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Abstract

The resonance theory is still very useful in understanding the valence electron struc-
ture. However, such a viewpoint is not usually obtained by general-purpose quantum
chemical calculations, instead requires rather special treatment such as valence bond
methods. In this study, we propose a method based on second quantization to ana-
lyze the results obtained by general-purpose quantum chemical calculations from the
local point of view of electronic structure and analyze diazadiboretidine and the tau-
tomerization of formamide. This method requires only the “PS”-matrix, consisting
of the density matrix (P-matrix) and overlap matrix, and can be computed with a
comparable load to that of Mulliken population analysis. A key feature of the method
is that, unlike other methods proposed so far, it makes direct use of the results of
general-purpose quantum chemical calculations.

Keywords: Resonance theory, Second quantized operator, Linear combination of atomic
orbital, Electronic structure

†Department of Molecular Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
‡Center for the Promotion of Interdisciplinary Education and Research, Elements Strategy Initiative for

Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
§Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan

1



 0

 5

 10

 15

 20

 25

 30

 35

 40

Reaction Coordinate

W
e

ig
h

t 
o

f 
R

e
s

o
n

a
n

c
e

 S
tr

u
c

tu
re

 (
%

)

A simple methodology for extracting the resonance structure embedded in a molecular orbital
(MO) wave function was studied. The analysis requires “PS”-matrix, density and overlap
matrix only, and is easy to use. A variety of molecular systems were examined, including
formamide and diazadiboretidine isomers, to demonstrate its usefulness.
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INTRODUCTION

How do we understand the reason for the planarity of a peptide? One may bring up the idea

of resonance theory and try to rationalize it.

R

O

N

H

R
′

←→ R

O
⊖

N
⊕

H

R
′

The contributing structures in the resonance can be attributed to the nature of chemical

bonds, which are localized in a moiety of the molecule. This traditional idea on the elec-

tronic structure is quite useful for understanding the origin of molecular properties and

reactivity. On the other hand, commonly used quantum chemical methods provide the elec-

tronic structure expressed in molecular orbital (MO). This is also insightful but cannot be

directly connected to the view of the resonance theory because MOs are intrinsically de-

localized over the molecule. Various methods have ever been invented for the analysis of

wave functions composed of delocalized MOs, including localized molecular orbital (LMO)

methods,1 natural bond orbital (NBO) and natural resonance theory,2 complete active space

valence bond methods3 and other projection methods.4 Some of these methods focus on the

idea that any MO wave function is represented as a superposition of atomic spin-orbital

based determinants. This is natural because the linear combination of atomic orbitals (AO)

is widely utilized approximation in modern quantum chemistry. Let us consider the wave

function of the form:

Ψ = |· · ·ϕi · · ·ϕj · · · | (1)

where ϕi is a molecular spin-orbital given as a linear combination of atomic spin-orbitals χµ.

ϕi =
∑
µ

ciµχµ (2)

Substituting Eq. (2) into Eq. (1), we obtain

Ψ =

∣∣∣∣∣· · ·
(∑

µ

ciµχµ

)
· · ·

(∑
ν

cjνχν

)
· · ·

∣∣∣∣∣ =∑
µ

ciµ . . .
∑
ν

cjν . . . |· · ·χµ · · ·χν · · ·| . (3)
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By following previous works, each term of atomic spin-orbital based matrix determinant,

|· · ·χµ · · ·χν · · ·|, is called AO determinant throughout this study. Eq. (3) is then formally

rewritten as

Ψ =
∑
i

KiΨ
AO
i (4)

where ΨAO
i is i-th AO determinant and Ki is its coefficient of the expansion. Note that, on

calculation of the “weight” of each AO determinant, |Ki|2 is not proper because commonly

used AO basis functions are nonorthogonal, and the sum of |Ki|2 can be changed. Instead,

the following Chirgwin-Coulson weight5

wi = Ki

〈
Ψ|ΨAO

i

〉
(5)

satisfies the requirement and the weights sum up to unity for the normalized wave function.∑
i

wi = ⟨Ψ|Ψ⟩ = 1 (6)

Hiberty et al. focused on the expansion of Eq. (3) and proposed an analysis method of MO

wave functions by regrouping them as valence bond (VB) type basis functions.6–8 Bachler

analyzed the photochemical reactions in terms of resonance structure.9,10 AO determinant

and VB function are not the same in general, but both are related to chemical resonance

structures, representing the local electronic structures.

