Doyle, M. Ghouti, M.
12		Maaza, Thermochromic VO ₂ on Zinnwaldite Mica by pulsed laser deposition,
13		Appl. Surf. Sci. 314 (2014) 476–480.
14		https://doi.org/10.1016/j.apsusc.2014.07.035.
15	[25]	P. Jin, S. Tanemura, Formation and Thermochromism of VO ₂ Films Deposited
16		by RF Magnetron Sputtering at Low Substrate Temperature, Jpn. J. Appl. Phys.
17		33 (1994) 1478–1483. https://doi.org/10.1143/JJAP.33.1478.
18	[26]	E. Gagaoudakis, E. Aperathitis, G. Michail, M. Panagopoulou, D.
19		Katerinopoulou, V. Binas, Y.S. Raptis, G. Kiriakidis, Low-temperature rf
20		sputtered VO ₂ thin films as thermochromic coatings for smart glazing systems,
21		Sol. Energy. 165 (2018) 115–121. https://doi.org/10.1016/j.solener.2018.03.010.
22	[27]	P. Dagur, A.U. Mane, S.A. Shivashankar, Thin films of VO ₂ on glass by atomic
23		layer deposition: microstructure and electrical properties, J. Cryst. Growth. 275
24		(2005) e1223-e1228. https://doi.org/10.1016/j.jcrysgro.2004.11.144.
25	[28]	T. Maruyama, Y. Ikuta, Vanadium dioxide thin films prepared by chemical
26		vapour deposition from vanadium(III) acetylacetonate, J. Mater. Sci. 28 (1993)
27		5073-5078. https://doi.org/10.1007/BF00361182.
28	[29]	T.D. Manning, I.P. Parkin, M.E. Pemble, D. Sheel, D. Vernardou, Intelligent
29		Window Coatings: Atmospheric Pressure Chemical Vapor Deposition of
30		Tungsten-Doped Vanadium Dioxide, Chem. Mater. 16 (2004) 744–749.
31		https://doi.org/10.1021/cm034905y.
32	[30]	T. Ikenoue, S. Sakamoto, Y. Inui, Fabrication and characteristics of p-type Cu ₂ O
33		thin films by ultrasonic spray-assisted mist CVD method, Jpn. J. Appl. Phys. 53
34		(2014) 05FF06. https://doi.org/10.7567/JJAP.53.05FF06.
35	[31]	D. Shinohara, S. Fujita, Heteroepitaxy of corundum-structured α -Ga ₂ O ₃ thin
36		films on α -Al ₂ O ₃ substrates by ultrasonic mist chemical vapor deposition, Jpn. J.

1		Appl. Phys. 47 (2008) 7311–7313. https://doi.org/10.1143/JJAP.47.7311.
2	[32]	T. Kawaharamura, H. Nishinaka, S. Fujita, Growth of crystalline zinc oxide thin
3		films by fine-channel-mist chemical vapor deposition, Jpn. J. Appl. Phys. 47
4		(2008) 4669–4675. https://doi.org/10.1143/JJAP.47.4669.
5	[33]	H. Nishinaka, T. Kawaharamura, S. Fujita, Low-temperature growth of ZnO thin
6		films by linear source ultrasonic spray chemical vapor deposition, Jpn. J. Appl.
7		Phys. 46 (2007) 6811-6813. https://doi.org/10.1143/JJAP.46.6811.
8	[34]	H. Ito, K. Kaneko, S. Fujita, Growth and band gap control of corundum-
9		structured α -(AlGa) ₂ O ₃ thin films on sapphire by spray-assisted mist chemical
10		vapor deposition, Jpn. J. Appl. Phys. 51 (2012) 100207.
11		https://doi.org/10.1143/JJAP.51.100207.
12	[35]	T. Uchida, T. Kawaharamura, K. Shibayama, T. Hiramatsu, H. Orita, S. Fujita,
13		Mist chemical vapor deposition of aluminum oxide thin films for rear surface
14		passivation of crystalline silicon solar cells, Appl. Phys. Express. 7 (2014)
15		021303. https://doi.org/10.7567/APEX.7.021303.
16	[36]	J.G. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, S. Fujita,
17		ZnO-based thin films synthesized by atmospheric pressure mist chemical vapor
18		deposition, J. Cryst. Growth. 299 (2007) 1-10.
19		https://doi.org/10.1016/j.jcrysgro.2006.10.251.
20	[37]	C. Piccirillo, R. Binions, I.P. Parkin, Nb-Doped VO ₂ Thin Films Prepared by
21		Aerosol-Assisted Chemical Vapour Deposition, Eur. J. Inorg. Chem. 2007 (2007)
22		4050-4055. https://doi.org/10.1002/ejic.200700284.
23	[38]	C. Piccirillo, R. Binions, I.P. Parkin, Synthesis and characterisation of W-doped
24		VO2 by Aerosol Assisted Chemical Vapour Deposition, Thin Solid Films. 516
25		(2008) 1992–1997. https://doi.org/10.1016/j.tsf.2007.06.009.
26	[39]	C. Piccirillo, R. Binions, I.P. Parkin, Synthesis and functional properties of
27		vanadium oxides: V_2O_3 , VO_2 , and V_2O_5 deposited on glass by aerosol-assisted
28		CVD, Chem. Vap. Depos. 13 (2007) 145–151.
29		https://doi.org/10.1002/cvde.200606540.
30	[40]	P. Kiri, M.E.A. Warwick, I. Ridley, R. Binions, Fluorine doped vanadium
31		dioxide thin films for smart windows, Thin Solid Films. 520 (2011) 1363–1366.
32		https://doi.org/10.1016/j.tsf.2011.01.401.
33	[41]	M.E.A. Warwick, R. Binions, Thermochromic vanadium dioxide thin films from
34		electric field assisted aerosol assisted chemical vapour deposition, Sol. Energy
35		Mater. Sol. Cells. 143 (2015) 592-600.
36		https://doi.org/10.1016/j.solmat.2015.01.025.

