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Summary 10 

 11 

Lifespan varies greatly across the tree of life. Of the various explanations for this 12 

phenomenon, those that involve trade-offs between reproduction and longevity have gained 13 

considerable support. There is an important exception: reproductives (queens and in termites, 14 

also kings) of social insects exhibit both high reproductive outputs and extraordinarily long 15 

lives. As both the ultimate and proximate mechanisms underlying the absence of the 16 

fecundity/longevity trade-off could shed light on the unexpected dynamics and molecular 17 

mechanisms of extended longevity, reproductives of social insects have attracted much 18 

attention in the field of ageing research. Here, we highlight current ecological and 19 

physiological studies on ageing and discuss the various possible evolutionary and molecular 20 

explanations of the extended lifespans of termite reproductives. We integrate these findings 21 

into a coherent framework revealing the evolution of longevity in these reproductives. 22 

Studies on termites may explain why and how ageing is shaped by natural selection. 23 

 24 
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1. Introduction 28 

 29 

Termites are one of the most abundant terrestrial animals on earth [1,2]. A key factor in terms 30 

of their ecological success is the reproductive division of labour that is a central feature of 31 

eusociality. In a colony, a limited number of male and female reproductives (kings and 32 

queens) produce all the offspring and a large number of non-reproductive individuals 33 

(workers and soldiers; but workers can become at least neotenic reproductives in most lower 34 

termites [3–5]) perform most of foraging, nest-building, brood care and nest-guarding [6,7]. 35 

Intriguingly, reproductives and non-reproductives exhibit up to a 100-fold difference in 36 

lifespans, and even more compelling is the fact that the reproductives live for an order of 37 

magnitude longer than solitary insects [8]. These features are also found in social 38 

Hymenoptera such as ants and honeybees, but the eusociality of termites has evolved 39 

independent of social Hymenoptera [9,10]. Therefore, unlike social Hymenoptera, termites 40 

have hemimetabolous development, bisexual societies and diplodiploid sex determination 41 

system [7]. Most notable is the continuous presence of sperm-producing kings in termites, 42 

which is a universal characteristic among termites, but completely absent in social 43 

Hymenoptera [1,7]. These differences result in an interesting feature in which only the queens 44 

are long-lived in social Hymenoptera, while in termites, not only the queens but also the 45 

kings exhibit both high reproductive outputs and extraordinarily long lives [5,7,11–16]. 46 

Although longevity is negatively correlated with reproduction in most organisms [17–19], 47 

the trade-off between fertility and longevity is apparently absent in termites reproductives 48 

[20]. Both the ultimate and proximate mechanisms underlying this unique characteristic 49 
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could shed light on the unexpected dynamics and molecular mechanisms of extended 50 

longevity. 51 

The aim of this review is to summarise recent ecological and physiological studies of 52 

termite ageing and longevity. First, we describe the evolutionary and ecological determinants 53 

of the long lifespans of termite reproductives. Then, we discuss the physiological and 54 

molecular mechanisms in play. Finally, we integrate these findings into a coherent framework 55 

explaining the evolution of longevity in such reproductives. 56 

 57 

 58 

2. Evolutionary and ecological determinants of long lifespans 59 

 60 

To explain why termite reproductives exhibit extended lifespans, it is necessary to understand 61 

the evolutionary aspects of longevity. The key idea underpinning the evolution of the lifespan 62 

is the “selection shadow”; the strength of natural selection declines after sexual maturation 63 

and with progressing age [17,21–25]. The selection shadow is shaped by age-independent 64 

random extrinsic mortality, which is in turn affected by external factors such as predation and 65 

early-life reproductive investment. But note exceptions if extrinsic mortality is condition-66 

dependent not random [26]. High extrinsic mortality reduces the probability of later-life 67 

reproduction, reducing selective forces at old age. Such decreases allow alleles with late 68 

acting deleterious effects to accumulate over generations (the mutation accumulation theory) 69 

[27]. Moreover, genes associated with beneficial early-life effects would be favoured by 70 

selection even if they were deleterious in later life (the antagonistic pleiotropy theory) [21]. 71 
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The deleterious effects cause physiological deterioration (ageing, also termed senescence) of 72 

an organism as age advances, reducing reproductive capacity and increasing the risk of death 73 

