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Abstract 11 

 When measuring the fundamental mode decay constant 𝛾 in an exponential experiment, it is 12 

difficult to extract the fundamental mode from a measured neutron flux distribution that is 13 

contaminated by many higher harmonics. Dynamic mode decomposition (DMD), which is 14 

intended for time-varying system analyses, is applied to the eigendecomposition of a three-15 

dimensional flux distribution by viewing a series of two-dimensional flux profiles at horizontal 16 

planes as snapshots of a time-varying system. Through DMD, a fundamental mode can be 17 

extracted accurately from limited measured data that are largely contaminated by higher harmonics. 18 

The DMD yields a biased 𝛾-eigenvalue if the statistical fluctuation of measured data is considered, 19 

and the bias is adjusted through a numerical simulation of an exponential experiment. 20 

Bootstrapping is employed for resampling the measured data from an exponential experiment. 21 

Ultimately, several measurements for an exponential experiment are closely simulated by 22 

bootstrap samples from a limited number of measurements. 23 

 24 

Keywords: Gamma-eigenvalue; Exponential experiment; Higher harmonics; Dynamic mode 25 

decomposition; Bootstrapping 26 

 27 

1. Introduction 28 

 In a nuclear fuel assembly where the horizontal buckling is larger than the axial (vertical) 29 

buckling and the material composition is vertically uniform, the asymptotic neutron flux decays 30 
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 2 

vertically from the neutron source according to an exponential function, exp(−𝛾𝑧). The spatial 1 

decay constant, 𝛾, is closely related to the subcriticality of the assembly. Similar to the prompt 2 

neutron time decay constant 𝛼, 𝛾 is an important factor for ensuring nuclear criticality safety in 3 

a nuclear fuel facility (Suzaki, 1991). The measured decay constant 𝛾 can be used as an indicator 4 

to benchmark nuclear criticality analysis codes. Suzaki et al. (1995, 1999) identified 𝛾-values of 5 

PWR and BWR spent fuel assemblies by performing exponential experiments in spent fuel storage 6 

pools. The measured values contributed to validating the criticality safety analysis methods for 7 

spent fuels. 8 

 While the decay constant that is required to be measured in an exponential experiment is a 9 

fundamental mode eigenvalue, the measured flux distribution is the sum of a large number of 10 

higher harmonics. A formidable difficulty faced in an exponential experiment is the extraction of 11 

the fundamental mode eigenvalue from the flux distribution that is contaminated by higher 12 

harmonics. Yamamoto et al. (2003) developed an analysis method to expand the horizontal flux 13 

distribution into a series of eigenfunctions. The method was applied to an exponential experiment 14 

performed in the tank-type critical assembly (TCA) (Tsuruta et al., 1978) of the former Japan 15 

Atomic Energy Research Institute. It provides useful information on the influence of each higher 16 

harmonic on the measured results in an exponential experiment. 17 

 Similar problems regarding the effect of higher harmonics are encountered when measuring 18 

the time-decay constant 𝛼 using the pulsed neutron method. Immediately after the generation of 19 

a pulsed neutron, the time decay of the neutron flux is influenced by a large number of higher 20 

harmonics. Recently, a new method was developed to decompose the time-decaying flux into 21 

important eigenfunctions based on the dynamic mode decomposition (DMD) method (McClarren, 22 

2019; Hardy et al., 2019). The DMD method (Schmid, 2010; Kutz et al., 2016) was originally 23 

developed in the fluid dynamics field as a mathematical technique for decomposing complex fluid 24 

flows into a simple representation based on spatiotemporal coherent structures. DMD is 25 

advantageous because it is an equation-free, data-driven method that can enable precise 26 

decomposition of a complex system into spatiotemporal coherent structures. 27 
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 3 

 The applications of DMD are concentrated on time-varying phenomena, such as fluid flows 1 

and pulsed neutron time decay. Some recent applications of DMD in the nuclear engineering field 2 

are published in (Abdo et al., 2019; McClarren and Haut, 2020; Di Ronco et al., 2020). A unique 3 

and significant application of DMD in the nuclear engineering field is the acceleration of the power 4 

iteration method for k-eigenvalue calculations (Roberts, et al., 2019). DMD was applied to the 5 

power iteration method by viewing successive iterations of the fission source distribution as 6 

snapshots of a time-varying system. Similarly, through substitution of the temporal evolution in 7 

DMD with the spatial propagation in an exponential experiment and viewing of horizontal flux 8 

profiles as snapshots of a time-varying phenomenon, DMD is expected to serve as a viable tool 9 

for extraction of a fundamental mode 𝛾-eigenvalue from a measured flux distribution. With this 10 

context, the objective of this study is to examine the applicability of DMD to higher harmonic 11 

decomposition in an exponential experiment. 12 

 The remainder of this paper is organized as follows. Section 2 provides a brief review of the 13 

authors’ conventional method of higher-harmonic decomposition in an exponential experiment. 14 

Section 3 presents an explanation for the application of DMD to the exponential experiment, and 15 

Section 4 presents numerical examples. In Section 5, the effect of statistical measurement 16 

uncertainty in an exponential experiment on the 𝛾-eigenvalue is discussed, and a method to 17 

account for this effect is proposed. The final section presents the conclusions of the study. 18 

 19 

2. Exponential experiment and higher harmonics analysis 20 

 The exponential experiment is a well-known classical technique used to identify the degree 21 

of subcriticality (Suzaki, 1991). The higher-harmonic analysis method for an exponential 22 

experiment was previously developed by one of the authors (Yamamoto, et al., 2003). This section 23 

briefly revisits the higher-harmonic analysis method. Because the calculation code of the higher-24 

harmonic decomposition used in this study is based on the diffusion approximation, the theory 25 

presented in this study uses diffusion equations. To calculate a fundamental mode 𝛾-eigenvalue 26 

using the Monte Carlo method, the reader may refer to the studies of (Yamamoto and Miyoshi, 27 

