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Exact Monte Carlo Calculation Method for K-eigenvalue Change Using 

Perturbation Source Method

The “perturbation source method” (PSM) is a Monte Carlo perturbation method that 

calculates an exact k-eigenvalue change caused by cross-section changes. Although the PSM, 

which can consider the effect of fission source perturbation, was proposed long ago, it has 

garnered minimal interest as a Monte Carlo perturbation method. The applicability of the 

PSM has not been thoroughly elucidated hitherto. This study revisits the PSM and reviews 

the associated Monte Carlo algorithm. Some improvements have been made to improve the 

efficiency. The PSM is applied to some numerical tests that involve the replacement of a 

fuel material with light water, a density change in a water hole, an interface shift between a 

fuel and reflector, and an external boundary extension. The performance of the PSM for 

these tests is compared with that of another exact Monte Carlo perturbation method, which 

is the correlated sampling method. The PSM can yield an accurate k-eigenvalue change even 

for large cross-section changes such as the replacement of a material with another material. 

The PSM used in this study is the exact method except for the approximation related to the 

spatial discretization for fission source perturbation. Furthermore, it exhibits superiority in 

terms of accuracy and computational efficiency, particularly for large perturbations added in 

a small region.

Keywords: Monte Carlo; perturbation; reactivity; neutron; cross section

1. Introduction

Monte Carlo radiation transport analysis of the effect of small system parameter 

changes on a response, such as the k-eigenvalue, has long been recognized as a formidable 

challenge. Hence, many studies regarding Monte Carlo perturbation techniques have been 

performed hitherto [1−14] . The authors of [1] presented a thorough chronological review of 

the development of Monte Carlo perturbation methods for radiation transport calculations. 
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According to the review, the correlated sampling method [5, 7, 10, 12], differential operator 

sampling method [7, 9, 11, 12], and adjoint-based perturbation method [13, 14] are regarded 

as the primary perturbation calculation methods.

The correlated sampling method (CS) forces particles of perturbed history to follow 

the same trajectories as those of unperturbed history in the phase space. If CS is applied to 

calculate a k-eigenvalue change, then the effect of perturbation on the fission source must be 

considered. Nagaya and Mori [12] developed a method to include the effect of fission source 

perturbation. Although the method does not explicitly rely on the adjoint flux, it is similar to 

an iterated fission probability method that obtains a quantity proportional to the adjoint flux 

[13,16–19]. CS with the fission source perturbation effect can yield an exact estimate of the 

k-eigenvalue change. However, one disadvantage of CS is that it entails an unbounded 

statistical uncertainty for a large perturbation [7, 20, 21]. Hence, the availability of CS may 

be ambiguous for large perturbations such as material substitution.

The differential operator sampling method (DOS) yields an approximate k-eigenvalue 

change by the Taylor series expansion with respect to a system parameter, such as a cross 

section. The DOS does not require the calculation of the adjoint flux, and the derivatives of 

the k-eigenvalue with respect to a system parameter can be extended to arbitrary orders [22]. 

Furthermore, Nagaya and Mori developed a method to implement the effect of fission source 

perturbation into DOS [12, 22]. The larger the perturbation, the more expansion order is 

required to obtain a result similar to the exact solution. Furthermore, if several system 

parameters are perturbed simultaneously, then cross-derivative terms must be considered 

[23].

The adjoint-based perturbation method [13, 14] yields a k-eigenvalue change based on 

transport perturbation theory [24]. In this method, the product of the cross-section change 

and the unperturbed flux is adjoint-weighted to estimate the k-eigenvalue change due to 

perturbation. The iterated fission probability (IFP) method is used to obtain adjoint-weighted 

tallies. Because the method uses unperturbed flux, the results are limited to the first-order 
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accuracy. As an exceptional example of the exact perturbation method, Truchet et al. [25, 

26] developed a two-step method that uses the adjoint-weighted perturbed forward flux. In 

the first step of the method, a forward eigenvalue calculation is performed for the perturbed 

system to obtain the perturbed flux. In the second step, an IFP adjoint calculation is 

performed for the unperturbed system.

The objective of this study is to revisit “the perturbation source method” (PSM), which 

is an exact Monte Carlo perturbation method for calculating the k-eigenvalue change due to 

perturbation. The PSM has been proposed in several previous studies [3, 4, 6, 8]. Hoffman 

et al. [4] successfully expanded the capability of PSM to k-eigenvalue problems, where the 

effect of fission source perturbation was considered. However, thereafter, the PSM has 

garnered minimal interest for decades as a Monte Carlo perturbation method. Therefore, the 

validity and applicability of the method have not been thoroughly investigated. Recently, the 

PSM was revisited by Sakamoto and Yamamoto [20, 21] as an exact perturbation method 

for fixed-source problems. In [20], a new method that introduces pseudo-scattering cross 

sections was proposed to increase computational efficiency. The applicability and robustness 

of the PSM for geometry change in fixed-source problems were demonstrated in [21]. Based 

on these studies regarding the use of the PSM for fixed-source problems, the PSM is 

expected to be a robust and efficient method for solving k-eigenvalue problems. The present 

study focuses on elucidating the applicability of the PSM to k-eigenvalue problems and 

identifying the advantages and disadvantages of the PSM. In addition, this study aims to 

implement the pseudo-scattering method and demonstrate its effect.

In Section 2, the theory of the PSM is presented. In Section 3, the Monte Carlo 

algorithm adopted in this study is described. In Section 4, the results of numerical tests 

performed are presented. Finally, Section 5 summarizes the performance of the PSM for k-

eigenvalue problems.
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2. Formulation of perturbation source method for k-eigenvalue problems

2.1 Perturbation source method without perturbation of fission source

This section presents the fundamental formulation of the PSM that is applicable to 

perturbation calculations for k-eigenvalue changes. Although the underlying concept of the 

PSM presented herein is essentially similar to that in [4], it is presented differently herein. 

The formulation presented herein is reconstructed by eliminating the concept of “adjoint” or 

“importance” that is used in [4], thereby rendering the concept easier to comprehend.