It would be pointed out that the Chirgwin-Coulson weight for the AO determinant in

Eq. (5)(hereafter referred to “weight”) is not widely evaluated for the analysis in usual

computations despite the mathematical background is clear enough. Several reasons are

conceivable. One is the nonorthogonality of AO determinants, making it complicated to

formulate each weight in a compact form. While an approximate formula for Eq. (5)

neglecting the overlap was reported,9,10 attempts to deal with the nonorthogonality on this

formulation so far have not been fully accomplished. The other is that a direct, simple

computational procedure of the weight from the standard output of quantum chemistry

is not well established. Indeed, the expansion of Eq. (3) is only formal, and it is not

clear enough how to organize the large number of terms that appear. In the standard

quantum chemical computations, many molecular properties are evaluated from the density
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matrix (P matrix) and proper molecular integrals. A typical example is Mulliken population

analysis,11 in which only P and overlap (S) matrices are required. In this study, these issues

were resolved and a simple formula on the weight was derived by utilizing the biorthogonal,

second quantized operator.

In addition to those mentioned above, many related studies have been reported. Through

a series of studies, Karafiloglou contributed the methodological development for extracting

local electronic structures from delocalized MO wave functions. Utilizing the Moffitt’s the-

orem,12 Karafiloglou et al. tried to efficiently formulate the weight.13,14 He also invented

an extension of population analysis called poly-electron population analysis,15–19 and devel-

oped methods to represent each weight of resonance structures as an expectation value of

a second quantized operator.16–19,21–23 He and his coworkers especially focused on the or-

thonormal natural atomic orbitals (NAOs) and NBOs.17–23 NAOs have been considered to

have computational and conceptual advantages for understanding the characters of orbitals.

Recently, another analysis scheme utilizing NAO basis was proposed.24 Ikeda et al. also tried

to analyze MO wave functions in terms of resonance structure utilizing second quantized op-

erators.25–27 They focused on a second quantized formalism especially for nonorthogonal

atomic orbitals.28–30

In the present study, we followed the second quantized operator approach, and an alter-

native way for the analysis of MO wave function was derived. One of the advantages is that

the weight is computed only with “PS”-matrix. It provides a new procedure to analyze the

results obtained with standard quantum chemical computations. The present study sheds

new light and clarity on the relationship between molecular orbital calculation and the res-

onance theory. A practical way of connecting them is proposed, clarifying the relationships

between many studies that have been carried out in this field so far, and linking them. In

the following, we briefly outline the second quantized formalism in the next methodology

section, especially on nonorthogonal orbital, and several chemical processes are analyzed in

Section III to demonstrate the advantages of the present method.
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METHODS

Second quantized formalism on nonorthogonal atomic spin-orbitals

We briefly outline the second quantized formalism of nonorthogonal orbitals only as much

as required for the following discussions. See Refs. [30] and [31] for further details.

Atomic spin-orbitals χσ
µ (spin and spatial labels are denoted as σ and µ, respectively)

used for standard MO calculations are nonorthogonal in spatial parts,

〈
χσ1
µ

∣∣ χσ2
ν

〉
= δσ1σ2Sµν ̸= δσ1σ2δµν . (7)

The creation operators χσ+
µ and their adjoints χσ−

µ obey the following anticommutation rule.

[
χσ+
µ , χσ−

ν

]
+
= χσ+

µ χσ−
ν + χσ−

ν χσ+
µ = Sµν ̸= δµν (8)

The usual anticommutation rule is obtained by using operators related to a biorthogonal

set of the atomic spin-orbitals. The biorthogonal functions for the atomic spin-orbitals are

defined as functions which satisfy

〈
φσ
µ|χσ

ν

〉
= δµν . (9)

This condition is satisfied when

φσ
µ =

∑
ν

S−1
νµ χ

σ
ν (10)

where S−1
νµ is a matrix element of inverse of overlap matrix. Consider the creation operators

φσ+
µ and their adjoints

φσ−
µ =

(
φσ+
µ

)†
=
∑
ν

S−1
µν χ

σ−
ν . (11)

The following anticommutation rule holds form Eqs. (8) and (11).