1	[42]	I. Top, R. Binions, M.E.A. Warwick, C.W. Dunnill, M. Holdynski, I. Abrahams,
2		VO ₂ /TiO ₂ bilayer films for energy efficient windows with multifunctional
3		properties, J. Mater. Chem. C. 6 (2018) 4485-4493.
4		https://doi.org/10.1039/C8TC00835C.
5	[43]	C. Wu, F. Feng, Y. Xie, Design of vanadium oxide structures with controllable
6		electrical properties for energy applications, Chem. Soc. Rev. 42 (2013) 5157.
7		https://doi.org/10.1039/c3cs35508j.
8	[44]	Z. Yang, C. Ko, S. Ramanathan, Oxide Electronics Utilizing Ultrafast Metal-
9		Insulator Transitions, Annu. Rev. Mater. Res. 41 (2011) 337–367.
10		https://doi.org/10.1146/annurev-matsci-062910-100347.
11	[45]	T.W. Chiu, K. Tonooka, N. Kikuchi, Influence of oxygen pressure on the
12		structural, electrical and optical properties of VO2 thin films deposited on
13		ZnO/glass substrates by pulsed laser deposition, in: Thin Solid Films, Elsevier,
14		2010: pp. 7441-7444. https://doi.org/10.1016/j.tsf.2010.05.019.
15	[46]	JY. Bae, J. Park, H.Y. Kim, HS. Kim, JS. Park, Facile Route to the
16		Controlled Synthesis of Tetragonal and Orthorhombic SnO ₂ Films by Mist
17		Chemical Vapor Deposition, ACS Appl. Mater. Interfaces. 7 (2015) 12074–
18		12079. https://doi.org/10.1021/acsami.5b02251.
19	[47]	DH. Kim, HJ. Jeong, J. Park, JS. Park, The effect of solvent water content on
20		the dielectric properties of Al ₂ O ₃ films grown by atmospheric pressure mist-
21		CVD, Ceram. Int. 44 (2018) 459–463.
22		https://doi.org/10.1016/j.ceramint.2017.09.198.
23	[48]	H. Ren, B. Li, X. Zhou, S. Chen, Y. Li, C. Hu, J. Tian, G. Zhang, Y. Pan, C. Zou,
24		Wafer-size VO ₂ film prepared by water-vapor oxidant, Appl. Surf. Sci. 525
25		(2020) 146642. https://doi.org/10.1016/j.apsusc.2020.146642.
26	[49]	W. Liang, M. Gao, C. Lu, Z. Zhang, C.H. Chan, L. Zhuge, J. Dai, H. Yang, C.
27		Chen, B.H. Park, Q. Jia, Y. Lin, Enhanced Metal-Insulator Transition
28		Performance in Scalable Vanadium Dioxide Thin Films Prepared Using a
29		Moisture-Assisted Chemical Solution Approach, ACS Appl. Mater. Interfaces.
30		10 (2018) 8341-8348. https://doi.org/10.1021/acsami.7b18533.
31	[50]	Y. Matamura, T. Ikenoue, M. Miyake, T. Hirato, Mist chemical vapor deposition
32		of MoO ₂ thin films, J. Cryst. Growth. 548 (2020) 125862.
33		https://doi.org/10.1016/j.jcrysgro.2020.125862.
34	[51]	J. Zheng, S. Bao, P. Jin, TiO ₂ (R)/VO ₂ (M)/TiO ₂ (A) multilayer film as smart
35		window: Combination of energy-saving, antifogging and self-cleaning functions,
36		Nano Energy. 11 (2015) 136–145. https://doi.org/10.1016/j.nanoen.2014.09.023.

