1 Plant Dormancy Research: From Environmental Control to Molecular Regulatory

2 Networks

- 3 Hisayo Yamane^a, Anil Kumar Singh^{b,*}, Janice E. K. Cooke^c
- ⁴ ^a Graduate school of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- ⁵ ^b School of Genetic Engineering, ICAR-Indian Institute of Agricultural Biotechnology,
- 6 Ranchi-834 010, India
- ^c Department of Biological Sciences, University of Alberta, Edmonton AB T6G 2E9,
- 8 Alberta, Canada

9 *Corresponding author

- 10 Name: Anil Kumar Singh
- 11 Affiliation: School of Genetic Engineering, ICAR-Indian Institute of Agricultural
- 12 Biotechnology, Ranchi-834 010, India
- 13 E-mail: anils13@gmail.com; anil.singh12@icar.gov.in

14 ORCID IDs

- 15 Hisayo Yamane: 0000-0002-9044-7863
- 16 Anil Kumar Singh: 0000-0002-3569-5207
- 17 Janice E.K. Cooke: 0000-0002-4990-628X)
- 18

Annual growth cycles of perennial horticultural and forest woody plant species of 19 temperate and boreal regions can be divided into two phases, namely the growth and 20dormancy phases. During the dormancy phase, vegetative and reproductive meristems 2122undergo dormancy to withstand sub-zero winter temperatures. The dormant state of the plant organs can be defined classically as a non-growing latent state, where no visible 2324growth occurs in meristem containing plants structures, such as seeds and buds. In the strictest view of the term, dormancy is considered a state of the meristem in which cell 2526divisions cease, and the meristem is unresponsive to growth-promoting cues until 27dormancy-breaking cues are perceived by the plant (Rohde and Bhalerao, 2007). For more than 30 years, bud dormancy has been distinguished into three types: (i) para-28dormancy, where growth of the lateral bud is suppressed by actively growing apical bud 29and is also known as apical dominance; (ii) endo-dormancy, established through 30 environmental cues (low temperature and short day-lengths) and endogenous factors and 31requires a particular period of low temperature to resume meristematic growth; (iii) eco-32dormancy, where plant is competent to resume growth, but prevailing unfavorable 33 environmental conditions arrest its active growth (Lang 1987). As our understanding of 3435the activity-dormancy cycle at the cellular and molecular level has increased, the community's notions of dormancy have expanded beyond these physiologically-based 36

37	categories. For example, new classification and terminology referring to plant dormancy
38	at the cellular level has been proposed by Considine and Considine (2016). At some
39	level, the challenges of defining and classifying the developmental and physiological
40	status of meristem-containing structures through the annual growth cycle have been
41	compounded by the insights into dormancy and dormancy-related processes that have
42	been reported by the community over the last three decades. This becomes particularly
43	evident as we consider dormancy and dormancy-related processes across species.
44	We illustrate one such example in the Rosaceae, a family that includes many
45	economically important fruit crops such as apple (Malus × domestica) and peach (Prunus
46	persica). In the Rosaceae, the flowering period between the formation of floral meristem
47	(i.e., structural conversion of the shoot apical meristem in terminal, lateral and
48	adventitious buds to the floral meristem with ensuing floral organ primordia formation)
49	and anthesis spans several months over autumn and winter. However, Rosaceae floral
50	buds contain floral meristem and organs that continue to differentiate and develop during
51	the winter. On the other hand, the endodormant vegetative buds of model trees usually
52	contain "developmentally inactive" shoot apical meristems (Singh et al. 2020). In tree
53	phenology, shoot growth cessation is typically the first phenomenon representing tree
54	dormancy induction. Flower meristem formation occurs during and after growth cessation

