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Abstract: Damage detection is one important target in structural health monitoring 

(SHM). Vibration-based damage detection has attracted more attention in the past 

decades by tracking the modal parameter changes of objective structures. This paper 

presents the work on developing a novel Bayesian Fast Fourier Transform (FFT) 

method for damage detection using the Bayes factor based on ambient vibration data. 

Based on the properties of FFT data, the likelihood function and prior probability 

density function (PDF) can be constructed theoretically based on a Gaussian 

distribution. The most probable value (MPV) of modal parameters and the associated 

covariance matrix determined from the ambient vibration data can be integrated into 

the model developed according to the Bayes factor. A novel damage indicator in the 

frequency domain is proposed, which can be calculated efficiently using the FFT data 

and the identified modal parameters. The method is illustrated using synthetic data 

where a simply supported bridge with 10 elements is simulated. It is found that the 

damage indicator can identify the damage element in both damage location and extent 

when moving the sensors installed on the bridge. The proposed method is also applied 

in a steel truss bridge and an ASCE benchmark structure. This method can make full 

use of the FFT data, modal parameters information and their posterior uncertainties, 

providing a new way for future damage detection.     
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1. Introduction 

Structural health monitoring (SHM) has been attracting more attention in the past two 

decades with the increasing age of structures [1][2][3][4][5][6]. In the recent two years, 

the sudden collapse of some structures, such as Ponte Morandi in Italy in August 2018, 

which was the first cable-stayed concrete bridge in Europe, and the Miami pedestrian 

bridge in March, 2018, which is still under construction, has caused huge casualties and 

property losses. How to find the initial damages before the structural collapse is a very 

important issue in SHM. There are three main stages in damage detection. The first is 

to judge whether damage exists; the second is the damage location and the last is the 

damage extent. Focused on the three targets, many methods have been developed. Cha 

and Choi developed a method using convolutional neural networks to detect concrete 

cracks [7]. This method is a vision-based method and deep learning technology was 

used to analyze the image features and then the possible cracks. Eraky et al. proposed 

a damage indicator method by comparing the change of modal strain energies in 

different damage extents [8]. This method was verified in numerical examples and 

applied in experimental flexural structures. Ding et al. presented an improved 

Dempster-Shafer data fusion algorithm to perform damage assessment of structures 

considering the existing uncertainty based on Dempster-Shafer evidence theory [9]. In 

this method, the actual evidence reliabilities in damage assessment can be reflected well. 

The reliability evaluation method can also be used in the damage assessment of slopes 

[10].  

Modal curvatures can also be used for damage detection. Ciambella and Vestroni 

proposed a method to use modal curvatures for damage localization of beam-type 

structures [11]. The lower and higher modes effect was addressed to study the issue of 

narrow and broad damage. Another type of method for damage detection is the 

Bayesian method [12]. Yang and Lam developed a novel Bayesian model updating 

method to carry out damage detections [13]. Model updating can be performed 

effectively by adaptive sequential Monte Carlos. It was applied in a scaled transmission 

tower. Some other methods have also been developed such as the wavelet transform 
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method [14][15], the artificial neural networks method [16][17][18], the lamb wave 

method [19][20], the piezoelectric-based smart aggregates active monitoring method 

[21] and the guided wave method [22][23], etc.      

Among all the above methods, the vibration-based method is a commonly used one. 

Acceleration and velocity responses are easily collected and so they are frequently used 

in the damage detection. Based on these data, the modal properties including natural 

frequency, damping ratio and mode shape can be identified. By tracking the change of 

these parameters, it is possible to detect the potential damage. Among different 

vibration test methods, the ambient vibration test is more convenient to be used since 

no artificial excitation is required. However, since the excitations mainly come from 

the environment and they are random, it inevitably leads to the uncertainty existing in 

the identified modal parameters. How to quantify these uncertainties in vibration-based 

damage detection is an important issue. The Bayesian method makes it possible to 

evaluate the uncertainties of modal parameters under ambient excitations [24][25]. 

Recently, a fast Bayesian FFT method has been developed successfully for ambient 

modal identification and is becoming popular due to the fact that it is easily used and 

efficient [26][27][28][29][30][31][32][33]. It has been applied in the modal 

identification of different types of structures, for example, super tall buildings, long 

span bridges, and so on [34][35][36]. 

On the other hand, the Bayes factor was used to quantify the support for a model over 

another model [37][38][39][40][41]. Based on this property, it can be used in the 

comparison of the model in different damage statuses. Goi and Kim developed a time 

domain damage detection method based on the Bayes factor and it was applied well in 

the damage detection of a real bridge [42][43]. Compared with the time domain method, 

the frequency domain method has the advantage of easily taking into account the 

contributions of different efficient modes. Furthermore, some useless information that 

is difficult to model in the time domain can be removed conveniently in the frequency 

domain.  

Therefore, combining the advantages of the Fast Bayesian FFT method and Bayes 
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factor, in this work, a frequency domain method is proposed to provide a novel damage 

indicator for vibration-based damage detection based on ambient vibration data. The 

main advantage of the proposed method is that it can make full use of the information 

of natural frequencies, damping ratios and mode shapes instead of the traditional 

methods only using the natural frequencies or mode shapes. The associated posterior 

uncertainties of the identified modal parameters can also be addressed in the developed 

model. The proposed method is verified using a series of numerical examples by 

considering the change of damage location, damage extent and the information used. It 

is found that the developed damage indicator can reflect the damage change in this 

process. Finally, the proposed method is applied to a truss bridge and an ASCE 

Benchmark frame structure.  

This paper is organized as follows. In Section 2, the theory of the proposed method is 

presented and a procedure for damage detection using this method is also introduced. 

Section 3 provides the numerical examples to illustrate the proposed method, followed 

by Section 4 to apply the proposed method in real structures. This work is concluded in 

Section 5.     

2. Methodology 

In this section, the basic theory of the proposed method will be presented. The main 

contribution is highlighted briefly as follows. By substituting the likelihood function 

and the prior probability density functions (PDF) determined based on the theory of the 

recently developed fast Bayesian FFT method into the Bayes factor, a novel frequency 

domain damage indicator can be developed. The procedure to calculate the damage 

indicator is also proposed. In this part, a damage indicator is defined based on Bayes 

factor in section 2.1. In section 2.2, the likelihood function and the prior PDF to 

construct the damage indicator are developed. Based on the likelihood function and the 

prior PDF, the damage indicator is calculated and reformulated in section 2.3. Finally, 

the procedure to determine the damage indicator is proposed in section 2.4.     
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2.1 Definition of damage indicator 

The Bayes factor has been used in many studies [37]-[41]. Given data D, it is assumed 

that there are two hypotheses H! and H", whose PDF can be written as: 𝑝(D|H!) and 

𝑝(D|H"), respectively. The definition of a Bayes factor can be given as follows [38]: 

 B!" =
#(%|'!)
#(%|'")

 (1) 

The PDF of 𝑝(D|H))(𝑞 = 0,1) can be obtained by integrating as follows:   

 𝑝-D.H)/ = ∫𝑝-D.𝛉) , H)/𝑝-𝛉)|H)/𝑑𝛉) (2)	

where 𝛉! denotes a vector including all the parameters to construct the model under 

the hypothesis H) ; 𝑝-D.𝛉𝑞, H)/ denotes the likelihood function of 𝛉!  under H) ; 

𝑝-𝛉𝑞|H)/ denotes the prior PDF of 𝛉! given the hypothesis H).  

