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Prediction of Work-Hardening Behavior under Various Loading Paths in 5083-O

Aluminum Alloy Sheet Using Crystal Plasticity Models
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In the present study, crystal plasticity models applicable for reproducing the work-hardening behavior under various loading paths of an
A5083-O Al alloy sheet were examined. The loading paths under consideration were tension, reverse loading from compression to tension,
simple shear, and biaxial tension. The accumulated-slip-based hardening model with the extended Voce hardening law provided good predictive
accuracy for work-hardening behavior under uniaxial loadings. In contrast, it could not reproduce anisotropic hardening under biaxial tension,
which was observed in the experimental results. In the case of dislocation-density-based hardening models, the work-hardening behavior under
both uniaxial loadings and biaxial tension was reproduced fairly well when an anisotropic property in the interaction matrix was considered. On
the basis of these results, a new accumulated-slip-based hardening model was proposed, in which the effects of latent hardening were considered
in calculation of accumulated slip. The new model allowed prediction of anisotropic hardening under biaxial tension as in the case of the
dislocation-density-based hardening model. This result suggested that the predictive accuracy of anisotropic hardening was more affected by the
modelling of the latent hardening and interaction matrix than by the choice of internal variables of hardening, i.e., accumulated slip or dislocation
density. [doi:10.2320/matertrans. MT-M2021020]
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1. Introduction

Weight reduction in automobiles is a strongly desired
outcome from the viewpoint of decreasing the environmental
impact caused by vehicle use. In general, it is estimated that
a reduction of 100kg in automobile weight leads to a fuel-
efficiency improvement of 1km/1 and a CO, gas emission
reduction of approximately 9 g/km."? The substitution of
lightweight materials for conventional steel sheets is
considered one of the effective methods of realizing weight
reduction. Among lightweight materials, Al alloys have
come into wide use because of their low density and high
recyclability. Nowadays, Al alloy sheets are used for
automotive outer panels such as hoods, doors, front fenders,
and roofs.?)

In contrast to the abovementioned desirable properties of
Al alloy sheets, there are still some challenges to its use due
to some of its less-desirable material properties. For instance,
a low Young’s modulus (approximately one third that of
steel) yields large springback,*> and the pronounced plastic
anisotropy of Al alloy sheets imposes difficulties in forming,
which includes forming limit® and bendability.” Further, the
elongation of Al alloy sheets is much smaller than that of
mild steel sheets although the tensile strength and yield stress
are comparable. This drawback also holds for 5000 series
Al alloy sheets, which show comparatively large elongation
in comparison to other types of Al alloy sheets. These
characteristics hinder wider application of Al alloy sheets for
automotive components. Hence, further investigation into
the deformation behavior of Al alloy sheets, along with
accurate prediction of formability using the finite-element
method (FEM), are essential for extending the application
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of Al alloy sheets. To this end, work-hardening behaviors
of Al alloy sheets under various loading paths and press
formability have been studied both experimentally and
numerically. Some recent works can be found in Refs. 6,
8-18).