55	in Rosaceae fruit trees. Thus, during this dormancy induction phase, floral initiation and
56	floral development continues in floral buds. In other words, flowering and dormancy
57	progress simultaneously in Rosaceae floral buds. This leads to the question as to whether
58	Rosaceae floral buds establish dormancy during tree dormancy phase; or if the term
59	dormancy should not be used in case of winter floral buds of Rosaceae family members.
60	The answer depends on the definition and classification of "dormancy" (Baskin and
61	Baskin, 2004; Cooke et al. 2012; Considine and Considine 2016). Recent molecular and
62	metabolic characterization of Rosaceae floral buds suggest that sweet cherry (P. avium)
63	and peach floral buds stay active during tree dormancy phase (Fadón et al. 2018a;
64	Rothkegel et al. 2020; Yu et al. 2020). However, comparative morphological analysis
65	using Prunus cultivars with different blooming dates suggests that there is a "rest" phase,
66	i.e., temporal suspension or delay of floral development at specific developmental timing
67	(Fadón et al. 2018b; Julian et al. 2011; Yamane et al. 2011),. The length of this "rest"
68	phase appeared to be correlated with the genotype-dependent chilling requirements for
69	dormancy release (regain of potential ability to resume growth) and blooming date
70	(Figure 1). Bud dormancy release is similar to vernalization in the family Brassicaceae,
71	in that both are triggered by a prolonged exposure to chilling. Without this chilling, floral
72	organs cannot develop normally in fruit trees, thus chilling conditions are necessary for

73	the subsequent blooming and fruiting process (Fadón et al. 2018b; Yamane et al., 2011).
74	The importance of sufficient chilling during the winter dormancy phase was also
75	demonstrated through comparative transcriptomic and DNA methylation-based studies in
76	apple, where sufficient chilling was shown to induce phytohormone-related pathways and
77	post-embryonic development during bud break (Kumar et al. 2017), and promote DNA
78	demethylation with the progressing dormancy period (Kumar et al. 2016b).
79	The "rest" phase, slow or temporal suspension of flower development even in
80	growth-promoting condition in autumn may be genetically controlled and might play an
81	important role in preventing trees from blooming in autumn and enabling buds to be
82	aligned at a certain developmental stage, thereby ensuring uniform blooming in tree on
83	the onset of spring. Considering that uniform blooming in spring ensures cross-pollination
84	in self-incompatible Rosaceae fruit trees, such as apple and apricot, and also may have
85	merit for humans to simplify cultural practices required for pollination and harvest, floral
86	bud "rest" in Rosaceae could be an acquired trait through natural selection and artificial
87	breeding activity. It is now well established that tree dormancy plays a crucial role in
88	growth and developmental, and in determining fruit quality and yield of the temperate
89	perennial plants. There has been tremendous progress in understanding the regulatory
90	mechanism of seasonal tree growth/dormancy cycle at molecular, physiological and

91 morphological levels, although further studies will be needed to confirm the existence of

- 92 floral bud "rest" phase and its molecular regulatory mechanism in Rosaceae fruit trees.
- 93 P
- Potential bud dormancy regulators DAM/SVP2/SVL
- 94 Our understanding of molecular regulators of bud dormancy-activity cycles has increased substantially in the last decade. Most of these studies have been carried out in a limited 9596 number of model species. However, there are some regulators of bud dormancy, such as 97 the SHORT VEGETATIVE PHASE MADS-box/AGAMOUS LIKE 24 (SVP/AGL24) gene subfamily, that have been more widely studied across several different taxa. These are 98 99 named as DORMANCY-ASSOCIATED MADS-box (DAM) in Rosaceae fruit trees, SVP2 100in kiwifruit (Actinidia spp.), and SVP-like (SVL) in poplar (Populus spp.) (Bielenberg et al. 2008; Kumar et al. 2016a; Falavigna et al., 2019). Genetic studies involving the peach 101 102 (Prunus persica) evergrowing (evg) mutant strain incapable of setting terminal buds indicated that the evg phenotype is caused by a deletion mutation in the peach DAM1-4 103104 genes and low or no DAM5 and DAM6 expression (Bielenberg et al. 2008). Rosaceae DAMs are down-regulated by a prolonged exposure to cold, which is a key environmental 105106 factor triggering dormancy release (Falavigna et al. 2019), suggesting that DAMs could 107 be involved in both, dormancy induction and release. Transgenic poplar trees and apple 108 (Malus \times domestica) overexpressing the Japanese apricot (Prunus mume) PmDAM6