[
χσ+
µ , φσ−

ν

]
+
= δµν (12)

Here we introduce an operator,

N̂σ
µ = χσ+

µ φσ−
µ . (13)
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Due to Eq. (12), this operator works as the particle number operator when acting on an AO

determinant ΨAO , satisfying

N̂σ
µΨ

AO =

 ΨAO when χσ
µ ∈ ΨAO

0 when χσ
µ /∈ ΨAO.

(14)

When the operator N̂σ
µ acts on a linear combination of AO determinants of the form∑

i

KiΨ
AO
i ,

N̂σ
µ

∑
i

KiΨ
AO
i =

∑
i

niKiΨ
AO
i (15)

where ni is the occupancy of the atomic spin-orbital χσ
µ in the AO determinant ΨAO

i , i.e.

ni = 1 when ΨAO
i contains χσ

µ (χσ
µ ∈ ΨAO

i ) and ni = 0 when χσ
µ /∈ ΨAO

i .

Formulation of the weight of nonorthogonal AO determinant

Let us start with Ψ, which is any types of single MO determinants composed of Hartree-Fock

(HF) or Kohn-Sham (KS) spin-orbitals, ϕσ
i .

Ψ =
∣∣∣ϕα

i ϕ
α
j · · ·ϕ

β
kϕ

β
l · · ·

∣∣∣ (16)

The spin-orbital is given as a linear combination of atomic spin-orbitals as

ϕσ
i =

∑
ν

cσiνχ
σ
ν . (17)

Note that, though we focus on single MO determinant wave functions as a simple case in

the following, the extension to the correlated wave function such as configuration interaction

(CI) wave functions is straightforward.

The weight for the N -electron AO determinant,
∣∣∣χα

aχ
α
b · · ·χβ

cχ
β
d · · ·

∣∣∣, is obtained by two

steps: The first step is to project out the component with its coefficient from Ψ. This is

accomplished by acting the string of the projection operators N̂σ
µ on Ψ. Utilizing the Eq.

(15), we can write the weight as follows.

w
(∣∣∣χα

aχ
α
b · · ·χβ

cχ
β
d · · ·

∣∣∣) =
〈
Ψ
∣∣∣N̂α

a N̂
α
b · · · N̂β

c N̂
β
d · · ·

∣∣∣Ψ〉 (18)
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Eq. (18) shows that the weight of an AO determinant is given as the expectation value con-

cerning the projection operator. The second quantized representation of Mulliken population

(gross atomic population) on atomic center A, derived by Mayer,29,30 is written as∑
a∈A

(〈
Ψ
∣∣∣N̂α

a

∣∣∣Ψ〉+
〈
Ψ
∣∣∣N̂β

a

∣∣∣Ψ〉). (19)

This implies that the weight in the present study is closely related to the Mulliken population

in terms of operator.

The second step is to compute Eq. (18). According to Eqs. (12) and (17), the cre-

ation operators ϕσ+
i creating an electron on the molecular spin-orbital satisfies the following

anticommutation rule.

[
ϕσ+
i , φσ−

µ

]
+
=
∑
ν

cσiν
[
χσ+
ν , φσ−

µ

]
+
=
∑
ν

cσiνδνµ = cσiµ (20)

Using Eq. (20), we obtain

N̂σ
µ |Ψ⟩ = N̂σ

µ |ϕσ
1ϕ

σ
2 · · ·ϕσ

n⟩

= χσ+
µ φσ−

µ ϕσ+
1 ϕσ+

2 · · ·ϕσ+
n |vac⟩

= cσ1µ
∣∣ϕσ

1 → χσ
µ

〉
− χσ+

µ ϕσ+
1 φσ−

µ ϕσ+
2 · · ·ϕσ+

n |vac⟩

= cσ1µ
∣∣ϕσ

1 → χσ
µ

〉
+ ϕσ+

1

(
χσ+
µ φσ−

µ

)
ϕσ+
2 · · ·ϕσ+

n |vac⟩

=
n∑

i=1

cσiµ
∣∣ϕσ

i → χσ
µ

〉
(21)