The integral of Equation (2) is usually intractable and so some numerical methods are 

needed to calculate it. In this work, Laplace’s Method is used to solve this problem. In 

this method, assuming that the posterior PDF proportional to 𝑝-D.𝛉𝑞, H)/𝑝-𝛉𝑞|H)/ is 

highly peaked at its maximum value 𝛉4), the integral in Equation (2) can be expressed 

as: 

 𝑝-D.H)/ ≈ (2𝜋)*#/,.𝐂9.!/,𝑝-D.𝛉4) , H)/𝑝-𝛉4)|H)/ (3)	

where 𝛉4) is the mean value; 𝐂9 denotes the covariance matrix of the parameters in 𝛉! 

with respect to 𝐿" = −log	[𝑝+D-𝛉! , H!0𝑝+𝛉!|H!0] and the Hessian of 𝐿"  is evaluated at 

𝛉4); 𝑛- denotes the number of parameters inside 𝛉!. In this equation, 𝐂9 needs to be 

calculated as the inverse of the Hessian matrix by taking the second derivatives of 𝐿". 

Variants on Laplace’s Method can be used to simplify the problem. A variant on this 

method is listed as follows： 

 𝑝-D.H)/ ≈ (2𝜋)*#/,.𝐂<..
!/,𝑝-D.𝛉=) , H)/𝑝-𝛉=)|H)/ (4)	

where 𝛉=) denotes the maximum likelihood estimator and it is the minimum point of 
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𝐿 = −log	[𝑝-D.𝛉𝑞, H)/]; 𝐂<. denotes the covariance matrix with respect to 𝐿, which 

can be determined as the inverse of the Hessian matrix obtained by the second 

derivatives of the L; the Hessian of 𝐿 is evaluated at 𝛉=).  

The Equation (3) is obtained at the maximum 𝛉4) from approximation of the integral 

by means of the Laplace method (Laplace approximation). On the other hand, Equation 

(4) is an approximation of Equation (3) by omitting the prior PDF in the calculation of 

Hessian, and so Equation (4) is likely to be less accurate than Equation (3). The error 

between the two equations could be more when the prior PDF is more informative. In 

summary, Equation 4 is easier but less accurate than Equation 3, but the accuracy is still 

under control. 

In this problem, based on the framework of Fast Bayesian FFT method, the prior PDF 

is not informative to the likelihood function. This is because the likelihood function is 

fast varying compared to the prior PDF when there is a large amount of data as the case 

in ambient vibration tests [27]. Therefore, Equation (4) will be used in this proposed 

method. In the next section, the likelihood function and the corresponding Hessian 

matrix are calculated based on the framework of the Fast Bayesian FFT method. 

2.2 Construction of the likelihood function and prior information  

Based on Equations (1) and (4) in section 2.1, the general form of the Bayes factor to 

determine the damage indicator can be obtained. Note that in Equation (4), there are 

three terms to be determined, i.e., the likelihood function 𝑝-D.𝛉=𝑞, H)/, the covariance 

matrix 𝐂<. and the prior PDF 𝑝-𝛉=𝑞|H)/. In this section, these terms will be determined 

based on the framework of the fast Bayesian FFT approach [24][26][27]. Note that in 

the Bayesian framework, 𝛉=)  denotes the most probable values (MPVs) of modal 

parameters. 

Let {𝐱̈</ ∈ 𝑅*: 𝑗 = 1,… ,𝑁}  denote the measured acceleration data under ambient 

conditions at n degrees of freedom (DOFs) of a structure, abbreviated as	{𝐱̈</}; 𝑁 is the 
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number of samples. It can be modelled as follows:    

 𝐱̈</ = 𝐱̈/ + 𝐞/ (5) 

where 𝐱̈/ ∈ 𝑅*  denotes the model acceleration response; 𝐞/ ∈ 𝑅*  denotes the 

prediction error to model the difference between the measured and theoretical structural 

responses.  

The FFT of measured data {𝐱̈</} is defined as follows: 

 𝐹<0 = Q,∆2
3
∑ 𝐱̈</exp	[−2𝜋𝐢

(/4𝟏)(04𝟏)
3

]3
/6!          (𝑘 = 1,2, …𝑁) (6)  

where 𝑘 is the index of the frequency f0 = (𝑘 − 1)/𝑁∆𝑡 corresponding to FFT 𝐹<0 

at 𝑓0 , and 𝑘 = 2,3, …𝑁)  with 𝑁) = 𝑖𝑛𝑡[𝑁/2] + 1 ; ∆𝑡  represents the sampling 

interval; 𝐢𝟐 = −1. 

In the frequency domain, specified frequency bands will cover the possible modes. 

Given the 𝑖th selected frequency band, let 𝐷8  denote the FFT data containing the 

potential modes. According to Bayes’ Theorem, the posterior PDF of 𝛉̀8 for given data, 

where 𝛉̀8 denotes the modal parameters in the 𝑖th selected frequency band, can be 

expressed as: 

 𝑝(𝛉̀8.𝐷8) =
#(𝛉:$)#(;$|𝛉:$)

#(;$)
 (7) 

where 𝑝(𝐷𝑖|𝛉3𝑖) is the likelihood function; 𝑝(𝐷𝑖) is a constant; 𝑝(𝛉3𝑖) is the prior PDF; 

i is the index of the frequency band selected for modal identification.  

The likelihood function 𝑝(𝐷𝑖|𝛉3𝑖)  can be obtained as follows. Let 𝐙< 80 =

[Re𝐹<80; Im𝐹<80] ∈ 𝑅,* where Re𝐹<80 and Im𝐹<80 denote the real and imaginary parts of 

the FFT data in the 𝑖th selected frequency band at frequency f0, respectively; let 𝐷8 =

{𝐙<80}. The likelihood function	𝑝(𝐷𝑖.𝛉̀8) in the 𝑖th frequency band can be constructed 

by a Gaussian distribution since the vector 𝐙< 80 is independent and follows a Gaussian 

distribution if having enough data, i.e.,  

 	𝑝(𝐷8.𝛉̀8) = ∏ 𝟏
(𝟐𝝅)𝒏>?@(𝐂𝒊𝒌)𝟎.𝟓

exp[− 𝟏
𝟐
𝐙<80B 𝐂804𝟏𝐙<80]𝒌 	 	 (8)	
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in which, 𝐂𝒊𝒌, the covariance matrix of 𝐙<80, is expressed as:    