[28]. 74 

 75 

 76 

(a) Low extrinsic mortality 77 

 78 

A major reason why termite reproductives live so long is that they experience low extrinsic 79 

mortality after the colony is established. The evolution of a reproductive division of labour 80 

is associated with strong social-level defence by non-reproductives [29], including nest 81 

defence, social immunity and self-sacrificial behaviours. These reduce the risks of predation, 82 

disease, starvation and desiccation; greatly limiting the extrinsic mortality of reproductives 83 

(Figure 1; Table 1). 84 

In general, termite reproductives live deep inside the nest of central area (e.g. "royal 85 

chamber" in a few species) of an enclosed and protected mound or nest (subterranean, epigeal, 86 

or arboreal) safe from predation, thermal stress and desiccation, where tens of thousands of 87 

non-reproductives engage in social labour [30]. The most elaborate royal chamber is that of 88 

Macrotermes termites. It resembles a thick-walled protective bunker located in the most 89 

sheltered central part of the nest, often immediately below ground level [30–32]. The 90 

subterranean Reticulitermes termites also have royal chambers that are generally located deep 91 

inside the wood of the central areas [33,34]. Termite nests are multi-layered structures; many 92 

chambers are connected vertically and horizontally via very small openings. Thus, predators 93 
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such as ants are required to break the multi-layered defence mounted by non-reproductives 94 

to access the royal chamber. 95 

The social behaviour and group living of termites reduce the risks of disease and 96 

starvation in reproductives. Termites limit the spread of infection within the nest; the 97 

antennae recognize pathogenic conidia [35], followed by initiation and maintenance of 98 

allogrooming (social grooming) of contaminated body parts [36–38]. The additive effects of 99 

individual immune responses and their social amplification are also important in terms of 100 

anti-pathogen defence. Grouped termites cope better with disease than do isolated individuals 101 

[36,39], suggesting that resistance is socially enhanced [40,41]. Group foraging may reduce 102 

the risk of starvation in reproductives; especially in some foraging termite species, non-103 

reproductives forage actively, discover new food sources and store foods [42–46]. If termite 104 

non-reproductives have residual nutrients to be shared via trophallaxis, the reproductives are 105 

prioritised; the reproductives thus survive for longer even within a starved colony [47]. 106 

In non-reproductive workers, there tend to be differences in the maximum lifespan 107 

among termite species [5], which may be dependent on their lifestyles. Termites can be 108 

divided into wood-dwelling and foraging termites (also called one-piece type and separate 109 

type, respectively) [3,48]. The wood-dwelling termites utilise a single piece of wood both as 110 

food source and shelter and produce simple and small colonies with totipotent workers that 111 

can become reproductives, where workers are as protected as reproductives. On the other 112 

hand, the foraging termites are characterised by multiple pieces nesting and form large and 113 

complex societies where irreversible workers perform risky tasks such as foraging outside of 114 

the nest. In foraging termites, the high mortality of workers is expected to result in earlier 115 



 7 

ageing and shorter lifespan compared to the workers of wood-dwelling termites. Currently, 116 

there is little evidence that their lifestyles have an effect on longevity of non-reproductives 117 

(and also reproductives) as a general rule, but the reproductives of Macrotermes termites, 118 

foraging termites, are thought to reach 20 years of age while workers can live only a few 119 

months [45], whereas the lifespan of reproductives and workers is about the same 4–5 years 120 

in Zootermopsis termites, wood-dwelling termites [49] (an overview of longevities for 121 

termite reproductives and workers was reviewed in [5]). 122 

 123 

 124 

3. The physiological and molecular mechanisms of extended longevity 125 

 126 

An understanding of the physiological and molecular mechanisms in play would illuminate 127 

how termite reproductives achieve both high reproductive outputs and extraordinarily long 128 

lives. The evolutionary theory of ageing proposes two proximate theories; these are the 129 