1	[52]	Y. Gao, S. Wang, H. Luo, L. Dai, C. Cao, Y. Liu, Z. Chen, M. Kanehira,
2		Enhanced chemical stability of VO_2 nanoparticles by the formation of SiO_2/VO_2
3		core/shell structures and the application to transparent and flexible VO ₂ -based
4		composite foils with excellent thermochromic properti, Energy Environ. Sci. 5
5		(2012) 6104. https://doi.org/10.1039/c2ee02803d.
6	[53]	T. Oshima, T. Nakazono, A. Mukai, A. Ohtomo, Epitaxial growth of γ -Ga ₂ O ₃
7		films by mist chemical vapor deposition, J. Cryst. Growth. 359 (2012) 60-63.
8		https://doi.org/10.1016/j.jcrysgro.2012.08.025.
9	[54]	T. Ikenoue, J. Inoue, M. Miyake, T. Hirato, Epitaxial growth of undoped and Li-
10		doped NiO thin films on α -Al ₂ O ₃ substrates by mist chemical vapor deposition, J.
11		Cryst. Growth. 507 (2019) 379–383.
12		https://doi.org/10.1016/j.jcrysgro.2018.11.032.
13	[55]	X. Zhao, J. Cheng, Atmospheric preparation of ZnO thin films by mist chemical
14		vapor deposition for spray-coated organic solar cells, J. Mater. Sci. Mater.
15		Electron. 27 (2016) 2676–2681. https://doi.org/10.1007/s10854-015-4076-y.
16	[56]	Z. Sun, D. Oka, T. Fukumura, Epitaxial Growth of β -Bi ₂ O ₃ Thin Films and
17		Particles with Mist Chemical Vapor Deposition, Cryst. Growth Des. 19 (2019)
18		7170-7174. https://doi.org/10.1021/acs.cgd.9b01033.
19	[57]	G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of
20		the V2p XPS binding energies for different vanadium oxidation states (V^{5+} to
21		V ⁰⁺), J. Electron Spectros. Relat. Phenomena. 135 (2004) 167–175.
22		https://doi.org/10.1016/j.elspec.2004.03.004.
23	[58]	V. Bondarenka, V. Jasulaitienė, R. Sereika, A. Stirkė, Sol-gel synthesis and XPS
24		study of vanadium pentoxide xerogels intercalated with glucose, J. Sol-Gel Sci.
25		Technol. 71 (2014) 385–390. https://doi.org/10.1007/s10971-014-3385-6.
26	[59]	E. Hryha, E. Rutqvist, L. Nyborg, Stoichiometric vanadium oxides studied by
27		XPS, Surf. Interface Anal. 44 (2012) 1022–1025.
28		https://doi.org/10.1002/sia.3844.
29	[60]	J.K. Tripathi, T.J. Novakowski, A. Hassanein, Tuning surface porosity on
30		vanadium surface by low energy He ⁺ ion irradiation, Appl. Surf. Sci. 378 (2016)
31		63-72. https://doi.org/10.1016/j.apsusc.2016.03.196.
32	[61]	F. Ureña-Begara, A. Crunteanu, JP. Raskin, Raman and XPS characterization of
33		vanadium oxide thin films with temperature, Appl. Surf. Sci. 403 (2017) 717-
34		727. https://doi.org/10.1016/j.apsusc.2017.01.160.
35	[62]	G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, An XPS study on
36		the surface reduction of $V_2O_5(001)$ induced by Ar^+ ion bombardment, Surf. Sci.