 𝐂80 =
!
,
g𝚽8

𝚽8
i gRe𝐇80 −Im𝐇80
Im𝐇80 Re𝐇80

i k
𝚽8
E

𝚽8
El +

F+$
,
𝐈,* (9)	

where 𝚽𝒊 = [𝚽8!, 𝚽8,, … ,𝚽8G$] ∈ 𝑅
*G$  denotes the mode shape matrix; 𝐈,*  is an 

2𝑛 × 2𝑛 identify matrix; 𝑆H8 ∈ 𝑅 is the PSD of prediction error in the 𝑖th frequency 

band;  𝐇80 is a transfer function, and:  

 𝐇80(𝑢, 𝑣) = 𝑆IJ[(1 − 𝛽8I0, ) + 𝐢(2𝜁8I𝛽8I0)]4![(1 − 𝛽8J0, ) − 𝐢(2𝜁8J𝛽8J0)]4!(10) 

where 𝛽8I0 = 𝑓8I/f0; 𝑆IJ denotes the cross spectral density between the 𝑢th and 𝑣th 

modal excitation. Define 𝛉̀8 = {𝑓8I, 𝜁8I, 𝑆8I, 𝚽8I: 𝑢 = 1,… ,𝑚8 , 𝑆H8}, in which, 𝑚8  is 

the number of modes in a frequency band; 𝑓8I ∈ 𝑅 is the 𝑢th natural frequency in the 

𝑖th frequency band; similarly, 𝜁8I ∈ 𝑅, 𝑆8I ∈ 𝑅 and 𝚽8I ∈ 𝑅* denote the damping 

ratio, PSD of modal force and mode shape, respectively.  

2.2.1 Likelihood function and the corresponding covariance matrix 

The corresponding negative log-likelihood function (NLLF) can be expressed as: 

 𝐿(𝛉̀8) = −ln	 𝑝(𝐷8.𝛉̀8) (11) 

and so  

 𝑝(𝐷8.𝛉̀8) = exp	[−𝐿(𝛉̀8)]	 (12)	

Based on a second-order Taylor expansion, it can be given by: 

 𝐿(𝛉̀8)~𝐿 w𝛉̀=8x +
!
,
(𝛉̀8 − 𝛉̀=8)E𝐇=.(𝛉̀8 − 𝛉̀=8)	 	 (13)	

where 𝐇=. denotes the Hessian matrix of 𝐿(𝛉̀8) when given the MPV 𝛉39%. Substituting 

(13) into (12), the likelihood function can be given by: 

 𝑝(𝐷8.𝛉̀8)~exp	[−
!
,
(𝛉̀8 − 𝛉̀=8)E𝐂<𝛉$

4𝟏(𝛉̀8 − 𝛉̀=8)]		 	 (14)	

with  
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 𝐂<𝛉:$ = 𝐇=.4! (15)	

denoting the covariance matrix of the modal parameters.  

The likelihood function in an individual frequency band can be determined according 

to Equation (8). In damage detection, usually all the possible identifiable modes will be 

used and the data in all the related frequency bands will be included. Assuming the data 

in 𝑛K  frequency bands are available, the likelihood function considering all these 

frequency bands can be given by: 

 𝑝({𝐷8}.{𝛉̀8}) = ∏ 𝑝(𝐷8.𝛉̀8)
𝒏𝒃
𝒊6𝟏 = ∏ ∏ 𝟏

(𝟐𝝅)𝒏𝐝𝐞𝐭(𝐂𝒊𝒌)𝟎.𝟓
exp[− 𝟏

𝟐
𝐙<80E 𝐂804𝟏𝐙<80]

0$-
060$!

𝒏𝒃
𝒊6𝟏 (16) 

where {𝐷%:	𝑖 = 1,… , 𝑛&	}  is a collection of the data in all the frequency bands, 

abbreviated as {𝐷%}; {𝛉3%:	𝑖 = 1,… , 𝑛&} denotes a collection of the modal parameters in 

all the selected frequency bands, abbreviated as {𝛉̀8} ; 𝑘8!  and 𝑘8,  denote the 

start and end frequency indexes in the 𝑖th selected frequency band, respectively.  

2.2.2 Prior PDF 

The prior PDF of 𝛉% can be constructed as follows. The identified modal parameters 

can be modelled as:  

 𝛉̀=8 = 𝛉̀8 + 𝛆𝒊 (17) 

where 𝛉̀8  is the theoretical modal parameters and 𝛆𝒊 is the prediction error of modal 

parameters between the identified and theoretical values. Assuming 𝛆𝒊  follows a 

Gaussian distribution, then the prior PDF of 𝛉̀8  can be given by:  

 𝑝(𝛉̀8) =
𝟏

(𝟐𝝅)𝒏𝐝𝐞𝐭(𝐂𝛉/$)
𝟎.𝟓 exp[−

𝟏
𝟐
(𝛉̀8 − 𝛉̀=8)E𝐂𝛉:$

4𝟏(𝛉̀8 − 𝛉̀=8)]  (18) 

where 𝐂𝛉(!  denotes the covariance matrix of the modal parameters 𝛉̀8  in the 𝑖 th 

frequency band. Since the modal parameters in different frequency bands can be taken 

to be independent, the prior PDF considering all these frequency bands can be given by: 

 𝑝({𝛉̀8}) = ∏ 𝑝(𝛉̀8)
*0
86! = ∏ 𝟏

(𝟐𝝅)𝒏𝐝𝐞𝐭(𝐂𝛉/$)
𝟎.𝟓 exp[−

𝟏
𝟐
(𝛉̀8 − 𝛉̀=8)E𝐂𝛉$

4𝟏(𝛉̀8 − 𝛉̀=8)]
*0
86!  (19) 
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2.3 Calculation of a new Bayesian damage indicator  

Based on the above sections, the new Bayesian damage indicator can be calculated as 

follows. Let H!  and H"  denote the alternative and null hypotheses, which can 

represent the damage and healthy statuses of the tested structure, respectively. Given 

the test data D, where there may be damage information included, the Bayes factor can 

be given by:  

 B!" =
#(%|'!)
#(%|'")

= ∫#QDR𝛉!, H!ST(𝛉!|'!)U𝛉!
∫#QDR𝛉", H"ST(𝛉"|'")U𝛉"

 (20) 

where 𝛉! = {𝛉3%}𝑞 denotes a collection of all the modal parameters involved under the 

𝑞th hypothesis. Since both p-D.𝛉𝑞, H)/ and p-𝛉𝑞|H)/ follow Gaussian distributions, 

p-D.𝛉𝑞, H)/p-𝛉𝑞|H)/ is highly peaked. It is worth mentioning that H1 and H0 are two 

hypotheses. H1 represents the damage status while H0 represents the intact status. In the 

later calculation, Hq (q = 1, 0) will be ignored since the modal parameters in 𝛉)(𝑞 =

1, 0) are able to pin down the distribution of D already.  