“energy” and “function” trade-offs between growth, reproduction and longevity (the 130 

disposable soma theory and the developmental theory of ageing, respectively) [50]. The 131 

former theory considers that ageing is a trade-off between reproduction and somatic 132 

maintenance [24,51,52]. This suggests that delayed ageing and extended longevity can be 133 

achieved via greater allocation of resources to longevity assurance mechanisms, such as 134 

antioxidant and DNA repair systems, that slow the age-associated accumulation of 135 

physiological damages. In the alternative to damage accumulation, the latter theory suggests 136 

that ageing reflects suboptimal gene function in later life, mechanistically linked to the idea 137 
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that superfluous nutrient-sensing growth pathways during adulthood can cause excessive 138 

biosynthesis that triggers functional decline (the hyperfunction hypothesis) [53–56]. Together, 139 

these trade-off theories are thought to be not mutually exclusive [57] and, broadly speaking, 140 

both sides suggest that loss of homeostasis causes ageing. 141 

 142 

 143 

(a) Oxidative stress resistance 144 

 145 

Loss of homeostasis is caused, in part, by oxidative stress. Reactive oxygen species (ROS) 146 

that are by-products of mitochondrial aerobic energy metabolism [58] enhance immunity and 147 

cellular signalling when they are present at certain levels. However, when enzymatic and 148 

non-enzymatic antioxidants cannot fully neutralise overproduced ROS, the resulting 149 

imbalance seriously damages important biomolecules such as proteins, lipids and nucleic 150 

acids [59–64]. The basic homeostatic balance is compromised by either increased ROS 151 

production per se or reduction in the effectiveness of defences. 152 

An efficient antioxidant system as a longevity assurance mechanism may explain why 153 

termite queens enjoy long lifespans. If mutations causing oxidative stress-induced DNA 154 

damage are not eliminated from the germline, they may pass to the offspring, reducing the 155 

fitness. Therefore, the germline must be highly protected against oxidative stress in long-156 

lived organisms. The long-lived queens of R. speratus show significantly higher activities of 157 

antioxidant enzymes (catalase and superoxide dismutase) than short-lived non-reproductives, 158 

and suffer significantly less oxidative protein, lipid and DNA damage (Figure 2) [65,66]. In 159 
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particular, the catalase activities of termite queens were higher than those of certain solitary 160 

insects and social Hymenoptera, reflected by an increased expression of the catalase gene 161 

RsCAT1 [65]. In addition, a study on another subterranean termite R. chinensis revealed that 162 

differentiation of workers into neotenic reproductives was associated with increased catalase 163 

gene expression [67]. These studies partially support the hypothesis that transition to a 164 

reproductive state is associated with a gradual decrease in the extent of oxidative damage to 165 

body tissues (the oxidative shielding hypothesis) [68]. 166 

Lifestyles may influence the level of investment in their antioxidant system. Contrary to 167 

the results of the study using R. speratus [65], comparative studies of young and old 168 

individuals of the less-socially complex (wood-dwelling) termite Cryptotermes secundus 169 

revealed that protein oxidative damage levels were lower in workers than in reproductives 170 

[69] and that workers increase their protection with age but not reproductives [70]. In addition, 171 

another study using C. secundus found a clear oxidative stress defence signal under stress 172 

conditions, inducing ageing, that was stronger in workers than in queens [71]. These suggest 173 

that workers which are totipotent to become reproductives, like in C. secundus, should invest 174 

more in longevity assurance mechanisms than sterile workers because the former can still 175 

reproduce and have not reached maturity yet [71]. 176 

 177 

 178 

(b) DNA integrity and transposon defence 179 

 180 

Genomic instability and DNA damage can trigger ageing in multicellular organisms [72]. 181 
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DNA damage is repaired via various pathways [73]. In R. speratus, reproductives expressed 182 

higher levels of DNA repair genes than did other castes [74]. Notably, the BRCA1 gene 183 

RsBRCA1 expression in somatic tissues was higher in long-lived kings than short-lived 184 

workers. Although BRCA1 is one of the best-studied DNA repair genes particularly in the 185 

context of cancer research, any role of the gene in terms of organismal aging or longevity 186 

remains unclear. The cited termite study proposed that the BRCA1-associated DNA repair 187 

pathway contributed to longevity. 188 

DNA damage occurs during germline meiotic DNA replication. The DNA repair proteins 189 