2003; Yamamoto, 2012; Yamamoto and Sakamoto, 2019a). 28 
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 4 

 A multi-group, two-dimensional diffusion equation for the mth-mode 𝛾-eigenvalue is given 1 

as follows: 2 

𝑴𝑔(𝒓)𝜙𝑔
𝑚(𝒓) = γ𝑚

2 𝐷𝑔(𝒓)𝜙𝑔
𝑚(𝒓),𝑚 = 0, 1,2,∙∙∙ , (1) 3 

where 𝜙𝑔
𝑚 is the mth-mode eigenfunction of the neutron flux in the energy group g,𝐷𝑔 is the 4 

diffusion coefficient, 𝛾𝑚  is the mth-mode 𝛾-eigenvalue, and 𝒓 is the position vector in the 5 

horizontal plane. The left-hand side of Eq. (1) is defined as follows: 6 

𝑴𝑔(𝒓)𝜙𝑔
𝑚(𝒓) ≡ −∇𝐷𝑔(𝒓) ∙ ∇𝜙𝑔

𝑚(𝒓) + 𝛴𝑎𝑔(𝒓)𝜙𝑔
𝑚(𝒓) + ∑ 𝛴𝑠

𝑔→𝑔′(𝒓)𝜙𝑔
𝑚(𝒓)

𝐺

𝑔′=1

𝑔≠𝑔′

7 

− 𝜒𝑔 ∑ 𝜈Σ𝑓𝑔′(𝒓)𝜙𝑔′
𝑚(𝒓)

𝐺

𝑔′=1

− ∑ 𝛴𝑠
𝑔′→𝑔(𝒓)𝜙𝑔′

𝑚(𝒓)

𝐺

𝑔′=1

𝑔≠𝑔′

,𝑔 = 1,2,∙∙∙, 𝐺,(2) 8 

where 𝛴𝑎𝑔 is the absorption cross section, 𝛴𝑠
𝑔′→𝑔

 is the scattering cross section from group 𝑔′ 9 

to 𝑔, 𝜈Σ𝑓𝑔 is the production cross section, and 𝜒𝑔 is the fission spectrum. Similarly, the adjoint 10 

diffusion equation in Eq. (2) is given as follows: 11 

𝑴𝑔
∗ (𝒓)𝜓𝑔

𝑛(𝒓) = γ𝑛
2𝐷𝑔(𝒓)𝜓𝑔

𝑛(𝒓),𝑛 = 0, 1,2,∙∙∙ , (3) 12 

where 𝜓𝑔
𝑛  is the nth-mode eigenfunction of the adjoint flux. The left-hand side of Eq. (3) is 13 

defined as follows: 14 

𝑴𝑔
∗ (𝒓)𝜓𝑔

𝑛(𝒓) ≡ −∇𝐷𝑔(𝒓) ∙ ∇𝜓𝑔
𝑛(𝒓) + 𝛴𝑎𝑔(𝒓)𝜓𝑔

𝑛(𝒓) + ∑ 𝛴𝑠
𝑔′→𝑔(𝒓)𝜓𝑔

𝑛(𝒓)

𝐺

𝑔′=1

𝑔≠𝑔′

15 

− 𝜈Σ𝑓𝑔(𝒓) ∑ 𝜒𝑔′𝜓𝑔′
𝑛 (𝒓)

𝐺

𝑔′=1

− ∑ 𝛴𝑠
𝑔→𝑔′(𝒓)𝜓g′

𝑛 (𝒓)

𝐺

𝑔′=1

𝑔≠𝑔′

.(4) 16 

A three-dimensional neutron flux distribution formed in an exponential experiment is given 17 

by the solution of the fixed source problem as follows: 18 

𝑴𝑔(𝒓, 𝑧)𝜙𝑔
𝑠(𝒓, 𝑧) = 𝑆(𝒓, 𝑧),(5) 19 

where 𝜙𝑔
𝑠  is the neutron flux in the fixed source problem, 𝑆(𝒓, 𝑧) is the neutron source density 20 

at (𝒓, 𝑧), and 𝑀𝑔(𝒓, 𝑧) is the same as 𝑀𝑔(𝒓) except that (𝒓) in Eq. (2) is replaced with (𝒓, 𝑧). 21 

Using the eigenfunctions of Eq. (1), the three-dimensional neutron flux distribution is expanded 22 

as follows: 23 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 5 

𝜙𝑔
𝑠(𝒓, 𝑧) = ∑ 𝑎𝑚(𝑧)𝜙𝑔

𝑚(𝒓),

∞

𝑚=0

(6) 1 

where 𝑎𝑚(𝑧) is the expansion coefficient of the mth eigenfunction. 𝜙𝑔
𝑚(𝒓) and 𝜓𝑔

𝑛(𝒓) have 2 

the following orthogonality relations: 3 

〈𝜓𝑔
𝑛(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑚(𝒓)〉 = 0for𝑚 ≠ 𝑛and𝛾𝑚 ≠ 𝛾𝑛,(7) 4 

〈𝜓𝑔
𝑛(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑚(𝒓)〉 ≠ 0for𝑚 = 𝑛.(8) 5 

where the angle brackets represent the integration over the entire volume and energy groups. Using 6 

orthogonality relations, the expansion coefficient is given as follows: 7 

𝑎𝑚(𝑧) =
〈𝜓𝑔

𝑚(𝒓)𝐷𝑔(𝒓)𝜙𝑔
𝑠(𝒓, 𝑧)〉

〈𝜓𝑔
𝑚(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑚(𝒓)〉
.(9) 8 

When the mth and nth eigenvalues are equal and degenerate, the expansion coefficients of both 9 

eigenfunctions are given by the solution of the following simultaneous equations: 10 