109	gene in vegetative buds, whose expression is up-regulated during dormancy induction
110	(decreased bud break competency in forcing condition) and down-regulated during
111	dormancy release (increased bud break competency in forcing condition), exhibited
112	reduced growth, early bud set and delayed bud break (Sasaki et al. 2011; Yamane et al.
113	2019). In apple, silencing of <i>MdDAM1</i> and <i>MdDAM4</i> expression eliminates terminal bud
114	formation and dormancy induction in apple, which is similar to the evg mutant phenotype
115	in peach (Moser et al. 2020). Another DAM member, MdDAMb overexpression caused
116	bud break repression in apple (Wu et al. 2017a). Overexpression of kiwifruit SVP2
117	delayed lateral vegetative bud break (Wu et al. 2017b). In poplar, as summarized in this
118	special issue by Singh et al. (2020), SVL mediates the short-day photoperiod-induced
119	abscisic acid (ABA)-dependent vegetative bud dormancy induction and establishment
120	(Singh et al. 2019), as well as represses bud break (Singh et al. 2018). SVL may have
121	multifaceted roles in different phases of dormancy by regulating multiple target factors
122	including ABA and gibberellin biosynthesis and signaling, TEOSINTE
123	BRANCHED/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) and FLOWERING
124	LOCUS T (FT) genes (Busov 2019). Moreover, Singh et al. (2019) also proposed that
125	poplar SVL may be linked to dormancy-specific cell wall modifications that have a
126	prominent role for vegetative bud dormancy establishment (Paul et al. 2014). The

127	accumulation of ABA induces the expression of callose synthase (CALS) gene. The
128	resulting callose aggregation causes plasmodesmata to close because of the formation of
129	a sphincter structure, thereby inhibiting cell-cell communication. Singh et al. (2019)
130	reported that SVL can bind to the CALS promoter region and positively regulates CALS
131	expression, leading to the formation of plasmodesmata sphincters and the induction of
132	dormancy establishment (Busov 2019). In contrast, molecular pathways targeted by
133	Rosaceae DAM have been partially clarified in some fruit trees and DAMs could affect
134	ABA biosynthesis and signaling in Japanese pear (Pyrus pyrifolia) and cytokinin
135	accumulations in apple vegetative buds (Tuan et al. 2017; Yamane et al. 2019). SVP2
136	overexpression leads to transcriptome-level changes in the ABA and dehydration
137	response pathways in kiwifruit (Wu et al. 2017b). Chromatin-immunoprecipitation-
138	sequencing (ChIP-Seq) analysis demonstrated that SVP2 target genes negatively
139	regulated plant growth and directly bound to genes associated with ABA and drought
140	response pathways (Wu et al., 2018). Taken together, DAMs/SVP2/SVL may share a
141	common feature of involvement in the regulation of plant growth and ABA activity in
142	vegetative buds (Figure 2). Taking advantage of genome and epigenome sequencing in
143	many different tree crops (for reviews, see Aranzana et al. 2019; Peace et al. 2019) and
144	informatics technology advancement, future works will provide further insights into the

molecular mechanisms underlying the transcriptional control of DAM/SVP2/SVL and 145their targeting molecular regulatory pathways. 146

148

Special issue in commemoration of the 6th Plant Dormancy Symposium 147

In order to bring together international experts and emerging scientists with an interest in the exciting field of plant dormancy research, the 6th Plant Dormancy Symposium was 149held in Kyoto, Japan during Oct. 23-26 2018 wherein 134 participants from 23 countries 150participated. The International Plant Dormancy Symposium has been held once every 151four to five years since 1995. The first Plant Dormancy Symposium took place in 1995 at 152153Oregon, USA, followed by at Angers, France in 1999; Wageningen, Netherland in 2004; Fargo, North Dakota, USA in 2009; and Auckland, New Zealand in 2013. The plant 154dormancy symposium was launched by the community of plant seed and bud dormancy 155researchers. This symposium provides an excellent forum for the exchange of information 156and ideas on recent developments in plant dormancy research, and the development of 157new scientific collaborations. In each of the seven sessions of 6th Plant Dormancy 158Symposium, viz., "Environmental and Signaling", "Genetics and Epigenetics", "Ecology 159(including Climate change)", "Evolution and Diversity", "Hormone", "Applied Aspects", 160161 and "Perspectives from the Basic to the Field", research topics on both seed and bud dormancy were combined, which effectively enabled the participants to gain the 162