where
∣∣ϕσ

i → χσ
µ

〉
is the determinant in which the molecular spin-orbital ϕσ

i is replaced by the

atomic spin-orbital χσ
µ in the original determinant |ϕσ

1ϕ
σ
2 · · ·ϕσ

n⟩. Using Eq. (21) repeatedly,

Eq. (18) becomes

w
(∣∣∣χα

aχ
α
b · · ·χβ

cχ
β
d · · ·

∣∣∣)
=
〈
Ψ
∣∣∣χα+

a φα−
a χα+

b φα−
b · · ·χ

β+
c φβ−

c χβ+
d φβ−

d · · ·ϕ
α+
i ϕα+

j · · ·ϕ
β+
k ϕβ+

l · · ·
∣∣∣ vac〉

=
∑

i,j,··· ,k,l,···

cαiac
α
jb · · · c

β
kcc

β
ld · · ·

〈
Ψ
∣∣∣ Ψ(ϕα

i → χα
a , ϕ

α
j → χα

b , · · · , ϕ
β
k → χβ

c , ϕ
β
l → χβ

d , · · ·
)〉
(22)
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with the similar notation to that in Eq. (21). The overlap of the two determinants in Eq.

(22) is calculated as,〈
Ψ | Ψ

(
ϕα
i → χα

a , ϕ
α
j → χα

b , · · · , ϕ
β
k → χβ

c , ϕ
β
l → χβ

d , · · ·
)〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⟨ϕα
i |χα

a ⟩ ⟨ϕα
i |χα

b ⟩〈
ϕα
j |χα

a

〉 〈
ϕα
j |χα

b

〉 · · ·

〈
ϕα
i |χβ

c

〉 〈
ϕα
i |χ

β
d

〉
〈
ϕα
j |χβ

c

〉 〈
ϕα
j |χ

β
d

〉 · · ·

...
. . .

...
. . .〈

ϕβ
k |χα

a

〉 〈
ϕβ
k |χα

b

〉
〈
ϕβ
l |χα

a

〉 〈
ϕβ
l |χα

b

〉 · · ·

〈
ϕβ
k |χβ

c

〉 〈
ϕβ
k |χ

β
d

〉
〈
ϕβ
l |χβ

c

〉 〈
ϕβ
l |χ

β
d

〉 · · ·

...
. . .

...
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
⟨ϕα

i |χα
a ⟩ ⟨ϕα

i |χα
b ⟩〈

ϕα
j |χα

a

〉 〈
ϕα
j |χα

b

〉 · · ·

...
. . .

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

〈
ϕβ
k |χβ

c

〉 〈
ϕβ
k |χ

β
d

〉
〈
ϕβ
l |χβ

c

〉 〈
ϕβ
l χ

β
d

〉 · · ·

...
. . .

∣∣∣∣∣∣∣∣∣ . (23)

Substituting Eqs. (23) into Eq. (22), and replacing the matrix elements with

〈
ϕσ
i |χσ

µ

〉
=
∑
ν

cσ
∗

iν

〈
χσ
ν |χσ

µ

〉
=
∑
ν

cσ
∗

iν Sνµ, (24)

we obtain

w
(∣∣∣χα

aχ
α
b · · ·χβ

cχ
β
d · · ·

∣∣∣)

=
∑
i,j,···

cαiac
α
jb · · ·

∣∣∣∣∣∣∣∣∣∣∣

∑
µ

cα
∗

iµ Sµa

∑
µ

cα
∗

iµ Sµb∑
µ

cα
∗

jµSµa

∑
µ

cα
∗

jµSµb

· · ·

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
∑
k,l,···

cβkcc
β
ld · · ·

∣∣∣∣∣∣∣∣∣∣∣

∑
µ

cβ
∗

kµSµc

∑
µ

cβ
∗

kµSµd∑
µ

cβ
∗

lµ Sµc

∑
µ

cβ
∗

lµ Sµd

· · ·

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∑
µ

Pα
aµSµa

∑
µ

Pα
aµSµb∑

µ

Pα
bµSµa

∑
µ

Pα
bµSµb

· · ·

...
. . .

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

∑
µ

P β
cµSµc

∑
µ

P β
cµSµd∑

µ

P β
dµSµc

∑
µ

P β
dµSµd

· · ·

...
. . .

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
(PαS)aa (PαS)ab

(PαS)ba (PαS)bb
· · ·

...
. . .

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(PβS)cc (PβS)cd

(PβS)dc (PβS)dd
· · ·

...
. . .

