
1. Introduction
Cyclotron resonant wave-particle interactions are of fundamental importance as ubiquitous drivers of par-
ticle heating, acceleration, and precipitation throughout supernova remnants (Malkov et al., 2011), magnet-
ized planets (Treumann, 2006), comets (Sagdeev et al., 1986), and shocks (Winske & Leroy, 1984) in space 
plasma physics and astrophysics. Chorus waves, which are coherent electromagnetic emissions commonly 
generated in Earth's magnetosphere (Burton & Holzer, 1974; Li et al., 2009; Tsurutani & Smith, 1974) and 
magnetized planets (Coroniti et al., 1980; Kurth & Gurnett, 1991; Menietti et al., 2013), have a crucial role 
in energetic particle dynamics in the radiation belts via wave-particle interactions (Bingham et al., 2018; 
Horne et  al.,  2003; Li et  al.,  2014; Miyoshi et  al.,  2003,  2013; Omura et  al.,  2007; Summers et  al.,  1998; 
Thorne et  al.,  2013). A single chorus element can effectively accelerate electrons to relativistic energies 
(Foster et al., 2017). Additionally, a single chorus wave packet can rapidly and effectively scatter energetic 
electrons into the atmosphere, illuminating flash-type auroras (Ozaki et al., 2019) and microbursts (Brene-
man et al., 2017; Lorentzen et al., 2001; Mozer et al., 2018; Rosenberg et al., 1981) as a signature of the 
wave-particle interaction region. The spatial scales of chorus element wave-particle interactions have been 
estimated based on multiple satellite observations of chorus elements (Agapitov et al., 2010, 2017; Santolík 
& Gurnett, 2003; Shen et al., 2019; Turner et al., 2017). The transverse scales across the geomagnetic field 
line of a coherent chorus source range from tens to thousands of kilometers. The statistical results of mul-
tiple satellite observations of discrete chorus elements in the lower band indicate that the transverse scales 
of a chorus source increase with higher L shells and higher magnetic latitudes (Shen et al., 2019). Such 
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dependence of the spatial scale can be used to predict the effects of chorus wave propagation in the magne-
tosphere from the wave-particle interaction region.

Although multiple satellite observations have been well studied providing static snapshots of wave-par-
ticle interaction regions, the quantitative spatiotemporal development in the transverse direction of the 
background field line requires further study. In this study, we overcome the difficulty of transient spatial 
perception of wave-particle interaction regions by using flash aurora images in the ionosphere. Moreover, 
we analyze the effects of chorus wave propagation on spatial development by calculating the volume emis-
sion rate (VER) at the ionospheric footprints connected to the chorus ray paths using ray tracing analysis 
(e.g., Kimura et al., 1985). Quantifying the prompt responses of the spatial development of the wave-particle 
interaction region is essential for quantitative radiation belt models (Jordanova et al., 2016; Ma et al., 2018; 
Omura et al., 2015; Seki et al., 2018; Soria-Santacruz Pich et al., 2017). It also contributes to the understand-
ing of the largest contribution to the loss of plasma sheet electrons into the atmosphere (Ni et al., 2008; 
Thorne et al., 2010; Miyoshi, Oyama, et al., 2015, Miyoshi, Saito, et al., 2015, Miyoshi, et al., 2020).

2. Flash-Type Auroral Observations
Pulsating auroras have been categorized into several types according to their spatiotemporal characteristics 
(Oguchi, 1978; Nishimura et al., 2020 and references therein). Flash-type auroras are related to pulsating 
aurora as both are the luminous phenomena driven by chorus waves. A flash aurora is a transient (<hun-
dreds of milliseconds) optical emission in the upper atmosphere, so a typical ground-based network of 
auroral cameras, such as THEMIS (Time History of Events and Macroscale Interactions during Substorms) 
ASI (Donovan et al., 2006), OMTIs (Optical Mesosphere Thermosphere Imagers) (Shiokawa et al., 1999), 
or the WMI (Watec monochromatic imager) system (Ogawa et al., 2020), with a sampling rate on the order 
of seconds cannot detect such short visible bursts. Flash auroras show a drastic shorten duration (less than 
0.5 s) than typical pulsating auroras and are driven by a pure single discrete chorus element. Flash auroras 
show a patchy type of spatial development and are a useful ionospheric screen of wave-particle interaction 
region in the magnetosphere (Ozaki et al., 2019). It is noteworthy here that Kataoka et al. (2012) reported 
very rapid pulsating auroras exceeding an order of magnitude higher than 3 Hz modulation of pulsating 
auroras, which is repetitive and associated with standard pulsating auroras. Such rapid luminous modu-
lations of pulsating auroras showing repetitive luminous modulations can be different from the transient 
appearance of flash auroras.