163	comparative and integrated insights of both, seed and bud dormancy. The presentations
164	in these sessions encompassed the latest findings related to the mechanisms of plant
165	dormancy in vegetative buds, floral buds, seeds and other meristems from a variety of
166	experimental plant systems ranging from agronomic crops such as rice (Oryza sativa),
167	wheat (Triticum spp.), and potato (Solanum tuberosum), and horticultural and tree crops
168	such as apple, peach, pear, kiwifruit, and grape (Vitis spp.) to model plants such as
169	Arabidopsis and poplar. The symposium provided the participants with recent advanced
170	knowledge on various aspects of both seed and bud dormancy. We hereby introduce the
171	special issue on Plant Dormancy in the journal "Tree Physiology" in commemoration of
172	the 6 th Plant Dormancy Symposium wherein 10 excellent articles have been compiled and
173	are being made available to the readers. The articles presented in this special issue include
174	eight original research articles, one review article and one methods article. Two research
175	articles reported the changes in phytohormone biosynthesis and signaling pathways
176	during dormancy. Ito et al. (2019) reported that the levels of indole acetic acid (IAA) and
177	trans-zeatin (tZ) remained low during dormancy, but increased towards the flowering
178	stage in the Japanese pear. Gibberellic acid (GA) levels remained high during dormancy
179	induction, then decreased before slightly increasing prior to flowering. Analysis of ABA
180	levels during various stages of dormancy suggested that a reduction in ABA is not needed

181	to resume the growth after dormancy. However, in case of sweet cherry (Prunus avium
182	L.), Vimont et al. (2020) reported high levels of ABA during the onset of dormancy and
183	reduced level just before the release of dormancy. A UDP-GLYCOSYLTRANSFERASE
184	gene, PavUG71B6 was suggested to be associated with low ABA content in the early
185	cultivars. Three research articles report identification and characterization of genes which
186	play important roles during various phases of winter dormancy. Nishiyama et al. (2019)
187	reported that an apple FLC-like gene, MdFLC-like, was upregulated in response to cold
188	exposure and flower primordia development during endodormancy progression.
189	Overexpression of MdFLC-like gene in Arabidopsis was found to delay bolting and
190	reduce the plant size, but the number of rosette leaves and flower organ formation
191	remained unaffected. Jia et al. (2020) performed transcriptome and miRNA analysis in
192	the seeds of Ginkgo biloba and identified miRNA156 as an important regulator of
193	morphophysiological dormancy. Prudencio et al. (2020) performed RNA-seq analysis in
194	three almond cultivars differing in chilling requirements and flowering times during the
195	endodormancy release of flower buds and identified early and late flowering time
196	candidate genes associated with several important molecular and cellular pathways. In
197	another research paper, Endoh and Fujikawa (2019) investigated the mechanism of
198	freezing resistance in eco-dormant buds of birch (Betula platyphylla) using differential

199	thermal analysis (DTA) and cryo-scanning electron microscopy (cryo-SEM) and reported
200	that the cells in buds respond to subzero temperature through rapid equilibrium
201	dehydration. In an interesting study, Fadón et al. (2020) studied the male meiosis in four
202	cultivars of sweet cherry in relation to the chilling and heat requirements during various
203	stages of dormancy. Their results demonstrated that male meiosis was conditioned by
204	endodormancy, but specially by warm temperature, during the forcing period. This
205	observation is in contrast to the observations reported in other related species, opening a
206	new avenue for further studies to understand the mechanisms of synchronized dormancy
207	with season. Partanen et al. (2020) studied the effect of chilling on the endodormancy
208	release in Norway spruce (Picea abies (L.) Karst.) grafts, where twigs used as scions were
209	taken from trees with different age, ranging from 16 to 80 years. The results showed that
210	the environmental regulation of endodormancy release is not related to the age of the tree.
211	In a methods paper, Egea et al. (2020) proposed a dynamic model based on a set of model
212	parameter values to predict the date of endodormancy release in apricot. A review article
213	by Singh et al. (2020) summarized the literature related to the regulation of growth and
214	seasonal dormancy in trees, taking the information related to model tree species Populus
215	spp. as a reference.