Crystal plasticity models have also been widely used to
model deformation behaviors in Al alloy sheets in recent
years. Zhang et al.'® investigated anisotropies in the yield
stress and r-value of AA3103-H18 and AA3103-O sheets by
conducting uniaxial tensile tests every 15° from the rolling
direction (RD) to the transverse direction (TD). Five kinds
of crystal plasticity models were also used to predict the in-
plane anisotropies. These were the full-constraint Taylor
model, Alamel model, Alamel type III model, viscoplastic
self-consistent model, and crystal plasticity FEM. It was
found that the Alamel-type models and crystal plasticity FEM
yielded better predictive accuracy than the other models.
Similar investigations were also conducted using an AA1050
Al sheet.?” Brahme et al.?) predicted stress—strain curves
under plane-strain tension and equibiaxial tension of an
AA5754 Al sheet using four different crystal-plasticity
models for which material parameters were determined on
the basis of a stress—strain curve under uniaxial tension.
Work-hardening behavior was also evaluated beyond the
onset of diffuse necking under uniaxial tension using crystal
plasticity models. It was shown that the predicted work-
hardening for large strains was dependent on the model,
showing that the material parameters determined by curve
fitting to experimental ultimate strength could not always
accurately predict the material behavior under various
loading paths. Hu et al?? used a full-constraint Taylor
model, viscoplastic self-consistent model, and viscoplastic
Fourier transform model to reproduce stress—strain curves
and texture evolution under uniaxial tension, plane-strain
tension, and equibiaxial tension of an AA5754 Al sheet. The
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results were also compared among the models. It was
reported that the viscoplastic Fourier transform model
provided the best prediction of texture evolution. In contrast,
it was also found that the predictive accuracy of the
mechanical responses was dependent on the loading path.
Yoshida et al.?® predicted the evolution of plastic contours
of an AA3003-O sheet using two different crystal plasticity
models, i.e., an accumulated-slip-based hardening model and
a dislocation-density-based hardening model. Stress-path-
dependent work-hardening was also shown to be qualita-
tively predicted using a dislocation-density-based model. Luo
and Rousselier’® proposed a new crystal plasticity model that
could capture the strength-differential effect of an AA6260-
T6 Al sheet. The proposed model could predict work-
hardening behavior under various loading paths, including
uniaxial tension, uniaxial compression, reverse loadings,
biaxial tension, and pure shear. Zecevic and Knezevic®
developed a polycrystal plasticity model based on an elasto-
plastic self-consistent model and showed that the model
could successfully simulate the Bauschinger effect and
permanent softening under tension-compression cyclic
loading tests on AA6022-T4 sheets. Hashimoto et al.?®
predicted the contours of plastic work of an AAS5182-O
sheet using a homogenized crystal plasticity FEM with a
dislocation-density-based model and showed that an initial
contour was predicted fairly well, whereas the following
anisotropic hardening behavior was not reproduced by the
model.

Several crystal plasticity models have been proposed with
attendant predictive accuracies as discussed above. However,
suitable models that can reproduce a variety of deformation
behaviors that would occur during the sheet metal forming
process are still open to discussion. Specifically, there are
many studies on the predictive accuracy of uniaxial loadings,
while only a few reports have been compiled on the
predictive accuracy of the anisotropic hardening under
biaxial tension, i.e., evolution of plastic contours.?>>%

On the basis of the abovementioned background, the
purpose of this study is that appropriate crystal plasticity
models that can reproduce the work-hardening behavior of
an AA5083-O Al alloy sheet will be examined under various
loading paths including uniaxial tension, uniaxial reverse
loading from compression to tension, simple shear, and
biaxial tension. To this end, three different hardening models
that were reported elsewhere will be used and the predictive
accuracies of the deformation behaviors will be compared
among them. Moreover, especially focusing on the prediction
of anisotropic hardening, a new hardening model will be
proposed.

2. Experimental Methods

2.1 Material

The material used in this study was a commercially-
available Al alloy AAS5083-O sheet with a thickness of
1.5mm. Table 1 lists the mechanical properties of the sheet.
Figure 1 shows the pole figures of the {001}, {110} and
{111} planes obtained using electron backscatter diffraction
(EBSD) measurements on an initial sample. The plane
perpendicular to the rolling direction (RD) was measured,
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Table 1 Mechanical properties of the material.
o [ sior [o ] Jlnken
0 70.7 151 0.278 0.62
45 70.1 148 0.278 0.72
90 70.2 151 0.278 0.72

*E, 0y, and n denote Young’s modulus, yield stress,

and work hardening exponent, respectively. Lankford
values were measured at a nominal strain of

approximately 0.1.

001 111

max = 2.051
.‘ 1.820
| 1.614
‘ 1.432
1.27
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‘ 1.000
. 0.887

Pole figures of A5083-O sheet.