Note that the covariance matrix of the individual likelihood function can be given by 

Equation (15). Since the likelihood function in Equation (16) is a product of 

multivariate Gaussian PDFs, based on Equations (14) and (16), its covariance matrix 

under H) hypothesis can be given by:   

  𝐂<.) = (∑ 𝐂<𝛉:$1
4𝟏𝒏𝒃

𝒊6𝟏 )4𝟏 (21) 

where 𝐂B𝛉(!"  denotes the covariance matrix in the 𝑖th frequency band under the 𝑞th 

hypothesis.   

Once the most probable values (MPVs) of the modal parameters are given, variants on 

Laplace’s Method can be used to calculate the two integrals in Equation (20) according 

to Equation (4). Thus:  

 B!" =
R𝐂W2!R

!/-
#XDY𝛉=!, H!Z#Q𝛉[!|'!S

R𝐂W2"R
!/-

#XDY𝛉=", H"Z#Q𝛉["|'"S
   (22) 

where 𝛉9! = {𝛉39%}𝑞. Note that the relative error is in the order of Ο(𝑁4!). In this study, 

ambient vibration data were used for the investigation. In order to ensure the 
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identification accuracy, the number of data sample is usually very large. The 

stabilization of the results can be satisfied.  

For the convenience of calculation, the natural logarithm of the Bayes factor is 

commonly used, i.e.,  

ln	(B)*) =
)
+
ln+-𝐂B,)-0 + lnF𝑝+D-𝛉9), H)0G + lnF𝑝+𝛉9)|H)0G −

)
+
ln+-𝐂B,*-0 − lnF𝑝+D-𝛉9*, H*0G −

ln	[𝑝+𝛉9*|H*0]                                                              (23) 

In this equation, 𝐂<.!, 𝑝-D.𝛉=!, H!/ and 𝑝-𝛉=!|H!/ are calculated based on the modal 

parameters identified in the damage status, while 𝐂B,*, 𝑝+D-𝛉9*, H*0 and 𝑝+𝛉9*|H*0 are 

calculated based on the modal parameters identified in the intact status.  

2.4 Procedure  

The basic procedure for calculating the new damage indicator can be concluded as 

follows: 

1) Perform operational modal analysis of healthy and test data by the fast Bayesian 

FFT method, respectively. Determine the MPV of modal parameters, i.e., 𝛉=) 	(𝑞 =

1, 0), and the associated covariance matrixes 𝐂B𝛉(!"  in all the selected frequency 

bands. Note that the modes identified in two sets of data should be consistent.   

2) Given the test data, calculate the likelihood functions 𝑝+D-𝛉9! , H!0 under H! and 

H" hypotheses respectively according to Equation (16) by substituting the modal 

parameters of two sets of data determined in Step 1.  

3) Calculate 𝑝+𝛉9!|H!0  under H!  and H"  hypotheses respectively according to 

Equation (19).  

4) Calculate 𝐂<.) according to Equation (21).   

5) Calculate ln	(B!") according to Equation (23). 

3. Numerical example 

To illustrate the proposed method, a simply supported bridge was simulated with the 

length of 21 m. It was modelled by 10 beam elements as shown in Figure 1 and the first 

seven natural frequencies below 100 Hz were 1.609 Hz, 6.438 Hz, 14.493 Hz, 25.794 

Hz, 40.395 Hz, 58.400 Hz and 79.981 Hz, respectively. The damping of all the modes 

was assumed to be classical and the damping ratios were set to be 1%. Ambient 
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excitations modelled by independently and identically distributed (i.i.d.) Gaussian 

white noise were applied to the bridge. The root PSD of the ambient excitation was 

2	N/√Hz. Gaussian white noise with a root PSD of 6 × 104\g/√Hz was added into 

the generated data to simulate the measurement noise. Assume that all the nine DOFs 

in the vertical direction of the bridge were measured as shown in Figure 1 with a 

sampling frequency of 256 Hz. For each measurement, 900 s of data were collected.  

 
Figure 1 Overview of the bridge 

 
Figure 2 Root PSD spectral of the simulated data 

Table 1 Modal parameters of the first seven modes 

Mode 1 2 3 4 5 6 7 
Natural 

frequency 
(Hz) 

Identified 1.609 6.431 14.494 25.796 40.417 58.402 79.996 
COV (%) 0.112 0.059 0.040 0.031 0.024 0.020 0.017 

exact 1.609 6.438 14.493 25.794 40.395 58.400 79.981 
Damping 

ratio 
Identified (%) 0.86 0.93 0.99 1.04 1.00 0.97 1.01 

COV (%) 14.1 6.7 4.5 3.3 2.6 2.2 1.9 
Exact (%) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MAC 0.9996 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 

Figure 2 shows the PSD spectral of the simulated data. All these seven modes below 

100 Hz were identified and used for the later damage detection. Table 1 shows the 

modal parameters identified using the Fast Bayesian FFT method. In addition to the 

MPV of modal parameters, the associated coefficient of variation (COV) was also 

calculated to evaluate the posterior uncertainty. The exact values of the modal 

parameters determined from the finite element model were also provided. The 

z

xy 10@2.1m=21m

DOF1 DOF2 DOF3 DOF4 DOF5 DOF6 DOF7 DOF8 DOF9

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
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identified modal parameters were close to the exact values. The COVs of natural 

frequencies were small while the COVs of damping ratios were a little larger, indicating 

that the identification of natural frequency was more accurate.  

The mode shapes were also identified as shown in Figure 3. It is seen that all these 

mode shapes are reasonable. The modal assurance criterion (MAC) between the 

identified and exact mode shapes are also listed in the last row of the table. It is seen 

that they are quite close to 1, indicating that the identified mode shapes are almost the 

same as the corresponding exact ones.   

 
Figure 3 Mode shapes identified 

  

Figure 4 Damage degree with all the 9 DOFs measured, damage in Element 4, DI: 
damage indicator 

3.1 Damage appearing in one element 

To investigate the new damage indicator, the damage was simulated by reducing the 

elastic modulus of different corresponding elements. The damage degree is accounted 
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for by the reduction rate as 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 

40%, 45% and 50%. As mentioned, there were a total of 10 elements. To evaluate the 

damage behaviour in different locations, the damage was simulated for each element 

individually from the left to the right side, i.e., 10 different cases were investigated for 

each damage degree. In total, 140 sets of data were used for the illustration.  

Figure 4 shows the relationship between bridge damage indicator (DI) and the damage 

degree when damage appears in Element 4, where all the nine DOFs were measured. 

The damage degree changes from 1% to 50%. Following with the increase of damage 

degree, the DI increases accordingly. When the damage is very small, e.g., less than 5%, 

the DI is also at a very low level, but their increasing with the damage degree can also 

be observed. This indicates that the DI is sensitive to the damage degree.  