Future prospects

217	Phytohormones as well as primary and secondary metabolites are also involved in
218	regulation of dormancy in both vegetative and floral buds (Sherif and Liu 2019). Changes
219	to cell-cycle regulation through TOR-kinase signaling (Or et al., 2000; Considine, 2018),
220	lipid bodies (Grimberg et al. 2018; Veerabagu et al. 2020), carbon resources (Tarancón et
221	al. 2017), sugar metabolism (Zhang et al. 2018), DNA methylation (Kumar et al. 2016b)
222	and reactive oxygen species (ROS) (Beauvieux et al. 2018) have been proposed as distinct
223	dormancy-associated characteristics. Additionally, genomic and genetic approaches such
224	as quantitative trait locus (QTL) and genome wide association study (GWAS) are
225	powerful tools to identify genetic regions responsible for natural variation in the
226	regulation of bud phenology (Kitamura et al. 2018; McKown et al. 2018; Shi et al. 2020).
227	In order to understand complex regulatory network underlying dormancy regulation,
228	latest advance genomic and genetic approaches may prove to be useful. Furthermore,
229	studies not only on model forestry trees and important fruit tree crops, but also on various
230	kinds of trees grown under different climatic conditions, distribution and evolution will
231	be useful to understand the common and distinct mechanisms behind dormancy evolution.
232	Warming of fall, winter and spring due to climate change is expected to impact timing
233	and intensity of growth resumption and flowering progression, which may threaten stable
234	fruit and timber production, and disrupt the sustainability of ecosystems (Boudichevskaia

et al. 2020). Upon anticipated changes due to global warming, more precise and clear 235236understanding of bud dormancy may help alleviate the negative effects of climate change. As the editors for this special issue, we thank all the authors who have 237contributed the interesting articles that appear in the Dormancy special issue. We also 238thank and appreciate all the reviewers for their generous support and valuable comments 239that helped to improve the quality of the manuscripts. We sincerely hope that this special 240241issue of Tree Physiology will be useful for scientific community and will help researchers working in the area of plant dormancy to design their future research for the improvement 242243of tree species.

244 **References**

245 Aranzana MJ, Decroocq V, Dirlewanger E et al. (2019) Prunus genetics and applications

after de novo genome sequencing: achievements and prospects. Hortic Res 6:1–26.

247 Baskin, JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res

248 14:1**-**16.

249 Beauvieux R, Wenden B, Dirlewanger E (2018) Bud dormancy in perennial fruit tree

species: A pivotal role for oxidative cues. Front Plant Sci 9:1–13.

- 251 Bielenberg DG, Wang Y, Li Z et al. (2008) Sequencing and annotation of the evergrowing
- 252 locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box

transcription factors as candidate genes for regulation of terminal bud formation. Tree
Genet Genomes 4:495–507.

- 255 Boudichevskaia A, Kumar G, Sharma Y, et al. (2020) Challenges and strategies for
- developing climate-smart apple varieties through genomic approaches. In: Genomic
- 257 Designing of Climate-Smart Fruit Crops. C. Kole (ed.). Springer Nature Switzerland.
- doi: 10.1007/978-3-319-97946-5_2.
- 259 Busov VB (2019) Plant development: Dual roles of poplar SVL in vegetative bud dormancy.
- 260 Current Biol 29:68–70.
- 261 Considine MJ (2018) Oxygen, energy, and light signaling direct meristem fate. Trends Plant
 262 Science 23:1-3.
- 263 Considine MJ, Considine JA (2016) On the language and physiology of dormancy and
- quiescence in plants. J Exp Bot 67:3189–3203.
- 265 Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees:
- Environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728.
- 267 Egea JA, Egea J, Ruiz D (2020) Reducing the uncertainty on chilling requirements for
- 268 endodormancy breaking of temperate fruits by data-based parameter estimation of the
- dynamic model: a test case in apricot. Tree Physiol doi:10.1093/treephys/tpaa054.
- 270 Endoh K, Fujikawa S (2019) Mechanism of freezing resistance in eco-dormant birch buds