110
Fig. 1

and the results were analyzed using the software package
OIM-Analysis (TSL Solutions). The step size was set to
2.0 um in order to measure a relatively large area within a
reasonable time-frame. The average grain size of the material
was approximately 15um. The in-plane anisotropy of the
properties was negligibly small, as shown in Table 1,
presumably because of the weak texture. The results of
the EBSD measurements were also used to determine
initial crystallographic orientations used in crystal plasticity
analyses.

2.2 Experimental procedures
2.2.1 Uniaxial tension and reverse loading

The uniaxial loading tests were conducted using a
dumbbell-shaped sample with 10 x 20mm in the gauge
section. The digital image correlation (DIC) technique along
with GOM Correlate Professional V8 (GOM) was used to
evaluate strains.

Reverse loading tests from compression to tension with
compressive strain of either 0.04 and 0.06 were conducted in
the RD to examine the tension-compression asymmetry of
the stress—strain curve as well as the Bauschinger effect. An
experimental procedure of in-plane compression test was
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Fig. 2 Geometry of specimen for simple shear test.

Fig. 3 Photograph of the testing device for simple shear test.

the same explained elsewhere.?’?® A strain gauge (KFEM,
Kyowa Electronic Instruments) was used to measure strains.
The initial absolute strain rate was set to 1.0 x 1073571,

Because the in-plane anisotropies of stress—strain curves
and the Lankford values were small, only the results of the
RD are shown in the following.
2.2.2 Simple shear

Figure 2 shows the sample geometry. The notch geometry
was designed to give large strains without involving fracture
near the edges.??? Figure 3 shows the testing device used
for the simple shear test.>") The upper part of the device was
moved upward to provide shear deformation to the arca B
of the specimen shown in Fig. 2, while constraining the
deformation in the transverse direction by firmly clamping
the areas A of the specimen. The constraint resulted in small
normal stresses in the transverse direction.””) The average
shear stress t,,, was calculated as t,,, = F/Lt, where F'is the
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Fig. 4 Geometry of cruciform specimen for biaxial tensile test.3®)

test force, ¢ is the thickness, and L is the length of the gauge
region.

It should be noted that the round notch of the specimen
tended to yield nonuniform stress distributions near the
edges; thus, the average shear stress t,,, did not rigorously
evaluate the shear stress. However, our preliminary studies
showed that the stress measurement error for the round-
notched specimen was comparable to that of a rectangular-
notched specimen that yielded more uniform stress distribu-
tion.2”) Therefore, we concluded that the effect of the errors
on the following discussion is negligible.

Shear strain was evaluated by using the Hencky strain,
with which engineering shear strain was measured using
DIC. The tests were performed at the initial shear strain rate
of y=18x103s7".

2.2.3 Biaxial tension

Biaxial tensile tests were conducted following ISO
1684239 A biaxial tensile testing apparatus’>-® and a
cruciform specimen®® shown in Fig. 4 were used. Following
a literature,*® two strain gauges attached 21 mm away from
the specimen center in the maximum force direction were
used to measure the strain components in the RD and TD.
The stress components in the RD and TD, which are denoted
as o1 and oy, respectively, were then calculated using these
strains. A linear biaxial stress path was applied to the
specimen by controlling the true stresses o7, and oy, to be
oy1:00 = 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, or 1:4. The results of
011:022 = 1:0 and 0:1 were obtained from monotonic tensile
tests in the RD and the TD, respectively. The equivalent
strain rate was set to 5.0 x 107#s7".

32,33)

3. Crystal Plasticity Finite-Element Method

3.1 Constitutive model of single crystal

Basic formulations and simulation procedures for a crystal
plasticity finite-element method used in this study follow
those explained in prior literature;’’>%) thus, they are only
briefly explained here.

The face-centered cubic structure was assumed. 12 {111}
(110) slip systems were considered. The slip rate of the o th
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slip system p“ is related to the resolved shear stress t* by
using the visco-plastic power law:*4?)