 
(a)           (b)           (c)            (d)           (e) 

Figure 5 Noise levels effect of the damage indicator, damage in Element 4, damage 
degree of 25% 

Noise level is an important factor affecting the efficiency of the damage detection. To 

investigate this effect, six groups of data with six noise levels, i.e., the root PSD of 5 

× 104\g/√Hz, 6 × 104\g/√Hz(nominal value), 7 × 104\g/√Hz, 8 × 104\g/√Hz, 

9 × 104\g/√Hz and 10 × 104\g/√Hz, respectively, were generated. Figure 5 shows 

the noise level effects of the damage indicator, with the damage element in the 4th 

element and the damage degree of 25%. For the six groups of data, the noise levels 
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increased gradually. Figure 5a shows the modal signal to noise ratio (SNR) 

([26][27][28][29][44]) from Data 1 to Data 6 of all the seven modes used for damage 

detection. It is seen that with the increase of noise level, the modal SNRs in all the 

modes decrease obviously, while the COV of natural frequencies (Figure 5b), COV of 

damping ratios (Figure 5c), and the posterior uncertainty of mode shape (Figure 5d) 

increase consistently. This means that the increase of noise level makes the 

identification tend to be inaccurate. Figure 5e shows the damage indicator values at 

different noise levels. Although the modal SNR decreases obviously, the DI values tend 

to be stable, indicating that the proposed method has anti-noise performance.  

 
Figure 6 DI for different damage degrees and measured DOFs, 1st element 

Table 2 Measurement plan 

Setup Sensor 1 Sensor 2 Sensor 3 Sensor 4 
1 DOF1 DOF2 DOF3 DOF4 
2 DOF2 DOF3 DOF4 DOF5 
3 DOF3 DOF4 DOF5 DOF6 
4 DOF4 DOF5 DOF6 DOF7 
5 DOF5 DOF6 DOF7 DOF8 
6 DOF6 DOF7 DOF8 DOF9 

In practice, not all the DOFs can be measured in real applications. In the simulation, it 

was assumed that only four sensors were available and these sensors were used to carry 

out the damage detection of the bridge based on DI. The four sensors were arranged 

from the left to the right sides of the bridge. The measurement plan can be seen in Table 

2. Figure 6 to Figure 15 show the relationship between the DI and setups for different 

damage degrees. In these figures, the damage element changes from the 1st to the 10th 
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element for the purpose of observing its effect on the DI. In general, with the increase 

of damage degree, the DI increases for all the cases with different damage elements and 

different measured DOFs, which is consistent with the results presented in Figure 4.  

 
Figure 7 DI for different damage degrees and measured DOFs, damage in the 2nd 

element 

 
Figure 8 DI for different damage degrees and measured DOFs, damage in the 3rd 

element 

 
Figure 9 DI for different damage degrees and measured DOFs, damage in the 4th 

element 
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Figure 6 shows the DI for different damage degrees and measured DOFs, where the 1st 

element is assumed to be damaged. According to Figure 1, the left side of the 1st element 

is fixed while the right side corresponds to DOF1. From this figure, it is seen that in 

Setups 1 and 2, the DI values are all large and Setup 2 has the larger value. This means 

that the damage in the 1st element significantly affects Setups 1 and 2. For the setups 

farther from the damage element, the DI value tends to decrease obviously.  

 
Figure 10 DI for different damage degrees and measured DOFs, damage in the 5th 

element 

Figure 7, Figure 8 and Figure 9 show the DI values for different damage degrees and 

measured DOFs, where the damage appears in the 2nd, the 3rd and the 4th element, 

respectively. It is seen that Setup 2 has the largest DI value when there is damage in the 

2nd element; Setup 3 and Setup 4 have the largest DI value when there is damage in the 

3rd and the 4th element, respectively. This shows that when the sensors were put at one 

side of the damage, the corresponding DI value was the highest and this phenomenon 

was repeatable. One possible reason is that the damage element will more affect the 

mode shapes far away from the constraint. 

It should be noted that there is some difference for the case in Figure 6, where the 1st 

element is damaged but the DI value of Setup 1 is not the largest value. Instead, Setup 

2 has the largest DI value. This may be because the left side of the 1st element is fixed, 

and this boundary condition could affect the DI. Although the DI value of Setup 1 is the 

second largest, it is still significantly larger than the corresponding value of the case in 

Figure 7, where the 2nd element is damaged. Furthermore, for the case in Figure 6, the 
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DI for Setup 1 is larger than the value for Setup 3; however, the reverse is true for the 

case in Figure 7, which shows that the behaviours when damage appearing in the 1st 

and 2nd elements are obviously different. This is because of the effect of the boundary 

condition on the DI. The damage appearing in the 1st and 2nd elements can still be 

detected using the indicator.  

 
Figure 11 DI for different damage degrees and measured DOFs, damage in the 6th 

element 

Figure 10 shows the DI for different damage degrees and measured DOFs, where the 

damage appears in the 5th element. In this case, as predicted, Setup 5 has the largest DI, 

indicating possible damage in the 5th element. It is also interesting to find that in Setup 

2 there is also a peak, which is smaller than the DI for Setup 5. This is because this 

damage element is almost in the middle of the bridge, which leads to Setup 5 having 

the first sensor beginning at Location 5 and Setup 1 with the last sensor ending at 

Location 4 perhaps having a larger DI. However, since the first location of Setup 1 is 

the first location of the bridge on the left side, as discussed, due to the effect of boundary 

conditions, the DI of this setup will be smaller. This conclusion is verified by the results 

in Figure 11 (the damage appearing in the 6th element). It is seen that the DIs in Figure 

10 and Figure 11 are symmetric, since the 5th and 6th elements are symmetric.  

Similarly, the cases with damage appearing in the 7th, 8th, 9th and 10th element are 

symmetric with the cases when damage appearing in the 4th, 3rd, 2nd and 1st element, 

respectively. Therefore, the results in Figure 12, Figure 13, Figure 14 and Figure 15 

look symmetric with the results in Figure 9, Figure 8, Figure 7 and Figure 6, respectively. 
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The symmetric phenomenon also verifies the analysis before.   

 
Figure 12 DI for different damage degrees and measured DOFs, damage in the 7th 

element 

 
Figure 13 DI for different damage degrees and measured DOFs, damage in the 8th 

element 

 
Figure 14 DI for different damage degrees and measured DOFs, damage in the 9th 

element 
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Figure 15 DI for different damage degrees and measured DOFs, damage in the 10th 

element 

 
Figure 16 DI for different damage degrees and modes (only one mode used), damage 

in the 3rd element 

 
Figure 17 DI for different damage degrees and the number of modes used, damage in 

the 3rd element 

3.2 Modes effect on DI 

In the above analysis, all the seven identified modes were used to calculate the DI for 

damage detection. In real applications, the number of modes that can be identified may 
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depend on the objective structures, equipment and measurement noise. In this section, 

the effect of the modes used in the calculation of DI will be investigated. Figure 16 

shows the DI for different damage degrees using the information of different modes, 

where the damage appears in the 3rd element and all the nine DOFs are measured. In 

this figure, in different damage degrees, only the information of one mode, i.e., Mode 

1 to Mode 7, was used individually. It is seen that the DIs calculated using Mode 1 to 

Mode 4 are all much smaller than those using Mode 5 to Mode 7. The DI tends to 

increase with the mode order. This means that the contributions of different modes to 

DI are different and the contribution of higher mode tends to be larger, e.g., in the case 

of 50% damage, the contribution of the 7th mode is more than 15 times the 1st mode. 