〈𝜓𝑔
𝑛(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑠(𝒓, 𝑧)〉 = 𝑎𝑚(𝑧)〈𝜓𝑔
𝑛(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑚(𝒓)〉 + 𝑎𝑛(𝑧)〈𝜓𝑔
𝑛(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑛(𝒓)〉, (10) 11 

〈𝜓𝑔
𝑚(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑠(𝒓, 𝑧)〉 = 𝑎𝑚(𝑧)〈𝜓𝑔
𝑚(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑚(𝒓)〉 + 𝑎𝑛(𝑧)〈𝜓𝑔
𝑚(𝒓)𝐷𝑔(𝒓)𝜙𝑔

𝑛(𝒓)〉.(11) 12 

 13 

3. DMD for exponential experiment 14 

 DMD is a dimensionality reduction method widely used in many fields of application, and the 15 

details thereof are presented extensively in the literature. Here, the outline of DMD that focuses 16 

on application to an exponential experiment is described. Among the many variants of DMD, the 17 

DMD algorithm in this study relies on the description in Chapter 1 of the report by (Kutz et al., 18 

2016). 19 

 A schematic overview of the exponential experiment is illustrated in Fig. 1. We assume that 20 

we have n measured data (e.g., neutron count rate) in each horizontal plane (snapshot), and the 21 

total number of horizontal planes is m. The set of the n-measured data at the jth horizontal plane 22 

constitutes an n-dimensional column vector: 23 

 𝐱𝑗 = [𝑥1,𝑗𝑥2,𝑗 … 𝑥𝑖,𝑗 …𝑥𝑛,𝑗]
𝑇
,(12) 24 

where 𝑥𝑖,𝑗 is the ith measured data in the jth horizontal plane. Each 𝐱𝑗 corresponds to a snapshot 25 

in the dynamic mode. In this study, the DMD algorithm was designed to collect the vector 𝐱𝑗 at 26 

regularly spaced intervals ∆𝑧  in the vertical direction. Next, we define the two matrices as 27 

follows: 28 
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 6 

𝐗 = [𝐱1𝐱2… 𝐱𝑗 …𝐱𝑚−1],(13) 1 

𝐗′ = [𝐱2𝐱3…𝐱𝑗 …𝐱𝑚].(14) 2 

Both 𝐗 and 𝐗′ are 𝑛 × (𝑚 − 1) matrices. We assume that there exists a matrix 𝐀 that linearly 3 

connects 𝐗 to 𝐗′ as follows: 4 

𝐗′ ≈ 𝐀𝐗.(15) 5 

The best-fit 𝑛 × 𝑛matrix 𝐀 is given by as follows: 6 

𝐀 = 𝐗′𝐗†,(16) 7 

where †  indicates the Moore−Penrose pseudoinverse. We perform a singular value 8 

decomposition of 𝐗 as follows: 9 

𝐗 = 𝐔𝚺𝐕∗,(17) 10 

where ∗ denotes the conjugate transpose, and 𝐔 ∈ ℂn×n; 𝚺 ∈ ℂn×n; 𝐕 ∈ ℂ(m−1)×n. As shown in 11 

the numerical examples in Section 4, performing a low-rank truncation to 𝐔, 𝚺, and 𝐕 might 12 

yield better solutions than when using the full-rank matrices. After a low-rank 𝑟(≤13 

min(𝑛,𝑚 − 1)) is chosen, 𝐗 is approximated by the truncated matrices: 14 

𝐗 ≈ 𝐔r𝚺r𝐕r
∗,(18) 15 

where 𝐔r ∈ ℂn×r, 𝚺r ∈ ℂr×r,and 𝐕r ∈ ℂ(m−1)×r. 𝐔r  and 𝐕r are obtained by considering the 16 

first r rows from 𝐔 and 𝐕, respectively. 𝚺r is obtained by considering the first r rows and r 17 

columns from 𝚺. After 𝐔r, 𝚺r, and 𝐕r are obtained, the pseudoinverse of 𝐗 is given as follows: 18 

𝐗† = 𝐕r𝚺r
−𝟏𝐔r

∗.(19) 19 

The rank-reduced representation of the 𝑛 × 𝑛matrix 𝐀 is given by an 𝑟 × 𝑟matrix as follows: 20 

�̃� = 𝐔𝐫
∗𝐀𝐔r = 𝐔𝐫

∗𝐗′𝐕𝐫𝚺
−𝟏.(20) 21 

The matrix �̃�, which represents a similarity transformation of 𝐀, has the same eigenvalues as 𝐀. 22 

Next, the eigendecomposition of �̃� is performed as follows: 23 

�̃�𝐖 = 𝐖𝚲,(21) 24 

where columns of 𝐖 are the leading r eigenvalues of 𝐀 inferred from �̃�, and 𝚲 is a diagonal 25 

matrix whose diagonal components are eigenvalues 𝜆𝑘 corresponding to 𝐖. The eigenvalues of 26 

𝐀 are the diagonal components of 𝚲, and the eigenvectors of 𝐀 are given by the columns of 𝚽: 27 

𝚽 = 𝐗′𝐕r𝚺r
−𝟏𝐖,(22) 28 

where the modes are called “exact DMD modes” (Kutz et al., 2016). 29 

Here, we suppose that the evolution of the vector 𝐱 can be approximated by the differential 30 

equation: 31 
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 7 

𝑑𝐱(𝑧)

𝑑𝑧
= 𝐁𝐱,(23) 1 

where 𝐁 is the linear mapping operator and also the matrix in the continuous-space dynamics. 2 

Meanwhile, as shown in Eq. (15), the vector 𝐗  is connected to 𝐗′  by the local linear 3 

approximation 𝐗′ ≈ 𝐀𝐗. The solution to Eq. (23) is given by as follows: 4 

𝐱(𝑧) = 𝐱(𝟎)𝒆𝐁𝑧.(24) 5 

The matrix 𝐀 corresponds to the discrete-space approximation to 𝒆𝐁∆𝑧. The continuous-space 6 

eigenvalue, i.e., the -eigenvalue, is related to the discrete eigenvalue 𝜆𝑘 of 𝐀 as follows: 7 

