TITLE:
Aquatic invertebrate’s Carbohydrate-binding module assists environmental cellulase to immobilize in wetland sediments

AUTHOR(S):
Liu, Wen; Kamitakahara, Hiroshi; Maegawa, Shingo; Toyohara, Haruhiko

CITATION:
Liu, Wen ...[et al]. Aquatic invertebrate’s Carbohydrate-binding module assists environmental cellulase to immobilize in wetland sediments. Plankton and Benthos Research 2021, 16(3): 191-199

ISSUE DATE:
2021-08-06

URL:
http://hdl.handle.net/2433/267778

RIGHT:
© 2021 The Japanese Association of Benthology; This PDF is deposited under the publisher's permission.
Aquatic invertebrate’s Carbohydrate-binding module assists environmental cellulase to immobilize in wetland sediments

WEN LIU1,*, HIROSHI KAMITAKAHARA2, SHINGO MAEGAWA3 & HARUHIKO TOYOHARA4

1 Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606–8317, Japan
2 Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606–8502, Japan
3 Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, 606–8507 Japan
4 Faculty of Agriculture, Setsunan University, Osaka 573–0101, Japan

Received 22 October 2020; Accepted 11 January 2021 Responsible Editor: Gen Kanaya
doi: 10.3800/pbr.16.191

Abstract: Carbohydrate-binding modules (CBMs) are non-catalytic protein domains that bind to carbohydrates, and have been well studied in microorganisms. Endogenous CBMs in aquatic invertebrates, however, have not yet been identified, and little is known about their ecological significance to wetland environments. Using an approach of characterizing a recombinant CBM (CjCel9A) from a brackish bivalve, Corbicula japonica, this work identified CjCel9A-CBM’s cellulose-binding activity. Scatchard plot analysis in the study of CjCel9A-CBM binding to α-cellulose showed a high corresponding partitioning coefficient (K_r) of 20.33, indicating CjCel9A-CBM’s high affinity for cellulose. In addition, this affinity tolerated a high ion concentration buffer system, consistent with C. japonica’s adaption to brackish wetland environments. Moreover, immuno-scanning electron microscopy (immuno-SEM) suggested that CjCel9A-CBM binds to α-cellulose unevenly, which was further determined to be caused by its higher affinity for crystalline cellulose (Cellulose I, mostly seen in plant leaves). Together, these findings suggest that CjCel9A-CBM is capable of immobilizing its associated catalytic domain on environmental crystalline cellulose (i.e., fallen leaves) in wetland sediments. Most importantly, they could provide a reasonable answer to a question recognized broadly in wetland ecologists, namely, why many wetland sediments have constant cellulase activities, although the sediments are being washed almost every day.

Key words: Aquatic invertebrate, Carbohydrate-binding modules (CBMs), cellulose decomposition, wetland

Introduction

During the study of the mechanism by which filter-feeding bivalves consume cellulose, our previous findings revealed that a Japanese endemic bivalve, namely Corbicula japonica, secretes its endogenous cellulase (CjCel9A) into wetland sediments (Liu et al. 2019). Also, immunological methods detected the existence of CjCel9A cellulase in the sediment of C. japonica’s habitat, indicating that CjCel9A could somehow be immobilizing itself in wetland sediment, preventing it from being washed away. However, the mechanism remains unknown.

By investigating the structure of CjCel9A, we showed that CjCel9A has a Family 2 CBM linked to the 5’ side of the catalytic domain (Sakamoto et al. 2007, Carbohydrate-Active enZYmes Database; CAZY Database). Carbohydrate-binding modules were first reported in fungus (Tilbeurgh et al. 1986, Tomme et al. 1988), when their cellulolytic system was studied. CBMs bind to carbohydrates, including those in plant cell-wall structures. CBMs of bacterial and fungal origin have been studied for decades regarding their substrate specificities and affinity levels (Boraston et al. 2004, Shosevov et al. 2006). In contrast, there have been no studies focused on the molecular functions of aquatic invertebrates’ CBMs. Examination of the database of CBMs (Carbohydrate-Active enZYmes Database) shows that most aquatic invertebrates’ CBMs are putative ones, identified only by
their nucleotide/amino acid sequences. Many invertebrate CBMs in the database were found as a “by-product” of studies of their partner glycoside hydrolases (Suzuki et al. 2003, Li et al. 2009, Sakamoto et al. 2009). In some cases, CBMs of aquatic invertebrates have also been revealed by total cDNA cloning or genome studies for other research purposes (National Center for Biotechnology Information (Genbank). The lack of much detailed information might be ascribed to the late discovery of the existence of endogenous cellulases and CBMs in invertebrates (Watanabe & Tokuda 2001). Tanimura et al. (2013) summarized the aquatic invertebrates that possess endogenous cellulases. Among them, multi-domain cellulases with CBMs were also found, but those CBMs’ functions have not yet been determined.