This is also verified by Figure 17, which shows the DI for different damage degrees and 

number of modes used when the damage appears in the 3rd element. It is seen that the 

DI has an exponential rise when the number of modes used increases.     

 
Figure 18 DI for different modes (only one mode used) and measured DOFs, 15% 

damage in the 3rd element 

Figure 18 shows the DI for different modes (only one mode used) with different setups 

(see Table 2), where 15% damage appears in the 3rd element. In this figure, similar to 

Section 3.1, the mode effect on the different setups (measured DOFs) was studied. In 

each mode, the DI values for all the six setups could be obtained by the proposed 

method. It is seen that if only using the information of one mode, only the DIs calculated 

using Mode 2, Mode 5 or Mode 7 had the largest value in Setup 3 among all the setups. 

For other modes, their values in Setup 3 were not the largest value among all the setups. 

This observation is a little different from the results in Figure 8. This means that only 
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the information of one single mode may not be enough to perform the damage detection. 

It is better to use as much useful information as possible.     

3.3 Damage appearing in two elements 

In the last section, damage appearing only in one element was investigated. In practice, 

the cases of damage appearing in two or more elements are commonly encountered. In 

this section, the cases with two damaged elements are studied. Figure 19 shows the DI 

for different damage degrees and measured DOFs, where damage appears in the 2nd and 

9th elements. It is seen that corresponding to these two elements, two peaks were found 

in Setup 2 (the first location is Location 2) and Setup 5 (the last location is Location 9). 

This means that in this case the two instances of damage can also be observed by the 

DI. Figure 20 shows the DI for different damage degrees and measured DOFs, where 

damage appears in the 3rd and 8th elements. A similar observation can be found.        

 
Figure 19 DI for different damage degrees and measured DOFs, damage in the 2nd and 

9th elements 

 
Figure 20 DI for different damage degrees and measured DOFs, damage in the 3rd and 

8th elements 
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4. Applications  

The proposed method was applied to two real structures to detect the potential damage. 

The first was a truss bridge while the second was a frame structure. 

4.1 Truss bridge 

The first structure is located in Japan, which is a simply supported bridge about 60 m 

long and 3.6 m wide, as shown in Figure 21. It was removed in 2012 after it had been 

used for 53 years. A series of field vibration tests was carried out to investigate the 

dynamic properties of the bridge before it was removed [45]. Artificial damages were 

allowed to be designed to simulate different cases for the purpose of damage detection. 

Five scenarios were designed, including Case 1: Intact bridge, Case 2: Half cut in 

vertical member at mid-span, Case 3: Full cut in vertical member at mid-span, Case 4: 

Recovery of the cut member at mid-span, Case 5: Full cut in vertical member at 5/8th -

span. In Case 2 and Case 3, the vertical member was the same as shown in Figure 22a. 

In Case 4, an attempt was made to recover the full cut member in Case 3 by using a 

jack to make the gap shorter and then steel plates were welded, as shown in Figure 22b. 

After the recovery, another member at 5/8th span was fully cut in Case 5. Please refer 

to [45] for the detailed damage scenario information.  

 

Figure 21 Overview of the bridge 
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a. Full cut member in Case 3            b. Recovered member in Case 4 

Figure 22 Cut and recovered vertical member in the mid-span 

In order to measure the structural responses in different cases, eight sensors were 

installed on the bridge deck and the sensor locations were all around the damage area, 

as shown in Figure 1 of [45], where five sensors (A1 to A5) were put on the damaged 

side, while the other three (A6 to A8) were put on the other side. Only the vertical 

accelerations were measured with a sampling rate of 200 Hz. Two kinds of field tests 

were carried out, including ambient vibration tests and vehicle-induced vibration tests. 

Note that during the field tests, the bridge was already closed and no other vehicles 

could pass the bridge. In this study, only ambient vibration responses were used. Figure 

23 shows the PSD spectra of the data in Case 1. Clear peaks can be found below 12 Hz, 

especially for the lower modes. The potential modes were selected and identified by the 

Fast Bayesian FFT method.  

 
Figure 23 PSD spectra of the data in Case 1 
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Table 3 Modal parameters identified in Case 1 

Mode   1 2 3 4 5 6 
Natural frequency 

(Hz) 
2.995 5.104 5.222 6.898 9.658 10.561 

COV (%) 0.04 0.06 0.06 0.04 0.04 0.03 
Damping ratio (%) 0.14 0.33 0.35 0.18 0.32 0.24 

COV (%) 31.8 23.3 21.8 21.8 13.3 14.0 

Table 4 Modal parameters identified in Case 2 

Mode   1 2 3 4 5 6 
Natural frequency 

(Hz) 
2.992 5.150 5.202 6.904 9.693 10.626 

COV (%) 0.08 0.03 0.05 0.05 0.05 0.03 
Damping ratio (%) 0.30 0.07 0.19 0.32 0.33 0.15 

COV (%) 26.7 46.6 28.4 18.1 17.0 20.1 
MAC 

(Cases 1 and 2) 
1.0000 0.9995 0.9996 0.9993 0.9988 0.9986 

Table 5 Modal parameters identified in Case 3 

Mode   1 2 3 4 5 6 
Natural frequency 

(Hz) 
2.888 4.973 5.142 6.883 9.680 10.606 

COV (%) 0.06 0.09 0.07 0.02 0.03 0.04 
Damping ratio (%) 0.19 0.52 0.35 0.09 0.15 0.30 

COV (%) 29.8 19.6 24.1 26.9 18.3 14.6 
MAC 

(Cases 1 and 3) 
0.9991 0.9926 0.9982 0.9995 0.9945 0.9975 

Table 6 Modal parameters identified in Case 4 

Mode   1 2 3 4 5 6 
Natural frequency 

(Hz) 
2.983 5.136 5.202 6.873 9.572 10.510 

COV (%) 0.10 0.04 0.05 0.05 0.04 0.04 
Damping ratio (%) 0.51 0.12 0.17 0.24 0.23 0.35 

COV (%) 21.6 32.8 29.0 24.8 16.5 14.9 
MAC 

(Cases 1 and 4) 
0.9997 0.9996 0.9996 0.9992 0.9978 0.9982 
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Table 7 Modal parameters identified in Case 5 

Mode   1 2 3 4 5 6 
Natural frequency 

(Hz) 
2.865 5.015 5.088 6.467 9.695 10.367 

COV (%) 0.16 0.11 0.10 0.05 0.04 0.06 
Damping ratio (%) 1.34 0.36 0.53 0.30 0.32 0.40 

COV (%) 13.3 25.5 21.4 20.7 15.9 17.7 
MAC 

(Cases 1 and 5) 
0.9976 0.9715 0.9893 0.9382 0.7002 0.7667 

Table 3 to Table 7 show the modal parameters identified in Case 1 to Case 5, 

respectively, including the natural frequency and damping ratio of each mode. In the 

proposed method, for the purpose of comparing the difference of the same modes in 

different statuses, it is necessary for the same mode in different cases to be selected. 