under winter subzero temperatures. Tree Physiol doi:10.1093/treephys/tpz122.

272 Fadón E, Herrera S, Herrero M, Rodrigo J (2020) Male meiosis in sweet cherry is

- 273 constrained by the chilling and forcing phases of dormancy. Tree Physiol
 274 doi:10.1093/treephys/tpaa063.
- Fadón E, Herrero M, Rodrigo J (2018a) Dormant flower buds actively accumulate starch
 over winter in sweet cherry. Front Plant Sci 9:171.

over winter in sweet cherry. Front Plant Sci 9:171.

- 277 Fadón E, Rodrigo J, Herrero M. (2018b) Is there a specific stage to rest? Morphological
- changes in flower primordia in relation to endodormancy in sweet cherry (*Prunus avium*L.). Trees 32:1583-1594.
- 280 Falavigna VS, Guitton B, Costes E et al. (2019) I want to (bud) break free: The potential
- role of DAM and SVP-Like genes in regulating dormancy cycle in temperate fruit trees.
- Front Plant Sci 9:1–17.
- 283 Grimberg Å, Lager I, Street NR et al. (2018) Storage lipid accumulation is controlled by
- 284 photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid
- aspen. New Phytol 219:619-630.
- 286 Ito A, Tuan PA, Saito T et al. (2019) Changes in phytohormone content and associated gene
- expression throughout the stages of pear (Pyrus pyrifolia Nakai) dormancy. Tree
- 288 Physiol doi:10.1093/treephys/tpz101.

Jia Z, Zhao B, Liu S, et al. (2020) Embryo transcriptome and miRNA analyses reveal the
regulatory network of seed dormancy in *Ginkgo biloba*. Tree Physiol
doi:10.1093/treephys/tpaa023.

- Julian C, Rodrigo J, Herrero M. (2011) Stamen development and winter dormancy in
 apricot (*Prunus armeniaca*). Ann Bot 108:617–625.
- 294 Kitamura Y, Habu T, Yamane H, et al. (2018) Identification of QTLs controlling chilling
- and heat requirements for dormancy release and bud break in Japanese apricot (Prunus
- *mume*). Tree Genet Genomes 14:33.
- 297 Kumar G, Arya P, Gupta K, at al. (2016a) Comparative phylogenetic analysis and
- transcriptional profiling of MADS-box gene family identified DAM and FLC-like
- genes in apple (*Malus x domestica*). Sci Rep 6:20695.
- 300 Kumar G, Rattan UK, Singh AK. (2016b) Chilling-mediated DNA methylation changes
- during dormancy and its release reveal the importance of epigenetic regulation during
- winter dormancy in apple (*Malus x domestica* Borkh.). PLoS ONE 11:e0149934.
- 303 Kumar G, Gupta K, Pathania S, et al. (2017) Chilling affects phytohormone and post-
- 304 embryonic development pathways during bud break and fruit set in apple (Malus
- 305 *domestica* Borkh.). Sci Rep 7:42593.
- 306 Lang GA, Early JD, Martin GC, Darnell RL. (1987) Endo-, para-, and ecodormancy:

- physiological terminology and classification for dormancy research. Hortic Sci 22:371308 377.
- 309 McKown AD, Klápště J, Guy RD, et al. (2018) Ecological genomics of variation in bud -
- break phenology and mechanisms of response to climate warming in *Populus trichocarpa*. New Phytol 220:300-316.
- 312 Moser M, Asquini E, Miolli GV, et al. (2020) The MADS-Box gene MdDAM1 controls
- growth cessation and bud dormancy in apple. Front Plant Sci 11:1–13.
- 314 Nishiyama S, Matsushita MC, Yamane H, et al. (2019) Functional and expressional
- analyses of apple FLC-like in relation to dormancy progress and flower bud

development. Tree Physiol doi:10.1093/treephys/tpz0111.