In the present study, we hypothesized that the CBM present in CjCel9A could provide a significant advantage for immobilizing the multi-domain CjCel9A cellulase on environmental cellulose (e.g., leaf residues), which is accumulated in sediment and difficult to wash away. Saltwater coastal wetlands, including mangrove forests and tidal flats, are generally considered as carbon sinks that have larger carbon quantity compared to other ecosystems (Pant et al. 2003). The carbon stocks in coastal wetlands were derived from the upstream ecosystems (allochthonous C input) such as forests (Richey et al. 2002, Moomaw et al. 2018), as well as local photosynthesis plant communities such as the reed beds seen in many brackish wetlands in Japan (autochthonous C production) (Sudip et al. 2005, Scholz 2013). In our study site located in Mie Prefecture, central Japan, more than half of the wetland is covered with reed beds, and there is a huge amount of reed leaves in the sediment, which could be a scaffold for secreted cellulase.

To test the hypothesis, we firstly determined the binding function of CjCel9A-CBM by using a recombinant protein (Cjcel9A-CBM_{GFP}) of CjCel9A-CBM fused with Green Fluorescent Protein (GFP) in its C-terminus as a reporter. In addition, we performed a binding study with varying concentrations of cellulose to evaluate its affinity. Furthermore, crystallinity studies was performed to examine whether CjCel9A-CBM have different affinity against celluloses varied in the level/type of crystallinity, the result showed that Cjcel9A-CBM_{GFP} has superior affinity for highly crystallized cellulose (i.e. Cellulose I, mostly seen in natural sources). Based on the results of these analysis, we finally discuss the function of CjCel9A-CBM as an anchor of the cellulase secreted from its bivalve producer, and the significance of this function to environmental cellulose decomposition.

Materials and Methods

Materials

Except for specialized reagents indicated in the text, all reagents were purchased from Nacalai Tesque (Kyoto, Japan). Fallen reed (Phragmites australis) leaves and C. japonica individuals were collected in July 2014 from Tanaka River Estuary, an untouched wetland located in Mie Prefecture, Japan (Kimura & Kimura 1999). All samples were transported to the laboratory in a cooler box with ice packs. Crystalline styles (an unique enzyme storage organ found in bivalves and gastropods) were collected from C. japonica individuals and immediately stored at −80°C until use.

Recombinant Cjcel9A-CBM_{GFP} expression and purification

The CBM sequence of CjCel9A (Genbank: BAF38757.1, from Ala¹⁶ to Pro¹¹⁶) was amplified and fused with a GFP gene at its 5’ end. The recombinant Cjcel9A-CBM_{GFP} and GFP (control) were expressed and purified according to our previous report (Liu et al. 2019). Briefly, the CjCel9A-CBM sequence was amplified using a forward primer 5’-GAG GGA TCC CCA CCA CCA CCA CCA CGC ACC AGT AAC TAT C-3′ with an Immobilized Metal Affinity Chromatography (IMAC, i.e. His₆-tag, used to purify the recombinant protein to minimize the influence of multi-protein interactions that might cause false affinity results and decrease the credibility of further binding studies), and a backward primer of 5’-GAG GTG ACC CCT GGA CCT ACA GAC CT-3′. PCR products were purified and inserted into a pEGFP plasmid (BD Biosciences Clontech) at the N-terminus of GFP with no linker amino acids and transformed into an XL-blue strain of E. coli. After pre-culturing in 2 mL of LB medium containing 100 µg mL^{−1} ampicillin at 37°C for 16 h, the transformed E. coli was transferred to 200 mL of fresh LB medium and incubated at 37°C for another 4 h before adding isopropyl-β-D-thiogalactoside (IPTG) to a final concentration of 100 µg mL^{−1}. Collected cells were re-suspended in 2 mL of Phosphate-buffered saline (PBS), lysed by sonication on ice and centrifuged at 8,000×g for 20 min. The supernatant was collected as a crude extract of CjCel9A-CBM_{GFP} and purified using a His-trapTM FF column (GE Healthcare) following the manufacturer’s protocol and stored at −80°C in the presence of 1 mM NaN₃ before use. As a control, GFP was also expressed and purified. Both recombinant proteins were verified by SDS-PAGE stained with Coomassie Brilliant Blue (CBB).