Therefore, considering this fact, only six common modes existing in all the cases were 

selected, although from Figure 23, there are around 10 modes below 12 Hz. The way 

to select the same mode is the MAC values between Case i (i = 2, 3, 4, 5) and Case 1, 

as shown in the last row of each table. It is worth mentioning that for Case 2 to Case 4, 

the MAC values are all larger than 0.99; however, in Case 5, the MAC values are much 

lower, especially for Mode 5 and Mode 6. The natural frequencies of the corresponding 

modes from Case 1 to Case 5 vary obviously. For Mode 1 and Mode 3, the value tends 

to decrease from Case 1 to Case 3, and then increase in Case 4. From Case 4 to Case 5, 

it decreases again. These two modes change following our intuition that the stiffness 

reduction may cause the decrease of the natural frequency. However, for other modes, 

it is difficult to observe this phenomenon, especially for the higher modes, and it is seen 

that some natural frequency tends to increase when there is larger damage. This means 

that for a real structure, it is really difficult to judge the damage status according to the 

change of natural frequency directly. For the damping ratios, no trend could be found. 

One possible reason is that the damping ratios have larger uncertainties (COV) as 

shown in the fifth row of each table. As mentioned, from Case 1 to Case 4, the MAC 

values are all larger than 0.99. This indicates that it is also difficult to observe the 

damage from the mode shape directly.  
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Table 8 Damage indicators (×105) calculated from Case 2 to Case 5 

Cases  2  3 4 5 
DI (Damping 
accounted) 0.084 0.390 0.105 7.143 

DI (Damping not 
accounted) 0.085 0.391 0.106 7.158 

Table 8 shows the damage indicators calculated by the proposed method using the 

modal parameters identified in all the cases. Case 1 was taken as the undamaged case 

and the DI values were all determined based on Case 1. To investigate the effect of 

damping ratios on the damage detection, both the results with and without damping 

ratios taken into account are calculated in this table. For the latter result without 

damping ratios accounted, the damping ratios were kept unchanged from hypotheses  

H" to H!. For the former case, when the damping is considered, it is seen that from 

Case 2 (half cut) to Case 3 (full cut), following the increase of damage extent, the DI 

increased significantly. This is because in the case of half cut, although there will be 

some loss of stiffness, the other half of the member can still bear the load, making load 

transfer possible. When the vertical member is fully cut, the stiffness of the whole 

bridge will be re-distributed, which may cause an obvious increase of the DI. In Case 

4, although the damaged vertical member was recovered, the redistribution of the 

stiffness was difficult to recover in a short time and some change will be permanent. 

This results in the DI value being a little higher than Case 2, although it is obviously 

lower than Case 3. In Case 5, i.e., the vertical member at 5/8th span was fully cut, the 

stiffness of the whole structure was re-distributed again, and also considering the 

residual recovery effect in Case 4, it is reasonable that the DI had the largest value. In 

summary, the damage behaviour in all the cases was reflected by the proposed damage 

indicator. For the case without damping considered, it is seen that there was some 

difference compared to the ones when damping was considered. However, the 

difference is not obvious. This shows that the damping ratio is not sensitive in this 

structure. The mechanics of the damping ratio on the damage detection is worth further 

investigation. Note that the change of PSD of modal force and PSD of prediction error 

will not be considered since these two parameters are mainly affected by the input and 
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the environment around, respectively.   

To further investigate the proposed method, the results obtained by the proposed 

method were compared with the ones obtained in [45] using a Mahalanobis distance 

method. Both methods can identify the damage by considering all the useful modal 

parameters. It is worth mentioning that the proposed method is more sensitive to the 

small damage (Case 2). This may be due to the fact that the uncertainty of the modal 

parameters can also be considered by the proposed method, which helps to judge 

whether the change of modal parameters is due to the identification accuracy or the 

structure stiffness variation. The effect of stiffness redistribution after recovery of the 

damaged member can also be detected by the proposed method.    

4.2 Frame structure 

In this part, a benchmark structure developed by the International Association for 

Structural Control (IASC) and the Dynamics Committee of the ASCE Engineering 

Mechanics Division is used to illustrate the problem. The structure is a 4-storey, 2.5 m

×2.5 m in plan steel-frame scaled building with a height of 3.6 m. The bracing system 

in each bay is composed of two threaded steel rods, which can be used to simulate the 

structural damage by removing them. For more details about the structure, please refer 

to [46]. Three kinds of tests were carried out to collect the structural responses for 

damage detection, including ambient vibration test, shaker test and hammer test. In total, 

16 accelerometers were used to perform the measurement, with 15 installed on the 

structures from the base to the top floor and three sensors on each floor, and one 

installed on the shaker to record the shaker excitation. The sensitivity of the sensors 

instrumented on the building is 5 volts/g. In the ambient vibration test, the sampling 

frequency was 250 Hz. In total, nine cases were designed as shown in [46]. In this study, 

three cases with ambient vibration tests performed were used, i.e., Case 1, Fully braced 

configuration; Case 3, Removed braces on all floors in one bay on the southeast corner; 

Case 5, Removed braces on the 1st floor in one bay on the southeast corner.  

Figure 24 to Figure 26 show the PSD spectra below 30 Hz of the measured data of Case 
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1 to Case 5, respectively. Some clear peaks can be found in all the three spectra. It is 

seen that the magnitude and the shape of the peaks in Case 1 and Case 5 are similar, 

while a large discrepancy can be found in Case 3. This is because from Case 1 to Case 

5, only the braces on the 1st floor in one bay on the southeast corner were removed, 

while from Case 1 to Case 3, braces on all floors in one bay on the southeast corner 

were removed. The latter case has much more change, which resulted in the obvious 

change in the structural responses. The first eight modes were focused on. 