In a k-eigenvalue mode calculation, a k-eigenvalue is obtained using the power iteration 

method. Neutrons are started from fission source positions that are inherited from the 

previous generation. The random walk process is performed by tracking a neutron until its 

death. The fission neutrons produced during the random walk process are used in the next 

generation. Regarding the calculation in one generation, the k-eigenvalue mode calculation 

is a fixed source calculation, where the fixed source is the fission source inherited from the 

previous generation. Subsequently, the neutron transport equation to be solved for a k-

eigenvalue problem is written in the form of a fixed source problem as follows:

𝑯 𝜙(𝒓 ,𝜴 ,𝐸) =
𝜒(𝐸)

4𝜋 𝑆(𝒓),                                                     (1)

where
𝑯 𝜙(𝒓 ,𝜴 ,𝐸) ≡ 𝜴 ∙ ∇ 𝜙(𝒓 ,𝜴 ,𝐸) + 𝛴𝑡(𝒓 ,𝐸)𝜙(𝒓 ,𝜴 ,𝐸)

― ∫
4𝜋

𝑑𝜴′∫𝑑𝐸′𝛴𝑠(𝒓,𝜴′→𝜴,𝐸′→𝐸)𝜙(𝒓,𝜴′,𝐸′),              (2)
            

 is the flux at position r with energy E and direction ,  the fission neutron 𝜙(𝒓 ,𝜴 ,𝐸) 𝜴 𝜒(𝐸)

spectrum,  the fission source at position r inherited from the previous generation,  the 𝑆(𝒓) 𝛴𝑡

total cross section, and  the scattering cross section. After obtaining  through 𝛴𝑠 𝜙(𝒓 ,𝜴 ,𝐸)

the random walk process in one generation, the k-eigenvalue of the generation is expressed 

as

𝑘𝑒𝑓𝑓 =
〈𝜈𝛴𝑓(𝒓 ,𝐸)𝜙(𝒓 ,𝜴 ,𝐸)〉

〈𝑆(𝒓)〉 ,                                                (3)
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where  is the number of neutrons per fission,  is the fission cross section, and the angle 𝜈 𝛴𝑓

brackets denote integration over the entire phase space. The fission source used in the next 

generation is expressed as

𝑆(𝒓) =
1

𝑘𝑒𝑓𝑓∫𝑑𝜴∫𝑑𝐸 𝜈𝛴𝑓(𝒓 ,𝐸)𝜙(𝒓 ,𝜴 ,𝐸),                          (4)

where  is introduced to retain an almost constant number of fission neutrons over the 𝑘𝑒𝑓𝑓

generations.

First, we discuss the PSM under the condition that the fission source is unchanged 

by the perturbation of the cross sections. Suppose that the cross sections (including the 

fission neutron spectrum) in Eq. (2) are changed to , , and , respectively. 𝛴𝑡 +∆𝛴𝑡 𝛴𝑠 +∆𝛴𝑠 𝜒𝑝

Therefore, Eq. (1) in the perturbed system changes to

(𝑯 + ∆𝑯)(𝜙(𝒓,𝜴,𝐸) + δ𝜙𝑁𝑃(𝒓,𝜴,𝐸)) =
𝜒𝑝(𝐸)

4𝜋 𝑆(𝒓),                          (5)

where
∆𝑯( ∙∙∙ ) ≡ ∆𝛴𝑡(𝒓,𝐸)( ∙∙∙ ) ― ∫

4𝜋
𝑑𝜴′∫𝑑𝐸′ΔΣ𝑠(𝒓,𝜴′→𝜴,𝐸′→𝐸)( ∙∙∙ ) ,          (6)

Here,  is the flux change caused by the perturbation of the cross sections,  is the δ𝜙𝑁𝑃 𝜒𝑝(𝐸)

perturbed fission neutron spectrum, and the superscript NP denotes that the effect of fission 

source perturbation is not included. The transport equation for  is obtained by δ𝜙𝑁𝑃

subtracting Eq. (1) from Eq. (5) as follows:

(𝑯 + ∆𝑯)δ𝜙𝑁𝑃(𝒓,𝜴,𝐸) = ―∆𝑯𝜙(𝒓,𝜴,𝐸) +
𝜒𝑝(𝐸) ― 𝜒(𝐸)

4𝜋 𝑆(𝒓).        (7)

The first term on the right-hand side of Eq. (7) represents one of the source terms and is 

written as

―∆𝑯𝜙(𝒓 ,𝜴 ,𝐸) = ―∆𝛴𝑡(𝒓 ,𝐸)𝜙(𝒓 ,𝜴 ,𝐸)

+ ∫
4𝜋

𝑑𝜴′∫𝑑𝐸′ΔΣ𝑠(𝒓,𝜴′→𝜴,𝐸′→𝐸)𝜙(𝒓,𝜴′,𝐸′).                     (8)

If the neutron flux in the unperturbed system  is known, then we can obtain the perturbed 𝜙

flux  by solving the transport equation for in Eq. (7). After  is obtained, the 𝛿𝜙𝑁𝑃 δ𝜙𝑁𝑃 𝛿𝜙𝑁𝑃

k-eigenvalue change without fission source perturbation is expressed as

Page 6 of 48

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology



For Peer Review Only

7

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 =

〈(𝜈𝛴𝑓(𝒓 ,𝐸) + 𝛿(𝜈𝛴𝑓(𝒓 ,𝐸)))𝛿𝜙𝑁𝑃(𝒓 ,𝜴 ,𝐸)〉
〈𝑆(𝒓)〉 +

〈𝛿(𝜈𝛴𝑓(𝒓 ,𝐸))𝜙(𝒓 ,𝜴 ,𝐸)〉
〈𝑆(𝒓)〉 , (9)

where  is the change in . The Monte Carlo algorithm used in the PSM to solve 𝛿(𝜈𝛴𝑓) 𝜈𝛴𝑓

fixed-source problems that is presented in [20, 21] can be used to calculate .Δ𝑘𝑁𝑃
𝑒𝑓𝑓

2.2 Perturbation source method with fission source perturbation

 The formulation in Section 2.1 does not include the perturbed source effect. In this 

section, the PSM that considers the perturbed source effect is presented.

At a position , the fission source perturbed by cross-section changes is expressed as𝒓

𝛿𝑆(𝒓) = 𝛿𝑆1(𝒓) + 𝛿𝑆2(𝒓),                                                    (10)

where
𝛿𝑆1(𝒓) = ∫𝑑𝜴∫𝑑𝐸 𝛿(𝜈𝛴𝑓(𝒓 ,𝐸))𝜙(𝒓 ,𝜴 ,𝐸) ,                       (11)

and
𝛿𝑆2(𝒓) = ∫𝑑𝜴∫𝑑𝐸 (𝜈𝛴𝑓(𝒓 ,𝐸) + 𝛿(𝜈𝛴𝑓(𝒓 ,𝐸)))𝛿𝜙𝑝(𝒓 ,𝜴 ,𝐸) .         (12)

Eq. (11) represents the perturbation caused by an unperturbed flux and the change in .  𝜈𝛴𝑓

Eq. (12) represents the perturbation caused by a flux change and the perturbed . The  𝜈𝛴𝑓 δ𝜙𝑝

term in Eq. (12) is defined in Eq. (14) below. The perturbed fission source must be 

normalized with respect to the unperturbed fission source as follows:

𝑆𝑝(𝒓) = (𝑆(𝒓) + 𝛿𝑆(𝒓))
〈𝑆(𝒓)〉

〈𝑆(𝒓) + 𝛿𝑆(𝒓)〉,                                             (13)

where  is the same as that in Eq. (4). The equation for the k-eigenvalue in the perturbed 〈𝑆(𝒓)〉

system, which includes the perturbed source effect, is written as

(𝑯 + ∆𝑯)(𝜙(𝒓,𝜴,𝐸) + δ𝜙𝑝(𝒓,𝜴,𝐸)) =
𝜒𝑝(𝐸)

4𝜋 𝑆𝑝(𝒓),                      (14)

where  is the perturbed flux due to cross-section changes and fission source perturbation. δ𝜙𝑝

Subtracting Eq. (5) from Eq. (14) yields

(𝑯 + ∆𝑯)δ𝜙𝑃𝑆(𝒓,𝜴,𝐸) =
𝜒𝑝(𝐸)

4𝜋
(𝑆𝑝(𝒓) ― 𝑆(𝒓)),                        (15)
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where  is the difference in flux difference due to fission source perturbation and is δ𝜙𝑃𝑆

expressed as

δ𝜙𝑃𝑆(𝒓,𝜴,𝐸) ≡ 𝛿𝜙𝑝(𝒓,𝜴,𝐸) ― 𝛿𝜙𝑁𝑃(𝒓,𝜴,𝐸).                               (16)

Using , the k-eigenvalue change caused by fission source perturbation is expressed asδ𝜙𝑃𝑆

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 =

〈(𝜈𝛴𝑓(𝒓 ,𝐸) + 𝛿(𝜈𝛴𝑓(𝒓 ,𝐸)))𝛿𝜙𝑃𝑆(𝒓 ,𝜴 ,𝐸)〉
〈𝑆(𝒓)〉 .                      (17)

Consequently, the exact change in the k-eigenvalue arising from cross-section changes is 

expressed as the sum of the k-eigenvalue changes with and without the effect of fission 

source perturbation, as follows:

∆𝑘𝑒𝑓𝑓 = Δ𝑘𝑁𝑃
𝑒𝑓𝑓 + Δ𝑘𝑃𝑆

𝑒𝑓𝑓.                                                     (18)

3. Monte Carlo algorithm of perturbation source method for k-eigenvalue 

problems

3.1. Calculation flow

This section presents a Monte Carlo algorithm for implementing the formulation 

described in Section 2. The Monte Carlo algorithm for  is similar to that for the fixed-Δ𝑘𝑁𝑃
𝑒𝑓𝑓

source calculations presented in [20, 21]. We begin with a situation where the fission source 

distribution has already attained its convergence after a sufficient number of inactive 

generations, and the fundamental mode flux  is known. The PSM without the 𝜙(𝒓 ,𝜴 ,𝐸)

perturbed fission source effect for one generation calculation is performed as follows, and 

the schematic flow diagram is shown in Figures 1(a) and 1(b).

(1) The calculation is composed of two calculation modes. One is the unperturbed calculation 

mode, where a conventional k-eigenvalue calculation is performed for the unperturbed 

system; Eq. (1) is used for this mode. The other is the perturbation calculation mode that is 

performed for the perturbed system; Eq. (7) is used for this mode.

(2) First, a particle is started from a fission source site that is sampled from the fission source 

distribution  in Eq. (5). Before starting the unperturbed calculation mode, the fission 𝑆(𝒓)

spectrum change is calculated. At the beginning of each particle history, a “perturbation 
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particle” that corresponds to the second term on the right-hand side of Eq. (7) is emitted with 

the energy sampled from the unperturbed fission spectrum. The weight of the perturbation 

particle is expressed as 

𝑊𝑠𝑝 =
𝜒𝑝(𝐸) ― 𝜒(𝐸)

𝜒(𝐸) 𝑊,                                                (19)

where W is the weight of the fission source and is typically almost unity. As illustrated in 

Figure 1(b), the random walk process is performed for this perturbation particle in the 

perturbed system until it is killed by leakage or the Russian roulette game.

(3) After the perturbation particle in step (2) is killed, a perturbation particle that represents 

the fission source perturbation is emitted from the same fission source site in the same 

manner as in step (2). This perturbation particle corresponds to the right-hand side of Eq. 

(15) , and it has a weight of . The method to determine  is discussed  𝑆𝑝(𝒓) ―𝑆(𝒓) 𝑊𝑝𝑠 𝑊𝑝𝑠

below. The energy of the particle is sampled from the perturbed fission spectrum . 𝜒𝑝(𝐸)

This perturbation particle is tracked in the perturbed system until it is killed.

 (4) After steps (2) and (3) are completed, the mode is switched to the unperturbed 

calculation mode. This mode is identical to those of ordinary k-eigenvalue calculations. The 

same particle that is used in step (2) is used again, but the weight is W instead of . This 𝑊𝑠𝑝

particle is tracked in an unperturbed system.

(5) Each time the particle in step (4) undergoes collision in a perturbed region where the 

cross sections are changed from those in the unperturbed system, the random walk process 

is suspended. Subsequently, the calculation mode is switched to the perturbation calculation 

mode, where the random walk process for Eq. (7) is performed. In this perturbation 

calculation mode, two perturbation particles are started separately from the collision site.

(5.1) The first term, which is due to the change in the total cross section, corresponds to the 

first term on the right-hand side of Eq. (8). The weight of the first perturbation particle is 

expressed as 
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𝑊𝑡 = ―(𝛴𝑝
𝑡 ― 𝛴𝑢𝑛

𝑡 )
𝑊

𝛴𝑢𝑛
𝑡

,                                                      (20)

where  is the weight before collision in the unperturbed calculation mode;  and  are 𝑊 𝛴𝑝
𝑡 𝛴𝑢𝑛

𝑡

the perturbed and unperturbed total cross sections, respectively. The energy and direction of 

this perturbation particle are unchanged from those of the particle before collision. The 

random walk process is performed for this perturbation particle in the perturbed system until 

it is killed.

(5.2) The second perturbation particle, which is due to the change in the scattering cross 

section, corresponds to the second term on the right-hand side of Eq. (8). The weight of the 

second perturbation particle is expressed as

𝑊sc = ( 𝑓𝑝(𝜴 ∙ 𝜴′,𝐸→𝐸′)
𝑓𝑢𝑛(𝜴 ∙ 𝜴′,𝐸→𝐸′)

𝛴𝑝
𝑠 ― 𝛴𝑢𝑛

𝑠 ) 𝑊
𝛴𝑢𝑛

𝑡
,                               (21)

where  and  are the perturbed and unperturbed total scattering cross sections, 𝛴𝑝
𝑠 𝛴𝑢𝑛

𝑠

respectively, and  is the probability density at which the direction and energy  𝑓(𝜴 ∙ 𝜴′,𝐸→𝐸′)

after scattering become  and  from  and E, respectively. The superscript p or un on f 𝜴′ 𝐸′ 𝜴

denotes that the scattering law belongs to the perturbed or unperturbed system, respectively. 