1
am

Y =17 sign(t¥), 1% =s% 0 -m", @))]

3%
where y, is the reference slip rate, 1% is the slip resistance
of the ath slip system with 7§ = 7 initially, where 7y is the
initial critical resolved shear stress (CRSS), and m is the
strain rate sensitivity exponent. s* and m® are the unit vectors
that respectively represent the slip direction and the normal
of the slip plane of the « th slip system. The rate of slip
resistance is given by:

5= hapl?”l, @)
B

where h,g is the hardening moduli matrix. In this work,
accumulated-slip-based hardening and dislocation-density-
based hardening models were used to describe the hardening
moduli matrix and will be described in the next section.

3.2 Hardening models
3.2.1 Accumulated-slip-based hardening model

The hardening moduli matrix /gg proposed by
Hutchinson*? is given by

hap = [q + (1 — q)8aplh(y), 3)

where ¢ is the ratio between the latent-hardening rate and
the self-hardening rate, 8,4 is the Kronecker delta, and A(y)
is the hardening rate based on accumulated slip: y =
D f(; |[y*]. The latent-hardening parameter g was set to
1. 4.44,45)

For the rate of hardening 4, the following extended Voce
hardening law was used:

_ 60001 _ LYY
h(7) =6, + (90 — 6 + Or—l‘ y) exp(— f"—f) (4)

where 1y, 6y and 6, are the material parameters. This and
similar hardening laws have been used to represent the
deformation behavior of Al alloys.&& 4648
3.2.2 Dislocation-density-based hardening model

The following dislocation-density-based hardening mod-
el**9 was utilized:

hap = % 8ap (Z gwp”)

1
2

1
1 o
e (Zgamo) —2y.0” |,

)
where p is the shear modulus, y. is the characteristic length
that represents the annihilation process of dislocation dipoles,
K is a material parameter, and g, is the interaction matrix. p%
is the total dislocation density of the « th slip system and its
evolution is given by

1

1
N — _2Ca s o 6
14 b(L“ yp)lyl (6)

with b being the magnitude of the Burgers vector. L* is
expressed as LY = K//Y ", 8ach*.

Zap 18 @ 12 x 12 matrix which has only six independent
components,’) whose coefficients have recently been
estimated using dislocation dynamics simulations.>>~>%
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It should be noted that back stresses were not considered in
this study. However, as will be explained in the following
sections, the reverse loading behavior including the
Bauschinger effect could be accurately predicted, verifying
this approximation.

3.3 Finite-element model

The crystal plasticity models explained in the previous
sections were incorporated into a static FEM in which
explicit time integration was utilized.>” The representative
volume element was a cube for the simulations of uniaxial
and biaxial loadings. On the other hand, because preliminary
studies suggested that the number of elements in the
longitudinal direction was important for simple shear
simulations, a cuboid with the length ratio /:h:t = 30:3:1,
which denote respectively the longitudinal length, height,
and thickness, was used for simple shear. The dimension of
the cuboid was determined on the basis of the sample
geometry of simple shear (Fig. 2). 8-nodes solid elements
were used for discretization. The number of finite elements
were 1000 for both models. Displacement boundary
conditions were utilized to give prescribed loading paths.>®
Initial crystallographic orientations were randomly chosen
from the result of the EBSD measurement and assigned to the
integration points. The same crystallographic orientation was
assigned to the eight integration points in each element.

3.4 Material parameters

The following three models were used: the accumulated-
slip-based hardening model with the extended Voce harden-
ing law (eq. (4)) (A model) and the dislocation-density-based
model (eq. (5)) with two different interaction matrix parame-
ters (D-1 and D-2°% models). The components of g, i..,
20, 21, €, &3, &4, and g5, which denote respectively self-
hardening, collinear system, Hirth lock, coplanar system,
glissile junction, and Lomer—Cottrell sessile lock, of the D-1
and D-2 models are shown in Table 2.

The elastic constants were set to Cj; = 107 GPa, Ci; =
61 GPa, and C44 =28 GPa.’” The reference slip rate and
the strain rate sensitivity exponent were taken to be y, =
0.001s~! and m = 0.002, respectively.>” For the dislocation-
density-based model, the magnitude of the Burgers vector
was set to h=2.86 x 107'"m and the initial dislocation
density p¢ was taken to be 1.0 x 10'°m~2 regardless of the
slip system.??