   
  Figure 24 PSD spectra of the measured data in Case 1 

 
Figure 25 PSD spectra of the measured data in Case 3 

 
Figure 26 PSD spectra of the measured data in Case 5 
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Table 9 Modal parameters identified in Case 1 

Mode   1 2 3 4 5 6 7 8 
Natural 

frequency 
(Hz) 

6.164 7.766 11.374 11.788 14.481 21.013 22.696 25.477 

COV (%) 0.12 0.06 0.02 0.01 0.02 0.01 0.03 0.02 
Damping 
ratio (%) 

1.10 0.43 0.05 0.03 0.15 0.04 0.30 0.17 

COV (%) 13.9 17.1 31.8 39.0 17.6 24.8 10.9 12.2 

Table 10 Modal parameters identified in Case 3 

Mode   1 2 3 5 6 7 8 
Natural frequency 

(Hz) 
6.126 6.648 7.616 11.776 18.915 22.458 25.551 

COV (%) 0.07 0.06 0.09 0.02 0.03 0.02 0.01 
Damping ratio (%) 0.48 0.37 0.78 0.08 0.27 0.20 0.04 

COV (%) 16.7 16.9 15.7 25.2 11.6 12.3 24.1 
MAC 

(Cases 1 and 3) 
0.984 0.980 0.962 0.909 0.971 0.994 0.847 

Table 11 Modal parameters identified in Case 5 

Mode   1 2 3 4 5 6 7 8 
Natural 

frequency 
(Hz) 

6.150 7.464 11.378 11.786 14.038 20.625 22.795 25.540 

COV (%) 0.06 0.05 0.01 0.02 0.02 0.03 0.03 0.01 
Damping 
ratio (%) 

0.41 0.37 0.03 0.08 0.15 0.27 0.25 0.03 

COV (%) 17.4 15.1 39.8 26.6 17.5 15.2 12.5 29.0 
MAC 

(Cases 1 
and 5) 

0.999 0.997 0.942 0.915 0.997 0.974 0.999 0.997 

 
Table 9 to Table 11 show the modal parameters identified by the Fast Bayesian FFT 

method using the data from Case 1, Case 3 and Case 5, respectively. Consistent with 

the observation in the PSD spectral, it is seen that in Case 1 and Case 5, the changes of 
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natural frequencies are smooth and the MAC can correspond to the order of the modes 

with the values all larger than 0.91. However, for Case 1 and Case 3, there was a 

significant change of natural frequencies for the corresponding modes and Mode 4 of 

Case 3 could not be identified. It is seen that for Case 3 in Table 10, in the spectra 

(Figure 24) from 5th (11.776Hz) to 6th (18.915 Hz) mode, there is also a clear peak 

around 14 Hz, and this mode can also be identified well. However, from the MAC value, 

it is difficult to find a mode in Case 1 having a higher MAC value with this mode. 

Therefore, the information of this mode was not used in damage detection.  

Table 12 Setup information 

Channels 1 2 3 4 
Setup 1 NS1-1 NS1-2 NS2-1 NS2-2 
Setup 2 NS2-1 NS2-2 NS3-1 NS3-2 
Setup 3 NS3-1 NS3-2 NS4-1 NS4-2 

Table 13 Damage indicators (×106) calculated in Cases 3 and 5 

Setup  1  2 3  
Case 3  4.8843 3.7128 4.3465 
Case 5  7.1328 1.8286 1.2768 

For other corresponding modes, the MAC values between Case 1 and Case 3 tended to 

decrease. This means that the damage in Case 3 changed the distribution of the stiffness 

of the structure and then the modal properties dramatically. It is also interesting to see 

that the damping ratios of the steel structures were all very small (around or less than 

1%). After damage, the damping ratios of more than half of the modes tended to 

decrease. However, the damping ratio has a larger uncertainty as reflected in the COV 

values (10% to 30%) in the tables. It is difficult to judge whether the variation of the 

damping ratio is due to the damage or not. In this study, only the channels in the NS 

direction were used for damage detection, where on each floor, two un-axial 

accelerometers were installed in the middle of the east and west sides, respectively. To 

detect the damage, the eight channels were separated into three setups, i.e., in Setup 1, 

the four sensors on the first and second floors were selected, in Setup 2, the four sensors 

on the second and third floors were selected, and in Setup 3, the four sensors on the 
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third and fourth floors were selected. The setup information can be seen in Table 12. In 

this table, for each number, the first two letters denote the direction, the first number 

denotes the floor number, and the second number denotes the location number. For 

example, NS1-2 denotes the second location on the first floor in the NS direction. 

Table 13 shows the DI values calculated in Cases 3 and 5 based on the proposed method. 

It is seen that in Case 3, the DI values for different setups were similar while in Case 5, 

the DI values decreased obviously from Setup 1 to Setup 3. This is consistent with the 

damage cases, since in Case 3, the damage was similar from Floor 1 to Floor 4, while 

in Case 5, the damage only appeared on the first floor, resulting in the phenomenon that 

the indicators decrease when the sensors are far away from the damage. From the 

observation above, the damage can be reflected by the damage indicator in these two 

damage cases.   

5 Conclusions 

This paper presents the work on developing a novel damage indicator in the frequency 

domain based on the Bayes factor using ambient vibration data. One merit of the 

proposed method is that by selecting frequency bands that contain the modes 

information for damage detection, useless or unrelated information will be removed. 

Furthermore, in the ambient vibration tests, the excitations are all random and the signal 

to noise ratio is small, which makes uncertainties of the modal parameters identified 

from the ambient data inevitably exist. If the damage is small, it is difficult to judge 

whether the change of modal parameters is due to the identification accuracy or the 

structural damage. The proposed method was developed to solve this problem. In the 

likelihood function and the prior PDF, which are used to construct the novel damage 

indicator, the MPVs of modal parameters and the associated posterior uncertainty can 

be both considered. 

In addition to the natural frequencies (commonly used in traditional damage detection 

methods), this new damage indicator can also consider the variation of damping ratio 

and mode shape. This makes it possible to detect the damage location by changing the 
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measured locations using the mode shape information. A series of numerical examples 

was designed to illustrate the proposed method. In the example, different factors such 

as the damage extent, damage locations and the number of modes used were 

investigated and it was found that the proposed method is sensitive to these factors. 

Finally, the proposed method was applied in the damage detection of a truss bridge and 

an ASCE benchmark steel frame structure. For the truss bridge, five different cases 

were investigated. By taking Case 1 as the undamaged case, the DI values for the other 

four cases were calculated using the proposed method. It is seen that the DI values 

increase when the damage increases and the DI is also sensitive in the redistribution of 

the structure stiffness. For the frame structure, two different cases were studied, 

including Case 3 with damage on all the floors and Case 5 with damage on the first 

floor. It is seen that the damage indicators are similar in all the three setups of Case 3 

and they decrease obviously in the three setups of Case 5. The damage can be reflected 

by the proposed method.  

In this study, the single damage case was mainly focused on; however, in real 

applications, two or more damage locations also appear with multiple damage states. It 

is worthy to investigate these multiple damage cases in the future by increasing the 

measured DOFs. The effect of boundary conditions on damage detection may also be 

considered in the prior information. The computational burden should be still 

manageable since the time to conduct modal identification with large amounts of 

measured DOFs is still under control by the Fast Bayesian FFT method. In the current 

field examples, it is difficult to perform the investigation of damage localization due to 

the sensor locations or arrangement, so field vibration tests will be designed to conduct 

this research. Furthermore, the environmental effects such as temperature will also be 

studied.  
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