Here, we focus on flash auroras to evaluate the spatial evolution of interaction regions between a pure single 
chorus element and energetic electrons. Statistical spatiotemporal characteristics of flash auroras remain 
poorly understood owing to the difficulty in long-term setup of optical observation with a high-temporal 
resolution beyond a 30-frames-per-second rate. We used recent high-speed EMCCD (electron multiplying 
charge coupled device) camera observations for the ERG-ground coordinated network. One of the EMCCD 
cameras operated by PWING (the study of dynamical variation of Particles and Waves in the INner mag-
netosphere using Ground-based network observations) (Shiokawa et al., 2017) has been placed at Gakona 
(62.39°N, 214.78°E), Alaska, since 2017. In the present study, approximately 100 flash aurora events record-
ed at 100 frames per second were identified between 13:00 and 13:30 UT (morning sector in MLT), March 
30, 2017. The EMCCD images were taken through an RG665 long-pass filter, which has a cutoff frequency 
of 665 nm. The nitrogen first positive bands can be major emissions in the pass band (Chamberlain, 1961). 
The period of data analysis includes the case study of discrete chorus elements by the Arase satellite and 
flash auroras at the magnetic conjugate ground station by Ozaki et al. (2019).

Raw (256 × 256 pixels) images of flash auroras by the EMCCD all-sky camera were converted to images 
in the local East, North, UP (ENU) Cartesian coordinate system under an assumption that the altitude is 
110 km. The spatial resolution of the images in ENU coordinates is 3 × 3 km. Each pixel value was high-
pass filtered with a cut-off frequency of 0.05 Hz to mitigate the effects of stray light. A median filter for the 
images' squared pixel values was used with a 15 × 15-km block to remove impulse noise. The duration of an 
auroral emission was extracted from 100-Hz images, and the spatial scale of an auroral patch was extracted 
using Otsu's method (Otsu, 1979) from 25-Hz images to improve the signal-to-noise ratio. Otsu's method is 
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a typical automatic segmentation technique that finds an optimal threshold based on a histogram of pixel 
values.

3. Observation Results
Figure 1a shows a typical example of sequential snapshots of a flash aurora observed with the EMCCD 
all-sky camera at Gakona that exhibits a spatial displacement (for this example, from north to south). Spa-
tiotemporal imaging of flash auroras provides spatial characteristics (size and evolution) of source regions 
of chorus element wave-particle interactions through its high spatial resolution compared with those ob-
tained from in situ observations of discrete chorus elements. The luminous duration and the maximum 
spatial size of a single flash aurora in the ionosphere (110 km) are plotted in Figure 1b and 1c, respectively. 
The average luminous duration is 0.21 ± 0.08 s, which applies to 70% of all flash auroras. This average 
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Figure 1. (a) Sequence snapshots of an example of a flash aurora observed with the electron multiplying charge 
coupled device all-sky camera at Gakona showing expansion and contraction. Histograms of (b) the luminous duration 
and (c) the maximum spatial size of flash auroras in the ionosphere (110 km). The solid purple lines indicate the 
average value and the purple rectangle indicates the standard deviation. (d) Correlation between spatial size of flash 
aurora and total counts in the maximum auroral patch.
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luminous duration is comparable with the duration of discrete chorus 
elements (Teng et al., 2017) supporting the proposition that flash auroras 
indicate the source region of chorus element wave-particle interactions. 
For all events, the maximum size of flash auroras across the geomagnetic 
field line varies from 153 to 3,843 km2, with the average size of 1,127 km2. 
For the wide spatial range of auroral observations, flash auroras with a 
larger auroral size showed a longer luminous duration, but neither the 
histogram for the luminous duration nor that for auroral size showed a 
correlation with the magnetic latitudes and longitudes in the field of view 
of the all-sky images. In contrast, the statistical results of the observed 
auroral sizes reveal that there is a significant positive correlation between 
total counts integrating within a flash auroral region and auroral size, as 
shown in Figure 1d. The flash auroral intensity is calculated by subtract-
ing the background counts from raw count images just before the initial 
light emission to mitigate the effects of background diffuse auroras and 
stray light. The auroral intensity was concentratively distributed in a nar-