𝜆𝑘 = exp(𝛾𝑘Δ𝑧).(25) 8 

Using the eigenvalues and eigenvectors of 𝐀, the measured data as a continuous function of the 9 

vertical position z is approximated as follows: 10 

𝐱(𝑧) ≈ 𝚽exp(𝚪𝑧) 𝐛,(26) 11 

where 12 

𝐛 = [𝑏1𝑏2… 𝑏𝑘 … 𝑏𝑟 ]
𝑇 ,(27) 13 

𝑏𝑘  is the amplitude of the kth mode at the first horizontal plane, and 𝚪 is an 𝑟 × 𝑟diagonal 14 

matrix with the kth entry equal to 15 

𝛾𝑘 =
ln(𝜆𝑘)

Δ𝑧
.(28) 16 

Because 𝐱1 = 𝐱(0) = 𝚽𝐛, the amplitude vector at the first horizontal plane is given as follows: 17 

𝐛 = 𝚽†𝐱1,(29) 18 

where 𝚽† is the Moore−Penrose pseudoinverse of 𝚽. 19 

 20 

4. Application of DMD to exponential experiment 21 

4.1 Vertical flux distribution and decay constant 22 

The DMD method described in Section 3 was applied to a numerical model simulating an 23 

exponential experiment in the TCA (Tsuruta et al., 1978; Yamamoto et al., 2003). The numerical 24 

model was composed of an 11×11 rectangular array of 2.60 wt% enriched UO2 fuel rods immersed 25 

in a light water moderator/reflector. The center-to-center spacing of the fuel rods was 1.956 cm, 26 

and the outer diameter of the aluminum cladding was 1.42 cm, which corresponded to a moderator-27 

to-fuel ratio of 1.83. The horizontal and vertical configurations of the model are shown in Figs 2 28 

and 3, respectively. 29 
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 8 

This study used the diffusion code RHEINGOLD (Resolution of Higher order EIgenvalues 1 

for Neutronic Gamma, Omega, and Lambda mode Diffusion theory) for eigendecomposition of 2 

the two-dimensional horizontal flux distribution in the exponential experiment (Yamamoto, et al., 3 

2003; Yamamoto and Sakamoto, 2019b). Because of the limitation of the matrix size in 4 

RHEINGOLD, diffusion calculations were performed with two-energy group constants. The group 5 

constants of the homogenized fuel rod array and water reflector are listed in Table 1. The horizontal 6 

domain was discretized into a 67 × 67 mesh, as shown in Fig. 2. The 𝑘𝑒𝑓𝑓 of this two-dimensional 7 

system with zero vertical buckling was 0.8823. The three-dimensional flux distribution formed in 8 

the exponential experiment was calculated using the diffusion code CITATION (Fowler et al., 9 

1971). The regularly spaced mesh interval ∆𝑧 in the vertical direction was 1 cm. A standard 10 

extrapolated boundary condition was imposed on all external boundaries (i.e., −𝐷∇𝜙/𝜙 =11 

0.4692). The location of a neutron source that solely emitted fast neutrons is shown in Figs 2 and 12 

3. The neutron source was intentionally placed off-center along the diagonal line to excite the 13 

asymmetric higher harmonics. Thus, the flux distribution largely deviated from the fundamental 14 

mode distribution, particularly near the neutron source, because of the excited higher harmonics. 15 

This proved to be a challenging problem for DMD to extract the fundamental mode from the flux 16 

distribution. 17 

 18 

Table 1 Group constants of fuel rod array and water reflector 19 

 Fuel rod array  Water reflector 

𝐷1 (cm) 

𝐷2(cm) 

𝜈𝛴𝑓1(cm−1) 

𝜈𝛴𝑓2(cm−1) 

𝛴𝑎1(cm−1) 

𝛴𝑎2(cm−1) 

𝛴𝑠
1→2(cm−1) 

1.02294 

0.197177 

0.00643278 

0.155089 

0.00812186 

0.097414 

0.0225208 

0.905414 

0.125647 

0 

0 

0.000460058 

0.0188813 

0.0584208 
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 9 

 1 

Because neutron detectors are sensitive to thermal neutrons, this study discusses the results of 2 

thermal neutron flux. The thermal flux distributions in the z-direction above the neutron source, 3 

which were calculated by solving the fixed source problem of CITATION code, are shown in Fig. 4 

4. The locations of the flux distributions in the x-y plane (A, B, and C) are shown in Fig. 5. Because 5 

a logarithmic scale is used for the vertical axis (flux) in Fig. 4, the flux linearly decreases with the 6 

horizontal axis (distance) if the flux decays with a single decay constant (i.e., fundamental mode 7 

decay constant). However, the flux distribution near the neutron source (A) is convex downwards 8 

up to approximately 40 cm from the neutron source, which is caused by the positive higher 9 

harmonics. The flux distribution far from the neutron source (C) is convex upwards, which is 10 

caused by the negative higher harmonics. At the center of the fuel rod array (B), the flux mostly 11 

decreases with a single decay constant, except near the neutron source and upper boundary. This 12 

is because position B is the node of asymmetric higher harmonics, and the effect of the higher 13 

harmonics is minor. The rapid flux decline above 140 cm from the neutron source was caused by 14 

the effect of the boundary condition of the upper surface. Between 60 cm and 100 cm, the flux 15 

decayed with a single decay constant regardless of the horizontal position. The local decay constant 16 

at each vertical position is calculated by two adjacent fluxes as follows: 17 

𝛾 = −
ln(𝜙𝑖+1) − ln(𝜙𝑖)