∣∣∣∣∣∣∣∣∣ (25)
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where S is the overlap matrix with the (µ, ν)-element Sµν and Pσ is the density matrix (P

matrix) with the (µ, ν)-element

P σ
µν =

occ∑
i

cσiµc
σ∗
iν . (26)

For the HF wave function of two electrons, the weight of
∣∣∣χα

aχ
β
b

∣∣∣ is
w
(∣∣∣χα

aχ
β
b

∣∣∣) = (PαS)aa(P
βS)bb. (27)

When the restricted HF (RHF) wave function is used for this two-electron system, (PαS)aa(P
βS)bb =

1

4
(PS)ab(PS)ba holds where P = 2Pα = 2Pβ. Therefore, Eq. (27) is equivalent to the for-

mula utilized for the analysis of MOs by Ikeda et al.25–27

In a similar manner, for the four-electron system, the weight is given by,

w
(∣∣∣χα

aχ
α
b χ

β
cχ

β
d

∣∣∣) =

∣∣∣∣∣∣ (P
αS)aa (PαS)ab

(PαS)ba (PαS)bb

∣∣∣∣∣∣
∣∣∣∣∣∣ (P

βS)cc (PβS)cd

(PβS)dc (PβS)dd

∣∣∣∣∣∣
= {(PαS)aa(P

αS)bb − (PαS)ab(P
αS)ba}{(PβS)cc(P

βS)dd − (PβS)cd(P
βS)dc},

(28)

and for six-electron system,

w
(∣∣∣χα

aχ
α
b χ

α
c χ

β
dχ

β
eχ

β
f

∣∣∣) =

∣∣∣∣∣∣∣∣∣
(PαS)aa (PαS)ab (PαS)ac

(PαS)ba (PαS)bb (PαS)bc

(PαS)ca (PαS)cb (PαS)cc

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
(PβS)dd (PβS)de (PβS)df

(PβS)ed (PβS)ee (PβS)ef

(PβS)fd (PβS)fe (PβS)ff

∣∣∣∣∣∣∣∣∣ .
(29)

Now the weight of an AO determinant is readily computed with Eq. (25) by using overlap

and P-matrix. Especially when an orthonormal atomic orbital basis set is used, “PS”-matrix

in Eq. (25) is replaced by the matrix Pσ. Eq. (25) is applicable not only to the closed-shell

system but also to different orbitals for different spins (DODS) type such as unrestricted HF

(UHF) wave function, as previously recognized.9 This expression will also be useful for the

extension to multi-configurational wave functions.
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Resonance theory

Eq. (25) can be associated with the analysis of MO wave functions in terms of resonance

theory, but further considerations are necessary for actual computations. As an example,

consider the two electron AO determinant
∣∣∣χα

aχ
β
b

∣∣∣ where atomic spin-orbitals χα
a and χβ

b

belong to atomic centers A and B, respectively (χα
a ∈A and χβ

b ∈B). This is associated with

the resonance structure denoted as A(↑)B(↓) where up (α) and down (β) spins belong to A

and B respectively. The weight of the covalent type resonance structure A–B is then given by

w
(∣∣∣χα

aχ
β
b

∣∣∣)+ w
(∣∣χα

b χ
β
a

∣∣). Analogously, w (∣∣χα
aχ

β
a

∣∣) and w
(∣∣∣χα

b χ
β
b

∣∣∣) can be regarded as the

weight of the ionic type resonance structures A−–B+ and A+–B−, respectively. Similarly, the

proper linear combination of AO determinants is considered on the conversion to a linearly

independent set of VB type function.

For the computations with extended basis sets, the weight is simply extended to8–10

∑
a∈A,b∈B,c∈C,d∈D,...

w
(∣∣∣χα

aχ
α
b · · ·χβ

cχ
β
d · · ·

∣∣∣) . (30)

In our treatment, an important property is satisfied between weight of resonance struc-

tures and Mulliken population: weighted sum of numbers of valence electrons on an atom

in all resonance structures is equal to the Mulliken population of the atomic center in the

valence space. A more detail discussion about that can be found in Supporting Information

(SI).

Applications for the analysis of resonance structures

This section is devoted to demonstrating the chemical application of the present methodology.

All the calculations and the subsequent analysis were conducted with the GAMESS program

package32 modified by us.

Assessments on trans-butadiene and ozone

First of all, we study the trans-butadiene and ozone molecules, which are 4π-electron systems.