Antibody purification

The antibody against CjCel9A was raised in our previous study (Sakamoto et al. 2007). In the present study, we used purified Cjcel9A-CBM_{GFP} as ligand to purify the CjCel9A antibody using a method described in a previous study (Liu et al. 2019), briefly introduced as follows: Cjcel9A-CBM_{GFP} recombinant protein purified by IMAC was used as the ligand. Two and a half milligrams of Cjcel9A-CBM_{GFP} was desalinated using a Prepacked Disposable PD-10 column (GE Healthcare) and then immobilized on an NHS-activated HP column (GE
Healthcare). Five milliliters of the antiserum were concentrated using a 5,000 Da molecular sieve (Amicon Ultra-15 5,000 MWCO, Millipore) and then introduced to the NHS column and purified following the manufacturer's protocols.

Fluorescence microscopy

To investigate the affinity of CjCel9A-CBMGFP for α-cellulose (Sigma-Aldrich), xylan (a component of plant cell-wall polysaccharides called hemicelluloses, Sigma-Aldrich, from beechwood), and reed leaves (from beechwood), and reed leaves collected from Tanaka River Estuary, Mie Prefecture, 40 mL of artificial seawater (REI-SEA Marine, main components contain NaCl, KCl, CaCl₂, MgCl₂, and Na₂HPO₄. No EDTA and dry seawater powder contained, Iwaki Co. Ltd, same below) and 1 mL of 9 μM CjCel9A-CBMGFP were mixed with 1 mg of each candidate substrate. After shaking at 4°C for 1 h, the substrate was collected and washed with 40 mL of 1 M NaCl three times before fluorescence microscopy. As controls, substrate mixed with GFP or IMAC elution buffer was also observed.

Isotherms of CjCel9A-CBMGFP

One mg of α-cellulose was mixed with CjCel9A-CBMGFP at 10 different final concentrations (6, 3, 1.5, 0.75, 0.57, 0.38, 0.28, 0.19, 0.14 and 0.09 μM) in PBS (pH 7.4). The α-cellulose was then collected and washed with 1 mL of 1 M NaCl 5 times. After samples were re-suspended in 100 μL of artificial seawater, they were transferred to a flat-bottom 96-well fluorescence plate and the intensity of fluorescence was measured using an image analyzer (FLA-flat-bottom 96-well fluorescence plate). The concentration of bound CjCel9A-CBMGFP was calculated by reference to a standard curve of 9000, FUJIFILM). The concentration of bound fluorescence was measured using an image analyzer (FLA-flat-bottom 96-well fluorescence plate and the intensity of 100 μM CjCel9A-CBMGFP was also observed.

Influence of cellulose crystallinity on CjCel9A-CBMGFP's binding

To determine the crystal structure of cellulose, 0.5 g of α-cellulose and filter paper were subjected to X-ray diffraction measurement by the reflection mode using a Rigaku Ultima IV diffractometer with nickel-filtered Cu Kα radiation at 40 kV and 40 mA. To investigate the influence of the crystallinity on the binding strength of CjCel9A-CBMGFP, filter paper treated with NaOH was also measured as described above. In this case, the filter paper was treated with 17.4% (w/v) NaOH for 1 or 4 hours and washed with 40 mL of distilled water. The binding of CjCel9A-CBMGFP to NaOH-treated filter paper was then conducted using a similar method to that described above. Briefly, 1 mL of 9 μM CjCel9A-CBMGFP was mixed with 1 mg of filter paper that had been subjected to each treatment. After shaking at 4°C for 1 h, the substrate was collected and washed with 40 mL of 1 M NaCl three times before the fluorescence intensity was measured. Because the filter paper shrunken due to the NaOH treatment, the fluorescence intensities were expressed per unit area of the filter paper.