1		600 (2006) 3512–3517. https://doi.org/10.1016/j.susc.2006.07.006.
2	[63]	A. Pajares, H. Prats, A. Romero, F. Viñes, P.R. de la Piscina, R. Sayós, N. Homs,
3		F. Illas, Critical effect of carbon vacancies on the reverse water gas shift reaction
4		over vanadium carbide catalysts, Appl. Catal. B Environ. 267 (2020) 118719.
5		https://doi.org/10.1016/j.apcatb.2020.118719.
6	[64]	Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang, H. Luo, Thermochromic VO ₂
7		thin films: Solution-based processing, improved optical properties, and lowered
8		phase transformation temperature, Langmuir. 26 (2010) 10738-10744.
9		https://doi.org/10.1021/la100515k.
10	[65]	T Hanlon, R Walker, J Coath, M Richardson, Comparison between
11		vanadium dioxide coatings on glass produced by sputtering, alkoxide and
12		aqueous sol-gel methods, Thin Solid Films. 405 (2002) 234-237.
13		https://doi.org/10.1016/S0040-6090(01)01753-9.
14	[66]	M. Zhu, H. Wang, C. Li, H. Qi, D. Zhang, W. Lv, Thickness-modulated
15		thermochromism of vanadium dioxide thin films grown by magnetron sputtering,
16		Surf. Coatings Technol. 359 (2019) 396-402.
17		https://doi.org/10.1016/j.surfcoat.2018.12.077.
18	[67]	D. Zhang, M. Zhu, Y. Liu, K. Yang, G. Liang, Z. Zheng, X. Cai, P. Fan, High
19		performance VO ₂ thin films growth by DC magnetron sputtering at low
20		temperature for smart energy efficient window application, J. Alloys Compd. 659
21		(2016) 198-202. https://doi.org/10.1016/j.jallcom.2015.11.047.
22	[68]	J. Vlček, D. Kolenatý, J. Houška, T. Kozák, R. Čerstvý, Controlled reactive
23		HiPIMS—effective technique for low-temperature (300 $^{\circ}$ C) synthesis of VO ₂
24		films with semiconductor-to-metal transition, J. Phys. D. Appl. Phys. 50 (2017)
25		38LT01. https://doi.org/10.1088/1361-6463/aa8356.
26	[69]	M. Xygkis, E. Gagaoudakis, L. Zouridi, O. Markaki, E. Aperathitis, K.
27		Chrissopoulou, G. Kiriakidis, V. Binas, Thermochromic Behavior of
28		VO ₂ /Polymer Nanocomposites for Energy Saving Coatings, Coatings. 9 (2019)
29		163. https://doi.org/10.3390/coatings9030163.
30	[70]	L. Zhao, L. Miao, S. Tanemura, J. Zhou, L. Chen, X. Xiao, G. Xu, A low cost
31		preparation of VO_2 thin films with improved thermochromic properties from a
32		solution-based process, Thin Solid Films. 543 (2013) 157-161.
33		https://doi.org/10.1016/j.tsf.2012.11.154.
34	[71]	H. Kim, N. Charipar, E. Breckenfeld, A. Rosenberg, A. Piqué, Active terahertz
35		metamaterials based on the phase transition of VO ₂ thin films, Thin Solid Films.
36		596 (2015) 45-50. https://doi.org/10.1016/j.tsf.2015.07.062.