∆𝑧
,(30) 18 

where 𝜙𝑖 is the thermal flux at mesh point i. The local decay constants at positions A, B, and C 19 

are shown in Fig. 6. The exact fundamental mode decay constant 𝛾0  calculated using the 20 

RHEINGOLD code was 0.07113 cm−1. While the local decay constants are different from 𝛾0 in 21 

the lower part, it can be accurately reproduced by fitting a vertical flux distribution at A and C in 22 

the range of 60–100 cm. The best-fit range for determining 𝛾0 extends wider at the center position 23 

B. However, in an actual exponential experiment, the neutron detection efficiency declines due to 24 

the decrease of neutron counts as the detection position becomes far from the neutron source. A 25 

neutron detector may not be inserted within the fuel-rod array. The detection is not always possible 26 

in the range where the fundamental mode decay constant can be measured. There may be some 27 
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 10 

occasions where only the flux distributions highly contaminated by higher harmonics are available 1 

for an exponential experiment. This study attempts to extract the fundamental-mode decay 2 

constant from flux distributions that are largely affected by higher harmonics. 3 

 4 

4.2 Resolution of higher harmonics in 𝜸-eigenvalue mode 5 

The 𝛾-eigenvalue mode higher-harmonic analysis was performed for the two-dimensional 6 

subcritical system shown in Fig. 2 using the RHEINGOLD code. The 𝛾 -eigenvalue mode 7 

diffusion equations in Eqs. (1) and (3) were discretized using a finite difference approximation to 8 

derive matrix eigenvalue equations. The matrix eigenvalue equations were solved using the double 9 

QR method to obtain the eigenvalues and eigenfunctions of the higher harmonics (Anderson et al., 10 

1999). The finite difference scheme in RHEINGOLD is the same as that for CITATION code. 11 

Thus, the fundamental mode 𝛾-eigenvalue is equal to the result of the buckling search calculation 12 

in CITATION code. The 𝛾-eigenvalues and a schematic of the flux distributions up to the 5th-13 

higher harmonics are shown in Fig. 7. The two-dimensional flux distribution 𝜙𝑠 in the x-y plane 14 

used in Eq. (9) was taken out from the three-dimensional flux distribution calculated using the 15 

fixed source calculation of CITATION code. The vertical location of 𝜙𝑠 was 5 cm above the 16 

neutron source, as shown in Fig. 3. Using Eqs. (6) and (9), 𝜙𝑠 is decomposed into a series of 17 

eigenfunctions. Fig. 8 shows the thermal flux distributions of 𝜙𝑠, fundamental mode, and higher 18 

harmonics up to 4th order along the diagonal line (red dotted line) in Fig. 2. At this elevation, not 19 

far from the neutron source, the higher harmonics are dominant over the fundamental mode. Fig. 20 

9 shows the vertical distributions of the thermal fluxes up to the 4th order at position A. The 21 

contribution of the higher harmonics decayed with the vertical distance from the neutron source. 22 

Beyond approximately 50 cm from the neutron source, the thermal flux distribution is mostly 23 

dominated by the fundamental mode. 24 

4.3 Resolution of higher harmonics using DMD 25 

4.3.1 Use of many data points in horizontal direction 26 

The three-dimensional flux distribution calculated using the fixed source problem of 27 
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CITATION code was decomposed using the DMD method. Because the objective of an 1 

exponential experiment is to find the fundamental-mode 𝛾-eigenvalue, this study focuses on 2 

finding the fundamental mode eigenvalue and eigenfunction as accurately as possible, rather than 3 

finding the higher harmonics. When performing an exponential experiment, there can be an 4 

unlimited number of combinations of measurement points in a three-dimensional space. Thus, this 5 

study does not attempt to find an optimal experimental condition for determining the fundamental 6 

mode eigenvalue. Instead, this study focuses on how the fundamental mode eigenvalue and 7 

eigenfunction can be reproduced under certain experimental conditions. Throughout this study, 8 

the vertical range of the neutron flux used for DMD was between 5 cm and 34 or 35 cm from the 9 

neutron source. The upper bound of the vertical range varied depending on the number of data 10 

points. Because the mesh interval was 1 cm in the vertical direction, the number of data points was 11 

30 at most in the direction. The vertical range is the yellow-hatched area in Figs. 4 and 6. 12 

In the first numerical example, the data points of the thermal neutron flux in the x-y direction 13 

were all mesh points along the diagonal (red dotted line) and horizontal (blue dotted line) lines in 14 

Fig. 2. The total number of data points in the x-y direction was 133 (67 + 66). Thus, matrix 𝐗 (and 15 

𝐗′) defined by Eq. (13) (and Eq. (14), respectively) has dimensions of 133 × (30−1). According to 16 

the DMD algorithm described in Section 3, the 𝛾-eigenvalues and eigenfunctions were obtained 17 

using the eigendecomposition defined by Eq. (21). To assess the quality of the fundamental mode 18 

reproduction, the convergence of the DMD solution was measured using the norm: 19 

𝜀 =∑(𝑎0𝜙𝑖
0 − 𝑏𝑘Φ𝑘,𝑖)

2
𝑀

𝑖=1

,(31) 20 

where i is the index of the data point in the x-y direction, M is the total number of data points (i.e., 21 