Statistical analyses

Statistical analyses were carried out using IBM SPSS (ver. 22) and RStudio (ver. 1.2.1335). Bivariate correlation analysis (Pearson correlation coefficients in SPSS, 2-tailed) was used to examine the regression function in the Scatchard plot. One-sample t-test (SPSS) was applied to the results of the relative fluorescence between
α-cellulose and filter paper to compare their affinity for CjCel9A-CBM\(^{\text{GFP}}\). For the comparison of the CjCel9A-CBM bound on different groups of NaOH-treated filter papers, Levene's Test was used before one-way ANOVA was applied, and then Tukey's HSD post hoc analysis was used (RStudio).

Results

Affinity of CjCel9A-CBM\(^{\text{GFP}}\) for α-cellulose and filter paper

To evaluate the affinity of the recombinant CjCel9A-CBM\(^{\text{GFP}}\), pure cellulose (α-cellulose) and reed (Phragmites australis) leaves were tested as substrates. As shown in Fig. 1, the CBB-stained bands of both CjCel9A-CBM\(^{\text{GFP}}\) and GFP (control) matched each's putative molecular size. No other prominent bands were detected, which means that the purification was sufficient. As shown in Fig. 2, the GFP reporter clearly showed that CjCel9A-CBM\(^{\text{GFP}}\) had affinity for both α-cellulose and reed leaves (Fig. 2, top panel). GFP itself showed no affinity for any of the polysaccharides we tested in the present study, indicating that this affinity was not caused by the GFP reporter (Fig. 2 middle panel). Also, none of the substrates showed any auto-fluorescence (Fig. 2, bottom panel). As for xylan, CjCel9A-CBM\(^{\text{GFP}}\) showed no affinity. In addition, the affinity for α-cellulose and reed leaves was not influenced by 1 M NaCl used for washing off nonspecifically bound material. Moreover, CjCel9A-CBM\(^{\text{GFP}}\) did not bind evenly on reed leaves.

Binding isotherms of CjCel9A-CBM\(^{\text{GFP}}\)

We evaluated the binding strength of CjCel9A-CBM\(^{\text{GFP}}\) with varying concentrations of α-cellulose. The initial isotherm curve is shown in Fig. 3. Scatchard plot analysis was applied to calculate the dissociation constant \(K_D = 0.352\) and the maximum binding capacity \(B_{\text{max}} = 7.156\). The corresponding partitioning coefficient \(K_r\) was calculated as well by the ratio of \(B_{\text{max}}\) to \(K_D\) \(K_r = B_{\text{max}}/K_D = 20.33\).

Binding characteristics of CjCel9A-CBM\(^{\text{GFP}}\) on specific region of cellulose

To obtain more detail about how CjCel9A-CBM\(^{\text{GFP}}\) bound unevenly to α-cellulose fibers as shown in Fig. 2, immuno-SEM was applied (Fig. 4). The results of immuno-SEM clearly showed that the binding of CjCel9A-CBM\(^{\text{GFP}}\) was localized on α-cellulose (Fig. 4, top left and right). In the negative GFP control (Fig. 4, bottom) no signal was detected.

Affinity of crystalline style CjCel9A for various substrates

After washing with artificial seawater, Western blotting detected the presence of endogenous (crystalline style origin) CjCel9A cellulase on α-cellulose and filter paper, but not on reed leaves (Fig. 5). Two bands of endogenous CjCel9A cellulase were detected on substrates. The larger one (67 kDa) was considered to be a precursor (Sakamoto & Toyohara 2009), while the one with the size of 60 kDa matched the putative molecular size of CjCel9A cellulase, which was reported to exist in wetland sediments in our previous study (Liu et al. 2019).