1	[72]	C. Ji, Z. Wu, X. Wu, J. Wang, J. Gou, Z. Huang, H. Zhou, W. Yao, Y. Jiang, Al-
2		doped VO ₂ films as smart window coatings: Reduced phase transition
3		temperature and improved thermochromic performance, Sol. Energy Mater. Sol.
4		Cells. 176 (2018) 174–180. https://doi.org/10.1016/j.solmat.2017.11.026.
5	[73]	S. Long, X. Cao, G. Sun, N. Li, T. Chang, Z. Shao, P. Jin, Effects of V ₂ O ₃ buffer
6		layers on sputtered VO ₂ smart windows: Improved thermochromic properties,
7		tunable width of hysteresis loops and enhanced durability, Appl. Surf. Sci. 441
8		(2018) 764–772. https://doi.org/10.1016/j.apsusc.2018.02.083.
9	[74]	X. Wu, Z. Wu, H. Zhang, R. Niu, Q. He, C. Ji, J. Wang, Y. Jiang, Enhancement
10		of VO ₂ thermochromic properties by Si doping, Surf. Coatings Technol. 276
11		(2015) 248-253. https://doi.org/10.1016/j.surfcoat.2015.07.007.
12	[75]	M.K. Dietrich, B.G. Kramm, M. Becker, B.K. Meyer, A. Polity, P.J. Klar,
13		Influence of doping with alkaline earth metals on the optical properties of
14		thermochromic VO ₂ , J. Appl. Phys. 117 (2015) 185301.
15		https://doi.org/10.1063/1.4919433.
16	[76]	M. Jiang, S. Bao, X. Cao, Y. Li, S. Li, H. Zhou, H. Luo, P. Jin, Improved
17		luminous transmittance and diminished yellow color in VO ₂ energy efficient
18		smart thin films by Zn doping, Ceram. Int. 40 (2014) 6331-6334.
19		https://doi.org/10.1016/j.ceramint.2013.10.083.
20	[77]	H. Guan, D. Zhang, Y. Yang, Y. Liu, A. Zhong, Q. He, J. Qi, P. Fan, A Novel
21		Method for Notable Reducing Phase Transition Temperature of VO ₂ Films for
22		Smart Energy Efficient Windows, Nanomaterials. 10 (2019) 58.
23		https://doi.org/10.3390/nano10010058.
24	[78]	S. Long, X. Cao, Y. Wang, T. Chang, N. Li, L. Jin, L. Ma, F. Xu, G. Sun, P. Jin,
25		Karst landform-like VO ₂ single layer solution: Controllable morphology and
26		excellent optical performance for smart glazing applications, Sol. Energy Mater.
27		Sol. Cells. 209 (2020) 110449. https://doi.org/10.1016/j.solmat.2020.110449.
28	[79]	M.J. Miller, J. Wang, Influence of grain size on transition temperature of
29		thermochromic VO ₂ , J. Appl. Phys. 117 (2015) 034307.
30		https://doi.org/10.1063/1.4906122.
31	[80]	H. Koo, H. You, KE. Ko, OJ. Kwon, SH. Chang, C. Park, Thermochromic
32		properties of VO_2 thin film on SiN_x buffered glass substrate, Appl. Surf. Sci. 277
33		(2013) 237-241. https://doi.org/10.1016/j.apsusc.2013.04.031.
34	[81]	T. Lin, Y. Zhang, D. Zheng, The ultrathin VO2(M) film with ultrahigh visible
35		transmittance synthesized on the quartz glass substrate by HiPIMS, Vacuum. 156
36		(2018) 449-455. https://doi.org/10.1016/j.vacuum.2018.08.008.

1	[82]	J. Kim, T. Ejiri, M. Sugiyama, Investigation of VO ₂ directly deposited on a glass
2		substrate using RF sputtering for a smart window, Jpn. J. Appl. Phys. 59 (2020)
3		105506. https://doi.org/10.35848/1347-4065/abbb1d.
4	[83]	G. Fu, A. Polity, N. Volbers, B.K. Meyer, Annealing effects on VO ₂ thin films
5		deposited by reactive sputtering, Thin Solid Films. 515 (2006) 2519–2522.
6		https://doi.org/10.1016/j.tsf.2006.04.025.
7	[84]	HC. Ho, YC. Lai, K. Chen, T.D. Dao, CH. Hsueh, T. Nagao, High quality
8		thermochromic VO_2 films prepared by magnetron sputtering using V_2O_5 target
9		with in situ annealing, Appl. Surf. Sci. 495 (2019) 143436.
10		https://doi.org/10.1016/j.apsusc.2019.07.178.
11	[85]	B. Zhu, H. Tao, X. Zhao, Effect of buffer layer on thermochromic performances
12		of VO ₂ films fabricated by magnetron sputtering, Infrared Phys. Technol. 75
13		(2016) 22-25. https://doi.org/10.1016/j.infrared.2016.01.004.
14	[86]	Y. Shigesato, M. Enomoto, H. Odaka, Thermochromic VO ₂ Films Deposited by
15		RF Magnetron Sputtering Using V ₂ O ₃ or V ₂ O ₅ Targets, Jpn. J. Appl. Phys. 39
16		(2000) 6016-6024. https://doi.org/10.1143/JJAP.39.6016.
17	[87]	Y. Yang, X. Cao, G. Sun, S. Long, T. Chang, X. Li, P. Jin, Transmittance change
18		with thickness for polycrystalline VO ₂ films deposited at room temperature, J.
19		Alloys Compd. 791 (2019) 648–654.
20		https://doi.org/10.1016/j.jallcom.2019.03.278.
21	[88]	X. Lv, Y. Cao, L. Yan, Y. Li, L. Song, Atomic layer deposition of VO ₂ films
22		with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor, Appl. Surf.
23		Sci. 396 (2017) 214–220. https://doi.org/10.1016/j.apsusc.2016.10.044.
24	[89]	D. Malarde, M.J. Powell, R. Quesada-Cabrera, R.L. Wilson, C.J. Carmalt, G.
25		Sankar, I.P. Parkin, R.G. Palgrave, Optimized Atmospheric-Pressure Chemical
26		Vapor Deposition Thermochromic VO2 Thin Films for Intelligent Window
27		Applications, ACS Omega. 2 (2017) 1040–1046.
28		https://doi.org/10.1021/acsomega.7b00042.
29	[90]	S. Ji, F. Zhang, P. Jin, Preparation of high performance pure single phase VO_2
30		nanopowder by hydrothermally reducing the V ₂ O ₅ gel, Sol. Energy Mater. Sol.
31		Cells. 95 (2011) 3520–3526. https://doi.org/10.1016/j.solmat.2011.08.015.
32	[91]	W. Li, S. Ji, Y. Li, A. Huang, H. Luo, P. Jin, Synthesis of VO_2 nanoparticles by a
33		hydrothermal-assisted homogeneous precipitation approach for thermochromic
34		applications, RSC Adv. 4 (2014) 13026–13033.
35		https://doi.org/10.1039/c3ra47666a.
36	[92]	L. Dai, S. Chen, J. Liu, Y. Gao, J. Zhou, Z. Chen, C. Cao, H. Luo, M. Kanehira,