The hardening parameters were determined by fitting a
stress—strain curve under uniaxial tension in the RD for a
uniform elongation range, i.c., to a strain of approximately
0.2. Moreover, 7 in eq. (4) was slightly adjusted to fit the
curve during tension following compression. The sets of
parameters for each model are listed in Table 2.

4. Experimental and Simulation Results

4.1 Uniaxial loading

Figure 5 shows the true stress-true strain curves in the
RD. In the experiment, yield elongation was observed. The
serrated flow occurred after yielding, and it became more
pronounced as the plastic deformation proceeded. Because
the hardening parameters of the crystal plasticity models were
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Table 2 Hardening parameters for crystal plasticity models.

7o (MPa) 7, (MPa) 69 (MPa) 6; (MPa)
A 52 60 365 12
E-1 54 60 3500 435
E-2 56 70 150 80
7o (MPa) K Ye (m) 9o 91 92 93 94 gs
D-1 51 2.18 1.05x 10°8 0.122 0.122 0.122 0.122 0.122 0.122
D-2 51 5.00 1.05x 10°8 0.122 0.810 0.205 0.122 0.320 0.122
450 400
400 300
@350 =
£ 300 % 200
2250 7 100
£200 50
2 150 g
= Z-100
£ 100 = 200
50
0 -300
0 0.05 0.1 0.15 0.2 -0.08 -0.04 0 0.04
True strain True strain

Fig. 5 True stress—true strain curves under uniaxial tension.
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Fig. 6 Evolution of r-values under uniaxial tension.

determined using this curve, the simulation results were
almost within the serrated flow of the experimental curve in
the whole range tested.

Figure 6 shows the evolution of the Lankford value
measured for every 0.01 strain. The Lankford value was
almost independent of the strain, and the simulation results
agreed fairly consistently with the experimental results
regardless of which model was used. Although detailed
results are not provided, similar predictive accuracies were
achieved in the TD and diagonal direction for stress—strain
curves and Lankford values.

Figure 7 shows the true stress-true strain curves under
reverse loading. The early re-yielding, i.e., the Bauschinger
effect, was observed irrespective of the pre-strain. In the
simulation results, the curve during compression, early re-
yielding, and the flow stresses after stress reversal were in
fairly good agreement with the experimental results
regardless of the model.

Fig. 7 True stress—true strain curves under reverse loading.
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Fig. 8 Shear stress—shear strain curves under simple shear.

4.2 Simple shear

Figure 8 shows the results of the shear stress-shear strain
curves. The shear yield stress was approximately 90 MPa.
The failure occurred from the circular edge of the shear
region at a shear strain of approximately 0.28. The maximum
shear stress was approximately 220MPa. The yield
elongation and serrated flow also appeared as in the tensile
test (Fig. 5), but the serrated flow was much less pronounced
than that of the tensile test.

The A model predicted the entire curve fairly well,
especially the saturation of work-hardening for large strains.
In contrast, the D-1 and D-2 models underestimated the
stresses in the shear strain range from approximately 0.03
to 0.22, while they tended to overestimate the overall work-
hardening.

4.3 Biaxial tension
Figure 9(a), 9(b), and 9(c) show the stress components
of equal plastic work obtained for the A, D-1, and D-2
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Fig. 9 Stress components of equal plastic work. oy, and 0, denote the stress components in the RD and TD, respectively. Solid and open
circles represent experimental and simulation results, respectively. Simulation results are for the (a) A model, (b) D-1 model, and (c) D-2

model, (d) E-1 model, and (e) E-2 model.

models, respectively. The reference plastic strains, which
correspond to strains under uniaxial tension, were set to
&) =0.002, 0.005, 0.01, 0.03 and 0.05. It should be noted
that in the experimental results the averages of two samples
are shown. The experimental error was at most 5 MPa under
biaxial tension, and this difference was less than approx-
imately 2% of the flow stress. In the experimental results, the
stresses in the range of o)) > 0y, increased slightly from
86’ = 0.002 to 0.005, while those in the range of oy < 0y,
remained almost unchanged. This difference was owing to
the difference in the amount of yield elongation. Thereafter,
the stress points were nearly symmetrical with respect to the
line g1 = 07).