Influence of crystallinity on CjCel9A-CBM\(^{\text{GFP}}\)'s binding

To investigate if the different affinities are caused by different crystallinity of different cellulose sources, X-ray crystallography was applied. The results showed that cellulose and filter paper have different crystallography patterns (Fig. 6, a, b). Filter paper had the signature of the Cellulose I crystalline structure (Hidaka et al. 2010), which is often seen in highly crystallized cellulose, α-cellulose, on the other hand, had no distinguishable signal pattern, which means it was amorphous cellulose. The relative fluorescence intensity of CjCel9A-CBM\(^{\text{GFP}}\) on filter paper was almost 10-fold stronger than that on α-cellulose (Fig. 6, c, d). After treatment with NaOH, the crystallography pattern of filter paper became more similar to that of α-cellulose, and its affinity for CjCel9A-CBM\(^{\text{GFP}}\) decreased about 8-fold after the treatment of NaOH, while no statistical significance were found between the 2 treatment groups of 1 hour and 4 hours (Fig. 7).

![Fig. 1. Purification of recombinant protein. CBB-staining of CjCel9A-CBM\(^{\text{GFP}}\)'s and GPs (control) before (−) and after (+) the purification via Immobilized Metal Affinity Chromatography (IMAC). After IMAC, only one prominent band was detected for CjCel9A-CBM\(^{\text{GFP}}\) and GFP, and the molecular size of each band matched the putative molecular size according to its amino-acid sequence.](image-url)
CBM anchors cellulase in wetland sediments

<table>
<thead>
<tr>
<th>α-cellulose</th>
<th>Xylan</th>
<th>Reed leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Affinity of CjCel9A-CBM^{GFP} for α-cellulose, xylan and reed leaves. The binding of CjCel9A-CBM^{GFP} to α-cellulose, xylan (from beechwood) and reed leaf (*Phragmites australis*, both surface and cross section) are shown in columns. Upper panel, fluorescence of Cjcel9A-CBM^{GFP} was observed on α-cellulose and reed leaves, but not xylan. Middle panel, no fluorescence was observed on any substrate when Cjcel9A-CBM^{GFP} was replaced with GFP. Bottom panel, no auto-fluorescence was observed on any substrate (negative controls). Scale bars, 200 μm, shared in the same column.

Fig. 3. Isotherms and Scatchard plot of Cjcel9A-CBM^{GFP} against α-cellulose. The initial isotherm curve is shown as filled black squares. Free Cjcel9A-CBM^{GFP}, the concentration of Cjcel9A-CBM^{GFP} that was initially mixed with α-cellulose. Bound Cjcel9A-CBM^{GFP}, Cjcel9A-CBM^{GFP} that bound to α-cellulose after washing. Scatchard plot is shown in upper left of the isotherm curve. According to the regression function (R²=0.754, p=0.00119, n=5 for each plot, value=mean±SEM), B_{max}, K_D, and K_i were calculated and are shown at bottom right.

Fig. 4. Immuno-scanning electron microscopy of Cjcel9A-CBM^{GFP} bound to α-cellulose. Upper left, white regions are the binding sites of Cjcel9A-CBM^{GFP} on α-cellulose. Upper right, magnified image of the boxed region in the upper left panel. Bottom, negative control in which Cjcel9A-CBM^{GFP} was replaced with GFP. Scale bars, 100 μm.
Discussion

The CBM of CjCel9A was shown here to be capable of binding to α-cellulose and filter paper, which are both pure cellulosics. To our knowledge, this is the first study to confirm the function of an aquatic invertebrate CBM. We also showed that CjCel9A-CBM^{GFP} binds unevenly on reed leaves collected from wetlands (Fig. 2). If the substrate that CjCel9A-CBM^{GFP} binds on reed leaves is cellulose, the uneven binding might occur because 1) most of the cellulose in reed leaves had already been consumed when the leaves were collected, or 2) the cellulose was not yet fully exposed for some yet unknown reason(s) (plant wax covered the leaves, for example). According to the CAZY database, CjCel9A-CBM was categorized as a Family 2 CBM based on its nucleotide/amino acid sequence (CAZY Database). The placement in this category suggests its potential ability to bind xylan and chitin. We therefore investigated CjCel9A-CBM^{GFP}'s affinity for xylan (β-D-1,4-xylopyranose, from beechwood) because it is another type of carbohydrate.