BRCA1, MCPH1, XRCC3, and MLH1 are associated with meiotic progression and 190 

maintenance of genomic stability [75–78]. These genes RsBRCA1, RsMCPH1, RsXRCC3, 191 

and RsMLH1 were significantly upregulated in reproductive tissues compared to their 192 

expression in somatic tissues of R. speratus reproductives [74]. The expression pattern of 193 

these DNA repair genes suggests that it may protect the germline from accumulation of 194 

progressive DNA damage. The strong evolutionary pressures placed on long-lived organisms 195 

with long reproductive periods may have enhanced the expression of DNA repair genes in 196 

reproductive tissues. 197 

Transposon defence may also be involved in the exceptional longevity of termite 198 

reproductives. Transposable elements (TEs), also termed “jumping genes”, are DNA 199 

sequences that move from one location on the genome to another and thus enhance genomic 200 

instability [79]. Increased TE activation has been linked to ageing in the mouse [80], a fly 201 

[81] and a yeast [82]. A recent study on the termite Macrotermes bellicosus found that 202 

although TE expression increased with advancing age in short-lived workers, this was not 203 
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the case in long-lived reproductives [12]. The study also performed age-estimates and used 204 

reproductives (around 9 years for old and 3-4 years for young) and non-reproductives (weeks 205 

to months) with large differences in age. Notably, the reproductives upregulated PIWI-206 

interacting RNA (piRNA) biosynthesis; these RNAs silence TEs [83]. Thus, the extended 207 

lifespan of termite reproductives may be explained in part by TE suppression; this ensures 208 

longevity. 209 

 210 

 211 

(c) Downregulation of growth signalling 212 

 213 

The nutrient-sensing growth pathways (e.g. growth hormone signalling, insulin/IGF-1 214 

signalling (IIS) and target of rapamycin (TOR) signalling) at the heart of the trade-off theories 215 

would be an important determinant of ageing in termite reproductives. Down regulation of 216 

these growth signaling pathways as well as dietary restriction is thought to reduce resource 217 

allocation to reproduction, growth and biosynthesis, thus prolong lifespan in organisms [84–218 

86]. Recent study using C. secundus investigating transcriptome between young and old 219 

individuals revealed that aged primary reproductives (more than seven-year-old) have lower 220 

expression levels of IMP-L2 and PRMT1 genes involved in IIS suppression and ATPsynD 221 

genes related to protein homeostasis under activated TOR signalling than young ones (one-222 

year-old) [70]. This suggests that lifespan determination and aging processes might be 223 

modulated by the typical aging pathways IIS and TOR in termites as in other organisms. In 224 

addition, four-year-old reproductives of the termite R. chinensis expressed significantly lower 225 
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levels of the mTOR, eIF4, and RPS6 genes involved in TOR signalling and IIS than did 226 

workers, suggesting that long-lived reproductives may downregulate these growth signalling 227 

[87]. In general, these nutrient-sensing growth pathways effect juvenile hormone (JH) 228 

production followed by upregulation of vitellogenin (Vg), a yolk protein required for egg 229 

production [88,89]. Recent studies outlined the view that re-wiring of the IIS-JH-Vg circuit 230 

has occurred in social insects which may explain the re-shaping of the fecundity/longevity 231 

trade-off [90]. However, most data has come from the honeybee where JH has no further 232 

function in the maintenance of the reproductive status in queens [91,92]. The positive 233 

correlation between JH levels and vitellogenesis has been well studied in termites [93–97], 234 

but almost nothing is known about the details of the IIS-JH-Vg circuit. Further research on 235 

the relationship between the IIS-JH-Vg circuit in termites is needed. 236 

There is also possibility that termite reproductives, especially queens, may perhaps 237 

reduce these signalling without sacrificing high-level reproductive performance, by 238 

employing other signals to control reproduction. The transcription factor termed 239 

carbohydrate-responsive element-binding protein (ChREBP), a glucose sensor regulating the 240 

expression of genes that drive fatty acid biosynthesis, was highly expressed in mature queens 241 

of eight different termite species, compared to the levels in sterile workers and soldiers [98]. 242 

ChREBP critically mediates the glucose-dependent induction of glycolytic and lipogenic 243 

genes in metabolic tissues [99], and may thus provide essential precursors of oogenesis via 244 

redirection of a significant proportion of glucose carbons to de novo lipogenesis and 245 

nucleotide biosynthesis. Thus, in addition to growth hormone signalling, IIS and TOR 246 

signalling, the other signalling pathways such as ChREBP-mediated glucose signalling need 247 
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to be further investigated. 248 