row range from 2,400 to 2,600 counts at each pixel in the auroral area, and thus we found a significant cor-
relation (r = 0.96) between the total counts within a flash auroral region and auroral size. Raw count values 
at each pixel can be related to precipitating energetic electron fluxes connected to each geomagnetic field 
line. This clear positive correlation indicates that there is a limit imposed on precipitating energetic electron 
fluxes by chorus element wave-particle interactions, similar to that imposed on trapped electron fluxes in 
the inner magnetosphere by chorus wave-particle interactions (Kennel & Petschek, 1966). The pitch angle 
diffusion is related to chorus wave amplitude (Albert, 2005; Li et al., 2013; Tao et al., 2012) and chorus 
waves show saturation in the amplitude of the wave packet (Santolík et al., 2003; Summers et al., 2012). If 
the scattering rate inside the interaction region of the flash aurora does not reach the diffusion limit, each 
pixel can take various count values depending on the precipitating electron flux within flash auroral patch-
es. Then, the observed correlation between auroral size and total counts within the auroral patch would be 
low. Kasahara et al. (2019) reported that the full filling of the loss cones of energetic electrons associated 
with chorus waves is commonly seen in in-situ observations. Thus, the positive correlation suggests that the 
chorus wave growth saturates and/or reaches a strong diffusion limit due to the intense amplitude (Ken-
nel, 1969). The plateau of pitch angle diffusion coefficient for a larger chorus amplitude (e.g., see Figure 2 
in Tao et al., 2012) results from the wave-particle interactions.

Next, the spatial displacement was estimated by subtracting the maximum outline of the flash aurora from 
the initial outline. The red dash in Figure 2 indicates each coordinate value for the initial outline of an auroral 
patch. The spatial displacement in each direction at the ionospheric altitude was calculated by subtracting 
the maximum outline (red solid) of the flash aurora from the initial outline (red dash), as shown in Figure 2. 
The northward and southward expansions were calculated as y y

max max
   and y y

min min
  , respectively. 

The eastward and westward expansions were calculated as x x
max max

   and x x
min min

  , respectively. Here, 

 max maxy x  and  min miny x  are the maximum and minimum coordinate  y x  values of the maximum outline 
of an auroral patch in ENU coordinates, respectively.

Figure 3 shows the spatial displacements of flash auroras in the magnetic north to south and east to west 
directions at an ionospheric altitude of 110  km. Consistent with the study of Ozaki et  al.  (2019), most 
events of the flash auroras show significant asymmetric spatial developments in the magnetic north to 
south direction, but no significant asymmetric spatial developments in the east to west direction. 17% (2%) 
of the flash auroral events exhibit southward (northward) expansion over 10 km. As shown in Figure 1d, 
the southward expansion makes an important contribution to the increase in total counts in the maximum 
auroral patch because expansion increases the total area of the auroral patch. The average southward dis-
placement of 6.96 km in Figure 3b is 2.4 times larger than the average northward displacement of 2.86 km in 
Figure 3a in the ionosphere. Such spatial dependence would imply that if these flash auroras are generated 
by wave-particle interactions with individual chorus elements, then the wave-particle interaction regions in 
the magnetosphere have a preferential earthward spatial development as a common feature, which has not 
been identified by multiple satellite observations of chorus elements.
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Figure 2. Schematic diagram of spatial displacement of an aurora patch 
in East, North, UP coordinates. The positive y and x directions are the 
magnetic north and east directions, respectively.
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4. Effects of Chorus Wave Propagation

The observed spatial characteristics of flash auroras could result from 
propagation of chorus waves from the equator to higher magnetic lati-
tudes. The propagation effects of chorus wave in the nonducted mode 
are evaluated using ray tracing analysis for the spatial development of 
flash auroras. We use the global core plasma model (GCPM 2.2) (Gal-
lagher et al., 2000) for the cold electron density and the Tsyganenko 2002 
model (Tsyganenko, 2002) for the geomagnetic field lines. The calcula-
tion parameters are listed in Table 1. A chorus source is assumed to be a 
point source (see Figure 4a) because the Larmor radii of energetic (tens 
of keV) electrons as seed particles are less than 10 km, which is smaller 
than the spatial mesh size in the ray tracing. South-bound chorus rays are 
launched with up to an initial wave normal angle (WNA) of 25° from the 
magnetic equator and a radial distance of 5.3 Re (outside of plasmapause) 
in solar magnetic (SM) coordinates, where Re is the Earth's radius. As 
shown in Figure 4b, the frequency sweep rate of a rising tone element is 
assumed to be 5.0 kHz/s. The frequency range is from 0.2 to 0.5 fce, where 
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Figure 3. Histograms of (a) northward, (b) southward, (c) eastward, and (d) westward expansion of flash auroras. The 
solid lines indicate the average value.