After the first perturbation particle in step (5.1) is killed, the second perturbation particle is 

emitted in direction  and energy  sampled from the scattering law in the unperturbed 𝜴′ 𝐸′

system. Subsequently, the random walk process is performed for this second perturbation 

particle in the perturbed system until it is killed. In [4], two perturbation particles that 

correspond to  and , separately, are emitted independently. This study improves this 𝛴𝑝
𝑠 𝛴𝑢𝑛

𝑠

algorithm by consolidating two perturbation particles into one particle, as defined in Eq. 

(21). This algorithm can be straightforwardly implemented in multi-group problems. The 

possibility of applying the method proposed in this study to continuous energy Monte Carlo 

codes depends on whether Eq. (21) can be determined in the codes. Even if it cannot be 

determined, this difficulty can be circumvented by choosing an algorithm where two 
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perturbation particles are emitted as proposed in [4] at the expense of adding another 

perturbation particle.

(6) After steps (5.1) and (5.2) are completed, the mode returns to the unperturbed calculation 

mode. The random walk that is suspended at step (5) is resumed and continues until the end 

of the history, similar to ordinary k-eigenvalue calculations.

(7) The numerator of the second term on the right-hand side of Eq. (9) is obtained by 

accumulating the following estimates for each collision during the random walks in step (6):

〈𝛿(𝜈𝛴𝑓(𝒓 ,𝐸))𝜙(𝒓 ,𝜴 ,𝐸)〉 = 𝐹𝑁𝑃,1 ≡ ∑
𝑖

(𝛿(𝜈𝛴𝑓))
𝑊𝑖

𝛴𝑡
,                              (22)

where the summation is performed over all collisions during history, and i denotes the ith 

collision.

(8) The numerator of the first term on the right-hand side of Eq. (9) is obtained by 

accumulating the following estimates for each collision during the random walks in steps 

(2), (5.1), and (5.2):

〈(𝜈𝛴𝑓(𝒓 ,𝐸) + 𝛿(𝜈𝛴𝑓(𝒓 ,𝐸)))𝛿𝜙𝑁𝑃(𝒓 ,𝜴 ,𝐸)〉 = 𝐹𝑁𝑃,2 ≡

= ∑
𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑠𝑝,𝑖

𝛴𝑡
+ ∑

𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑡,𝑖

𝛴𝑡
+ ∑

𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑠𝑐,𝑖

𝛴𝑡
,                      (23)

where  is  in the perturbed system; , , and  are the weights at the ith (𝜈𝛴𝑓)𝑝 𝜈𝛴𝑓 𝑊𝑠𝑝,𝑖 𝑊𝑡,𝑖 𝑊𝑠𝑐,𝑖

collision in steps (2), (5.1), and (5.2), respectively.

(9) After steps (1)–(8) are completed for all fission sources in one generation, the calculation 

for the generation is terminated. The fission and perturbed fission sources calculated in this 

generation are succeeded to the next generation. The k-eigenvalue change without fission 

source perturbation is obtained at the end of the generation as follows:

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 =

1
𝑁

(𝐹𝑁𝑃,1 + 𝐹𝑁𝑃,2) ,                                             (24)

where N is the nominal number of source histories per generation;  and  are 𝐹𝑁𝑃,1 𝐹𝑁𝑃,2

defined as shown in Eqs. (22) and (23), respectively.
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3.2. Perturbation of fission source

As described in step (3) in Section 3.1,  and  must be obtained to 𝑆𝑝(𝒓) 𝑆𝑝(𝒓) ― 𝑆(𝒓)

calculate the fission source perturbation. Whereas  is produced during the ordinary k-𝑆(𝒓)

eigenvalue calculation in the unperturbed system,  is produced by the unperturbed flux 𝑆𝑝(𝒓)

 and the flux difference,  as shown in Eqs. (10)−(13). The fission sources  and 𝜙 δ𝜙𝑝 𝑆(𝒓) 𝑆𝑝

 are not produced at the same point, thereby precluding the pointwise assignment of (𝒓) 𝑆𝑝(𝒓)

. Therefore, the region where fissions occur is spatially discretized into small bins, ― 𝑆(𝒓)

as adopted in [4]. The fission sources produced by  or  are stored in each bin every time 𝜙 δ𝜙𝑝

a collision occurs. During the random walks, the following fission source is accumulated in 

the kth bin to calculate  defined in Eq. (10):𝛿𝑆(𝒓)

𝛿𝑆𝑘 = ∑
𝑖

(𝛿(𝜈𝛴𝑓))
𝑊𝑖,𝑘

𝛴𝑡

+ ∑
𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑠𝑝,𝑖,𝑘

𝛴𝑡
+ ∑

𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑡,𝑖,𝑘

𝛴𝑡
+ ∑

𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑠𝑐,𝑖,𝑘

𝛴𝑡

+ ∑
𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑝𝑠,𝑖,𝑘

𝛴𝑡
,                                                   (25)

where , for example, denotes the weight at the ith collision in the kth bin. The first four 𝑊𝑖,𝑘

terms on the right-hand side of Eq. (25) are defined in Eqs. (22) and (23): The last term on 

the right-hand side is obtained by accumulating the estimates at each collision during the 

random walks in step (3), and  is the weight used in step (3). The last four terms are 𝑊𝑝𝑠,𝑖,𝑘

calculated by the additional random walks in the perturbed system, i.e., four perturbation 

calculation modes are invoked in the newly proposed PSM. Similarly, the fission source in 

the unperturbed system  is accumulated in each bin as follows:𝑆(𝒓)

𝑆𝑘 = ∑
𝑖

𝜈𝛴𝑓
𝑊𝑖,𝑘

𝛴𝑡
.                                                            (26)

After all particle histories for one generation are completed, the number of fission sources 

in the kth bin to be used in the next generation is calculated as follows:

𝑛𝑘 = Int[𝑆𝑘 + 𝜉],                                                         (27)
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where Int[x] denotes the largest integer not exceeding x, and  is a pseudo-random number 𝜉

between 0 and 1. Before proceeding to the next generation,  and   are  𝑆𝑘 𝑇𝑘 ≡ (𝑆𝑘 +𝛿𝑆𝑘)

normalized with respect to N as follows:

𝑆′𝑘 = 𝑆𝑘
𝑁

∑
𝑘𝑆𝑘

 ,                                                              (28)

𝑇′𝑘 = (𝑆𝑘 + 𝛿𝑆𝑘)
𝑁

∑
𝑘(𝑆𝑘 + 𝛿𝑆𝑘)