1		F-doped VO ₂ nanoparticles for thermochromic energy-saving foils with modified
2		color and enhanced solar-heat shielding ability, Phys. Chem. Chem. Phys. 15
3		(2013) 11723–11729. https://doi.org/10.1039/c3cp51359a.
4	[93]	Z. Zhao, Y. Liu, D. Wang, C. Ling, Q. Chang, J. Li, Y. Zhao, H. Jin, Sn dopants
5		improve the visible transmittance of VO ₂ films achieving excellent
6		thermochromic performance for smart window, Sol. Energy Mater. Sol. Cells.
7		209 (2020) 110443. https://doi.org/10.1016/j.solmat.2020.110443.
8	[94]	N. Wang, M. Duchamp, R.E. Dunin-Borkowski, S. Liu, X. Zeng, X. Cao, Y.
9		Long, Terbium-Doped VO ₂ Thin Films: Reduced Phase Transition Temperature
10		and Largely Enhanced Luminous Transmittance, Langmuir. 32 (2016) 759–764.
11		https://doi.org/10.1021/acs.langmuir.5b04212.
12		
13		

1 Figure captions

2	Fig. 1 Schematic illustration of a hot-wall mist CVD system.
3	Fig. 2 (a, b) Photographs and (c, d) XRD patterns of the substrates before and after film
4	deposition at 400–750 °C using (a, c) methanol and (b, d) water solutions of VO(acac) ₂ .
5	
6	Fig. 3 (a,c) O1s and V2p spectra of the films deposited at 650 $^{\circ}\text{C}$ from (a) methanol and
7	(c) water solutions. (b,d) Deconvolution of C1s spectra for the films deposited at 650 $^\circ \mathrm{C}$
8	from the (b) methanol and (d) water solutions before and after Ar^+ ion etching.
9	
10	Fig. 4 Surface and cross-sectional SEM and AFM images of the VO_2 films deposited (a–
11	d) at 550 and (e–h) at 650 °C.
12	
13	Fig. 5 Electric resistance of the films deposited from water solution at 550–650 $^{\circ}\mathrm{C}$ as a
14	function of temperature.
15	
16	Fig. 6 Transmittance spectra measured at 26 and 100 $^{\circ}\mathrm{C}$ for the VO_2 films deposited at
17	650 °C.
18	
19	Fig. 7 Visible transmittance at a wavelength of 550 nm ($T_{550 \text{ nm}}$) and infrared transmittance
20	difference at a wavelength of 2500 nm between low (26 $^{\circ}\mathrm{C})$ and high temperature states
21	(100 °C) ($\Delta T_{2500 \text{ nm}}$) of VO ₂ fabricated through vacuum processes (•) [15,16,57,61–78],
22	atmospheric pressure process (\mathbf{V}) [89], solution processes (\diamond) [64,70,90–94] and the
23	mist CVD method (\star) [37–42].
24	

22

(b) Solvent : Water

(e) 650 °C low magnification		(f) 650 °C high magnification		(g) 650 °C cross-section		(h) 650 °C
		Service 1				
	1 µm	and the second	200 nm	substrate	250 nm	2 4 [um]