133), 𝑎0𝜙𝑖
0 is the fundamental mode component decomposed from the flux distribution at the 22 

lowest horizontal plane (5 cm from the neutron source), and k is the row number corresponding to 23 

the fundamental mode in the amplitude vector 𝐛 (defined by Eq. (29)) and matrix 𝚽 (defined 24 

by Eq. (22)). While �̃� (defined by Eq. (20)) has a full rank of at most 29, the smallest norm 𝜀 25 

was attained when the rank 𝑟 = 23. The DMD solution captured feasible eigenvalues up to the 26 
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 12 

third-higher harmonic. The second-higher harmonic was not captured because the neutron source 1 

was placed at the node of the second-higher harmonics. The eigenvalues of �̃� with 𝑟 = 23 up 2 

to the third-higher harmonic were compared with the exact values obtained by the RHEINGOLD 3 

code in Table 2. DMD yielded a precise reproduction of the exact eigenvalues of the fundamental 4 

mode and first-higher harmonic. The eigenvalues of the third-higher harmonic did not correspond 5 

well when compared to the first two eigenvalues. The eigenfunctions along the diagonal line at the 6 

lowest horizontal plane are shown in Fig. 10 (fundamental mode), Fig. 11 (first-higher harmonic), 7 

and Fig. 12 (third-higher harmonic). The solutions from RHEINGOLD are also shown in these 8 

figures for comparison. Similar to the eigenvalues, the fundamental mode and first-higher 9 

harmonic eigenfunctions extracted from the DMD accurately matched the exact eigenfunctions. 10 

Although the DMD solution for the third-higher harmonic spatial distribution definitely deviated 11 

from the true solution, it roughly characterized the exact solution. 12 

 Another numerical example where the neutron source was placed at the node of the third-13 

higher harmonic are presented in Appendix. 14 

 15 

Table 2 Eigenvalues of DMD from matrix of 133 × 29 and 𝑟 = 23 16 

 Exact (cm−1) DMD (cm−1) 

𝛾0 0.07113 0.07112 

𝛾1 0.1723 0.1724 

𝛾3 0.2324 0.2311 

𝛾4 0.2584 — 

𝛾5 0.2602 — 

 17 

4.3.2 Use of limited number of data points 18 

 In an actual exponential experiment, the number of measurement points and measurement 19 

time must be limited owing to some experimental requirements. In particular, measurements 20 

within a fuel rod array are mostly impossible because a neutron detector can hardly be inserted 21 

within the fuel rod array, except in a water rod or thimble. Hence, most of the measurements must 22 
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 13 

be performed outside the fuel rod array. Given that the time required for an exponential experiment 1 

increases with the number of measurement points, an exponential experiment should be performed 2 

at a limited number of measurement points. Considering such limitations in an exponential 3 

experiment, 16 points outside the fuel rod array were chosen for the next numerical example, as 4 

indicated by the red circles in Fig. 5. The vertical range was again between 5 cm and 34 or 35 cm 5 

from the neutron source. The maximum number of data points in the vertical direction (snapshots) 6 

was 30 when all data points aligned at 1 cm intervals were used for DMD. However, the use of the 7 

maximum number of data points and finest vertical interval did not yield the most accurate 8 

eigenvalues from the DMD. The reason of this phenomenon can be hypothesized by considering 9 

the following factors. The fundamental mode can be accurately extracted from a fewer number of 10 

data points in a region where the fundamental mode is dominant over higher harmonics. On the 11 

other hand, too fine interval of the data points unnecessarily increases the influence of the 12 

undesired higher harmonics near the neutron source, which may cause the fundamental mode 13 

eigenvalue from the DMD deviate from the best solution. The vertical interval was changed from 14 

1 to 6 cm, and the rank that yielded the best solution, i.e., the lowest defined by Eq. (31), was 15 

determined. The eigenvalues up to the third-higher harmonic for each interval are listed in Table 16 

3, which shows that the best solutions were obtained with an interval of 3 or 4 cm regardless of 17 

losing the resolution in the vertical direction. The eigenfunctions along the diagonal line at the 18 

lowest horizontal plane are compared between the DMD solutions and exact solutions in Fig. 13 19 

(fundamental mode), Fig. 14 (first-higher harmonic), and Fig. 15 (third-higher harmonic). The 20 

DMD solutions in these figures were for a vertical interval of 3 cm. While the first- and third-21 

higher harmonics reproduced via DMD involved significant deviations from the exact solutions, 22 

the fundamental mode was accurately reproduced. 23 

 24 
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Table 3 Eigenvalues of DMD for vertical intervals from 1 to 6 cm 1 

Interval 
Vertical data 

points 

Rank 

(full rank) 
𝛾0 (cm−1) 𝛾1 (cm−1) 𝛾3 (cm−1) 

Exact NA NA 0.07113 0.1723 0.2324 

1 cm 30 16 (16) 0.07131 0.1673 0.2270 

2 cm 16 10 (15) 0.07119 0.1680 —* 

3 cm 11 10 (10) 0.07119 0.1720 0.2211 

4 cm 9 7 (8) 0.07117 0.1701 0.2377 

5 cm 7 6 (6) 0.07114 0.1698 0.2408 

6 cm 6 5 (5) 0.07120 0.1777 —* 

*This mode was not extracted. 2 

 3 

5. Estimation of true decay constant with DMD 4 

5.1 Effect of measurement uncertainty 5 

 As described in the previous section, DMD was applied to the exact numerical solution of the 6 

neutron flux distribution in an exponential experiment. However, the measured values always 7 

entail certain statistical uncertainties. The neutron count N has a fractional standard deviation 8 

uncertainty of 1/√𝑁. In this section, the effect of this statistical uncertainty on the fundamental 9 

mode eigenvalue obtained by the DMD is examined. The numerical example in Section 4.3.2 was 10 

used for this test. All data points were in the water reflector, with a vertical interval of 2 cm. The 11 

matrix X, defined by Eq. (13), has dimensions of 16 × (16−1). It was assumed that all data in this 12 

matrix randomly varied around the true values according to the normal distribution with a constant 13 

fractional standard deviation. The fluctuation of each neutron count was simulated by changing all 14 

the elements of matrix X as follows: 15 

𝑥𝑗𝑘
′ = 𝑥𝑗𝑘(1 + 𝛼𝑁𝜉),(32) 16 

where 𝛼 is the fractional standard deviation and 𝑁𝜉  is the random number sampled from the 17 

standard normal distribution. Using a matrix whose element was 𝑥𝑗𝑘
′ , the fundamental mode 18 

eigenvalue 𝛾0 was computed using DMD. This trial was repeated 300 times for 𝛼 = 0.01 and 19 
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0.001. When the fractional standard deviation 𝛼  is 0.01 or 0.001, the corresponding neutron 1 

counts at each data point are 10,000 and 1,000,000, respectively. The sample mean, sample 2 

standard deviation, and standard error of 𝛾0 are listed in Table 4. The sample means of 𝛾0 were 3 

significantly underestimated when compared with 𝛾0 obtained from the data without uncertainty. 4 