 ,                                         (29)

where N is the nominal number of source histories per generation, and the summation is 

performed over all bins. The weight of the starting particles in step (3), , to be assigned 𝑊𝑝𝑠,𝑘

to the particles in the kth bin is calculated as follows:

𝑊𝑝𝑠,𝑘 =
𝑇′𝑘

𝑆′𝑘
― 1,                                                              (30)

which corresponds to the source term  in the transport equation for  in Eq. 𝑆𝑝(𝒓) ― 𝑆(𝒓) δ𝜙𝑃𝑆

(15). According to Eq. (15), the random walk process is performed using this perturbation 

particle in the perturbed system for step (3) until it is killed. At the end of the generation, 

the k-eigenvalue change due to fission source perturbation is obtained as follows:

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 =

1
𝑁∑

𝑖

(𝜈𝛴𝑓)𝑝

𝑊𝑝𝑠,𝑖

𝛴𝑡
 .                                            (31)

Based on Eqs. (25), (29), and (30), the weight for the fission source perturbation, 

, must be obtained recursively. Hence, this weight is iteratively updated in each 𝑊𝑝𝑠

generation, and the convergence of  must be assessed before active generations are Δ𝑘𝑃𝑆
𝑒𝑓𝑓

started.

The weights that begin from the fission sources are set to , , and 𝑁/𝑀( ≈ 1) 𝑊𝑠𝑝𝑁/𝑀

 in steps (1), (2), and (3), respectively, where M is the sum of  in Eq. (27). These 𝑊𝑝𝑠𝑁/𝑀 𝑛𝑘

starting particles are distributed uniformly within each bin where they are produced.

In the conventional Monte Carlo perturbation methods (e.g., iterated fission 

probability, differential operator sampling, CS), the memory required may become 

extremely large because the information of fission sources must be retained during latent 
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generations (≈ 10). Meanwhile, in the PSM, the information for fission source perturbation 

are stored for only one generation, thereby alleviating large memory requirement.

3.3. Improvement in efficiency

Perturbation particles are not emitted until a particle undergoes collision in a 

perturbed region. If the perturbed region occupies only a small fraction of the entire system 

or the density is extremely low, then collisions will seldom occur in the perturbed region, 

thereby reducing the number of perturbation particles emitted and rendering the calculation 

less efficient. The pseudo-scattering method proposed in [20, 21] aims to increase the 

number of perturbation particles. In this method, a pseudo-scattering cross section is added 

to the cross section in the perturbed region by multiplying the total cross section  by a 𝛴𝑡

factor of C (>1), as follows:

𝛴 ∗
𝑡 = 𝐶 ∙ 𝛴𝑡 .                                                             (32)

The random walk process for the unperturbed calculation mode is performed using this 

pseudo total cross section. At every collision point in the perturbed region, a perturbation 

particle is started with a weight  or,  where  are defined in Eqs. (20) 𝑊𝑡/𝐶 𝑊𝑠𝑐/𝐶 𝑊𝑡 and 𝑊𝑠𝑐

and (21), respectively: The division of the weight by C is introduced to compensate for the 

increased pseudo total cross section. After the perturbation particle is killed in the 

perturbation calculation mode, the suspended unperturbed calculation mode is resumed. 

Before resuming the unperturbed calculation mode, whether the pseudo collision is accepted 

as a real collision is determined based on the following criterion:

𝜉 <
𝛴𝑡

𝛴 ∗
𝑡

=
1
𝐶 ,                                                          (33)

where  is a pseudo-random number between 0 and 1. If the criterion is rejected, then the 𝜉

particle maintains its direction, energy, and weight before the pseudo collision, and it 

continues flying. If the criterion is satisfied, then the collision is treated as a real one. As the 

factor C increases, the number of collisions increases in the perturbed region, thereby 

increasing the number of perturbation particles emitted. As demonstrated in [20, 21], the 
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pseudo-scattering method improves the computation efficiency, particularly when the 

perturbed region is small.

4. Numerical examples

4.1 Verification (Cases 1 and 2)

Numerical tests were performed to verify the algorithm for calculating a k-eigenvalue 

change, as described in Section 3. Throughout this study, the geometries of the numerical 

examples were two-dimensional rectangles, and three-energy group constants were used. A 

vacuum boundary condition was imposed on the external boundaries. In the first test 

problem, a large k-eigenvalue change was induced to verify the new method. The central 

region of a homogeneous material was perturbed, as shown in Figure 2. The dimensions 

shown in Figure 2 are a = 24 cm and b = 4 cm. The three-group constants used in this section 

are listed in Tables 1 and 2. Throughout this study, the scatterings were isotropic. In this 

problem, material (1) is identical to material (2) in Figure 2. For all cases investigated in 

this study, 100,000 histories were used per generation, and the initial 20 generations were 

discarded. The number of total generations varied depending on the property of the problem. 

The reference solution was obtained by the difference in k-eigenvalues between two 

independent Monte Carlo calculations before and after the perturbation, which is referred to 

the “direct method” hereinafter. Another reference solution was obtained using the discrete 

ordinates transport code DANTSYS [27] using the same group constants. To compare the 

PSM with another conventional Monte Carlo perturbation method, CS was applied to the 

problems in this study. The CS method used in this study, which can account for the effect 

of fission source perturbation, is based on the algorithm proposed in [1, 12]. The entire region 

was partitioned into 3 × 3 subregions and the subregions were divided into (300 + 100 + 

300) × (300 + 100 +300) spatial bins to accumulate the fission sources. The k-eigenvalue 

changes calculated using the four methods (the PSM, CS, direct method, and deterministic 

method) are listed in Table 3. All statistical uncertainties in this study were one standard 
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deviation. The result of the PSM calculation was obtained using C = 1. Because the fission 

source perturbation effect exceeded , it was extremely challenging to verify the Δ𝑘𝑃 𝑆
𝑒𝑓𝑓 Δ𝑘𝑁𝑃

𝑒𝑓𝑓

fission source perturbation effect numerically. However, the PSM calculation precisely 

reproduced the reference results. Meanwhile, the accuracy of calculated by CS was Δ𝑘𝑃 𝑆
𝑒𝑓𝑓 

unsatisfactory, indicating that the large perturbation in this problem is beyond of the 

applicability of CS. Table 4 shows a comparison of the relative figure-of-merit (FOM), 

which is expressed as

𝐹𝑂𝑀 =
1

𝜎2𝑇
,                                                                (34)

where  is the one standard deviation of the absolute uncertainty, and T the computation 𝜎

time. The Monte Carlo perturbation methods (PSM and CS) are significantly less efficient 

than the direct method. The perturbation in this example is relatively large in terms of the 

cross-section change and perturbed region fraction, and the direct method can yield 

statistically precise results with shorter computation time. The number of perturbation 

particles emitted from the perturbed region increases with the perturbed region fraction, 

rendering the PSM less efficient. In such a case, increasing the factor C results in the 

deteriorated efficiency of the PSM, as shown in Table 4.