The simulation results at & = 0.002 and 0.005 tended to
underestimate the experimental results regardless of the
model used. This discrepancy was due to the fact that yield
elongation was not modeled in the simulation; thus, the
stresses at yielding were smaller in the simulation than in
the experiment, as also observed in Fig. 5. In contrast, the
predictive accuracy at larger strains was better than that of
the lower strains regardless of the model. To evaluate the
predictive accuracy of anisotropic hardening quantitatively,
the evolution of the shape ratio, L/L, was examined, where L
and L, denote the current distance from the origin to a stress
point and the distance at &) = 0.05, respectively, as shown
in Fig. 10(a). Figure 10(b), 10(c), 10(d), and 10(e) show the
evolution of the shape ratios for the stress ratios o1;:09, =
4:1, 2:1, and 1:1 obtained for the experiment, the A model,
the D-1 model, and the D-2 model, respectively. It should be
noted that the initial trend to a strain of 0.01 is not discussed
because the simulation results did not agree with the
experimental results due to yield elongation, as explained
earlier. In the experimental results, the shape ratios tended to

decrease throughout the process regardless of the stress ratio,
representing the shrinking trend of the contour of plastic
work. These results were consistent with those reported for
other Al alloys.?32%

In the simulation, the evolution of shape ratios varied
depending on the model. The shape ratios remained almost
constant for the A model. Similar results have been reported
in Yoshida et al.?® For the D-2 model, the shape ratios
slightly decreased with the increase of plastic strain
irrespective of the stress ratio. In contrast, for the D-1 model,
the shape ratio slightly increased for oy:05, = 1:1 although it
decreased for o011:09, = 2:1 and 4:1, which was inconsistent
with the experimental results. These results suggested that,
from the viewpoint of anisotropic hardening under biaxial
tension, the predictive accuracies of the D models were better
than the A model. Moreover, the interaction matrix parame-
ters identified using dislocation dynamics simulations (the
D-2 model), would be slightly better than in the case where
all parameters were set to be the same (the D-1 model).
Again, these results were consistent with those reported in
the prior literature.>® The amounts of change in the shape
ratios were much smaller for all the models than for those
of the experiment; thus, the models can be further improved.

5. Discussion

5.1 Comparison between models

The results for tension and reverse loading obtained using
the A model were in good agreements with those of the D
models, whereas the stress—strain curve under simple shear
was slightly better than that of the D models. These results
suggested that at least for uniaxial loadings, the A model
was applicable if a hardening law was properly selected. In
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Fig. 10 Evolution of shape ratio L/L as a function of &f. (a) Schematic diagrams of L and Ly, (b) experimental results, (c) A model,

(d) D-1 model, (e) D-2 model, (f) E-1 model, and (g) E-2 model.

contrast, the D models represented anisotropic hardening
under biaxial tension, whereas the A model was not able to
reproduce it. The D-2 model was slightly better than the D-1
model in terms of anisotropic hardening in equibiaxial
tension. Therefore, among the models tested in this work, the
D-2 model would be more appropriate than other two models.
Yoshida et al.?®) reached a similar conclusion from the results
of biaxial tension, but in the present study it is shown for
the first time that this conclusion holds not only for biaxial
tension but also for wvarious other loading conditions
including uniaxial tension, reverse loading, and simple
shear. The difference in the predictive accuracies between
the models will be discussed more in detail in the next
sections.