- 317 Or E, Vilozny I, Eyal Y, et al. (2000) The transduction of the signal for grape bud dormancy
- 318 breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase
- 319 GDBRPK. Plant Mol Biol 43:483-494.
- 320 Partanen J, Häkkinen R, Sutinen S, et al. (2020) Endodormancy release in Norway spruce
- grafts representing trees of different ages. Tree Physiol doi:10.1093/treephys/tpaa001.
- 322 Paul LK, Rinne PL, van der Schoot C. (2014) Shoot meristems of deciduous woody
- 323 perennials: self-organization and morphogenetic transitions. Curr Opin Plant Biol
- 324 17:86-95.

325	Peace CP, Bianco L, Troggio M, et al. (2019) Apple whole genome sequences: recent
326	advances and new prospects. Hort Res 6:59.
327	Prudencio ÁS, Hoeberichts FA, Dicenta F. et al. (2020) Identification of early and late

328 flowering time candidate genes in endodormant and ecodormant almond flower buds.

Tree Physiol DOI: 10.1093/treephys/tpaa151.

Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends in Plant
Science. 12:217-223

332 Rothkegel K, Sandoval P, Soto E, et al. (2020) Dormant but active: chilling accumulation

333 modulates the epigenome and transcriptome of *Prunus avium* during bud dormancy.

334 Front Plant Sci 11:1–17.

335 Sasaki R, Yamane H, Ooka T, et al. (2011) Functional and expressional analyses of PmDAM

genes associated with endodormancy in Japanese apricot. Plant Physiol 157:485–497.

337 Sherif SM, Liu J. (2019) Hormonal orchestration of bud dormancy cycle in deciduous

338 woody perennials. Front Plant Sci 10:1136.

339 Shi T, Luo W, Li H, et al. (2020) Association between blooming time and climatic

adaptation in *Prunus mume*. Ecol Evol 10:292-306.

341 Singh RK, Maurya JP, Azeez A, et al. (2018) A genetic network mediating the control of

bud break in hybrid aspen. Nat Commun 9:4173.

343 Singh RK, Miskolczi P, Maurya JP, et al. (2019) A Tree ortholog of SHORT VEGETATIVE

- 344 *PHASE* floral repressor mediates photoperiodic control of bud dormancy. Curr Biol
 345 29:128-133.
- 346 Singh RK, Bhalerao RP, Eriksson ME. (2020) Growing in time: exploring the molecular
 347 mechanisms of tree growth. Tree Physiol doi:10.1093/treephys/tpaa065.
- 348 Tarancón C, González-Grandío E, Oliveros JC, et al. (2017) A conserved carbon starvation
- response underlies bud dormancy in woody and herbaceous species. Front Plant Sci8:788.
- 351 Tuan PA, Bai S, Saito T, et al. (2017) Dormancy-Associated MADS-Box (DAM) and the
- abscisic acid pathway regulate pear endodormancy through a feedback mechanism.

```
353 Plant Cell Physiol 58:1378–1390.
```

- 354 Tylewicz S, Petterle A, Marttila S, et al. (2018) Photoperiodic control of seasonal growth is
- mediated by ABA acting on cell-cell communication. Science 360:212–215.
- 356 Veerabagu MK, Paul L, Rinne PL, et al. (2020) Plant lipid bodies traffic on actin to
- 357 plasmodesmata motorized by myosin XIs. Int J Mol Sci 21:1422.
- 358 Vimont N, Schwarzenberg A, Domijan M, et al. (2020) Fine tuning of hormonal signaling
- 359 is linked to dormancy status in sweet cherry flower buds. Tree
- 360 Physiol doi.org/10.1093/treephys/tpaa122.