The convergence of  and   with respect to the generations are shown in Δ𝑘𝑁𝑃
𝑒𝑓𝑓 Δ𝑘𝑃𝑆

𝑒𝑓𝑓

Figure 3.  Despite the large fission source perturbation effect,  converged before the Δ𝑘𝑃𝑆
𝑒𝑓𝑓

20th generation, and the discarded inactive generations (20) were considered to be sufficient.

In Case 1, an extremely large perturbation was used to perform a precise verification 

of the PSM. The next example (Case 2) addresses a more moderate perturbation. The cross 

sections in the perturbed region are listed in Table 5. The other calculation conditions are 

identical to those in Case 1. The k-eigenvalue changes and the relative FOMs in Case 2 are 

listed in Tables 6 and 4, respectively. Both Monte Carlo perturbation methods (PSM and 

CS) outperformed the direct method. In general, CS is superior to the PSM for a small 

perturbation that extends over a relatively large region. Meanwhile, the PSM is superior for 
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a large perturbation that is added in a small region, as demonstrated below through some 

numerical examples.

The calculation results may depend on the spatial bin sizes for calculating the fission 

source perturbation effect. The dependence of the calculation results on the mesh spacing is 

discussed in Appendix.

4.2 Perturbation in small region (Cases 3 and 4)

In the next test problem (Case 3), a central region in a homogenized light-water-

moderated UO2 fuel rod array is replaced with light water. The dimensions shown in Figure 

2 are a = 35 cm and b = 1.32 cm. The entire region was partitioned into 3 × 3 subregions and 

the subregions were divided into (130 + 20 + 130) × (130 + 20 +130) spatial bins. Tables 7 

and 8 show the three-energy group constants for the two materials. The group constants were 

prepared using the standard reactor analysis code (SRAC) [28]. The k-eigenvalue changes 

and relative FOMs in Case 3 are listed in Tables 9 and 4, respectively. The result of the PSM 

agreed well with that of the deterministic method. The significant difference between the 

PSM and direct method was due to the large statistical uncertainty in the direct method. The 

results of CS differed from those of other methods. For a large perturbation such as that in 

this problem, where a material is replaced with another one, CS can no longer yield reliable 

results. As shown in Table 4, increasing the factor C improves the efficiency of the PSM. 

The FOM is maximized at  C ~ 5.

In the next test problem (Case 4), a perturbation is added to the central region (1.32 

cm × 1.32 cm) of the perturbed system in Case 3. The light water density in the central region 

decreased by 10%. The k-eigenvalue changes and relative FOMs in Case 4 are listed in 

Tables 10 and 4, respectively. The PSM exhibited excellent performance for this problem. 

Although CS does not perform as well as the PSM, CS is applicable to this problem. The 

efficiency of the PSM is further improved by adjusting the factor C. The maximized FOM, 

which is four times the FOM with C = 1, was attained at C ~ 20.
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4.3 Interface displacement (Cases 5 and 6)

This section presents a perturbation where the interface between two regions is 

displaced. In this test problem, a graphite reflector with a thickness of 10 cm was attached 

to the homogeneous UO2 fuel rod array, as shown in Figure 4. In the first example, in Case 

5, the interface between the graphite and UO2 fuel regions is displaced to the right by 1 cm. 

The interface displacement is equivalent to replacing the 1-cm-thick graphite adjacent to the 

interface with the UO2 fuel region. The entire region was partitioned into 3 × 1 subregions 

and the subregions were divided into (700 + 70 + 50) × 700 spatial bins. Table 11 shows the 

three-energy group constants for graphite. The k-eigenvalue changes and relative FOMs in 

Case 5 are listed in Tables 12 and 13, respectively. Because CS yielded wrong results for 

this problem, the results of CS were omitted in the tables. The result of the PSM agreed well 

with those of the direct and deterministic methods. However, the efficiency of the PSM with 

respect to the direct method was mediocre because of the relatively large perturbed region 

(1 cm × 35 cm) in this problem.

In Case 6, the interface was displaced by 0.02 cm, which was much smaller than in 

Case 5. The k-eigenvalue changes and relative FOMs in Case 6 are listed in Tables 14 and 

13, respectively. Whereas the k-eigenvalue change by the direct method was not statistically 

significant, the PSM yielded a result that agreed well with the reference value by the 

deterministic method. The efficiency of the PSM was maximized at C ~ 40, the effect of 

which was enhanced by a factor of six compared with the case of C = 1.

4.4 External boundary extension (Cases 7 and 8)

In the last two numerical examples, Cases 7 and 8, the external right boundary of the 

graphite reflector extended by 3 cm and 0.02 cm, respectively, as shown in Figure 5. This 

perturbation is equivalent to replacing the void region adjacent to the right end of the graphite 

in the unperturbed system with the extended graphite. However, CS and PSM cannot manage 

such perturbations, where a void region is replaced with a nonvoid material because particles 
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that leave an external boundary do not contribute to the subsequent perturbation calculations. 

Some methods to circumvent this limitation have been proposed [21]. The simple method 

adopted in this study was by displacing the extended boundary to the unperturbed location 

instead of extending the external boundary. The entire region was partitioned into 3 × 1 

subregions and the subregions were divided into (700 + 50 + 50) × 700 spatial bins. The k-

eigenvalue change caused by the boundary extension was obtained by reversing the sign of 

the result. Using this method, the k-eigenvalue changes caused by the external boundary 

displacement by 3 and 0.02 cm were calculated, and the results are listed in Tables 15 and 

16, respectively. The relative FOMs of the results are listed in Table 13. In Table 16 (Case 

8), the result of the direct method is omitted because it is not statistically significant owing 

to its small value. In both cases, the PSM and CS yielded satisfactory results compared with 

the deterministic method. For the relatively large boundary displacement in Case 7, CS 

exhibited an efficient performance comparable to that of the PSM. Meanwhile, for the small 

boundary extension in Case 8, the efficiency of the PSM was improved by increasing the 

factor C up to 3500.