5.2 Effects of latent hardening and interaction matrix
When the D models were used, the difference in interaction
matrix parameters hardly affected work-hardening behavior
under uniaxial loadings, whereas it had a slight effect on the
anisotropic work-hardening behavior under biaxial tension.
As explained earlier, the parameters identified by using
dislocation dynamics simulations yielded appropriate ani-
sotropic hardening for o7;:09, = 1:1. Very recently, Hama
et al>® reported that anisotropic work-hardening under
biaxial tension of a steel sheet (bcc metal) could be generated
with interaction matrix parameters with anisotropic properties
and could be qualitatively reproduced if different CRSSs
were assigned to the {110} and {112} slip systems. This
result suggested that differences in mechanical properties

between the slip systems, including CRSS, work-hardening,
and latent hardening/interaction, should be properly
modelled to enable accurate prediction of anisotropic work-
hardening under biaxial loading, consistent with the present
simulation results.

It should be noted that the anisotropic hardening observed
in the present material is much smaller than that observed in
the steel sheet® in the strain range examined in this work.
This difference between the fcc and bcc metals occurs
presumably because multiple families of slip systems are
active in bce metals; thus, the differences in CRSS and work-
hardening between the multiple families of the slip systems
would play an important role in anisotropic hardening. This
assumption in turn suggests that, to further improve the
predictive accuracy of anisotropic work-hardening under
biaxial tension in the present Al alloy sheet, the effect of
factors other than latent hardening/interaction should also
be considered. One of them would be the effect of yield
elongation on the experiment. As discussed earlier, large
discrepancies were observed in the initial stages of stress—
strain curves and plastic contours between the experimental
and simulation results because of yield elongation. This
difference should also affect the predictive accuracy of
anisotropic hardening for large strains. Therefore, it is
necessary to examine predictive accuracy for other Al alloy
sheets that do not exhibit either yield elongation or serrated
flow. This research will be conducted as a part of future
work.
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5.3 Extension of accumulated-slip-based model

The difference in the predictive accuracy of anisotropic
hardening under biaxial tension between the A and D models
appeared presumably because the evolution of accumulated
slip was almost independent of the stress path for the A
model, whereas the evolution of dislocation density was
dependent on the stress path for the D models.>® This could
be explained with respect to the evolution laws as follows. In
the A model, because accumulated slip y is not calculated
separately for each slip system but is calculated by taking
simply the sum of all slip systems, it is difficult to consider
the effect of the difference in slip activities between the slip
systems on the evolution of slip resistance of each slip
system. In contrast, in the D models, the evolution of
dislocation density of the « slip system is determined by the
slip rate of the « slip system (eq. (6)); thus, the accumulated
dislocation density can depend on the slip system. Moreover,
because the accumulated dislocation density of each slip
system can affect separately the hardening moduli matrix
hqp, as described by eq. (5), the components of /.4 can vary
depending on the dislocation density of each slip system. As
a result, the evolution of slip resistance of each slip system
can also depend strongly on each slip activity. This difference
in the formulations could eventually affect the difference in
the predictive accuracy of anisotropic hardening.

One of the practical approaches to represent anisotropic
hardening by using the A model is to use the following
equation for the rate of slip resistance: 74’ = > 5 8aph| VP
instead of eq. (2), as in literature.® In fact, this equation
could yield successfully anisotropic hardening under biaxial
tension of hcp metals.’**?) However, the advantages would
be much less pronounced for fcc metals from the following
reason. Because the material parameters of CRSSs and work
hardening depend on the family of slip systems in hcp metals,
h and y® in the abovementioned equation should differ
depending on the slip systems. Therefore, in hcp metals, the
difference in the evolution of slip resistance depending on the
slip system would primarily result from the differences in %
and 37, although g, could also yield anisotropic hardening
to some extent. In contrast, because the same material
parameters were used regardless of the slip system for the
present Al alloy sheet, the differences in / and ¥ would be
much smaller than those of hep metals.

On the basis of the abovementioned discussion, it is
presumed that an accumulated-slip-based hardening model
can be used to represent anisotropic hardening for fcc metals
if the evolution of the accumulated slip is evaluated
separately for each slip system. To consider this, the
following extended form of the evolution law of accumulated
slip is proposed: y* =" 5 f(; gapl¥P|, which is used instead
ofy=>", f(; |¥%| in eq. (4). Because y* no longer represents
purely accumulated slip but includes the effect of latent
hardening, it is termed the effective accumulated slip in this
paper. y* allows considering the effect of the difference in
slip activity between the slip systems on hardening; thus, the
evolution of slip resistance would also depend on the slip
system.