- 361 Wang D, Gao Z, Du P, et al. (2016) Expression of ABA metabolism-related genes suggests
- 362 similarities and differences between seed dormancy and bud dormancy of peach
- 363 (*Prunus persica*). Front Plant Sci 6:1248.
- Weinberger JH. (1950) Chilling requirements of peach varieties. Proc Am Soc Hort Sci
 56:122-128.
- 366 Wu R, Tomes S, Karunairetnam S, et al. (2017a) SVP-like MADS box genes control
- dormancy and budbreak in apple. Front Plant Sci 8:1–11.
- 368 Wu R, Wang T, Warren BA, et al. (2017b) Kiwifruit SVP2 gene prevents premature
- budbreak during dormancy. J Exp Bot 68: 1071-1082.
- 370 Wu R, Wang T, Warren BA, et al. (2018) Kiwifruit SVP2 controls developmental and
- drought-stress pathways. Plant Mol Biol 96: 233-244.
- 372 Yamane H, Ooka T, Jotatsu H, et al. (2011) Expression analysis of PpDAM5 and PpDAM6
- during flower bud development in peach (*Prunus persica*). Sci Hort 129:844–848.
- 374 Yamane H, Wada M, Honda C, et al. (2019) Overexpression of Prunus DAM6 inhibits
- growth, represses bud break competency of dormant buds and delays bud outgrowth in
- apple plants. PLoS ONE 14:1–24.
- 377 Yu J, Conrad AO, Decroocq V, et al. (2020) Distinctive gene expression patterns define
- endodormancy to ecodormancy transition in apricot and peach. Front Plant Sci 11:1-

- 379 24.
- 380 Zhang Z, Zhuo X, Zhao K, et al. (2018) Transcriptome profiles reveal the crucial roles of
- hormone and sugar in the bud dormancy of *Prunus mume*. Sci Rep 8:1–15.

382

383

384 Figure legend

Figure 1. Flower primordia structures in peach floral buds during tree dormancy phase 385(from autumn to winter). In peach, flower initiation, flower organogenesis and growth 386 387 cessation (tree dormancy induction) usually occur simultaneously during late summer. By early autumn, flower organ primoria including pistil have usually been generated. During 388 autumn, floral buds tend to show slow or suspension of flower size development before 389 390 the fulfillment of chilling requirement for blooming. After genotype-dependent chilling requirement is fulfilled, floral buds can bloom in field condition when genotype-391 392dependent heat requirement is fulfilled. Prior to prolonged chilling exposure, such as in November, higher blooming percentages cannot be achieved even trees are grown in 393 forcing condition. However, after prolonged chilling exposure, such as in January, normal 394 blooming can be observed in forcing condition. Therefore, prolonged chilling may have 395 an important environmental cue to promote floral primordia maturation and release the 396 397 suspension of floral bud development (release of floral bud "rest"). CR: amounts of chilling requirement for dormancy release calculated by chill hour (CH) model 398 (Weinberger, 1950). 399

400

401 Figure 2. The common and distinct molecular function of Rosaceae DAM and poplar

402	SVL on vegetative bud dormancy regulation with special reference to phytohormone
403	regulation. DAM is induced by dormancy-inducing environmental factors, short
404	photoperiod and short cold exposure, while SVL is induced by short photoperiod-induced
405	increased abscisic acid (ABA). Both DAM and SVL are repressed by dormancy release-
406	inducing environmental factors, prolonged cold exposure. They have a common function
407	to induce gene encoding key enzyme of ABA biosynthesis, NCED, and both are induced
408	by ABA, thus DAM/SVL may form ABA positive feedback loop in dormant bud. DAM
409	functions as a growth inhibitor, bud set inducer and bud break repressor through the
410	regulation of cytokinin and ABA. On the other hand, SVL functions to establish dormancy
411	and also to release dormancy through the regulation of gibberellin (GA) biosynthesis and
412	signaling. Additionally, SVL helps to form dormancy-specific cell structure in shoot
413	apical meristem, plasmodesmata sphincter, by promoting callose synthase (CALS). SVL
414	also represses FT that can induce dormancy release.

Figure 1

Figure 2