5. Conclusion

The PSM, which can be applied to perturbation calculations in the k-eigenvalue 

mode, was revisited in this study. It was confirmed that the PSM can yield an accurate k-

eigenvalue change caused by cross-section changes for various types of perturbations. The 

effect of fission source perturbation, which is the most formidable problem in k-eigenvalue 

problems, was successfully implemented via spatial discretization, as proposed by Hoffman 

et al. The method is almost exact except that it incurs an approximation in the spatial 

discretization for fission source perturbation. CS, which is another exact Monte Carlo 

method, has a weakness for large cross-section changes such as the replacement of a material 

with another one. The PSM is a robust method for large perturbations that cannot be 

addressed by CS owing to its unbounded statistical uncertainty. A larger perturbed region 
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signifies that more perturbation particles emitted from the perturbed region need to be 

tracked, which worsens the efficiency of the PSM for perturbations in a larger perturbed 

region. Meanwhile, the PSM exhibited excellent efficiency for perturbations added in a small 

region. The pseudo-scattering method, which was proposed by the authors for fixed-source 

problems, was applied in this study to improve computation efficiency. The efficiency can 

be further improved by adjusting a factor for the pseudo-scattering method. The algorithm 

for fission source perturbation in the PSM can reduce the large memory requirements of 

conventional Monte Carlo perturbation methods. Although the propose method was verified 

for the multi-group problems, this can be applied to continuous energy Monte Carlo codes 

with slight modification.

Future work includes developing a new algorithm that does not require spatial 

discretization for fission source perturbation such that the PSM becomes applicable to more 

general problems.

Appendix

The effect of the spatial bin size on k-eigenvalue changes was studied for Case 2. 

The k-eigenvalue changes that were calculated with several spatial bin sizes are listed in 

Table 17. Although the results were significantly affected by the number of the spatial bins, 

it was found that the effect was not so remarkable even for the considerably rough 

discretization such as (7 + 3 +7) × (7 + 3 + 7).
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Table captions

Table 1. Three group constants of materials (1) and (2) in Figure 2 (Cases 1 and 2).

Table 2. Three group constants of material (3) in Figure 2 (Case1).

Table 3. k-eigenvalue changes for verification (Case 1).

Table 4. Relative figure-of-merit with respect to direct method. Number in parentheses 

denotes factor C in Eq. (32).

Table 5. Three group constants of material (3) in Figure 2 (Case2).

Table 6. k-eigenvalue changes for verification (Case 2).

Table 7. Three group constants of UO2 rod array (the materials (1) and (2) in Figure 2 

(Case3)).

Table 8. Three group constants of light water (the material (3) in Figure 2 (Case3)).

Table 9. k-eigenvalue changes for replacement of UO2 with light water (Case 3).

Table 10. k-eigenvalue changes for light water density change (Case 4).

Table 11. Three group constants of graphite.

Table 12. k-eigenvalue changes for interface displacement by 1 cm (Case 5).

Table 13. Relative figure-of-merit with respect to direct method. Number in parentheses 

denotes factor C in Eq. (32).

Table 14. k-eigenvalue changes for interface displacement by 0.02 cm (Case 6).

Table 15. k-eigenvalue changes for boundary extension by 3 cm (Case 7).

Table 16. k-eigenvalue changes for boundary extension by 0.02 cm (Case 8).

Table 17. Dependence of k-eigenvalue change on spatial bin sizes in Case 2.

Page 24 of 48

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology



For Peer Review Only

25

Figure captions

Figure 1(a). Flow chart of unperturbed calculation mode.

Figure 1(b). Flow chart of perturbation calculation mode.

Figure 2. Geometry for perturbation calculations in Cases 1 to 4.

Figure 3. ∆k with and without source perturbation effect as a function of generation.

Figure 4. Interface shift in Case 5 (x = 1 cm) and Case 6 (x = 0.02 cm).

Figure 5. External boundary extension in Case 7 (x = 3 cm) and Case 8 (x = 0.02 cm).
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Figure 1(a). Flow chart of unperturbed calculation mode.
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Figure 1(b). Flow chart of perturbation calculation mode.
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Figure 2. Geometry for perturbation calculations in Cases 1 to 4.
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Figure 3. ∆k with and without source perturbation effect as a function of generation.
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Figure 4. Interface shift in Case 5 (x = 1 cm) and Case 6 (x =0.02 cm).
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Figure 5. External boundary extension in Case 7 (x = 3 cm) and Case 8 (x = 0.02 cm).
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Table 1. Three group constants of materials (1) and (2) in Figure 2 (Cases 1 and 2).

1st group 2nd group 3rd group
𝛴𝑡 (𝑐𝑚 ―1) 1.0 1.5 3.0
𝛴𝑐(𝑐𝑚 ―1) 0.01 0.02 0.03
𝛴𝑓(𝑐𝑚 ―1) 0.01 0.04 0.06

𝜈 2.4 2.4 2.4
𝜒 0.8 0.2 0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1) 0.882 1.296 2.91
𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1) 0.098 0.144 0.0
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Table 2. Three group constants of material (3) in Figure 2 (Case1).

1st group 2nd group 3rd group
𝛴𝑡 (𝑐𝑚 ―1) 1.1 1.6 3.2
𝛴𝑐(𝑐𝑚 ―1) 0.005 0.01 0.015
𝛴𝑓(𝑐𝑚 ―1) 0.02 0.08 0.12

𝜈 2.4 2.4 2.4
𝜒 0.6 0.4 0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1) 0.86 1.208 3.065
𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1) 0.215 0.302 0.0
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Table 3. k-eigenvalue changes for verification (Case 1).
PSM (C=1) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 4.4574×10−2 ± 5.9×10−5 4.4517×10−2 ± 2.4×10−5

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 1.1139×10−1 ± 1.2×10−4 9.9430×10−2 ± 9.4×10−4

Total 1.5596×10−1 ± 1.4×10−4 1.4395×10−1 ± 9.4×10−4

Direct method 1.5585×10−1 ± 4×10−5

Deterministic method 1.5586×10−1
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Table 4. Relative figure-of-merit with respect to direct method. Number in parentheses denotes 
factor C in Eq. (32).

Case 1 Case 2 Case 3 Case 4

Direct method 1 1 1 1

PSM 0.143 (C=1) 62.8 (C=1) 142 (C=1) 1092 (C=1)

0.072 (C=2) 66.4 (C=2) 184 (C=5) 4377 (C=20)

— — 142 (C=10) 3701 (C=30)

CS 0.004 92.0 0.238 117
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Table 5. Three group constants of material (3) in Figure 2 (Case2).

1st group 2nd group 3rd group
𝛴𝑡 (𝑐𝑚 ―1) 1.05 1.52 3.05
𝛴𝑐(𝑐𝑚 ―1) 0.009 0.018 0.029
𝛴𝑓(𝑐𝑚 ―1) 0.011 0.045 0.065

𝜈 2.4 2.4 2.4
𝜒 0.78 0.22 0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1) 0.9167 1.29673 2.956
𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1) 0.1133 0.16027 0.0
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Table 6. k-eigenvalue changes for verification (Case 2).
PSM (C=1) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 5.2507×10−3 ± 8.8×10−6 5.2342×10−3 ± 3.2×10−6

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 5.1664×10−3 ± 4.1×10−6 5.1028×10−3 ± 6.0×10−6

Total 1.0417×10−2 ± 9.6×10−6 1.0337×10−2 ± 6.8×10−6

Direct method 1.0366×10−2 ± 6.1×10−5

Deterministic method 1.0389×10−2
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Table 7. Three group constants of UO2 rod array (the materials (1) and (2) in Figure 2 (Case3)).