Parameters Value Unit

Wave frequency 0.2–0.5 fce

Frequency resolution 0.01 fce

Sweep rate of chorus element 5.0 kHz/s

Duration of chorus element 0.264 s

Width of WNA 25 deg.

Resolution of WNA 5.0 deg.

Distance resolution of ray tracing 10 km

Angle resolution of ray tracing 1.0 deg.

Initial source location in SM coordinates ( 4.46, 2.87, 0.04) Re

Energy range 0.3 to 50 keV

Energy resolution 50 eV

Abbreviations: SM, solar magnetic; WNA, wave normal angle.

Table 1 
Calculation Parameters
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fce is the electron gyrofrequency at the equator under the assumption of the typical lower-band chorus. The 
duration of a chorus element is therefore 0.264 s.

The VER in the ionosphere was calculated using the following steps. First, numerous chorus-ray paths 
with different wave normal angles and frequencies were calculated with the GCPM 2.2 model and the Tsy-
ganenko 2002 model. The resonance energy for each chorus-ray path in the magnetosphere was calculated. 
When energetic electrons satisfy the first-order resonance condition with chorus rays given in equation (2) 
in a reference of Bortnik et al. (2006), the resonance locations in the magnetosphere are projected to the 
ionosphere with the travel time along the geomagnetic field line. The ionospheric footprints were calculated 
by tracing magnetic field lines from each resonance location with the Tsyganenko 2002 model. Then, the 
travel time of resonant particles was calculated from the resonance location to the ionospheric footprint at 
the altitude of 110 km. Then, the VER in the ionosphere for the nitrogen first positive band of 670.5 nm 
is calculated based on a method proposed by Ono (1993). The time constant for the 670.5 nm emission is 
microseconds and there are no afterglow effects like slow optical emissions for 557.7 and 630.0 nm wave-
lengths (Hanna & Anger, 1971). The precipitating electrons are assumed to consist of superposed narrow 

Gaussian distributions     
 

2 2
0 0exp /j E E W , where 0j  is the maximum flux at the resonance location 

from the AE9 model (Ginet et al., 2013), E is the kinetic electron energy, 0E  is the characteristic energy, and 
W  is the energy width, which equals 00.25E . The energy width is the same as that estimated in Ono (1993) 
to be the characteristic energy of pulsating aurora. The characteristic energy is simply assumed to be the 
resonance energy of energetic electrons that interact with chorus rays. The parameters in all models were 
determined at the time of the optical observation on March 30, 2017 (Kp = 3). Finally, the column emission 
was calculated by integrating the VER along the line of sight in the altitude range from 80 to 300 km. The 
effects of pitch angle change of energetic electrons are not taken into account in this VER calculation. Our 
simple model is considered to be appropriate because although the pitch angle change is important for a 
rigorous evaluation of the luminous value in an auroral patch, it is not essential for the estimation of the 
spatial characteristics of flash auroral size.

Figure 5a shows the electron density profile in SM coordinates. The red dot is a source point of chorus 
rays. The dotted lines indicate field lines for L-values of 2, 3, 4, 5, and 6, respectively. Figure 5b shows the 
different frequency chorus rays spreading only from initially perfect parallel propagation at the equator in 
the XZ plane of SM coordinates. Figure 5c and 5d show the resonance energy and the travel time of reso-
nant electrons that interact with the chorus rays at the various locations. The travel time is calculated along 
the trajectory from the interaction region to the ionosphere in the opposite hemisphere (at an altitude of 
110 km). The chorus propagation is simulated up to the magnetic latitude of 10°. As shown in Figure 5, the 
chorus rays interacting with energetic (tens of keV) electrons deviate radially inward from the magnetic 
field line connected to the point source. The propagation characteristics are similar to those reported in 
previous studies (Chen et al., 2013; Chum & Santolík, 2005). The inward wave propagation is dominant over 
the outward wave propagation from the source location of chorus elements that are resonant with 10 s of 
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Figure 4. Calculation model of chorus-ray tracing. (a) A point source is located at the magnetic equator, and the wave 
normal angle of chorus rays is based on the magnetic field line connected to the point source. (b) Model of discrete 
element of lower-band chorus.
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keV electrons is due to the gradient in the refractive index, and drives the expansion of flash aurora primar-
ily toward lower latitudes. The refractive index is roughly constant in the longitudinal direction due to the 
weak gradients of the electron density and geomagnetic field intensity, so the spatial extent in the east-west 
direction spreads isotropically.