That is, 𝛾0 is biased and does not distribute around the true value if each data fluctuates owing to 5 

measurement uncertainty. The bias increased with the fractional standard deviation, 𝛼. The bias 6 

is caused by many factors such as the influence of the higher harmonics and the capability of the 7 

DMD for the flux distribution including the higher harmonics. Thus, the mechanism of the 8 

underestimation (or overestimation) is too complicated to identify the reason of the bias. 9 

 10 

Table 4 Fundamental mode 𝛾-eigenvalues of DMD 11 

 𝛾0 (cm−1) 

 Exact 𝛼 = 0 𝛼 = 0.01 𝛼 = 0.001 

Sample mean 0.07113 0.07119* 0.06951 0.07099 

Sample standard deviation NA NA 0.00181 0.00066 

Standard error NA NA 0.00010 0.00004 

* Similar to Table 3. 12 

 13 

5.2 Estimation from measurement 14 

This section outlines a methodology to obtain the best estimate of the fundamental mode 15 

eigenvalue using measured data and DMD. After an exponential experiment is performed and the 16 

neutron flux distributions are measured, DMD is applied to compute the fundamental mode 17 

eigenvalue of the decay constant using the measured data. This process is repeated several times 18 

to obtain the sample mean. As shown in Section 5.1, this sample mean is biased owing to the 19 

statistical uncertainty in each measured data. If the ratio of the biased mean value to the true 20 

eigenvalue is known, the true eigenvalue can be deduced from the measurement. This study 21 

proposes a method for estimating the ratio by employing a numerical simulation. 22 

After a numerical model that reproduces the exponential experiment is constructed, the 23 
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sample mean of the fundamental mode 𝛾-eigenvalue is calculated using the same procedure as in 1 

Section 5.1. The numerical model should reproduce the measurement conditions as closely as 2 

possible. The fractional standard deviation 𝛼 at each data point used in the numerical model must 3 

coincide with that in the measurement. In addition, the exact 𝛾-eigenvalue is calculated for the 4 

numerical model. The calculation code for this numerical model can be a deterministic diffusion 5 

or transport code. The use of a Monte Carlo code should be avoided because of the statistical 6 

uncertainties involved in the calculation results, unless the uncertainties are much smaller than the 7 

measurement uncertainties. The exact 𝛾-eigenvalue can be easily obtained by a buckling search 8 

mode calculation, as installed in CITATION code. If a buckling search mode calculation is 9 

unavailable, the exact value can be obtained by fitting a neutron flux in a region that is sufficiently 10 

distant from the neutron source. 11 

Here, we assume that the ratio of the biased mean value to the true eigenvalue can be 12 

accurately approximated by the ratio from this numerical model. The true fundamental mode 𝛾-13 

eigenvalue 𝛾𝑒𝑠𝑡 is estimated as follows: 14 

𝛾𝑒𝑠𝑡 = �̅�𝑚
𝛾𝑒
�̅�𝑐
,(33) 15 

where �̅�𝑚 is the sample mean of 𝛾-eigenvalues from the measurement and DMD, 𝛾𝑒 is the exact 16 

𝛾-eigenvalue of the numerical model, and �̅�𝑐 is the sample mean calculated using the procedure 17 

in Section 5.1. 18 

 19 

5.3 Bootstrapping for exponential experiment 20 

 The procedure proposed in Section 5.2 requires the measurement of an exponential 21 

experiment to be repeated many times. A large number of repetitions is desirable to ensure a 22 

reliable and significant result. However, if each measurement requires considerable resources and 23 

the repetition times must be restricted, the data set obtained from the measurements may not be 24 

sufficiently large. In this section, bootstrapping (Efron, 1979; Endo and Yamamoto, 2019) is 25 

proposed to simulate sampling from a large population using a very limited number of repeated 26 

measurements. The bootstrapping procedure for the exponential experiment is illustrated in Fig. 27 
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16. First, an exponential experiment is repeated N times (e.g., 𝑁 = 3 in Fig. 16). We have N data 1 

arrays for each horizontal position, as shown in the left figure in Fig. 16. Each data array is 2 

composed of a series of measured data along the vertical direction in a horizontal position. At each 3 

vertical position, one data is randomly selected from the N samples at the same vertical position. 4 

This procedure is performed for all vertical positions. Then, we have a new data array at this 5 

horizontal position. This procedure is performed for all horizontal positions. Finally, we have a 6 

new complete dataset for performing DMD, and we obtain a 𝛾-eigenvalue for this dataset. This 7 

procedure is repeated M times, where M is much larger than the number of original samples N. 8 

The sample mean of the M number of 𝛾-eigenvalues is used for �̅�𝑚  in Eq. (33) with high 9 

reliability, even if a small number of repeated measurements are performed. 10 

 Bootstrapping was performed for the numerical model described in Section 5.1. Using Eq. 11 