They have been the subject of many studies, including the pioneering work of Hiberty, and

11



is typical of those on resonance theory. The details are reported in SI. As expected, our

results are virtually the same as those by Hiberty when the minimal basis sets (STO-3G) is

employed. Note that their VB structures, Kekulé and 1,4-diradical structure of butadiene

correspond to the three contributing structures in the present work. Both of them can be

equivalent by taking proper linear combinations.

The present method is easy to be applied to the computations with standard, extended

basis sets. As can be seen in Tables S1 and S2, the differences in weights due to the basis

sets are within 1-2% when the sufficiently large basis set is used. It is interesting that the

DODS treatment for ozone shows considerable difference from the spin-restricted function. In

all cases, the method provides adequate computational results, in agreement with previous

results and our chemical intuition. It should be emphasized that the present method is

equivalent to Hiberty’s one only concerning with three-center four-electron systems. While

the present method is based on “PS”-matrix, reflecting the uniqueness of expansion with

AO-determinant, this is not the case for Hiberty’s method since the dependent VB type

basis set is not uniquely determined. For the details, see SI.

Tautomerism of formamide and formamidic acid

Tautomerism of formamide and formamidic acid represented in the conventional reaction

formula (Figure 1) is a simple chemical reaction accompanied with the migration of a hydro-

gen atom. The tautomerism is considered as a change of distribution of π-electrons in the

three atomic center in conjunction with geometry change. It should be stressed again that

the present method only requires the “PS”-matrix obtained in the usual quantum chemical

calculations. It enables us to compute the weights very readily, meaning that the analysis

of the reaction is also easy almost without additional computations.

The transition state and intrinsic reaction coordinate (IRC) in this process are determined

with the standard manner at RB3LYP33–35/6-31G(d).36 Then, each weight is computed along

the IRC using Eqs. (28) and (30). The structures of this system are shown in Figure 2

(1a-1f). Firstly, we show each weight of the resonance structures (1a–1f) in formamide

(at the geometry optimized by RHF/6-31G(d) for comparison) in Table 1. The results by

HF, KS and the previous ab initio VB (VBSCF)37 calculations are shown in the table.

12



Tested exchange-correlation functionals are B3LYP, BLYP,34,35 CAM-B3LYP,38 PBE0,39

PBE,40,41 M06-2X42 and ωB97X.43 The covalent structure (1a) and ionic structure (1b)

have large weights. It has been known in ab initio VB theory that the structure 1b in which

polarization to oxygen is occurring has a large weight in addition to the large weight of

structure 1a. We found that the computed weights show a similar tendency as those from

the VB functions constructing the VBSCF wave function, although direct comparison can

not be made, strictly speaking. In the present method, the weight of ionic structure (1b)

seems to be overestimated probably because the wave function is constructed by a single

determinant. We found functional dependence on the weights is moderate in this molecule.

The change of the weight along the IRC is shown in Figure 3. Near the transition

state (IRC = 0.0), the character changes drastically. In particular, the weight of 1a and

1d largely change from 33.5% to 9.4% and from 14.7% to 39.9%, respectively. Thus, this

reaction process is characterized as the change of electronic state from 1a to 1d, justifying

the representation by the standard chemical reaction formula. The weight of structure

1b constantly large around 31.0–35.9% in this process. The weight of 1e little changes

but slightly increases near the transition structure where the O-C-N bond angle slightly

decreases. The tendencies that each weight of 1f and 1c slightly increases and decreases

in this process also seem to be reasonable. Looking at chemical reactions as continuous

changes of resonance structures, we can capture the entire character of the change in the

electronic state. As demonstrated above, this a posteriori analysis accompanied with MO or

KS calculations will be useful for understanding of chemical reaction processes.

Electronic delocalization in 1,3,2,4- and 1,2,3,4-diazadiboretidine

The electronic properties of 1,3,2,4-diazadiboretidine (2) and 1,2,3,4-diazadiboretidine (3)

recently attract researchers’ attentions.44 The analysis of nucleus-independent chemical shift

(NICS) and energetic difference from the reference acyclic system showed that the electrons

in 2 show more delocalized character than in 3. It seems to be difficult to make a systematic

comparison of the degree of delocalization of π−electron systems on the basis of delocalized

MOs. In fact, ab initio VB (VBCI) computation was applied to analyze 2.45

As pointed out previously,44,45 the planar geometries do not correspond to energy min-
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imum in both molecules. However, imposing planarity constraints simplifies the discussion

due to the σ − π separation, and will be useful for understanding the electronic proper-

ties of them. Following this treatment, we analyzed the planar 2 and the planar 3 with

D2h and C2v symmetry, respectively. The geometries of both molecules were optimized by

HF/6-31G(d,p), then their weights of resonance structures were calculated with HF and KS

methods with the same basis set at the common geometries. Various exchange-correlation

functionals were tested for 2, and the B3LYP functional was used for 3. At the optimized

structure of 2, the B-N bond length is 1.443Å. The N-N, B-B, and B-N bond lengths are

1.442, 1.775, and 1.401Å, respectively in 3.