Figure 6 shows the spatiotemporal evolution of the calculated VER and column emission clearly reproduces 
the morphological characteristics of the observed flash auroras such as predominant southward (lower-lat-
itude side) expansion (see Movies S1 and Movie S2 in Supporting Information (SI)). The duration of the 
calculated VER was 0.30 s, which is similar to the observed duration of the flash auroras (see Figure 1b). We 
also see a time delay of the calculated VER depending on the energy (see Figure 5c and 5d). This is the same 
phenomenon as that of the time-of-flight effects on typical pulsating auroras (e.g., Miyoshi et al., 2010), 
where a travel time of 0 s is equivalent to the injected time of chorus rays. In the expansion phase, the 
highest-energy electrons interacting with the lowest-frequency waves at higher latitudes initially reach the 
upper ionosphere, and then energetic electrons interacting with waves of gradually increasing frequency 
at the frequency sweep rate arrive late in the ionosphere (see Figure 5). The expansion time can be char-
acterized by the frequency sweep rate of a chorus element. In the contraction phase (0.775 s in Figure 6), 
the lowest-energy electrons interacting with the highest-frequency waves at the equator (of the minimum 
geomagnetic field) are the last to reach the ionosphere. The contraction time should be characterized by 
the lowest-electron energy at the equator, and thus the final contraction location in the ionosphere is re-
lated to the chorus source scale in the magnetosphere for the minimum resonance energy. Moreover, the 
altitude of the luminous layer varies with time depending on the precipitating electron energy. The initial 
luminous layer is quite narrow, in the altitude range from 95 to 100 km, and gradually extends to the range 
from 95 to 110 km (more easily seen from the frontal view in Figure 6b and Movie S2 in SI). These altitude 
variations that depend on the precipitating electron energy go beyond the scope of this study and will be 
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Figure 5. (a) Three-dimensional model of electron density in solar magnetic coordinates. Spatial distributions in the 
XZ plane of (b) spreading chorus rays, (c) resonance energy, and (d) travel time of resonant electrons to the ionosphere. 
The solid line in panel (a) and white dotted lines in panels (b, c, and d) indicate the geomagnetic field line connected to 
the point source.
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part of future work using multiple high-speed EMCCD cameras. Nevertheless, this study supports earlier 
studies that found pulsating auroras have a narrower luminous layer in comparison with other auroral 
phenomena (Brown et al., 1976; Kataoka et al., 2013). To validate the vertical thickness and height of aurora 
based on our model calculation of spatial extent of flash aurora, we will combine both auroral tomography 
techniques for three-dimensional optical structures (Tanaka et al., 2011) and estimation techniques about 
characteristic energies using optical emissions (Aryal et al., 2018; Grubbs et al., 2018), in future studies. Our 
calculations can be used to resolve this long-standing issue about the vertical thickness of pulsating auroras, 
because our model can estimate both four-dimensional (three-dimensional space and time) auroral evolu-
tions and characteristic energy based on the cyclotron resonance with chorus wave propagation.

Finally, the effects of the resonant latitude range on the spatial extent of 
column emission are evaluated in Figure 7. The column emission from 
the ground view was calculated by integrating the VER along the line of 
sight. The calculated column emission shows that the spatial scale in the 
east-west diction (red line) is larger than that for the north-south direc-
tion (blue line) as was the case with the observed flash auroras. Within 
the range of 2°–10°, the spatial extent of column emission increases with 
increasing resonant latitude until 7°, and then plateaus. This is due to 
the higher resonant energy interacting with chorus rays at higher lati-
tudes not contributing to visible auroral emission. The observed spatial 
scales of flash aurora in the east-west and north-south directions (Fig-
ure 1a) were ∼100 and 55 km, respectively. The average spatial size of 
flash auroras was 1,127 km2 (see Figure 2c). The resonant latitude range 
estimated based on the average of the spatial scale of flash auroras is 
4°–5°, consistent with previous statistical analyses of chorus waves (e.g., 
Li et al., 2009; Santolík et al., 2003; Tsurutani & Smith, 1974). This im-
plies that chorus waves characterize not only the temporal variations of 
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Figure 6. Four-dimensional evolution of the calculated volume emission rate (VER) and column emission at the 
footprints in the ionosphere connected to the wave-particle interaction region. (a) VER viewed diagonally. (b) VER 
viewed from the front.