![Fig. 5. Affinity of crystalline style CjCel9A for various cellulose substrates. Bound, endogenous CjCel9A bound to and eluted from each type of cellulose. Sup., supernatant (washing buffer) fraction obtained by washing off non-specifically bound endogenous CjCel9A. Two types of endogenous CjCel9A signals (67 kDa and 60 kDa) were detected. The signal of 60 kDa was the CjCel9A cellulase, while the signal of 67 kDa was considered to be a precursor of CjCel9A.](https://repository.kulib.kyoto-u.ac.jp)

![Fig. 6. Relationship between affinity and crystalline structure. a,b. X-ray crystallography of α-cellulose and filter paper, respectively. c. The affinity of CjCel9A-CBM^{GFP} for α-cellulose and filter paper, shown as the relative fluorescence intensity of GFP (n=5, value=mean±SEM). d. Fluorescence microscopy of CjCel9A-CBM^{GFP} bound to α-cellulose (upper left), and filter paper (upper right). Negative controls are shown in the same column (bottom panel). Scale bars, 200 µm, shared in the same column. Alongside each image, the fluorescence intensity was shown as the quantified relative darkness in the fluorescence scan image of each sample (n=5).](https://repository.kulib.kyoto-u.ac.jp)
in the plant cell wall, but the result was negative (Fig. 2). There are multiple types of xylan in different plant species (Amos & Mohnen 2019) and some of them might have affinity for CjCel9A-CBMGFP; therefore, the true substrate that CjCel9A-CBMGFP binds on reed leaves remains to be investigated. Wetland sediments contain abundant cellulose, so although the actual binding substrate of CjCel9A-CBMGFP in reed leaves remains unclear, the ability of CjCel9A-CBMGFP to bind to both reed leaves and cellulose would enable the CjCel9A cellulase to be capable of immobilizing itself in wetland sediments. This capability could be one of the reason that secreted CjCel9A cellulase was detected in wetland sediment (Liu et al. 2019).

As for the level of the binding activity, isotherms and Scatchard plot analysis showed here that Cjcel9A-CBMGFP has a Kr value of 20.33 to α-cellulose, which is quite high compared to the value obtained in a previous study using chimera CBM modules that originated from the filamentous fungi Trichoderma reesei cellulase (Arola & Linder 2016). CjCel9A-CBM has the potential to replace the CBMs of bacteria and fungi that are now generally used in genetic engineering studies for making high-efficiency chimera cellulases. However, high affinity might not be essential to the efficiency of the decomposition activity. A previous study showed that in some cases, the presence of a CBM could be an obstruction to catalytic efficiency toward high concentrations of lignocellulosic substrates (Costaouec et al. 2013). Thus, future studies to examine the compatibility of CjCel9A-CBM with different catalytic domains and its ability to increase catalytic activities will be required. Notably, in the present study, the relative fluorescence intensity was measured after CjCel9A-CBMGFP-bound substrate (α-cellulose or reed leaves) was washed with 1 M NaCl, of which the ion concentration is approximately 3-fold higher than the ion concentration of natural seawater. This high-salt tolerance feature of CjCel9A-CBM could be an adaptation to its producers’ habitats, brackish water wetlands.