(32), 10 data sets that simulated the measured data in the exponential experiment were generated 12 

for 𝛼 = 0.01 and 0.001. Bootstrap samples were randomly selected from the 10 original datasets 13 

as illustrated in Fig. 16. DMD was applied to the bootstrap samples, and the bootstrap procedure 14 

was repeated 300 times. In Table 5, the sample mean and sample standard deviation that were 15 

generated from the bootstrap samples are compared with those of the actual sampling (300 trials), 16 

as presented in Section 5.1. As shown in Table 5, the results generated from the bootstrap samples 17 

are equivalent to the actual sampling. This numerical simulation suggests that bootstrapping is 18 

expected to simulate a larger number of exponential experiments from a limited number of 19 

measured data.  20 

In an actual measurement, a measurement does not have to be repeated many times (e.g., 10 21 

in this example) in order to obtain a multiple number of data sets. The multiple data sets for 22 

bootstrapping can be obtained by equally separating a measurement time assigned to each 23 

measurement point into the number of the data sets. Thus, the measurement is required to be 24 

performed only once. 25 

 26 
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Table 5 Fundamental mode 𝛾-eigenvalues by actual sampling and bootstrapping 1 

 𝛾0 (cm−1) 

 𝛼 = 0.01 𝛼 = 0.001 

 Actual 

sampling* 
Bootstrap 

Actual 

sampling* 
Bootstrap 

Sample mean 0.06951 0.06939 0.07099 0.07099 

Sample standard deviation 0.00181 0.00187 0.00066 0.00060 

*The same as in Table 4 2 

 3 

6. Conclusions 4 

 DMD is originally intended to be applied to time-dependent dynamic system analyses. An 5 

exponential experiment deals with the static mode of three-dimensional neutron flux distributions. 6 

However, DMD can be extended to an exponential experiment by considering the vertical 7 

coordinate as the time coordinate in the DMD. The snapshot at each time step in the DMD 8 

corresponds to a horizontal neutron flux profile at each vertical level. The fundamental mode 𝛾-9 

eigenvalue, 𝛾0, in an exponential experiment can easily be detected in a region that is sufficiently 10 

distant from the neutron source. Meanwhile, the flux distribution near the neutron source is mostly 11 

dominated by many higher harmonics, rendering determination of 𝛾0 difficult. Applying DMD 12 

to such a challenging situation easily and accurately extracted 𝛾0 from a flux distribution that was 13 

significantly affected by higher harmonics. In the numerical examples in this study, higher 14 

harmonics up to the third order were reproduced by DMD, although the objective of this study was 15 

to extract the fundamental mode. Generally, it is advantageous to horizontally and vertically collect 16 

numerous data points. The numerical examples in this study revealed that a fine resolution of data 17 

points in the vertical direction did not always yield better solutions. DMD yielded an accurate 𝛾-18 

eigenvalue for the fundamental mode and first-higher harmonic regardless of using a limited 19 

number of data points in the water reflector region. 20 

 If the statistical uncertainty of the measured neutron counts is considered, the DMD yields 21 

biased 𝛾-eigenvalues instead of yielding equally distributed eigenvalues around the true value. 22 
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 19 

This study proposes a method to adjust the bias by performing numerical simulations for an 1 

exponential experiment. Hence, an exponential experiment should be performed many times to 2 

obtain an accurate measured mean value of the 𝛾-eigenvalue. However, bootstrapping is a potent 3 

tool for simulating a large number of measurements by resampling from a very limited number of 4 

measured data. 5 

 6 

Appendix 7 

 In this Appendix, the neutron source was placed at the node of the third-higher harmonic as 8 

shown in Fig. 17. The eigenvalues and eigenfunctions were obtained from the DMD method. The 9 

calculation conditions were the same as in Sec. 4.3.1 except the neutron source position. The 10 

eigenvalues are listed in Table 6. The third- and fourth-higher harmonics were not captured by the 11 

DMD method. The eigenfunction of the fifth higher-harmonic along the vertical line in Fig. 17 is 12 

shown in Fig.18 together with the solution of RHEINGOLD code. The DMD method yielded a 13 

rough reproduction of the fifth-higher harmonic. 14 

 15 

Table 6 Eigenvalues of DMD from matrix of 133 × 29 and 𝑟 = 23 (source at the node of the 16 

third-higher harmonic) 17 

 Exact (cm−1) DMD (cm−1) 

𝛾0 0.07113 0.07113 

𝛾1 0.1723 0.1722 

𝛾3 0.2324 — 

𝛾4 0.2584 — 

𝛾5 0.2602 0.2673 
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Fig. 1 Schematic overview of DMD application to an exponential experiment. 
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Fig. 2 Horizontal view of exponential experiment, mesh configuration, and 133 data points. 
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Fig. 3 Schematic elevation view of exponential experiment. 
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Fig. 4 Thermal flux distributions in vertical direction at A, B, and C. 
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Fig. 5 Sixteen data points used for DMD.  
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Fig. 6 Local spatial decay constant 𝛾 and the exact constant at A, B, and C. 
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Fig. 7 Schematic of higher harmonics up to 5th order and 𝛾-eigenvalues. 
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Fig. 8 Decomposed higher harmonics along the diagonal at 5 cm above neutron source. 
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Fig. 9 Vertical distributions of higher harmonics at A. 
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Fig. 10 Fundamental mode thermal flux by DMD and exact flux along diagonal (133 points).  
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Fig. 11 First-harmonic thermal flux by DMD and exact flux along diagonal (133 points). 
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Fig. 12 Third-harmonic thermal flux by DMD and exact flux along diagonal (133 points). 
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Fig. 13 Fundamental mode thermal flux by DMD and exact flux along diagonal (16 points). 
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Fig. 14 First-harmonic thermal flux by DMD and exact flux along diagonal (16 points). 
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Fig. 15 Third-harmonic thermal flux by DMD and exact flux along diagonal (16 points). 
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Fig. 16 Example of bootstrapping for exponential experiment. 𝐶𝑚,𝑛 : neutron count at mth 

elevation and nth measurement at a horizontal position. 
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Fig. 17 Horizontal view of the numerical example where the neutron source was placed at the node 1 

of the third-higher harmonic. 2 
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Fig 18 Fifth-harmonic thermal flux by DMD and exact flux. 1 
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