Figure 7. Spatial scale of calculated column emission in the ionosphere as 
a function of resonant latitude (magnetic latitude). The red and blue lines 
indicate the east-west and north-south scale in unit of km, respectively. 
The black line indicates the spatial size in unit of km2.
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electron precipitation, such as quasi-periodic pulsations and fast luminous modulations of pulsating au-
roras (Miyoshi, Saito, et al., 2015), prompt visible bursts of flash auroras, and microbursts of relativistic 
electrons, but also spatial variations in auroral morphology such as the predominant expansion direction.

5. Discussion and Conclusions
Although wide (tens to thousands of kilometers) transverse scales of the chorus source region deduced from 
multiple satellite observations of chorus elements and pulsating auroral patches have been reported in pre-
vious studies, these studies did not find the spatial asymmetry of wave-particle interaction regions due to an 
insufficient spatial or temporal resolution. In this study, we found that flash auroras at subauroral latitudes 
show strong asymmetry in terms of their spatial characteristics. The asymmetric spatial displacements were 
predominantly toward the southward (equatorward) extent in the ionosphere. This was found to be related 
to the chorus wave propagation effects in the inner magnetosphere.

Pulsating auroras have various morphological structures (e.g., Royrvik & Davis, 1977). Our calculation of 
the VER combined with chorus-ray tracing revealed reproducible expansion and contraction of an auro-
ral patchy structure. From the effects of spreading chorus rays, the spatial scales of flash auroras and the 
wave-particle interaction regions depend on the latitude range of cyclotron resonance and the WNA distri-
bution. The chorus wave amplitude increases as the wave propagates along the field line (Katoh & Omu-
ra, 2013). Therefore, the spatial scales of flash auroras are indirectly related to the chorus wave amplitude, 
consistent with earlier studies that reported that the observed auroral patch expansion is related to chorus 
amplitude variations (Ozaki et al., 2019). The difference in the spatial scale of pulsating auroral patches 
between auroral and subauroral latitudes was reported by Nishimura et al. (2011) and Ozaki et al. (2018). 
This difference can be explained by the difference in the expansion of chorus ray paths, because for a given 
initial WNA distribution and latitude range of the resonance location, the spatial extent of chorus ray paths 
is more spread at auroral latitudes due to the longer propagation along the field line. The key findings of 
this study are summarized as follows.

1.  The observed flash-type auroral patches exhibit preferential southward (equatorward) expansion and 
contraction (cf., Figures 1a and 3).

2.  The spreading chorus-ray paths could produce this equatorward preference of the auroral patch dis-
placement at subauroral latitudes, because of the dominant earthward propagation due to the refractive 
index of the inner magnetosphere (cf., Figure 5).

3.  The initial luminous location of a flash aurora coincides with the resonance location with the maxi-
mum energy in the magnetosphere at the high latitudes. The final luminous location of a flash aurora 
coincides with the equatorial resonance location with the minimum energy in the magnetosphere (cf., 
Figure 5).

4.  The calculated column emission shows a correlation with the magnetic latitude of the resonance region 
at magnetic latitudes within 10° from the equatorial plane of the magnetosphere (cf., Figure 7). This 
correlation supports a relationship between the spatial scale of auroral patches and chorus amplitudes 
growing during wave propagation to higher latitudes along the field line.

The present study shows that chorus waves determine not only various temporal characteristics of pre-
cipitation electrons, but also the morphological characteristics for expansion-type auroral patches. These 
findings should be important for understanding the prompt developments of auroral morphology.

Data Availability Statement
The EMCCD image data used in this study are available from the ERG Science Center (http://ergsc.isee.
nagoya-u.ac.jp/data_info/ground.shtml.en) (Miyoshi et al.,  2018). The VER calculation is available from 
http://polaris.nipr.ac.jp/∼aurora/eltrans/html/gtvolemi_e.html. The ray tracing code is available from 
http://waves.is.t.kanazawa-u.ac.jp/. The Kp index used in this study was provided by the World Data Center 
for Geomagnetism, Kyoto (http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html).
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