1st group 2nd group 3rd group
𝛴𝑡 (𝑐𝑚 ―1) 0.29829 0.83334 1.6389
𝛴𝑐(𝑐𝑚 ―1) 3.2674×10−3 9.7371×10−3 0.029252
𝛴𝑓(𝑐𝑚 ―1) 3.0586×10−3 2.1579×10−3 0.056928

𝜈 2.4 2.4 2.4
𝜒 0.87820 0.12180 0.0

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1) 0.22106 0.77764 1.5527
𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1) 0.073843 0.043803 0.0
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Table 8. Three group constants of light water (the material (3) in Figure 2 (Case3)).
1st group 2nd group 3rd group

𝛴𝑡 (𝑐𝑚 ―1) 0.33207 1.1265 2.7812
𝛴𝑐(𝑐𝑚 ―1) 3.0500×10−4 3.6990×10−4 0.018250

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1) 0.22713 1.0281 2.7630
𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1) 0.10464 0.097961 0.0
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Table 9. k-eigenvalue changes for replacement of UO2 with light water (Case 3).
PSM (C=5) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 9.1827×10−5 ± 2.52×10−6 1.4112×10−4 ± 4.64×10−5

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 2.2405×10−4 ± 3.80×10−6 3.1462×10−4 ± 1.66×10−4

Total 3.1587×10−4 ± 4.56×10−6 4.5574×10−4 ± 1.72×10−4

Direct method 3.3500×10−4 ± 1.96×10−5

Deterministic method 3.1018×10−4
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Table 10. k-eigenvalue changes for light water density change (Case 4).
PSM (C=20) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 −7.7306×10−7 ± 5.53×10−7 −1.2908×10−6 ± 1.50×10−6

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 −1.0834×10−4 ± 2.20×10−7 −1.0825×10−4 ± 3.81×10−6

Total −1.0911×10−4 ± 5.95×10−7 −1.0955×10−4 ± 4.10×10−6

Direct method −1.3600×10−4 ± 2.19×10−5

Deterministic method −1.0915×10−4
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Table 11. Three group constants of graphite.
1st group 2nd group 3rd group

𝛴𝑡 (𝑐𝑚 ―1) 0.23264 0.41793 0.42354
𝛴𝑐(𝑐𝑚 ―1) 4.1681×10−5 7.6738×10−6 2.1311×10−4

𝛴𝑠𝑔→𝑔(𝑐𝑚 ―1) 0.22122 0.41327 2.5313
𝛴𝑠𝑔→𝑔 + 1(𝑐𝑚 ―1) 0.011379 4.6514×10−3 ―
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Table 12. k-eigenvalue changes for interface displacement by 1 cm (Case 5).
PSM (C=3) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 1.1793×10−2 ± 1.2×10−5 —

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 −7.7237×10−3 ± 9.6×10−6 —

Total 4.0692×10−3 ± 1.5×10−5 —

Direct method 4.0220×10−3 ± 2.16×10−5

Deterministic method 4.0182×10−3
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Table 13. Relative figure-of-merit with respect to direct method. Number in parentheses denotes 
factor C in Eq. (32).

Case 5 Case 6 Case 7 Case 8

Direct method 1 1 1 1

PSM 5.17 (C=1) 341 (C=1) 54.1 (C=1) 2.33×105 (C=1)

13.4 (C=3) 2114 (C=40) 301 (C=20) 7.20×106 (C=3500)

12.1 (C=5) 1479 (C=60) 241 (C=40) 6.00×106 (C=5000)

CS — — 135 1.92×104

Page 44 of 48

URL: http://mc.manuscriptcentral.com/tnst E-mail: hensyu@aesj.or.jp

Journal of Nuclear Science and Technology



For Peer Review Only

Table 14. k-eigenvalue changes for interface displacement by 0.02 cm (Case 6).
PSM (C=40) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 2.3001×10−4 ± 2.4×10−7 —

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 −1.4561×10−4 ± 8.3×10−7 —

Total 8.4398×10−5 ± 8.69×10−7 —

Direct method 4.40×10−5 ± 1.55×10−5

Deterministic method 8.3940×10−5
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Table 15. k-eigenvalue changes for boundary extension by 3 cm (Case 7).
PSM (C=20) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 4.0950×10−3 ± 3.7×10−6 4.0875×10−3 ± 4.6×10−6

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 −1.2387×10−3 ± 3.5×10−6 −1.2572×10−3 ± 6.8×10−6

Total 2.8563×10−3 ± 5.1×10−6 2.8302×10−3 ± 8.2×10−6

Direct method 2.8810×10−3 ± 1.92×10−5

Deterministic method 2.8564×10−3
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Table 16. k-eigenvalue changes for boundary extension by 0.02 cm (Case 8).
PSM (C=3500) CS

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 3.3091×10−5 ± 2.3×10−8 3.3132×10−5 ± 3.34×10−7

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 −9.8679×10−6 ± 2.16×10−8 −1.0123×10−5 ± 5.08×10−7

Total 2.3223×10−5 ± 3.2×10−8 2.3009×10−5 ± 6.08×10−7

Direct method —

Deterministic method 2.3790×10−5
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Table 17. Dependence of k-eigenvalue change on spatial bin sizes in Case 2.

Spatial 
bins

(300+100+300)× 
(300+100+300)*

(15+5+15)×(15+5+5) (7+3+7)×(7+3+7)

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 5.2403×10−3 ± 8.6×10−6 5.2396×10−3 ±8.5×10−6 5.1796×10−3 ±8.2×10−6

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 5.1561×10−3 ± 6.8×10−6 5.1982×10−3 ±6.8×10−6 5.1985×10−3 ±2.4×10−6

Total 1.0396×10−2 ± 1.1×10−5 1.0438×10−2 ±1.1×10−5 1.0378×10−2 ±8.5×10−6

*This is the same as in Table 6.

Table 17 (continued).

Spatial 
bins

(4+2+4)×(4+2+4) (3+2+3)×(3+2+3)

Δ𝑘𝑁𝑃
𝑒𝑓𝑓 4.9725×10−3 ±8.3×10−6 4.5344×10−3 ±8.2×10−6

Δ𝑘𝑃𝑆
𝑒𝑓𝑓 5.1395×10−3 ±2.5×10−6 4.7738×10−3 ±2.4×10−6

Total 1.0112×10−2 ±8.7×10−6 9.3082×10−3 ±8.5×10−6
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