 249 

 250 

4. Hypoxic adaptation and longevity evolution in termite reproductives 251 

 252 

The physiological and ecological mechanisms of extended termite longevity may be 253 

evolutionarily linked via hypoxic adaptation. Termite reproductives are protected from the 254 

external environment because they live in closed nests, where the hypoxic condition can be 255 

viewed as a by-product of the nest structure. A recent study using R. speratus revealed that 256 

the royal chambers in termite nests were hypoxic (low in O2; approximately 15%) and 257 

hypercapnic (high in CO2; approximately 4%) [34]. Oxidative stress is influenced by the 258 

level of O2 present, shown by the fact that increases in the level of O2 in the atmosphere that 259 

the insects are breathing lead to enhanced rates of oxidative damage and reduced longevity 260 

[100]. Atmospheric O2 can be toxic and the levels must be carefully regulated to avoid 261 

oxidative stress [101]. Indeed, the discontinuous gas-exchange cycle is known as a 262 

respiratory adaptation to avoid oxygen toxicity in insects [102] (also in a termite Z. 263 

nevadensis [103]). Hypoxic nests thus may protect reproductives from oxidative stress 264 

through interacting with their antioxidant system. 265 

Termite reproductives exhibit higher-level reproductive activities, survival, and 266 

expression of antioxidants and vitellogenin under hypoxia compared to normoxia, suggestive 267 

of hypoxic adaptation [34,104]. Intriguingly, during physiological adaptation to hypoxia, the 268 

development of anaerobic energy-producing systems operative in the conditions of low 269 
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oxidative stress may extend the lifespans of termite reproductives. Glycolysis that is a form 270 

of anaerobic metabolism is considered to produce fewer ROS than mitochondrial aerobic 271 

metabolism; large amounts of glucose are required to create energy [105,106]. Termite 272 

queens exhibit glucose signalling [98]; workers may deliver glucose to reproductives via 273 

trophallaxis. The long lifespan of queens may be attributable in part to optimisation and 274 

adaptation of their physiological responses to the hypoxia of their closed chambers, but it 275 

still needs to be further tested. 276 

An evolutionary linkage between adaptation to hypoxia and longevity may also be in 277 

play in other long-lived animals, thus the naked mole rat [107], parasitic nematodes [108] 278 

and the ocean quahog [109], adapted to protected habitats that are underground, inside the 279 

body of the host, and muddy bottom sediments, respectively. Although adaptation to hypoxia 280 

may be physiologically useful, this does not necessarily delay ageing. When exploring the 281 

relationship between longevity and metabolic adaptation to hypoxia in termite reproductives, 282 

it is essential to define the pathways of energy metabolism, and the metabolic burdens 283 

imposed by (for example) oxidative stress during metabolism. 284 

 285 

 286 

5. Perspectives 287 

 288 

The ecological and physiological studies infer that the striking reproductive activity and 289 

lifespan of termite reproductives evolved under selection pressures that accompanied the 290 

development of eusociality. However, it remains unclear whether factors associated with such 291 
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evolution increased termite longevity. The life-history traits (the reproductive outputs and 292 

longevities) of various termite species featuring different levels of social defence should be 293 

further compared. For instance, there are wood-dwelling termites in which all castes are 294 

protected against predators as workers do not forage and in which also all castes stay in the 295 

nest and probably experience hypoxia. These direct comparisons would yield important 296 

insights. Probably, it is not a single factor but several traits that explain potential differences 297 

between wood-dwelling and foraging termite species. 298 

Since termite reproductives have extraordinary longevity, it is difficult to track their 299 

entire life, and there is not so much information on the lifespan of termites [5,11–14]. 300 

Therefore, reliable and valid biomarkers of chronological and biological age are essential for 301 

future advanced studies of termites. This would allow us to take into account the effects of 302 

age, which is one of the difficulties in termite researches. Moreover, molecular studies of 303 

termites have identified several genes that may be involved in longevity assurance, but their 304 

functions remain unclear. Since it is necessary to carefully assess how termite reproductives 305 

achieve extended lifespan, further studies are required to evaluate the biological function of 306 

these genes in the longevity of termites using genetic tools, such as RNA interference 307 