We noted that, if we magnified the image sufficiently, it could be seen that the CjCel9A-CBMGFP did not actually bind to α-cellulose ubiquitously (Fig. 2). We confirmed this finding by using immuno-SEM, which showed that CjCel9A-CBMGFP was localized on α-cellulose fibers (Fig. 4). At first, we were confused by this finding, because unlike reed leaves, α-cellulose is artificial and pure, which means there would be no problems of “substrate already consumed” or “substrate not exposed” described in the above-noted case of leaf substrates. We also thought that this might have been because of the interference of the GFP reporter or protein-liking alterations caused by separating CBM from its adjacent catalytic domain. However, by investigating the crystalline style CjCel9A cellulase collected from C. japonica individuals, we found that there was an obvious difference between the affinity for α-cellulose and filter paper (Fig. 5). The reason that endogenous CjCel9A wasn’t detected on reed leaf is considered to be the low concentration of CjCel9A cellulase in crystalline style, compared to the CjCel9A-CBMGFP recombinant protein used in fluorescent microscopy (Fig. 2). What’s important here is that the difference of binding between α-cellulose and filter paper could be due to their internal features, such as the level of crystallinity, because α-cellulose and filter paper are both pure celluloses produced by different industrial manufacturing procedures. The results of X-ray crystallography showed that the filter paper forms a Cellulose I crystalline structure, which is mostly seen in nature. α-cellulose, however, seems to be amorphous, possibly as a result of chemical treatments during its manufacturing process (Fig. 6). Upon treatment with NaOH, the crystallinity of filter paper decreased and became similar to that of α-cellulose, and its affinity to CjCel9A-CBMGFP also decreased significantly (Fig. 7). Since Cellulose I crys-
talline structures occur naturally, the CjCel9A-CBM will have an inherent advantage for binding to natural cellulose, such as that in plant residues. The reason that Cjcel9A-CBM prefers Cellulose I might ascribe to the primary (amino acid sequence), secondary (3 dimensional structure of local protein segment), tertiary (3 dimensional structure of the whole mono-protein), or quaternary (arrangement of multiple folded protein subunits) structure of the CBM. To date, there are few studies about aquatic invertebrates’ CBM, and the studies focused on microorganism’s CBM already indicated that the function of each CBM is difficult to be judged just by their primary structure. Thus, further experiments using purified or recombinant CBMs are required to unravel the relationship between CBMs’ molecular structure and their functions.

Based on those findings, we can conclude that CjCel9A-CBM could work efficiently on wetland sediments. It is impossible to infer the significance of this CBM to wetlands just from its functions, but it is also true that a mechanism that could immobilize the secreted CjCel9A cellulase to the sediment is needed to explain the following two facts that are now widely recognized in the field of wetland environmental studies. The first one is that sediment in many wetlands holds cellulase activities, even in wetlands that are being washed almost every day. At first, these activities were ascribed to microorganisms such as bacteria and fungus and small invertebrates known as meio-benthos. However, our previous study showed that even when all meio-benthos were excluded with sieves and microorganisms’ growth was suppressed with antibiotics, the cellulase activity still remained (Liu et al. 2012). This means that, in addition to secreted cellulase, other cellulases, which we called “environmental enzymes”, which are localized independent of their producers, also exist in wetland sediments. The second fact is the involvement of large invertebrates, known as macro-benthos. As noted in the introduction, endogenous cellulase has been discovered in macro-benthos recently, but the connection between these enzymes and wetland sediment had not been revealed until our recent study showed that C. japonica individuals secrete their cellulase (CjCel9A) into the sediment (Liu et al. 2019). We also confirmed the existence of CjCel9A cellulase in the total extract of proteins of the sediment at Tanaka River Estuary by using immunological methods (Liu et al. 2019). These findings suggested a novel cellulose decomposition system in wetland sediment, which involves not only organisms, but also enzymes that might be secreted by physiological processes, excreted in feces, or released from the dead bodies of their producers. This decomposition system (which we called an “environmental bioreactor system” in Liu et al. 2019) could partially explain how cellulase activ-

![Diagram of cellulose decomposition system in wetland sediments](https://repository.kulib.kyoto-u.ac.jp)
ity could exist constantly in wetland sediments.

However, all these observations lacked an explanation of exactly how these enzymes escape being washed away, since they are easily dissolved in water. As shown in Fig. 8, the present study focused on the CBM domain of CjCel9A, and suggested that it could be the anchor that immobilizes environmental enzymes such as the CjCel9A cellulase secreted by C. japonica, on leaves, which are much larger than the enzyme itself, and can more easily stay in the sediment, and thus avoid being washed away.

In summary, CjCel9A-CBM was proven to have high affinity for natural cellulose (Cellulose I). Also, CjCel9A-CBM is highly functional in high ion concentration environmental conditions, such as the conditions in brackish wetland sediments. These properties support the notion that the possession of CBMs by aquatic invertebrates might be one of the reasons that cellulase activities are constantly and widely detected in many wetland sediments. Moreover, this “CBM anchor” might be one of the most essential feature that empowers the wetlands to be a key player in the decomposition of terrestrial plant cell-wall polysaccharides.

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Nos. 21380131, 25292113, 12J04439, 25660167, 22405030, and 17H03851).

References