Both compounds are treated as four-center four-electron system in the analysis. All the

structures (2a–2i and 3a–3m) of these systems considered are shown in Figures 4 and 5,

respectively. The corresponding weights are shown in Tables 2 and 3, respectively for 2 and

3. Previous ab initio VB (VBCI) results of 245 are also shown in Table 2 for comparison.

Concerning the results of 2, the weight of 2g in which four electrons are localized on two

nitrogen atoms is especially large. Also, the weight of 2c in which delocalization to boron is

occurring is large to the same extent. The results of B3LYP in the present method is quite

similar to those by the VBCI. The HF seems to overestimate the weight of 2g, probably due

to the lack of the electron correlation. We found hybrid functionals tend to behave between

the pure GGA functional and HF in terms of the weight, as expected. Unfortunately, VB

calculation for 3 has not been reported so far, but the above results suggest that the present

analysis is comparable to that by ab initio VB methods, and sufficiently reliable. On the

results of 3, the weight of 3j (58.93% by HF and 49.11% by B3LYP) is larger than the weight

of 2g (52.35% by HF and 41.60% by B3LYP) both by B3LYP and by HF. Additionally, the

weight of 3d (33.60% by HF and 38.11% by B3LYP) is smaller compared with 2c (39.03%

by HF and 44.98% by B3LYP). Though there are contributions from other structures in 2

and 3, their weights are relatively small (difference of total contributions is about 1%) and

will not affect the discussion here. By these comparison through the present analysis of

2 and 3, we found the degree of the delocalization is larger in the former molecule. This

observation by directly analyzing delocalized MOs is consistent with the previous results by

other analysis method mentioned above.44
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CONCLUSIONS

Any MO wave functions could be uniquely expanded with AO determinants. As has been

recognized so far, estimating the weights of each AO determinant constructing the wave

function give us insights to the electronic structures of molecules. In this study, we focused

on a second quantized formalism of nonorthogonal orbitals and formulated the well-defined

weight of each AO determinant constructing single-determinant wave function. As a result,

we derived the simplest formula on the weight of AO determinant as Eq. (25) using density

matrix and overlap matrix only. Through the present study, a very clear and easy-to-use

analysis methodology for delocalized MO wave functions in terms of resonance structure was

established. In principle, any numbers of electrons can be treated, and the analysis in terms

of resonance theory is possible with the given set of valence bond functions.

The derived formula was numerically verified through the analysis of simple π-electron

systems. The present methodology combined with standard quantum chemical calculations

will be useful to analyze electronic properties of molecules and chemical reaction processes.
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Figure 1: Tautomerism of formamide and formamidic acid represented in the conventional

chemical reaction formula.

Figure 2: Resonance structures of formamide.

Figure 3: The changes of the weights of resonance structures in the 4π-electron system along

the IRC for the isomerization of formamide to formamidic acid calculated with B3LYP/6-

31G(d). The corresponding resonance structures (1a–1f) are shown in Figure 2.

Figure 4: Resonance structures of 1,3,2,4-diazadiboretidine (2).

Figure 5: Resonance structures of 1,2,3,4-diazadiboretidine (3).
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Structure Degeneracy HF B3LYP

3a 2 2.39 3.70

3b 2 0.00 0.00

3c 2 2.37 3.65

3d 4 33.60 38.11

3e 4 0.68 1.42

3f 4 -0.09 -0.11

3g 4 -0.09 -0.11

3h 4 -0.61 -0.55

3i 4 -0.01 -0.02

3j 1 58.93 49.11

3k 2 0.00 0.00

3l 2 2.39 3.70

3m 1 0.02 0.07

Others 0.41 1.03

Total 100 100

Table 3: Weight of resonance structures (%) of 1,2,3,4-diazadiboretidine (3) calculated with

6-31G(d,p).
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