The extended model was used to simulate anisotropic
hardening under biaxial tension to support the hypothesis.
For simplicity, the parameters of g,g for the D-1 and D-2
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models were used. The extended model with the parameters
of g4p for the D-1 and D-2 models are referred to as the E-1
and E-2 models, respectively. The hardening parameters
calibrated for the E-1 and E-2 models are shown in Table 1.
The stress—strain curves under uniaxial tension using the E-1
and E-2 models are shown in Fig. 5.

When the E-2 model was used, as shown in Fig. 9(e) and
Fig. 10(g), apparent anisotropic hardening appeared under
biaxial tension for oj;:00, = 1:1, 2:1, and 4:1, which was
larger than that of the A model and comparable to that of the
D models. Additionally, the shrinking trend of the contour of
plastic work was represented as in the case of the D-2 model.
In contrast, when the E-1 model was used, anisotropic
hardening was negligible (Fig. 9(d) and Fig. 10(f)), as in the
case of the A model. As we expected, the parameters of gqg
had clear effects on the anisotropic work-hardening behavior
under biaxial tension, which is consistent with the D model
and supports the hypothesis. These results indicate that the
predictive accuracy of anisotropic hardening is more affected
by modelling of the latent hardening and interaction matrix
than by the choice of internal variables of hardening, i.e.,
accumulated slip or dislocation density.

The performance of the E-1 and E-2 models for simple
shear are also examined, see Fig. 8. The curves of the E-1
and E-2 models were similar to that of the A model to a shear
strain of approximately 0.04. However, the subsequent work
hardening of the E-1 and E-2 models was much more
pronounced; thus, the shear stresses were evidently over-
estimated. This result exhibits that the parameters of g,z were
not appropriate for simple shear; thus, work hardening under
simple shear can be alternative reference results to determine
the parameters of ggg.

Interestingly, the difference in the curves of the E-1 and
E-2 models was more pronounced than that of the D-1 and
D-2 models, exhibiting that the effects of the parameters of
gqp differed between the D and E models both for biaxial
tension and simple shear. This further suggests that the
determination of the parameters of g,4 also depends on the
model used. It should be noted that, as an alternative
approach, similar effects are also expected if the hardening
parameters in eq. (4) are considered to depend on the slip
system. Applications of this approach will also be studied in
our future work.

6. Conclusion

In this study, crystal plasticity models that were suitable
to reproduce the work-hardening behavior of an A5083-O Al
alloy sheet under various loading paths, including uniaxial
tension, reverse loading from compression to tension, simple
shear, and biaxial tension, were studied. The conclusions
obtained in this study are summarized below.

(1) The classical accumulated-slip-based hardening model
with the extended Voce hardening law (A model)
provided the good predictive accuracy for work-
hardening behavior under uniaxial tension, reverse
loading from compression to tension, and simple shear.
However, it could not reproduce anisotropic hardening
under biaxial tension observed in the experimental
results.
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(2) The dislocation-density-based hardening models (D
models) used in this study reproduced the work-
hardening behavior under both uniaxial loadings and
biaxial tension fairly well. The results were, however,
slightly more precise when the anisotropic property in
the components of the interaction matrix was taken into
consideration (D-2 model). From the abovementioned
results, the D-2 model would be more appropriate than
the other two models for the present material.

(3) A new accumulated-slip-based hardening model was
proposed, in which the effect of latent hardening
was considered in the calculation of accumulated slip.
The new model represented anisotropic hardening
under biaxial tension, which was comparable to that
achieved in the D models. This result suggests that the
predictive accuracy of anisotropic hardening is more
affected by the modelling of the latent hardening and
interaction matrix than by the choice of internal
variables of hardening, i.e., accumulated slip or
dislocation density.
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