[110,111] and transgenic systems [112]. 308 

The quest for understanding the proximate mechanisms of extraordinary longevity in 309 

termite reproductives is only the beginning. We are now at the dawn of a big paradigm shift 310 

in the ageing study of termites having the great opportunity to uncover the unexplored 311 

longevity-mechanisms that cannot be reached by studies using intrinsically short-lived model 312 

organisms. As the possibility that termite queens activate ChREBP-mediated glucose 313 
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signaling to attenuate TOR signaling and achieve longevity without sacrificing reproduction, 314 

these unexpected physiological and molecular pathways explaining the remarkable lifespan 315 

extension of termite reproductives may be identified in the future. 316 

 317 
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Figure 1. Schematic of the evolution of extended longevity in termite kings and 338 

queens. The upper panel shows the susceptibilities to extrinsic mortality of solitary insects 339 

(left) and termite reproductives (right). Black solid circles indicate defence systems; termite 340 

reproductives implement both individual- and social-level defences (the latter by the 341 

evolution of eusociality). The red arrows indicate the effects of extrinsic mortality factors 342 

on individuals. Termite reproductives may be better protected than solitary insects against 343 

such attacks. The lower panel shows the evolutionary dynamics of longevity in short-lived 344 

solitary insects (left) and long-lived termite reproductives (right). The black solid curves 345 

indicate survival levels in the wild, and the grey areas the “selection shadows”. The reduced 346 

extrinsic mortality of termite reproductives extends the period available for longevity 347 

selection. 348 

  349 
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figure 2
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Figure 2. Oxidative stress resistance in termite queens. (a) The ageing process associated 352 

with oxidative stress. (b) Comparisons of the catalase and Cu/Zn-superoxide dismutase 353 

(Cu/Zn-SOD) enzyme activities (antioxidant systems) of short-lived R. speratus workers and 354 

long-lived queens. (c) Comparisons of the oxidative damage levels of various biomolecules 355 

in R. speratus short-lived workers and long-lived queens after free radical formation by 356 

ultraviolet irradiation (left and right boxes respectively). The error bars denote standard errors 357 

of the means. The statistical significances are: * p<0.05 and ** p<0.01. White and black bars 358 

indicate workers and queens, respectively. PC, protein carbonyl; MDA, malondialdehyde; 8-359 

OHdG, 8-hydroxy-2ʹ-deoxyguanosine. Modified from Tasaki et al. (2017) [65] and Tasaki et 360 

al. (2018) [66]. 361 

  362 
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Table 1. Ecological and physiological characteristics in termites, and the predicted 363 

effect on extended longevity of the reproductives. 364 

Characteristics Expected effect on extended longevity 
of termite reproductives References 

Ecological 
characteristics   

Nest defence Nest defence, which involves nest structures in combination 
with the defensive behaviour of the non-reproductives, 
contributes to the decrease in the risks of predation, 
thermal stress and desiccation in the reproductives. 

[30,33,113] 

Social immunity Social immunity, which is one adaptive mechanism that helps 
to alleviate the risks of pathogen infection in group-living 
termites, contributes to a reduced risk of mortality due to 
diseases in the reproductives. 

[36–39,41] 

Group foraging Group foraging by non-reproductives involves high foraging 
activity and new food discovery and storage, thus avoiding 
the risk of starvation in the reproductives. 

[42–47] 

Hypoxic nest Hypoxic nest could protect the reproductives from oxygen 
toxicity. 

[34,104] 

Physiological 
characteristics   

Oxidative stress 
resistance 

Antioxidant system neutralises the overproduction of reactive 
oxygen species associated with oxidative stress, which 
contributes to delayed ageing and long lifespan of the 
reproductives. 

[65–67] 

DNA repair Various repair pathways repairing DNA damages associates 
to be long lifespan of the reproductives. 

[74] 

Transposon defence Transposon defence such as PIWI-interacting RNA inhibits 
transposon activity, which contributes to improve genomic 
instability and slow ageing in the reproductives. 

[12] 

Downregulation of 
growth signalling 

Downregulation of insulin/IGF-1 signalling (IIS) and target of 
rapamycin (TOR) signalling prevents excessive 
biosynthesis resulting in loss of homeostasis and 
contributes to longevity in the reproductives. 

[87] 

 365 
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